1
|
Cheng L, Han Q, Hao Y, Qiao Z, Li M, Liu D, Yin H, Li T, Long W, Luo S, Gao Y, Zhang Z, Yu H, Sun X, Li H, Zhao Y. Genome assembly of Stewartia sinensis reveals origin and evolution of orphan genes in Theaceae. Commun Biol 2025; 8:354. [PMID: 40032980 DOI: 10.1038/s42003-025-07525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Orphan genes play crucial roles in diverse biological processes, but the evolutionary trajectories and functional divergence remain largely unexplored. The Theaceae family, including the economically and culturally important tea plant, offers a distinctive model to examine these aspects. Here, we integrated Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C methods to decode a pseudo-chromosomal genome assembly of Stewartia sinensis, from the earliest-diverging tribe of Theaceae, spanning 2.95 Gb. Comparative genomic analysis revealed the absence of recent whole-genome duplication events in the Theaceae ancestor, highlighting tandem duplications as the predominant mechanism of gene expansion. We identified 31,331 orphan genes, some of which appear to have ancient origins, suggesting early emergence with frequent gains and losses, while others seem more specific and recent. Notably, orphan genes are distinguished by shorter lengths, fewer exons and functional domains compared to genes that originate much earlier, like transcription factors. Moreover, tandem duplication contributes significantly to the adaptive evolution and characteristic diversity of Theaceae, and it is also a major mechanism driving the origination of orphan genes. This study illuminates the evolutionary dynamics of orphan genes, providing a valuable resource for understanding the origin and evolution of tea plant flavor and enhancing genetic breeding efforts.
Collapse
Affiliation(s)
- Lin Cheng
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Qunwei Han
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Yanlin Hao
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Zhen Qiao
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Mengge Li
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Daliang Liu
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Hao Yin
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Tao Li
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Wen Long
- Xinyang Normal University Library, Xinyang Normal University, Xinyang, China
| | - Shanshan Luo
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Ya Gao
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Zhihan Zhang
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Xinhao Sun
- College of Science, Northeastern University, Boston, USA
| | - Hao Li
- School of Life Sciences, East China Normal University, Shanghai, China.
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, China.
| | - Yiyong Zhao
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Humphrey J, Brophy E, Kosoy R, Zeng B, Coccia E, Mattei D, Ravi A, Naito T, Efthymiou AG, Navarro E, De Sanctis C, Flores-Almazan V, Muller BZ, Snijders GJLJ, Allan A, Münch A, Kitata RB, Kleopoulos SP, Argyriou S, Malakates P, Psychogyiou K, Shao Z, Francoeur N, Tsai CF, Gritsenko MA, Monroe ME, Paurus VL, Weitz KK, Shi T, Sebra R, Liu T, de Witte LD, Goate AM, Bennett DA, Haroutunian V, Hoffman GE, Fullard JF, Roussos P, Raj T. Long-read RNA sequencing atlas of human microglia isoforms elucidates disease-associated genetic regulation of splicing. Nat Genet 2025:10.1038/s41588-025-02099-0. [PMID: 40033057 DOI: 10.1038/s41588-025-02099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. Mapping the genetics of gene expression in human microglia has identified several loci associated with disease-associated genetic variants in microglia-specific regulatory elements. However, identifying genetic effects on splicing is challenging because of the use of short sequencing reads. Here, we present the isoform-centric microglia genomic atlas (isoMiGA), which leverages long-read RNA sequencing to identify 35,879 novel microglia isoforms. We show that these isoforms are involved in stimulation response and brain region specificity. We then quantified the expression of both known and novel isoforms in a multi-ancestry meta-analysis of 555 human microglia short-read RNA sequencing samples from 391 donors, and found associations with genetic risk loci in Alzheimer's and Parkinson's disease. We nominate several loci that may act through complex changes in isoform and splice-site usage.
Collapse
Affiliation(s)
- Jack Humphrey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Brophy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roman Kosoy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Biao Zeng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Coccia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniele Mattei
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashvin Ravi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatsuhiko Naito
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia G Efthymiou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elisa Navarro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain
| | - Claudia De Sanctis
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Flores-Almazan
- Department of Pathology, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Z Muller
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gijsje J L J Snijders
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Allan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Münch
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Steven P Kleopoulos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stathis Argyriou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Periklis Malakates
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantina Psychogyiou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lot D de Witte
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vahram Haroutunian
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA.
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Jiang K, Møller BL, Luo S, Yang Y, Nelson DR, Jakobsen Neilson EH, Christensen JM, Hua K, Hu C, Zeng X, Motawie MS, Wan T, Hu GW, Onjalalaina GE, Wang Y, Gaitán-Espitia JD, Wang Z, Xu XY, He J, Wang L, Li Y, Peng DH, Lan S, Zhang H, Wang QF, Liu ZJ, Huang WC. Genomic, transcriptomic, and metabolomic analyses reveal convergent evolution of oxime biosynthesis in Darwin's orchid. MOLECULAR PLANT 2025; 18:392-415. [PMID: 39702965 DOI: 10.1016/j.molp.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Angraecum sesquipedale, also known as Darwin's orchid, possesses an exceptionally long nectar spur. Charles Darwin predicted the orchid to be pollinated by a hawkmoth with a correspondingly long proboscis, later identified as Xanthopan praedicta. In this plant-pollinator interaction, the A. sesquipedale flower emits a complex blend of scent compounds dominated by diurnally regulated oximes (R1R2C = N-OH) to attract crepuscular and nocturnal pollinators. The molecular mechanism of oxime biosynthesis remains unclear in orchids. Here, we present the chromosome-level genome of A. sesquipedale. The haploid genome size is 2.10 Gb and represents 19 pseudochromosomes. Cytochrome P450 encoding genes of the CYP79 family known to be involved in oxime biosynthesis in seed plants are not present in the A. sesquipedale genome nor the genomes of other members of the orchid family. Metabolomic analysis of the A. sesquipedale flower revealed a substantial release of oximes at dusk during the blooming stage. By integrating metabolomic and transcriptomic correlation approaches, flavin-containing monooxygenases (FMOs) encoded by six tandem-repeat genes in the A. sesquipedale genome are identified as catalyzing the formation of oximes present. Further in vitro and in vivo assays confirm the function of FMOs in the oxime biosynthesis. We designate these FMOs as orchid oxime synthases 1-6. The evolutionary aspects related to the CYP79 gene losses and neofunctionalization of FMO-catalyzed biosynthesis of oximes in Darwin's orchid provide new insights into the convergent evolution of biosynthetic pathways.
Collapse
Affiliation(s)
- Kai Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Shaofan Luo
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elizabeth Heather Jakobsen Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Møller Christensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Kai Hua
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Chao Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xinhua Zeng
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Mohammed Saddik Motawie
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Tao Wan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Wan Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guy Eric Onjalalaina
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; University of Antananarivo, Antananarivo, Madagascar
| | - Yijiao Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - Xiao-Yan Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiamin He
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linying Wang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong-Hui Peng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Key Laboratory of Plant Design, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Qing-Feng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Wei-Chang Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
4
|
Gong X, Ding Z, Jiang H, Wang C, Qian Y, Chen W, Yu D, Liu Y, Zheng L, Yang L, Geng L. Chromosome-level genome assembly of flathead asp (Pseudaspius leptocephalus). Sci Data 2025; 12:321. [PMID: 39987315 PMCID: PMC11847012 DOI: 10.1038/s41597-025-04661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Pseudaspius leptocephalus is an economically and ecologically important fish species endemic to the Heilongjiang River Basin. Sequencing of the complete genome of P. leptocephalus could provide new insights with implications for the breeding and conservation of this species. The aim of this study was to obtain the chromosome-level genome of P. leptocephalus using PacBio and Hi-C sequencing. PacBio sequencing yielded an assembly of 889.21 Mb, with a contig N50 size of 10.9 Mb. Hi-C sequencing data were used for chromosome mapping and ultimately yielded 25 chromosome sequences. The success rate of chromosome mapping was 95.0%, with a BUSCO evaluation integrity score of 97.3%. A total of 25,531 protein-coding genes were predicted and 24,787 genes were functionally annotated. The BUSCO evaluation integrity score for the predicted protein-coding genes was 93.7%. Repeat sequences accounted for 39.5% of the total length of the genome. This work could aid the artificial breeding of P. leptocephalus, promote the conservation of biological resources, and provide a basis for future genomic and evolutionary studies of this species.
Collapse
Affiliation(s)
- Xiong Gong
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, 150070, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zufa Ding
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Haifeng Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cheng Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuting Qian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wenjun Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Yu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Zheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liandong Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Longwu Geng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, 150070, China.
| |
Collapse
|
5
|
Fu Y, Zhang X, Zhang T, Sun W, Yang W, Shi Y, Zhang J, He Q, Charlesworth D, Jiao Y, Chen Z, Xu B. Evidence for evolution of a new sex chromosome within the haploid-dominant Marchantiales plant lineage. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39981726 DOI: 10.1111/jipb.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Sex chromosomes have evolved independently in numerous lineages across the Tree of Life, in both diploid-dominant species, including many animals and plants, and the less studied haploid-dominant plants and algae. Strict genetic sex determination ensures that individuals reproduce by outcrossing. However, species with separate sexes (termed dioecy in diploid plants, and dioicy in haploid plants) may sometimes evolve different sex systems, and become monoicous, with the ability to self-fertilize. Here, we studied dioicy-monoicy transitions in the ancient liverwort haploid-dominant plant lineage, using three telomere-to-telomere gapless chromosome-scale reference genome assemblies from the Ricciaceae group of Marchantiales. Ancestral liverworts are believed to have been dioicous, with U and V chromosomes (chromosome 9) determining femaleness and maleness, respectively. We confirm the finding that monoicy in Ricciocarpos natans evolved from a dioicous ancestor, and most ancestrally U chromosomal genes have been retained on autosomes in this species. We also describe evidence suggesting the possible re-evolution of dioicy in the genus Riccia, with probable de novo establishment of a sex chromosome from an autosome (chromosome 5), and further translocations of genes from the new sex chromosome to autosomes. Our results also indicated that micro-chromosomes are consistent genomic features, and may have evolved independently from sex chromosomes in Ricciocarpos and Riccia lineages.
Collapse
Affiliation(s)
- Yuan Fu
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Zhang
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tian Zhang
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Sun
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Yang
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajing Shi
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Qiang He
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Bo Xu
- State Key Laboratory of Plant Diversity and Prominent Crop/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
6
|
Hoile AE, Holland PWH, Mulhair PO. Gene novelty and gene family expansion in the early evolution of Lepidoptera. BMC Genomics 2025; 26:161. [PMID: 39966712 PMCID: PMC11837612 DOI: 10.1186/s12864-025-11338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Almost 10% of all known animal species belong to Lepidoptera: moths and butterflies. To understand how this incredible diversity evolved we assess the role of gene gain in driving early lepidopteran evolution. Here, we compared the complete genomes of 115 insect species, including 99 Lepidoptera, to search for novel genes coincident with the emergence of Lepidoptera. RESULTS We find 217 orthogroups or gene families which emerged on the branch leading to Lepidoptera; of these 177 likely arose by gene duplication followed by extensive sequence divergence, 2 are candidates for origin by horizontal gene transfer, and 38 have no known homology outside of Lepidoptera and possibly arose via de novo gene genesis. We focus on two new gene families that are conserved across all lepidopteran species and underwent extensive duplication, suggesting important roles in lepidopteran biology. One encodes a family of sugar and ion transporter molecules, potentially involved in the evolution of diverse feeding behaviours in early Lepidoptera. The second encodes a family of unusual propeller-shaped proteins that likely originated by horizontal gene transfer from Spiroplasma bacteria; we name these the Lepidoptera propellin genes. CONCLUSION We provide the first insights into the role of genetic novelty in the early evolution of Lepidoptera. This gives new insight into the rate of gene gain during the evolution of the order as well as providing context on the likely mechanisms of origin. We describe examples of new genes which were retained and duplicated further in all lepidopteran species, suggesting their importance in Lepidoptera evolution.
Collapse
Affiliation(s)
- Asia E Hoile
- Department of Biology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, UK
| | - Peter W H Holland
- Department of Biology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, UK.
| | - Peter O Mulhair
- Department of Biology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
7
|
La Torre R, Hamilton JP, Saucedo-Bazalar M, Caycho E, Vaillancourt B, Wood JC, Ramírez M, Buell CR, Orjeda G. A chromosome-level genome assembly of the Peruvian Algarrobo (Neltuma pallida) provides insights on its adaptation to its unique ecological niche. G3 (BETHESDA, MD.) 2025; 15:jkae283. [PMID: 39657049 PMCID: PMC11797065 DOI: 10.1093/g3journal/jkae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
The dry forests of northern Peru are dominated by the legumous tree Neltuma pallida which is adapted to hot arid and semiarid conditions in the tropics. Despite having been successfully introduced in multiple other areas around the world, N. pallida is currently threatened in its native area, where it is invaluable for the dry forest ecosystem and human subsistence. A major tool for enhancing ecosystem conservation and understanding the adaptive properties of N. pallida to dry forest ecosystems is the construction of a reference genome sequence. Here, we report on a high-quality reference genome for N. pallida. The final genome assembly size is 403.7 Mb, consisting of 14 pseudochromosomes and 63 scaffolds with an N50 size of 26.2 Mb and a 34.3% GC content. Use of Benchmarking Universal Single Copy Orthologs revealed 99.2% complete orthologs. Long terminal repeat elements dominated the repetitive sequence content which was 51.2%. Genes were annotated using N. pallida transcripts, plant protein sequences, and ab initio predictions resulting in 22,409 protein-coding genes encoding 24,607 gene models. Comparative genomic analysis showed evidence of rapidly evolving gene families related to disease resistance, transcription factors, and signaling pathways. The chromosome-scale N. pallida reference genome will be a useful resource for understanding plant evolution in extreme and highly variable environments.
Collapse
Affiliation(s)
- Renato La Torre
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
| | - Manuel Saucedo-Bazalar
- Laboratory of Molecular Biology, Department of Biology and Biochemistry, Universidad Nacional de Tumbes, Tumbes 24001, Peru
| | - Esteban Caycho
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Brieanne Vaillancourt
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Joshua C Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Manuel Ramírez
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA 30602, USA
- The Plant Center, University of Georgia, Athens, GA 30602, USA
| | - Gisella Orjeda
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| |
Collapse
|
8
|
Zheng T, Bo J, Wang J, Li S, Li H, Liu M, Niu H, Nguyen T, Chen Y, Sun J. Unveiling Photoperiod-Responsive Regulatory Networks in Tropical Maize Through Transcriptome Analysis. Genes (Basel) 2025; 16:192. [PMID: 40004520 PMCID: PMC11855818 DOI: 10.3390/genes16020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Maize (Zea mays L.), a crop of worldwide importance, owes its adaptability to diverse environments to its genetic variation. However, tropical maize exhibits intrinsic photoperiod sensitivity, limiting its adaptability to temperate regions. Photoperiod sensitivity significantly affects the flowering time and other agronomic traits, but the underlying molecular mechanisms remain poorly understood. In this study, the aim is to elucidate the transcriptional regulatory networks mediating photoperiod responses in tropical maize inbred line Su65, providing insights into improving photoperiod adaptability. Methods: RNA-seq analysis was carried out to investigate photoperiod-responsive genes and pathways in tropical line Su65 exposed to varying photoperiod conditions. Differential expression analysis, functional enrichment, and the construction of protein-protein interaction (PPI) networks were carried out to investigate transcriptional dynamics. Additionally, qRT-PCR was employed to confirm the expression patterns of key candidate genes and generate detailed temporal expression profiles. Results: A total of 1728 differentially expressed genes (DEGs) were identified, with significant enrichment in pathways such as stress responses, redox homeostasis, and secondary metabolite biosynthesis. A set of new key hub genes (such as Zm00001d048531, Zm00001d018821, Zm00001d034892, etc.) were identified through PPI network analysis. Temporal expression profiling of ZmPHYB1, ZmPHYC1, ZmFKF2, ZmGI2, and ZmPRR37a, the key genes involved in circadian rhythms, revealed distinct regulatory patterns of photoperiod-sensitive genes at different time points, highlighting their roles in flowering time regulation and developmental transitions. Conclusions: In this study, critical molecular networks underlying photoperiod sensitivity in tropical maize are uncovered and a foundation is provided for improving photoperiod adaptability through genetic improvement. By integrating RNA-seq and qRT-PCR, the research offers valuable insights into transcriptional dynamics and their role in maize development under photoperiodic regulation.
Collapse
Affiliation(s)
- Tianhui Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (T.Z.); (Y.C.)
| | - Jinge Bo
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (T.Z.); (Y.C.)
| | - Jing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (T.Z.); (Y.C.)
| | - Siyuan Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (T.Z.); (Y.C.)
| | - Haonan Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (T.Z.); (Y.C.)
| | - Mengyao Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (T.Z.); (Y.C.)
| | - Hongbin Niu
- The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450002, China
| | - Thanhliem Nguyen
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 590000, Vietnam;
| | - Yanhui Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (T.Z.); (Y.C.)
| | - Juan Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (T.Z.); (Y.C.)
| |
Collapse
|
9
|
Ortega-Jaén D, Mora-Martinez C, Capalbo A, Mifsud A, Boluda-Navarro M, Mercader A, Martín Á, Pardiñas ML, Gil J, de Los Santos MJ. A pilot study of transcriptomic preimplantation genetic testing (PGT-T): towards a new step in embryo selection? Hum Reprod 2025; 40:244-260. [PMID: 39719045 DOI: 10.1093/humrep/deae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/23/2024] [Indexed: 12/26/2024] Open
Abstract
STUDY QUESTION Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data? SUMMARY ANSWER It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity. WHAT IS KNOWN ALREADY Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation. PGT has improved pregnancy rates, but problems persist when high-quality euploid embryos do not reach term. In fact, only around 50-60% implant, of which 10% result in miscarriage. Comprehensive approaches, including RNA-Seq, offer the potential to discover molecular markers of reproductive competence, and could theoretically be combined with extended-embryo culture platforms up to Day 14 that can be utilized as a proxy to study embryo development at post-implantation stages. STUDY DESIGN, SIZE, DURATION This prospective pilot cohort study was conducted from March 2023 to August 2023. A total of 30 vitrified human blastocysts with previous PGT-A diagnosis on Day 5 (D5) or Day 6 (D6) of development were analysed: n = 15 euploid and n = 15 aneuploid. Finally, 21 embryo samples were included in the study; the rest (n = 9) were excluded due to poor quality pre-sequencing data (n = 7) or highly discordant data (n = 2). PARTICIPANTS/MATERIALS, SETTING, METHODS Following warming and re-expansion, embryos underwent a second trophectoderm (TE) biopsy. The embryos were then cultured until day 11 to assess their development. Biopsy analysis by RNA-Seq, studied the differential expressed genes (DEG) to compare embryos which did not or did attach to the plate: unattached embryos (n = 12) versus attached embryos (n = 9). Thus, we also obtained a specific transcriptomic signature of embryos with a "theoretical" capacity for sustained implantation, based on plate attachment on day 11. MAIN RESULTS AND THE ROLE OF CHANCE The digital karyotype obtained by RNA-Seq showed good concordance with the earlier PGT-A data, with a sensitivity of 0.81, a specificity of 0.83, a Cohen's Kappa of 0.66, and an area under the ROC of 0.9. At the gene level, 76 statistically significant DEGs were found in the comparison unattached versus attached embryos (Padj < 0.05; FC > 1). To address the functional implications of these differences, significantly deregulated pathways according to GO and KEGG categories were identified. The mural trophectoderm (TE) of the unattached blastocysts showed 63 significantly deregulated terms, displaying upregulation in autophagy, apoptosis, protein kinase and ubiquitin-like protein ligase activity, and downregulation of ribosome, spliceosome, kinetochore, segregation, and chromosome condensation processes. The overall transcriptomic signature specific to embryos still attached to the plate on day 11 (with a theoretically higher implantation capacity) consists of 501 genes, including: EMP2, AURKB, FOLR1, NOTCH3, LRP2, FZD5, MDH1, APOD, GPX8, COLEC12, HSPA1A, CMTM7, BEX3, which are related to implantation and embryonic development (raw P-value < 0.05; shrunk LFC > 1.1). These findings indicate that it might be possible to identify euploid embryos with a greater capacity for implantation and development, after excluding those embryos that present chromosomal alterations. LIMITATIONS, REASONS FOR CAUTION This study included a small sample size, remarkable variability between samples, and low success rate of RNA amplification. Also, structural chromosomal abnormalities were not included, and it was not possible to diagnose mosaic embryos. TE biopsy does not assure the chromosomal status of the whole embryo. The maximum day for in vitro development was Day 11, and attachment to the plate on this day does not provide a clear indication of implantation capacity and viability, which was not tested in this study. WIDER IMPLICATIONS OF THE FINDINGS The short-term goals following on from this pilot study is to expand the sample size with embryos of more complex abnormalities, and to perform a prospective in vitro preclinical validation. In a more distant future and with optimal results, this technique could have clinical application, thus increasing clinical outcomes by assessing both chromosomal content and transcriptomic profiling. STUDY FUNDING/COMPETING INTEREST(S) The Institut Valencià de Competitivitat Empresarial (IVACE) (IMIDCA/2022/39) and Generalitat Valenciana (CIACIF/2021/11) supported the present study. A.C. is an employee of JUNO Genetics. He has received honoraria for an IBSA lecture and a Merck lecture. He is also a minor shareholder of IVIRMA Global. The other authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- David Ortega-Jaén
- IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | | | - Antonio Capalbo
- JUNO Genetics-Italy, Reproductive Genetics, Rome, Italy
- Unit of Medical Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Amparo Mifsud
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | | | - Amparo Mercader
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | - Ángel Martín
- IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - María Luisa Pardiñas
- IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Julia Gil
- IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - María José de Los Santos
- IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| |
Collapse
|
10
|
Donega S, Banskota N, Gupta E, Gonzalez-Freire M, Moore AZ, Ubaida-Mohien C, Munk R, Zukley L, Piao Y, Bergeron C, Bergeron J, Bektas A, Zampino M, Stagg C, Indig F, Hartnell LM, Kaileh M, Fishbein K, Spencer RG, Gorospe M, De S, Egan JM, Sen R, Ferrucci L. Skeletal Muscle mRNA Splicing Variants Association With Four Different Fitness and Energetic Measures in the GESTALT Study. J Cachexia Sarcopenia Muscle 2025; 16:e13603. [PMID: 39621510 DOI: 10.1002/jcsm.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Physical activity is essential for maintaining muscle mitochondrial function and aerobic capacity. The molecular mechanisms underlying such protective effects are incompletely understood, in part because it is difficult to separate the effects of disease status and physical activity. We explored the association of human skeletal muscle transcriptomic with four measures of energetics and mitochondria oxidative capacity in healthy individuals. METHODS Using RNA sequencing of vastus lateralis muscle biopsies from 82 GESTALT participants (52 males, aged 22-89 years), we explored gene and splicing variant expression profiles associated with self-reported physical activity, peak oxygen consumption (VO2 peak), muscle oxidative capacity (kPCr) and mitochondrial respiration (Mit-O2 flux). The effect of aging on gene expression was examined in participants with low and high VO2 peak. RESULTS The four measures of energetics were negative correlated with age and generally intercorrelated. We identified protein-coding genes associated with four energetic measures adjusting for age, muscle fiber-ratio, sex and batch effect. Mitochondrial pathways were overrepresented across all energetic variables, albeit with little overlap at the gene level. Alternative spliced transcript isoforms associated with energetics were primarily enriched for cytoplasmic ribonucleoprotein granules. The splicing pathway was up-regulated with aging in low but not in high fitness participants, and transcript isoforms detected in the low fitness group pertain to processes such as cell cycle regulation, RNA/protein localization, nuclear transport and catabolism. CONCLUSIONS A consistent mitochondrial signature emerged across all energetic measures. Alternative splicing was enhanced in older, low fitness participants supporting the energy-splicing axis hypothesis. The identified splicing variants were enriched in pathways involving the accumulation of ribonucleoproteins in cytoplasmic granules, whose function remains unclear. Further research is needed to understand the function of these proteoforms in promoting adaptation to low energy availability.
Collapse
Affiliation(s)
- Stefano Donega
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Esha Gupta
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Marta Gonzalez-Freire
- Translational Research in Aging and Longevity Group (TRIAL group), Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - Ann Zenobia Moore
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Ceereena Ubaida-Mohien
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Linda Zukley
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Chris Bergeron
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Jan Bergeron
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Arsun Bektas
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Marta Zampino
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Carole Stagg
- Confocal Imaging Facility, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Fred Indig
- Confocal Imaging Facility, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Lisa M Hartnell
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Mary Kaileh
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Kenneth Fishbein
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Josephine M Egan
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology (LMBI), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| |
Collapse
|
11
|
Zhou H, Clark E, Guan D, Lagarrigue S, Fang L, Cheng H, Tuggle CK, Kapoor M, Wang Y, Giuffra E, Egidy G. Comparative Genomics and Epigenomics of Transcriptional Regulation. Annu Rev Anim Biosci 2025; 13:73-98. [PMID: 39565835 DOI: 10.1146/annurev-animal-111523-102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Transcriptional regulation in response to diverse physiological cues involves complicated biological processes. Recent initiatives that leverage whole genome sequencing and annotation of regulatory elements significantly contribute to our understanding of transcriptional gene regulation. Advances in the data sets available for comparative genomics and epigenomics can identify evolutionarily constrained regulatory variants and shed light on noncoding elements that influence transcription in different tissues and developmental stages across species. Most epigenomic data, however, are generated from healthy subjects at specific developmental stages. To bridge the genotype-phenotype gap, future research should focus on generating multidimensional epigenomic data under diverse physiological conditions. Farm animal species offer advantages in terms of feasibility, cost, and experimental design for such integrative analyses in comparison to humans. Deep learning modeling and cutting-edge technologies in sequencing and functional screening and validation also provide great promise for better understanding transcriptional regulation in this dynamic field.
Collapse
Affiliation(s)
- Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | - Emily Clark
- The Roslin Institute, University of Edinburgh, Edinburgh, Midlothian, United Kingdom;
| | - Dailu Guan
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | | | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark;
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | | | - Muskan Kapoor
- Department of Animal Science, Iowa State University, Ames, Iowa, USA; ,
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA; , , ,
| | | | - Giorgia Egidy
- GABI, AgroParisTech, INRAE, Jouy-en-Josas, France; ,
| |
Collapse
|
12
|
Qadir M, Lin X, Nabi F, Ashok KK, Zhou XR, Sun Q, Shi P, Wang X, Shi J, Wang H. Dissection of the genetic basis and molecular mechanism of ovule number per ovary in oilseed rape ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2025; 15:1489490. [PMID: 39935687 PMCID: PMC11811079 DOI: 10.3389/fpls.2024.1489490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/09/2024] [Indexed: 02/13/2025]
Abstract
Ovule number per ovary (ONPO) determines the maximum potential of seed number per fruit that is a direct component of seed yield in crops. This study aimed to dissect the genetic basis and molecular mechanism of ONPO using a newly developed doubled haploid (DH) population in oilseed rape. In all the four investigated environments, the ONPO of 201 DH lines exhibited normal distribution with a wide variation from 22.6 to 41.8, suggesting quantitative inheritance appropriate for mapping QTL. A skeleton genetic map of 2111 markers within 19 linkage groups was developed, with a total of 1715.71 cM in length and an average of 0.82 cM between markers. Linkage mapping identified ten QTLs that were distributed on eight chromosomes and explained 7.0-15.9% of the phenotypic variance. Among these, four were identical to the reported and two were repeatedly detected with relatively large effects, highlighting their potential for marker-assisted selection. Phytohormone quantification of ovaries (at the ovule initiation stage) from two pools of high and low ONPO lines showed significant differences in the levels of nine sub-types of phytohormones, suggesting their important roles in regulating ovule number. Transcriptomic analysis identified 7689 differentially expressed genes (DEGs) between the two pools, of which nearly half were enriched into functional categories of reported genes regulating ONPO, including protein, RNA, signalling, miscellaneous, development, hormone metabolism, and tetrapyrrole synthesis. Integration of linkage QTL mapping, transcriptome sequencing and BLAST analysis identified 15 homologues of reported ovule number genes and 327 DEGs in the QTL regions, which were considered as direct and potential candidate genes. These findings propose further insights into the genetic basis and molecular mechanisms of ONPO, which will facilitate future gene cloning and genetic improvement for enhancing seed yield in oilseed rape.
Collapse
Affiliation(s)
- Muslim Qadir
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Abu Dhabi, United Arab Emirates
| | - Xinyi Lin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Farhan Nabi
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Kishore Kumar Ashok
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Abu Dhabi, United Arab Emirates
| | - Xue-Rong Zhou
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture Food, Canberra, ACT, Australia
| | - Qingbin Sun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Peiman Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| |
Collapse
|
13
|
Zhao Q, Yin Z, Hou Z. Near telomere-to-telomere genome assemblies of Silkie Gallus gallus and Mallard Anas platyrhynchos restored the structure of chromosomes and "missing" genes in birds. J Anim Sci Biotechnol 2025; 16:9. [PMID: 39828703 PMCID: PMC11745021 DOI: 10.1186/s40104-024-01141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/08/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Chickens and ducks are vital sources of animal protein for humans. Recent pangenome studies suggest that a single genome is insufficient to represent the genetic information of a species, highlighting the need for more comprehensive genomes. The bird genome has more than tens of microchromosomes, but comparative genomics, annotations, and the discovery of variations are hindered by inadequate telomere-to-telomere level assemblies. We aim to complete the chicken and duck genomes, recover missing genes, and reveal common and unique chromosomal features between birds. RESULTS The near telomere-to-telomere genomes of Silkie Gallus gallus and Mallard Anas platyrhynchos were successfully assembled via multiple high-coverage complementary technologies, with quality values of 36.65 and 44.17 for Silkie and Mallard, respectively; and BUSCO scores of 96.55% and 96.97% for Silkie and Mallard, respectively; the mapping rates reached over 99.52% for both assembled genomes, these evaluation results ensured high completeness and accuracy. We successfully annotated 20,253 and 19,621 protein-coding genes for Silkie and Mallard, respectively, and assembled gap-free sex chromosomes in Mallard for the first time. Comparative analysis revealed that microchromosomes differ from macrochromosomes in terms of GC content, repetitive sequence abundance, gene density, and levels of 5mC methylation. Different types of arrangements of centromeric repeat sequence centromeres exist in both Silkie and the Mallard genomes, with Mallard centromeres being invaded by CR1. The highly heterochromatic W chromosome, which serves as a refuge for ERVs, contains disproportionately long ERVs. Both Silkie and the Mallard genomes presented relatively high 5mC methylation levels on sex chromosomes and microchromosomes, and the telomeres and centromeres presented significantly higher 5mC methylation levels than the whole genome. Finally, we recovered 325 missing genes via our new genomes and annotated TNFA in Mallard for the first time, revealing conserved protein structures and tissue-specific expression. CONCLUSIONS The near telomere-to-telomere assemblies in Mallard and Silkie, with the first gap-free sex chromosomes in ducks, significantly enhanced our understanding of genetic structures in birds, specifically highlighting the distinctive chromosome features between the chicken and duck genomes. This foundational work also provides a series of newly identified missing genes for further investigation.
Collapse
Affiliation(s)
- Qiangsen Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhongtao Yin
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhuocheng Hou
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Yang Y, Hu X. A Chromosome-Scale Genome of Trametes versicolor and Transcriptome-Based Screening for Light-Induced Genes That Promote Triterpene Biosynthesis. J Fungi (Basel) 2025; 11:81. [PMID: 39852500 PMCID: PMC11766705 DOI: 10.3390/jof11010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/26/2025] Open
Abstract
Trametes versicolor is an important fungus with medicinal properties and a significant role in lignocellulose degradation. In this study, we constructed a high-quality chromosome-level genome of T. versicolor using Illumina, PacBio HiFi, and Hi-C sequencing technologies. The assembled genome is 47.42 Mb in size and contains 13,307 protein-coding genes. BUSCO analysis revealed genome and gene completeness results of 95.80% and 95.90%, respectively. Phylogenetic analysis showed that T. versicolor is most closely related to T. pubescens, followed by T. cinnabarina and T. coccinea. Comparative genomic analysis identified 266 syntenic blocks between T. versicolor and Wolfiporia cocos, indicating a conserved evolutionary pattern between the two species. Gene family analysis highlighted the expansion and contraction of genes in functional categories related to the biosynthesis of secondary metabolites, including several T. versicolor-specific genes. Key genes involved in lignocellulose degradation and triterpene production were identified within the CAZyme and CYP450 gene families. Transcriptomic analysis under dark and light conditions revealed significant changes in the expression of genes related to secondary metabolism, suggesting that light signals regulate metabolic pathways. A total of 2577 transporter proteins and 2582 membrane proteins were identified and mapped in the T. versicolor genome, and 33 secondary metabolite gene clusters were identified, including two light-sensitive triterpene biosynthesis clusters. This study offers a comprehensive genomic resource for further investigation into the functional genomics, metabolic regulation, and triterpene biosynthesis of T. versicolor, providing valuable insights into fungal evolution and biotechnological applications.
Collapse
Affiliation(s)
- Yang Yang
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuebo Hu
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Mante J, Groover KE, Pullen RM. Environmental community transcriptomics: strategies and struggles. Brief Funct Genomics 2025; 24:elae033. [PMID: 39183066 PMCID: PMC11735753 DOI: 10.1093/bfgp/elae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Transcriptomics is the study of RNA transcripts, the portion of the genome that is transcribed, in a specific cell, tissue, or organism. Transcriptomics provides insight into gene expression patterns, regulation, and the underlying mechanisms of cellular processes. Community transcriptomics takes this a step further by studying the RNA transcripts from environmental assemblies of organisms, with the intention of better understanding the interactions between members of the community. Community transcriptomics requires successful extraction of RNA from a diverse set of organisms and subsequent analysis via mapping those reads to a reference genome or de novo assembly of the reads. Both, extraction protocols and the analysis steps can pose hurdles for community transcriptomics. This review covers advances in transcriptomic techniques and assesses the viability of applying them to community transcriptomics.
Collapse
Affiliation(s)
- Jeanet Mante
- Oak Ridge Associated Universities, Oak Ridge, 37831, TN, USA
| | - Kyra E Groover
- Department of Molecular Biosciences, University of Texas at Austin, Austin, 78705, TX, USA
| | - Randi M Pullen
- DEVCOM Army Research Laboratory, Adelphi, 20783, MD, USA
| |
Collapse
|
16
|
Ye F, Chen X, Li Y, Ju A, Sheng Y, Duan L, Zhang J, Zhang Z, Al-Rasheid KAS, Stover NA, Gao S. Comprehensive genome annotation of the model ciliate Tetrahymena thermophila by in-depth epigenetic and transcriptomic profiling. Nucleic Acids Res 2025; 53:gkae1177. [PMID: 39657783 PMCID: PMC11754650 DOI: 10.1093/nar/gkae1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The ciliate Tetrahymena thermophila is a well-established unicellular model eukaryote, contributing significantly to foundational biological discoveries. Despite its acknowledged importance, current studies on Tetrahymena biology face challenges due to gene annotation inaccuracy, particularly the notable absence of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena macronuclear genome, we collected extensive transcriptomic data spanning various cell stages. To ascertain transcript orientation and transcription start/end sites, we incorporated data on epigenetic marks displaying enrichment towards the 5' end of gene bodies, including H3 lysine 4 tri-methylation (H3K4me3), histone variant H2A.Z, nucleosome positioning and N6-methyldeoxyadenine (6mA). Cap-seq data was subsequently applied to validate the accuracy of identified transcription start sites. Additionally, we integrated Nanopore direct RNA sequencing (DRS), strand-specific RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data. Using a newly developed bioinformatic pipeline, coupled with manual curation and experimental validation, our work yielded substantial improvements to the current gene models, including the addition of 2,481 new genes, updates to 23,936 existing genes, and the incorporation of 8,339 alternatively spliced isoforms. Furthermore, novel UTR information was annotated for 26,687 high-confidence genes. Intriguingly, 20% of protein-coding genes were identified to have natural antisense transcripts characterized by high diversity in alternative splicing, thus offering insights into understanding transcriptional regulation. Our work will enhance the utility of Tetrahymena as a robust genetic toolkit for advancing biological research, and provides a promising framework for genome annotation in other eukaryotes.
Collapse
Affiliation(s)
- Fei Ye
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
| | - Yuan Li
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Aili Ju
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yalan Sheng
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Lili Duan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiachen Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhe Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, IL 61625, USA
| | - Shan Gao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
17
|
Xu H, Yin Q, Fan L, Zhao Y, Song B, Xu Q, Zhu J, Xu M. RNF138 contributes to cisplatin resistance in nasopharyngeal carcinoma cells. Sci Rep 2025; 15:1406. [PMID: 39789198 PMCID: PMC11718199 DOI: 10.1038/s41598-025-85716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Resistance to chemotherapy is a significant concern in the treatment of nasopharyngeal carcinoma (NPC), and occurs due to various mechanisms. This study is aimed to evaluate the effects of RING finger protein 138 (RNF138) in the development of cisplatin resistance to NPC. After gene overexpression and silencing, the expression levels of RNF138 were evaluated. The impacts of RNF138 on the proliferation and apoptosis rate of NPC cells were then assessed. γ-H2AX-mediated DNA damage was determined via immunofluorescence assay. Moreover, a tumor xenograft mouse model was developed to investigate the role of RNF138 on NPC progression in vivo. Additionally, transcriptome analysis was performed in 5-8 F cells transfection with OE-RNF1138 or OE-NC.Cisplatin significantly inhibited the proliferation, and promoted apoptosis and DNA damage in NPC cells; however, overexpression of RNF138 reversed the aforementioned regulatory role of cisplatin on NPC cells. Knockdown of RNF138 resulted in contrasting phenotypic outcomes. Additionally, in nude mice, RNF138 overexpression attenuated the suppressive effects of cisplatin on the growth of xenograft tumor, while RNF138 silencing further enhanced the inhibiting role of cisplatin. We further indicated that in 5-8 F cells following RNF138 overexpression, some pathways such as PI3K-Akt signaling pathway, human papillomavirus infection and ErbB signaling pathway that have been reported to be associated with NPC progression and cisplatin resistance were significantly enriched. These findings indicate that the modulation of RNF138 could potentially address the issue of chemotherapy failure by overcoming cisplatin resistance in NPC cells, making it a promising candidate for targeted drug therapy.
Collapse
Affiliation(s)
- Hangyu Xu
- Department of Otolaryngology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Qing Yin
- Department of Otolaryngology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Linna Fan
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yating Zhao
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Avenue, Taizhou City, 318000, Zhejiang Province, China
| | - Biying Song
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Avenue, Taizhou City, 318000, Zhejiang Province, China
| | - Qifan Xu
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Avenue, Taizhou City, 318000, Zhejiang Province, China
| | - Jie Zhu
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Avenue, Taizhou City, 318000, Zhejiang Province, China.
| | - Meifen Xu
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Avenue, Taizhou City, 318000, Zhejiang Province, China.
| |
Collapse
|
18
|
Liu F, Wang SH, Cheewangkoon R, Zhao RL. Uneven distribution of prokaryote-derived horizontal gene transfer in fungi: a lifestyle-dependent phenomenon. mBio 2025; 16:e0285524. [PMID: 39611838 PMCID: PMC11708051 DOI: 10.1128/mbio.02855-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Horizontal gene transfer (HGT) in fungi is less understood despite its significance in prokaryotes. In this study, we systematically searched for HGT events in 829 representative fungal genomes. Using a combination of sequence similarity and phylogeny-based approaches, we detected 20,093 prokaryotic-derived transferred genes across 750 fungal genomes, via 8,815 distinct HGT events. Notably, our analysis revealed that eight lifestyle-related traits significantly influence HGT diversity in fungi. For instance, parasites exhibited the highest estimated number of HGT-acquired genes, followed by saprotrophs, with symbionts showing the lowest. HGT-acquired genes were predominantly associated with metabolism and cellular functions and underwent purifying selection. Moreover, horizontally transferred genes with introns have significantly higher expression levels compared to intron-lacking genes, suggesting a probable role of intron gains in the adaptation of HGT-acquired genes. Overall, our findings highlight the influence of lifestyle on HGT diversity in fungi and underscore the substantial contribution of HGT to fungal adaptation. IMPORTANCE This study sheds new light on the role of horizontal gene transfer (HGT) in fungi, an area that has remained relatively unexplored compared to its well-established prevalence in bacteria. By analyzing 829 fungal genomes, we identified over 20,000 genes that fungi acquired from prokaryotes, revealing the significant impact of HGT on fungal evolution. Our findings highlight that fungal lifestyle traits, such as being parasitic or saprotrophic, play a key role in determining the extent of HGT, with parasites showing the highest gene acquisition rates. We also uncovered unique patterns of HGT occurrence based on fungal morphology and reproduction. Importantly, genes with introns, which are more highly expressed, appear to play a crucial role in fungal adaptation. This research deepens our understanding of how HGT contributes to the metabolic diversity and ecological success of fungi, and it underscores the broader significance of gene transfer in shaping fungal evolution.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Shi-Hui Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Wang G, Zhang X, Zhao X, Ren X, Chen A, Dai W, Zhang L, Lu Y, Jiang Z, Wang H, Liu Y, Zhao X, Wen J, Cheng X, Zhang Y, Ning Z, Ban L, Qu L. Genomic evidence for hybridization and introgression between blue peafowl and endangered green peafowl and molecular foundation of leucistic plumage of blue peafowl. Gigascience 2025; 14:giae124. [PMID: 39965774 PMCID: PMC11835448 DOI: 10.1093/gigascience/giae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/10/2024] [Accepted: 12/26/2024] [Indexed: 02/20/2025] Open
Abstract
INTRODUCTION The blue peafowl (Pavo cristatus) and the green peafowl (Pavo muticus) have garnered significant public affection due to their stunning appearance, although the green peafowl is currently endangered. The causative mutation that causes the leucistic plumage of the blue peafowl (also called white peafowl) remains unknown. RESULTS In this study, we generated a chromosome-level reference genome of the blue peafowl with a contig N50 of 30.6 Mb, including the autosomes, Z and W sex chromosomes, and a complete mitochondria DNA sequence. Data from 77 peafowl whole genomes, 76 peafowl mitochondrial genomes, and 33 peafowl W chromosomes genomes provided the first substantial genetic evidence for recent hybridization between green peafowls and blue peafowls. We found 3 hybrid green peafowls in zoo samples rather than in the wild samples, with a blue peafowl genomic content of 16-34%. Maternal genetic analysis showed that 2 of the hybrid female green peafowls contained complete blue peafowl mitochondrial genomes and W chromosomes. Some animal protection agencies release captive green peafowls in order to maintain the wild population of green peafowls. Therefore, to better protect the endangered green peafowl, we suggest that purebred identification must be carried out before releasing green peafowls from zoos into the wild in order to prevent the hybrid green peafowl from contaminating the wild green peafowl. In addition, we also found that there were historical introgression events of green peafowl to blue peafowl in 4 zoo blue peafowl individuals. The introgressed genomic regions contain IGFBP1 and IGFBP3 genes that could affect blue peafowl body size. Finally, we identified that the nonsense mutation (g.4:12583552G>A) in the EDNRB2 gene is the genetic causative mutation for leucistic plumage of blue peafowl, preventing melanocytes from being transported into plumage, thereby inhibiting melanin deposition. CONCLUSION Our research provides both theoretical and empirical support for the conservation of the endangered green peafowl. The high-quality genome and genomic data also provide a valuable resource for blue peafowl genomics-assisted breeding.
Collapse
Affiliation(s)
- Gang Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Xinye Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Xiurong Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Xufang Ren
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Anqi Chen
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Wenting Dai
- College of Grassland Science and Technology, China Agricultural University, Beijing 100091, China
| | - Li Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100091, China
| | - Yan Lu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Huie Wang
- School of Animal Science and technology, Tarim University, Xinjiang 843300, China
| | - Yong Liu
- Nongxiao Breeding Poultry Breeding Co., Ltd. Beijing 102400, China
| | - Xiaoyu Zhao
- Xingrui Technology Co., Ltd. Hebei 072557, China
| | - Junhui Wen
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Xue Cheng
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Yalan Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Zhonghua Ning
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Liping Ban
- College of Grassland Science and Technology, China Agricultural University, Beijing 100091, China
| | - Lujiang Qu
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| |
Collapse
|
20
|
Wang TR, Ning X, Zheng SS, Li Y, Lu ZJ, Meng HH, Ge BJ, Kozlowski G, Yan MX, Song YG. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species. PLANT DIVERSITY 2025; 47:53-67. [PMID: 40041560 PMCID: PMC11873581 DOI: 10.1016/j.pld.2024.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 03/06/2025]
Abstract
Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change. Quercus is a keystone genus in Northern Hemisphere forests, and its wide distribution in diverse ecosystems and long evolutionary history make it an ideal model for studying the genomic basis of ecological adaptations. Here we used a newly sequenced genome of Quercus gilva, an evergreen oak species from East Asia, with 18 published Fagales genomes to determine how Fagaceae genomes have evolved, identify genomic footprints of ecological adaptability in oaks in general, as well as between evergreen and deciduous oaks. We found that oak species exhibited a higher degree of genomic conservation and stability, as indicated by the absence of large-scale chromosomal structural variations or additional whole-genome duplication events. In addition, we identified expansion and tandem repetitions within gene families that contribute to plant physical and chemical defense (e.g., cuticle biosynthesis and oxidosqualene cyclase genes), which may represent the foundation for the ecological adaptation of oak species. Circadian rhythm and hormone-related genes may regulate the habits of evergreen and deciduous oaks. This study provides a comprehensive perspective on the ecological adaptations of tree species based on phylogenetic, genome evolutionary, and functional genomic analyses.
Collapse
Affiliation(s)
- Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xin Ning
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zi-Jia Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Bin-Jie Ge
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, Switzerland
- Natural History Museum Fribourg, Fribourg, Switzerland
| | - Meng-Xiao Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
21
|
Gregorova P, Isada M, DiRuggiero J, Sarin LP. Purification of micrococcal nuclease for use in ribosomal profiling of high-salinity extremophiles. J Biol Chem 2025; 301:108020. [PMID: 39608714 PMCID: PMC11719836 DOI: 10.1016/j.jbc.2024.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
Nucleases, that is, enzymes that catalyze the hydrolysis of phosphodiester bonds in nucleic acids, are essential tools in molecular biology and biotechnology. Staphylococcus aureus nuclease is particularly interesting due to its thermostability and Ca2+ dependence, making it the prime choice for applications where nuclease modulation is critical, such as ribosome profiling in bacteria and halophilic archaea. The latter poses a technical and economical challenge: high salt reaction conditions are essential for maintaining ribosome integrity but negatively impact the micrococcal nuclease (MNase) activity, necessitating using large amounts of nuclease to achieve efficient cleavage. Here, we set out to generate an optimized production protocol for two forms of MNase-fully processed MNaseA and the 19 amino acid propeptide-containing MNaseB-and to biochemically benchmark them against a commercial nuclease. Our results show that both MNases are highly active in normal reaction conditions, but MNaseA maintains higher enzymatic activity in high salt concentrations than MNaseB. MNaseA also retains >90% of its activity after multiple freeze-thaw cycles when stored at -80 °C in a buffer containing 5% glycerol. Importantly, ribosome profiling experiments in the haloarchaeon Haloferax volcanii demonstrated that MNaseA produces ribosome footprints and hallmarks of active translation highly comparable to those obtained with the commercial nuclease, making it a suitable alternative for high-salt ribosome profiling applications. In conclusion, our method can be easily implemented for efficient MNaseA production, thereby providing access to an effective, robust, and cost-efficient alternative to commercial nucleases, as well as facilitating future translation studies into halophilic organisms.
Collapse
Affiliation(s)
- Pavlina Gregorova
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Matthew Isada
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - L Peter Sarin
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Hou L, Niu Z, Zheng Z, Zhang J, Luo C, Wang X, Yang Y, Li Y, Chen Q. The Isodon serra genome sheds light on tanshinone biosynthesis and reveals the recursive karyotype evolutionary histories within Lamiales. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17170. [PMID: 39614831 DOI: 10.1111/tpj.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Lamiales is one of the largest orders of angiosperms with a complex evolutionary history and plays a significant role in human life. However, the polyploidization and chromosome evolution histories within this group remain in mystery. Among Lamiales, Isodon serra (Maxim.) Kudô shines for its abundance of diterpenes, notably tanshinones, long used in East Asia to combat toxicity and inflammation. Yet, the genes driving its biosynthesis and the factors governing its regulation linger in obscurity. Here, we present the telomere-to-telomere genome assembly of I. serra and, through gene-to-metabolite network analyses, pinpoint the pivotal tanshinone biosynthesis genes and their co-expressed transcription factors. Particularly, through luciferase (LUC) assays, we speculate that IsMYB-13 and IsbHLH-8 may upregulate IsCYP76AH101, which is the key step in the biosynthesis of the tanshinone precursor. Among Lamiales, Oleaceae, Gesneriaceae and Plantaginaceae successively sister to a clade of seven Lamiales families, all sharing a recent whole-genome duplication (designated as α event). By reconstructing the ancestral Lamiales karyotypes (ALK) and post-α event (ALKα), we trace chromosomal evolution trajectories across Lamiales species. Notably, one chromosomal fusion is detected from ALK to ALKα, and three shared chromosomal fusion events are detected sequentially from ALKα to I. serra, which fully supports the phylogeny constructed using single-copy genes. This comprehensive study illuminates the genome evolution and chromosomal dynamics of Lamiales, further enhancing our understanding of the biosynthetic mechanisms underlying the medicinal properties of I. serra.
Collapse
Affiliation(s)
- Liqiang Hou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhimin Niu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Changhong Luo
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ying Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Luo LY, Wu H, Zhao LM, Zhang YH, Huang JH, Liu QY, Wang HT, Mo DX, EEr HH, Zhang LQ, Chen HL, Jia SG, Wang WM, Li MH. Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness. Nat Genet 2025; 57:218-230. [PMID: 39779954 DOI: 10.1038/s41588-024-02037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and incomplete regions, resulting in a few common failures and errors in genomic studies. Here, we report a 2.85-Gb gap-free telomere-to-telomere genome of a ram (T2T-sheep1.0), including all autosomes and the X and Y chromosomes. This genome adds 220.05 Mb of previously unresolved regions and 754 new genes to the most updated reference assembly ARS-UI_Ramb_v3.0; it contains four types of repeat units (SatI, SatII, SatIII and CenY) in centromeric regions. T2T-sheep1.0 has a base accuracy of more than 99.999%, corrects several structural errors in previous reference assemblies and improves structural variant detection in repetitive sequences. Alignment of whole-genome short-read sequences of global domestic and wild sheep against T2T-sheep1.0 identifies 2,664,979 new single-nucleotide polymorphisms in previously unresolved regions, which improves the population genetic analyses and detection of selective signals for domestication (for example, ABCC4) and wool fineness (for example, FOXQ1).
Collapse
Affiliation(s)
- Ling-Yun Luo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Wu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li-Ming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ya-Hui Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jia-Hui Huang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiu-Yue Liu
- Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hai-Tao Wang
- Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dong-Xin Mo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - He-Hua EEr
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Lian-Quan Zhang
- Ningxia Shuomuyanchi Tan Sheep Breeding Co. Ltd., Wuzhong, China
| | | | - Shan-Gang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Wei-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.
| | - Meng-Hua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
24
|
Yang W, Zhou H, Huang J, Zhu W, Hou H, Li H, Zhao L, Zhang J, Liu J, Qin C, Wang L, Luo H, Zhu J, Xiao F, Yao J, Yang C, Meng H. Near telomere-to-telomere assembly of the Tarim pigeon (Columba livia) genome. Sci Data 2024; 11:1455. [PMID: 39741153 DOI: 10.1038/s41597-024-04350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Pigeons serve as important model animals and commercial poultry. The Tarim pigeon, as a breed of Columba livia, is a locally indigenous breed unique to China. While the genome of C. livia was published in 2013, its assembly was fragmented and incomplete. In this study, we generated a near telomere-to-telomere assembly of the pigeon genome using the sequencing platform of PacBio HiFi, Nanopore long reads and Hi-C. The assembled genome spans 1295.8 Mb, with a contig N50 size of 49 Mb and a scaffold N50 size of 85 Mb. Approximately 98.4% of the assembly is anchored onto 41 chromosomes, with a BUSCO assessment indicating a completeness of 97.2%. And telomeres were identified at both ends of the four chromosomes. A total of 21,450 genes were annotated. The genome assembly of C. livia lays the foundation for understanding their genetic composition and evolutionary history and contributes to the pigeon breeding industry. Additionally, it will provide a basis for further management and conservation of pigeon breed diversity.
Collapse
Affiliation(s)
- Wenhao Yang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Zhou
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinlong Huang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenqi Zhu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haobin Hou
- Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Hejun Li
- Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, China
| | - Lele Zhao
- Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, China
| | - Jiang Zhang
- Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, China
| | - Jiajia Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Qin
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liyuan Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huaixi Luo
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianshen Zhu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuquan Xiao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junfeng Yao
- Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| | - Changsuo Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| | - He Meng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
25
|
Arribas YA, Baudon B, Rotival M, Suárez G, Bonté PE, Casas V, Roubert A, Klein P, Bonnin E, Mchich B, Legoix P, Baulande S, Sadacca B, Diharce J, Waterfall JJ, Etchebest C, Carrascal M, Goudot C, Quintana-Murci L, Burbage M, Merlotti A, Amigorena S. Transposable element exonization generates a reservoir of evolving and functional protein isoforms. Cell 2024; 187:7603-7620.e22. [PMID: 39667937 DOI: 10.1016/j.cell.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/26/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance remains unclear. Here, we use transcriptome assembly, ribosome profiling, and proteomics to describe a population of 1,227 unannotated TE exonizing isoforms generated by mRNA splicing and recurrent in human populations. Despite being shorter and lowly expressed, these isoforms are shared between individuals and efficiently translated. Functional analyses show stable expression, specific cellular localization, and, in some cases, modified functions. Exonized TEs are rich in ancient genes, whereas the involved splice sites are recent and can be evolutionarily conserved. In addition, exonized TEs contribute to the secondary structure of the emerging isoforms, supporting their functional relevance. We conclude that TE-spliced isoforms represent a diversity reservoir of functional proteins on which natural selection can act.
Collapse
Affiliation(s)
- Yago A Arribas
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Blandine Baudon
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Maxime Rotival
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Guadalupe Suárez
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Pierre-Emmanuel Bonté
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Vanessa Casas
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Roselló 161, 6a planta, 08036 Barcelona, Spain
| | - Apollinaire Roubert
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Paul Klein
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Elisa Bonnin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Basma Mchich
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, 74014 Paris, France
| | - Patricia Legoix
- Institut Curie, Centre de Recherche, Genomics of Excellence Platform, PSL Research University, Paris Cedex 05, France
| | - Sylvain Baulande
- Institut Curie, Centre de Recherche, Genomics of Excellence Platform, PSL Research University, Paris Cedex 05, France
| | - Benjamin Sadacca
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Julien Diharce
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, 74014 Paris, France
| | - Joshua J Waterfall
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Catherine Etchebest
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, 74014 Paris, France
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Roselló 161, 6a planta, 08036 Barcelona, Spain
| | - Christel Goudot
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Lluís Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France; Chair Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Marianne Burbage
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Antonela Merlotti
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France.
| |
Collapse
|
26
|
Jin C, Zhang F, Luo H, Li B, Jiang X, Pirozzi CJ, Liang C, Zhang M. The CCL5/CCR5/SHP2 axis sustains Stat1 phosphorylation and activates NF-κB signaling promoting M1 macrophage polarization and exacerbating chronic prostatic inflammation. Cell Commun Signal 2024; 22:584. [PMID: 39633456 PMCID: PMC11619290 DOI: 10.1186/s12964-024-01943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Chronic prostatitis (CP) is a condition markered by persistent prostate inflammation, yet the specific cytokines driving its progression remain largely undefined. This study aims to identify key cytokines involved in CP and investigate their role in driving inflammatory responses through mechanistic and therapeutic exploration. METHODS A 48-cytokine panel test was conducted to compare the plasma cytokine profiles between participants with CP-like symptoms (CP-LS) and healthy controls. Experimental autoimmune prostatitis (EAP) models were used for functional validation, with further mechanistic studies performed through in vivo and in vitro assays. Pharmacological inhibition was applied using maraviroc, and pathway inhibitors to assess therapeutic potential. RESULTS Our analysis identified CCL5 as one of the most prominently elevated cytokines in CP-LS patients. Further validation in the EAP model mice confirmed elevated CCL5 levels, highlighting its role in driving prostatic inflammation. Mechanistic studies revealed that CCL5 interacts with the CCR5 receptor, promoting M1 macrophage polarization and activating key inflammatory signaling pathways, including Stat1 and NF-κB, as indicated by increased phosphorylation of Stat1 and p65. In vitro, CCL5 combined with LPS stimulation amplified these effects, further promoting M1 polarization. CCL5 also sustained Stat1 activation by inhibiting its dephosphorylation through reduced interaction with SHP2, leading to prolonged inflammatory signaling. Single-cell transcriptomics confirmed high CCR5 expression in macrophages, correlating with inflammatory pathways. Pharmacological inhibition of CCR5, or its downstream signaling, significantly reduced macrophage-driven inflammation both in vivo and in vitro. CONCLUSION These findings establish the CCL5/CCR5 axis as a critical driver of persistant prostatic inflammation and present it as a potential therapeutic target for CP.
Collapse
Affiliation(s)
- Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Fei Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Hailang Luo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Boyang Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xue Jiang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
27
|
Margasyuk S, Kuznetsova A, Zavileyskiy L, Vlasenok M, Skvortsov D, Pervouchine D. Human introns contain conserved tissue-specific cryptic poison exons. NAR Genom Bioinform 2024; 6:lqae163. [PMID: 39664813 PMCID: PMC11632617 DOI: 10.1093/nargab/lqae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
Eukaryotic cells express a large number of transcripts from a single gene due to alternative splicing. Despite hundreds of thousands of splice isoforms being annotated in databases, it has been reported that the current exon catalogs remain incomplete. At the same time, introns of human protein-coding (PC) genes contain a large number of evolutionarily conserved elements with unknown function. Here, we explore the possibility that some of them represent cryptic exons that are expressed in rare conditions. We identified a group of cryptic exons that are similar to the annotated exons in terms of evolutionary conservation and RNA-seq read coverage in the Genotype-Tissue Expression dataset. Most of them were poison, i.e. generated an nonsense-mediated decay (NMD) isoform upon inclusion, and many showed signs of tissue-specific and cancer-specific expression and regulation. We performed RNA-seq in A549 cell line treated with cycloheximide to inactivate NMD and confirmed using quantitative polymerase chain reaction that seven of eight exons tested are, indeed, expressed. This study shows that introns of human PC genes contain cryptic poison exons, which reside in conserved intronic regions and remain not fully annotated due to insufficient representation in RNA-seq libraries.
Collapse
Affiliation(s)
- Sergey Margasyuk
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
| | - Antonina Kuznetsova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
| | - Lev Zavileyskiy
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
| | - Maria Vlasenok
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
| | - Dmitry Skvortsov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
- Faculty of Chemistry, Moscow State University, Ul Kolmogorova, 1, 119991, Moscow, Russia
| | - Dmitri D Pervouchine
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
| |
Collapse
|
28
|
Zhao Z, Yang T, Xiang G, Zhang S, Cai Y, Zhong G, Pu J, Shen C, Zeng J, Chen C, Huang B. A novel small RNA PhaS contributes to polymyxin B-heteroresistance in carbapenem-resistant Klebsiella pneumoniae. Emerg Microbes Infect 2024; 13:2366354. [PMID: 38979571 PMCID: PMC11238654 DOI: 10.1080/22221751.2024.2366354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
In recent years, polymyxin has been used as a last-resort therapy for carbapenem-resistant bacterial infections. The emergence of heteroresistance (HR) to polymyxin hampers the efficacy of polymyxin treatment by amplifying resistant subpopulation. However, the mechanisms behind polymyxin HR remain unclear. Small noncoding RNAs (sRNAs) play an important role in regulating drug resistance. The purpose of this study was to investigate the effects and mechanisms of sRNA on polymyxin B (PB)-HR in carbapenem-resistant Klebsiella pneumoniae. In this study, a novel sRNA PhaS was identified by transcriptome sequencing. PhaS expression was elevated in the PB heteroresistant subpopulation. Overexpression and deletion of PhaS were constructed in three carbapenem-resistant K. pneumoniae strains. Population analysis profiling, growth curve, and time-killing curve analysis showed that PhaS enhanced PB-HR. In addition, we verified that PhaS directly targeted phoP through the green fluorescent protein reporter system. PhaS promoted the expression of phoP, thereby encouraging the expression of downstream genes pmrD and arnT. This upregulation of arnT promoted the 4-amino-4-deoxyL-arabinosaccharide (L-Ara4N) modification of lipid A in PhaS overexpressing strains, thus enhancing PB-HR. Further, within the promoter region of PhaS, specific PhoP recognition sites were identified. ONPG assays and RT-qPCR analysis confirmed that PhaS expression was positively modulated by PhoP and thus up-regulated by PB stimulation. To sum up, a novel sRNA enhancing PB-HR was identified and a positive feedback regulatory pathway of sRNA-PhoP/Q was demonstrated in the study. This helps to provide a more comprehensive and clear understanding of the underlying mechanisms behind polymyxin HR in carbapenem-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tingting Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shebin Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yimei Cai
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Guosheng Zhong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jieying Pu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Cong Shen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Jianming Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Cha Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
29
|
Fung-Uceda J, Gómez MS, Rodríguez-Casillas L, González-Gil A, Gutierrez C. Diurnal control of H3K27me1 deposition shapes expression of a subset of cell cycle and DNA damage response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2325-2336. [PMID: 39487594 DOI: 10.1111/tpj.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Rhythmic oscillation of biological processes helps organisms adapt their physiological responses to the most appropriate time of the day. Chromatin remodeling has been described as one of the molecular mechanisms controlling these oscillations. The importance of these changes in transcriptional activation as well as in the maintenance of heterochromatic regions has been widely demonstrated. However, little is still known on how diurnal changes can impact the global status of chromatin modifications and, hence, control gene expression. In plants, the repressive mark H3K27me1, deposited by ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 and 6 (ATXR5 and 6) methyltransferases, is largely associated with transposable elements but also covers lowly expressed genes. Here we show that this histone modification is preferentially deposited during the night. In euchromatic regions, it is found along the bodies of DNA damage response genes (DDR), where it is needed for their proper expression. The absence of H3K27me1 translates into an enhanced expression of DDR genes that follows a rhythmic oscillation pattern. This evidences a link between chromatin modifications and their synchronization with the diurnal cycle in order to accurately modulate the activation of biological processes to the most appropriate time of the day.
Collapse
Affiliation(s)
- Jorge Fung-Uceda
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - María Sol Gómez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Laura Rodríguez-Casillas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Anna González-Gil
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
30
|
Lin R, Li H, Lai L, Yang F, Qiu J, Lin W, Bao X, Pan C, Lin W, Jiang X. Analysis of genetic structure and identification of important genes associated with muscle growth in Fujian Muscovy duck. Poult Sci 2024; 103:104445. [PMID: 39504826 PMCID: PMC11570716 DOI: 10.1016/j.psj.2024.104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Fujian Muscovy duck is a well-known meat waterfowl in Fujian Province due to its high meat production, superior breeding potential, and strong resistance. To fully explore the genetic characteristics of these advantages, Fujian black Muscovy duck and white Muscovy duck were used for whole-genome re-sequencing and transcriptome analyses. Population structure analysis showed significant differentiation between the two feather strains. Runs of homozygosity analysis indicated a stronger artificial influence on the black-feathered strain, with ROH island genes notably enriched in muscle tissue-related terms and pathways. Selective sweep and transcriptome analysis revealed a significant enrichment of genes linked to muscle tissue and muscle fiber-related terms and pathways. Key candidate genes identified, such as MEF2C, MYOZ2, and METTL21C, are believed to play crucial roles in meat production in Fujian Muscovy duck. This study offers a new perspective on improving meat production in Fujian Muscovy duck, which can benefit breeding strategies and production management.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Huihuang Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Lianjie Lai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Fan Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Jialing Qiu
- General Animal husbandry Station of Fujian Province, Fuzhou, Fujian, China, 350003
| | - Weilong Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Xinguo Bao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Chengfu Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Weimin Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Xiaobing Jiang
- General Animal husbandry Station of Fujian Province, Fuzhou, Fujian, China, 350003.
| |
Collapse
|
31
|
Jang E, Kim C, Noh J, Yi H, Jo S, Park JS, Hwang W, Cha JY, Cho ML, Kim TH, Youn J. Bach2 repression of CD36 regulates lipid-metabolism-linked effector functions in follicular B cells. Cell Rep 2024; 43:114878. [PMID: 39412989 DOI: 10.1016/j.celrep.2024.114878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
The transcription repressor Bach2 plays a crucial role in shaping humoral immunity, but its cell-autonomous function remains elusive. Here, we reveal the mechanism by which Bach2 regulates effector cell maturation in peripheral B cells. In response to Toll-like receptor (TLR) agonists, Bach2 deficiency promotes the differentiation of follicular, but not marginal zone, B cells into effector cells, producing interleukin (IL)-6 and antibodies. This phenomenon is associated with changes in lipid metabolism, such as increases in CD36 expression, lipid influx, and fatty acid oxidation. Consistent with this, Bach2-deficient B cells exhibit elevated levels of mitochondrial oxidative stress, lipid peroxidation, and p38 activation. Mechanistically, Bach2 acts as a repressor of Cd36, and inhibition of CD36 or fatty acid oxidation reduces the differentiation of naive B cells into IL-6- and antibody-secreting cells. These results indicate Bach2 as a key metabolic checkpoint regulator crucial for maintaining a functionally quiescent state of follicular B cells.
Collapse
Affiliation(s)
- Eunkyeong Jang
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea.
| | - ChangYeon Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jeonghyun Noh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Hansol Yi
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Korea
| | - Jin-Sil Park
- Rheumatism Research Center, Catholic Institutes of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Woochang Hwang
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea; Department of Pre-Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21936, Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Institutes of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Korea
| | - Jeehee Youn
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
32
|
Huang Z, Shi B, Mu X, Qiao S, Xiao G, Wang Y, Xu Y. Construction of a Dataset for All Expressed Transcripts for Alzheimer's Disease Research. Brain Sci 2024; 14:1180. [PMID: 39766379 PMCID: PMC11674848 DOI: 10.3390/brainsci14121180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Accurate identification and functional annotation of splicing isoforms and non-coding RNAs (lncRNAs), alongside full-length protein-encoding transcripts, are critical for understanding gene (mis)regulation and metabolic reprogramming in Alzheimer's disease (AD). This study aims to provide a comprehensive and accurate transcriptome resource to improve existing AD transcript databases. Background/Objectives: Gene mis-regulation and metabolic reprogramming play a key role in AD, yet existing transcript databases lack accurate and comprehensive identification of splicing isoforms and lncRNAs. This study aims to generate a refined transcriptome dataset, expanding the understanding of AD onset and progression. Methods: Publicly available RNA-seq data from pre-AD and AD tissues were utilized. Advanced bioinformatics tools were applied to assemble and annotate full-length transcripts, including splicing isoforms and lncRNAs, with an emphasis on correcting errors and enhancing annotation accuracy. Results: A significantly improved transcriptome dataset was generated, which includes detailed annotations of splicing isoforms and lncRNAs. This dataset expands the scope of existing AD transcript databases and provides new insights into the molecular mechanisms underlying AD. The findings demonstrate that the refined dataset captures more relevant details about AD progression compared to publicly available data. Conclusions: The newly developed transcriptome resource and the associated analysis tools offer a valuable contribution to AD research, providing deeper insights into the disease's molecular mechanisms. This work supports future research into gene regulation and metabolic reprogramming in AD and serves as a foundation for exploring novel therapeutic targets.
Collapse
Affiliation(s)
- Zhenyu Huang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (Z.H.); (G.X.)
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (B.S.); (X.M.); (S.Q.)
| | - Bocheng Shi
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (B.S.); (X.M.); (S.Q.)
- School of Mathematics, Jilin University, Changchun 130012, China
| | - Xuechen Mu
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (B.S.); (X.M.); (S.Q.)
- School of Mathematics, Jilin University, Changchun 130012, China
| | - Siyu Qiao
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (B.S.); (X.M.); (S.Q.)
| | - Gangyi Xiao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (Z.H.); (G.X.)
| | - Yan Wang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (Z.H.); (G.X.)
| | - Ying Xu
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (B.S.); (X.M.); (S.Q.)
| |
Collapse
|
33
|
Lee JY, Kim Y, Oh JM, Kim YH, Kim HJ. Identification of susceptibility modules and genes for peri-implantitis compared to periodontitis within the same host environment using weighted gene co-expression network analysis. J Periodontal Implant Sci 2024; 54:54.e29. [PMID: 39681469 DOI: 10.5051/jpis.2401500075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
PURPOSE This study aimed to identify new susceptibility modules and genes by analyzing the transcriptional profiles of peri-implantitis and periodontitis within the same host environment, using weighted gene co-expression network analysis (WGCNA). METHODS Gingival tissue samples were collected from 10 patients, each presenting with both periodontitis and peri-implantitis sites, and were used for RNA sequencing. We conducted WGCNA to identify key modules that showed distinct transcriptional expression profiles between periodontitis and peri-implantitis. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were carried out using R software. Genes with an adjusted P value greater than 0.05 were excluded from gene selection using the Pearson correlation method. RESULTS A total of 2,226 regulated genes were identified, and those with similar expression patterns were grouped into 5 color-coded functional modules using WGCNA. Among these, 3 modules showed distinct differences in expression profiles between peri-implantitis and periodontitis. The turquoise and yellow modules were associated with upregulation in peri-implantitis, while the blue module was linked to periodontitis. This finding suggests that peri-implantitis and periodontitis have significantly different transcriptional signatures. Over-representation analysis was conducted to explore the component genes of the established modules. The top-ranked genes, selected based on their network connectivity within the modules, were identified using DESeq2 and were considered hub genes. CONCLUSIONS WGCNA revealed distinct modular gene patterns in peri-implantitis and periodontitis, highlighting transcriptional differences between the 2 conditions. Notably, we identified 10 key genes from each of the 3 modules-the blue module associated with periodontitis-dominant pathways, and the turquoise and yellow modules associated with peri-implantitis-dominant pathways. The hub genes and pathways unveiled in this research are likely key contributors to the progression of peri-implantitis and warrant further exploration as promising candidates.
Collapse
Affiliation(s)
- Ju-Young Lee
- Department of Periodontology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Periodontics and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Yeongjoo Kim
- Interdisciplinary Program of Genomic Data Science, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Korea.
| | - Hyun-Joo Kim
- Department of Periodontology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Periodontics and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea.
| |
Collapse
|
34
|
Byerly PA, von Thaden A, Leushkin E, Hilgers L, Liu S, Winter S, Schell T, Gerheim C, Ben Hamadou A, Greve C, Betz C, Bolz HJ, Büchner S, Lang J, Meinig H, Famira-Parcsetich EM, Stubbe SP, Mouton A, Bertolino S, Verbeylen G, Briner T, Freixas L, Vinciguerra L, Mueller SA, Nowak C, Hiller M. Haplotype-resolved genome and population genomics of the threatened garden dormouse in Europe. Genome Res 2024; 34:2094-2107. [PMID: 39542649 DOI: 10.1101/gr.279066.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
Genomic resources are important for evaluating genetic diversity and supporting conservation efforts. The garden dormouse (Eliomys quercinus) is a small rodent that has experienced one of the most severe modern population declines in Europe. We present a high-quality haplotype-resolved reference genome for the garden dormouse, and combine comprehensive short and long-read transcriptomics data sets with homology-based methods to generate a highly complete gene annotation. Demographic history analysis of the genome reveal a sharp population decline since the last interglacial, indicating an association between colder climates and population declines before anthropogenic influence. Using our genome and genetic data from 100 individuals, largely sampled in a citizen-science project across the contemporary range, we conduct the first population genomic analysis for this species. We find clear evidence for population structure across the species' core Central European range. Notably, our data show that the Alpine population, characterized by strong differentiation and reduced genetic diversity, is reproductively isolated from other regions and likely represents a differentiated evolutionary significant unit (ESU). The predominantly declining Eastern European populations also show signs of recent isolation, a pattern consistent with a range expansion from Western to Eastern Europe during the Holocene, leaving relict populations now facing local extinction. Overall, our findings suggest that garden dormouse conservation may be enhanced in Europe through the designation of ESUs.
Collapse
Affiliation(s)
- Paige A Byerly
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany;
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany
| | - Alina von Thaden
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany
| | - Evgeny Leushkin
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Shenglin Liu
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Sven Winter
- Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am Main, Germany
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Charlotte Gerheim
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Christian Betz
- Bioscientia Human Genetics, Institute for Medical Diagnostics GmbH, 55218 Ingelheim, Germany
| | - Hanno J Bolz
- Bioscientia Human Genetics, Institute for Medical Diagnostics GmbH, 55218 Ingelheim, Germany
| | - Sven Büchner
- Justus-Liebig-University Giessen, Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, 35392 Giessen, Germany
| | - Johannes Lang
- Justus-Liebig-University Giessen, Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, 35392 Giessen, Germany
| | - Holger Meinig
- Justus-Liebig-University Giessen, Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, 35392 Giessen, Germany
| | - Evax Marie Famira-Parcsetich
- Justus-Liebig-University Giessen, Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, 35392 Giessen, Germany
| | - Sarah P Stubbe
- Justus-Liebig-University Giessen, Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, 35392 Giessen, Germany
| | - Alice Mouton
- Socio-économie, Environnement et Développement (SEED), University of Liege (Arlon Campus Environment), 81001 Arlon, Belgium
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Torino, Italy
| | | | | | - Lídia Freixas
- BiBio Research Group, Natural Sciences Museum of Granollers, 08402 Granollers, Catalonia, Spain
| | | | - Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 80539 Munich, Germany
| | - Carsten Nowak
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany;
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
35
|
Wu H, Luo LY, Zhang YH, Zhang CY, Huang JH, Mo DX, Zhao LM, Wang ZX, Wang YC, He-Hua EE, Bai WL, Han D, Dou XT, Ren YL, Dingkao R, Chen HL, Ye Y, Du HD, Zhao ZQ, Wang XJ, Jia SG, Liu ZH, Li MH. Telomere-to-telomere genome assembly of a male goat reveals variants associated with cashmere traits. Nat Commun 2024; 15:10041. [PMID: 39567477 PMCID: PMC11579321 DOI: 10.1038/s41467-024-54188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
A complete goat (Capra hircus) reference genome enhances analyses of genetic variation, thus providing insights into domestication and selection in goats and related species. Here, we assemble a telomere-to-telomere (T2T) gap-free genome (2.86 Gb) from a cashmere goat (T2T-goat1.0), including a Y chromosome of 20.96 Mb. With a base accuracy of >99.999%, T2T-goat1.0 corrects numerous genome-wide structural and base errors in previous assemblies and adds 288.5 Mb of previously unresolved regions and 446 newly assembled genes to the reference genome. We sequence the genomes of five representative goat breeds for PacBio reads, and use T2T-goat1.0 as a reference to identify a total of 63,417 structural variations (SVs) with up to 4711 (7.42%) in the previously unresolved regions. T2T-goat1.0 was applied in population analyses of global wild and domestic goats, which revealed 32,419 SVs and 25,397,794 SNPs, including 870 SVs and 545,026 SNPs in the previously unresolved regions. Also, our analyses reveal a set of selective variants and genes associated with domestication (e.g., NKG2D and ABCC4) and cashmere traits (e.g., ABCC4 and ASIP).
Collapse
Affiliation(s)
- Hui Wu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Northern Agriculture and Animal Husbandry Technical Innovation Center, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ling-Yun Luo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ya-Hui Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chong-Yan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jia-Hui Huang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Xin Mo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Li-Ming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhi-Xin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Chuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - EEr He-Hua
- Institute of Animal Science, NingXia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wen-Lin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Di Han
- Modern Agricultural Production Base Construction Engineering Center of Liaoning Province, Liaoyang, China
| | - Xing-Tang Dou
- Liaoning Province Liaoning Cashmere Goat Original Breeding Farm Co., Ltd., Liaoyang, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | | | | | - Yong Ye
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Hai-Dong Du
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Zhan-Qiang Zhao
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Xi-Jun Wang
- Jiaxiang Animal Husbandry and Veterinary Development Center, Jining, China
| | - Shan-Gang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Zhi-Hong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.
| | - Meng-Hua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
36
|
Kania EE, Fenix A, Marciniak DM, Lin Q, Bianchi S, Hristov B, Li S, Camplisson CK, Fields R, Beliveau BJ, Schweppe DK, Noble WS, Ong SE, Bertero A, Murry CE, Shechner DM. Nascent transcript O-MAP reveals the molecular architecture of a single-locus subnuclear compartment built by RBM20 and the TTN RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622011. [PMID: 39574693 PMCID: PMC11580901 DOI: 10.1101/2024.11.05.622011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Eukaryotic nuclei adopt a highly compartmentalized architecture that influences nearly all genomic processes. Understanding how this architecture impacts gene expression has been hindered by a lack of tools for elucidating the molecular interactions at individual genomic loci. Here, we adapt oligonucleotide-mediated proximity-interactome mapping (O-MAP) to biochemically characterize discrete, micron-scale nuclear neighborhoods. By targeting O-MAP to introns within the TTN pre-mRNA, we systematically map the chromatin loci, RNAs, and proteins within a muscle-specific RNA factory organized around the TTN locus. This reveals an unanticipated compartmental architecture that organizes cis - and trans -interacting chromosomal domains, including a hub of transcriptionally silenced chromatin. The factory also recruits dozens of unique RNA-binding and chromatin-scaffolding factors, including QKI and SAFB, along with their target transcripts. Loss of the cardiac-specific splicing factor RBM20-a master regulator of TTN splicing that is mutated in dilated cardiomyopathy-remodels nearly every facet of this architecture. This establishes O-MAP as a pioneering method for probing single-locus, microcompartment-level interactions that are opaque to conventional tools. Our findings suggest new mechanisms by which coding genes can "moonlight" in nuclear-architectural roles.
Collapse
|
37
|
Han R, Ni M, Lu W, Zhu D, Feng T, Yang Y, Cui Z. Nanopore-Based Sequencing of the Full-Length Transcriptome of Male and Female Cleavage-Stage Embryos of the Chinese Mitten Crab ( Eriocheir sinensis). Int J Mol Sci 2024; 25:12097. [PMID: 39596164 PMCID: PMC11594077 DOI: 10.3390/ijms252212097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The cleavage stage plays a crucial role in embryo development, characterized by a swift surge in cell proliferation alongside the accurate genetic material transmission to offspring. To delve into the characteristics of sex development during the cleavage stage of embryos, we generated the full-length transcriptome of Eriocheir sinensis male and female cleavage-stage embryos using Oxford Nanopore Technologies (ONT). Notably, this investigation represents the first sequencing effort distinguishing between genders in E. sinensis embryos. In the transcriptome structure analysis, male and female cleavage-stage embryos, while not clustered, exhibited a comparable frequency of alternative splicing (AS) occurrences. We also successfully identified 2875 transcription factors (TFs). The quantitative analysis showed the top 150 genes, in which the highly expressed genes in male embryos predominantly related to protein synthesis and metabolism. Further investigation unveiled 500 differentially expressed genes (DEGs), of which 7 male-biased ribosomal protein genes (RPGs) were particularly noteworthy and further confirmed. These analyses suggest that there may be a more active protein synthesis process in male E. sinensis cleavage-stage embryos. Furthermore, among the 2875 identified TFs, we predicted that 18 TFs could regulate the differentially expressed RPGs, with most TFs belonging to the zf-C2H2 and Homeobox families, which are crucial for embryonic development. During the cleavage stage of E. sinensis, the differential RPGs between genders were intricately linked to energy metabolism. We proposed that these RPGs exert regulatory effects on gene expression in E. sinensis, thereby regulating the difference of development between male and females. Our research sheds light on the developmental mechanisms of E. sinensis during the embryo stage and establishes a groundwork for a deeper understanding of sex development in E. sinensis. The results also provide comprehensive full-length transcriptome data for future gene expression and genetic studies in E. sinensis.
Collapse
Affiliation(s)
- Rui Han
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (R.H.); (M.N.); (W.L.); (D.Z.); (T.F.); (Y.Y.)
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (R.H.); (M.N.); (W.L.); (D.Z.); (T.F.); (Y.Y.)
| | - Wentao Lu
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (R.H.); (M.N.); (W.L.); (D.Z.); (T.F.); (Y.Y.)
| | - Dandan Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (R.H.); (M.N.); (W.L.); (D.Z.); (T.F.); (Y.Y.)
| | - Tianyi Feng
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (R.H.); (M.N.); (W.L.); (D.Z.); (T.F.); (Y.Y.)
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (R.H.); (M.N.); (W.L.); (D.Z.); (T.F.); (Y.Y.)
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (R.H.); (M.N.); (W.L.); (D.Z.); (T.F.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
38
|
Deja-Sikora E, Gołębiewski M, Hrynkiewicz K. Transcriptomic responses of Solanum tuberosum cv. Pirol to arbuscular mycorrhiza and potato virus Y (PVY) infection. PLANT MOLECULAR BIOLOGY 2024; 114:123. [PMID: 39527333 PMCID: PMC11554710 DOI: 10.1007/s11103-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) serve as both plant symbionts and allies in resisting pathogens and environmental stresses. Mycorrhizal colonization of plant roots can influence the outcomes of plant-pathogen interactions by enhancing specific host defense mechanisms. The transcriptional responses induced by AMF in virus-infected plants remain largely unexplored. In the presented study, we employed a comprehensive transcriptomic approach and qPCR to investigate the molecular determinants underlying the interaction between AMF and potato virus Y (PVY) in Solanum tuberosum L. Our primary goal was to identify the symbiosis- and defense-related determinants activated in mycorrhizal potatoes facing PVY. Through a comparative analysis of mRNA transcriptomes in experimental treatments comprising healthy and PVY-infected potatoes colonized by two AMF species, Rhizophagus regularis or Funneliformis mosseae, we unveiled the overexpression of genes associated with mycorrhiza, including nutrient exchange, lipid transfer, and cell wall remodeling. Furthermore, we identified several differentially expressed genes upregulated in all mycorrhizal treatments that encoded pathogenesis-related proteins involved in plant immune responses, thus verifying the bioprotective role of AMF. We investigated the relationship between mycorrhiza levels and PVY levels in potato leaves and roots. We found accumulation of the virus in the leaves of mycorrhizal plants, but our studies additionally showed a reduced PVY content in potato roots colonized by AMF, which has not been previously demonstrated. Furthermore, we observed that a virus-dependent reduction in nutrient exchange could occur in mycorrhizal roots in the presence of PVY. These findings provide an insights into the interplay between virus and AMF.
Collapse
Affiliation(s)
- Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
39
|
Liu C, Wen H, Zheng Y, Zhang C, Zhang Y, Wang L, Sun D, Zhang K, Qi X, Li Y. Integration of mRNA and miRNA Analysis Sheds New Light on the Muscle Response to Heat Stress in Spotted Sea Bass ( Lateolabrax maculatus). Int J Mol Sci 2024; 25:12098. [PMID: 39596165 PMCID: PMC11594061 DOI: 10.3390/ijms252212098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Temperature is a crucial environmental factor for fish. Elevated temperatures trigger various physiological and molecular responses designed to maintain internal environmental homeostasis and ensure the proper functioning of the organism. In this study, we measured biochemical parameters and performed mRNA-miRNA integrated transcriptomic analysis to characterize changes in gene expression profiles in the muscle tissue of spotted sea bass (Lateolabrax maculatus) under heat stress. The measurement of biochemical parameters revealed that the activities of nine biochemical enzymes (ALP, γ-GT, AST, GLU, CK, ALT, TG, LDH and TC) were significantly affected to varying degrees by elevated temperatures. A total of 1940 overlapping differentially expressed genes (DEGs) were identified among the five comparisons in the muscle tissue after heat stress. Protein-protein interaction (PPI) analysis of DEGs indicated that heat shock protein genes (HSPs) were deeply involved in the response to heat stress. In addition, we detected 462 differential alternative splicing (DAS) events and 618 DAS genes, which are closely associated with sarcomere assembly in muscle, highlighting the role of alternative splicing in thermal response regulation. Moreover, 32 differentially expressed miRNAs (DEMs) were identified in response to heat stress, and 599 DEGs were predicted as potential target genes of those DEMs, generating 846 DEG-DEM negative regulatory pairs potentially associated with thermal response. Function enrichment analysis of the target genes suggested that lipid metabolism-related pathways and genes were regulated by miRNAs. By analyzing PPIs of target genes, we identified 28 key negative regulatory pairs, including 13 miRNAs (such as lma-miR-122, lma-miR-200b-5p and novel-miR-444) and 15 target genes (such as hspa13, dnaja1, and dnajb1a). This study elucidates the molecular mechanisms of response to high-temperature stress and offers valuable information for the selection and breeding of heat-tolerant strains of spotted sea bass.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| |
Collapse
|
40
|
Zavala B, Dineen L, Fisher KJ, Opulente DA, Harrison MC, Wolters JF, Shen XX, Zhou X, Groenewald M, Hittinger CT, Rokas A, LaBella AL. Genomic factors shaping codon usage across the Saccharomycotina subphylum. G3 (BETHESDA, MD.) 2024; 14:jkae207. [PMID: 39213398 PMCID: PMC11540330 DOI: 10.1093/g3journal/jkae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Codon usage bias, or the unequal use of synonymous codons, is observed across genes, genomes, and between species. It has been implicated in many cellular functions, such as translation dynamics and transcript stability, but can also be shaped by neutral forces. We characterized codon usage across 1,154 strains from 1,051 species from the fungal subphylum Saccharomycotina to gain insight into the biases, molecular mechanisms, evolution, and genomic features contributing to codon usage patterns. We found a general preference for A/T-ending codons and correlations between codon usage bias, GC content, and tRNA-ome size. Codon usage bias is distinct between the 12 orders to such a degree that yeasts can be classified with an accuracy >90% using a machine learning algorithm. We also characterized the degree to which codon usage bias is impacted by translational selection. We found it was influenced by a combination of features, including the number of coding sequences, BUSCO count, and genome length. Our analysis also revealed an extreme bias in codon usage in the Saccharomycodales associated with a lack of predicted arginine tRNAs that decode CGN codons, leaving only the AGN codons to encode arginine. Analysis of Saccharomycodales gene expression, tRNA sequences, and codon evolution suggests that avoidance of the CGN codons is associated with a decline in arginine tRNA function. Consistent with previous findings, codon usage bias within the Saccharomycotina is shaped by genomic features and GC bias. However, we find cases of extreme codon usage preference and avoidance along yeast lineages, suggesting additional forces may be shaping the evolution of specific codons.
Collapse
Affiliation(s)
- Bryan Zavala
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Lauren Dineen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Kaitlin J Fisher
- Department of Biological Sciences, SUNY Oswego, Oswego, NY 13126, USA
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI 53726, USA
| | - Dana A Opulente
- Department of Biology, Villianova University, Villanova, PA 19085, USA
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xing-Xing Shen
- Institute of Insect Sciences and Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Abigail Leavitt LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28233, USA
| |
Collapse
|
41
|
Brock JR, Bird KA, Platts AE, Gomez-Cano F, Gupta SK, Palos K, Railey CE, Teresi SJ, Lee YS, Magallanes-Lundback M, Pawlowski EG, Nelson ADL, Grotewold E, Edger PP. Exploring genetic diversity, population structure, and subgenome differences in the allopolyploid Camelina sativa: implications for future breeding and research studies. HORTICULTURE RESEARCH 2024; 11:uhae247. [PMID: 39539416 PMCID: PMC11560372 DOI: 10.1093/hr/uhae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
Camelina (Camelina sativa), an allohexaploid species, is an emerging aviation biofuel crop that has been the focus of resurgent interest in recent decades. To guide future breeding and crop improvement efforts, the community requires a deeper comprehension of subgenome dominance, often noted in allopolyploid species, "alongside an understanding of the genetic diversity" and population structure of material present within breeding programs. We conducted population genetic analyses of a C. sativa diversity panel, leveraging a new genome, to estimate nucleotide diversity and population structure, and analyzed for patterns of subgenome expression dominance among different organs. Our analyses confirm that C. sativa has relatively low genetic diversity and show that the SG3 subgenome has substantially lower genetic diversity compared to the other two subgenomes. Despite the low genetic diversity, our analyses identified 13 distinct subpopulations including two distinct wild populations and others putatively representing founders in existing breeding populations. When analyzing for subgenome composition of long non-coding RNAs, which are known to play important roles in (a)biotic stress tolerance, we found that the SG3 subgenome contained significantly more lincRNAs compared to other subgenomes. Similarly, transcriptome analyses revealed that expression dominance of SG3 is not as strong as previously reported and may not be universal across all organ types. From a global analysis, SG3 "was only significant higher expressed" in flower, flower bud, and fruit organs, which is an important discovery given that the crop yield is associated with these organs. Collectively, these results will be valuable for guiding future breeding efforts in camelina.
Collapse
Affiliation(s)
- Jordan R Brock
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Kevin A Bird
- Department of Plant Sciences, University of California-Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Adrian E Platts
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824-6473, USA
| | - Suresh Kumar Gupta
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824-6473, USA
| | - Kyle Palos
- Boyce Thompson Institute, Cornell University, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Caylyn E Railey
- Boyce Thompson Institute, Cornell University, 533 Tower Rd, Ithaca, NY 14853, USA
- Plant Biology Graduate Field, Cornell University, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Scott J Teresi
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
- Genetics and Genome Sciences Program, Michigan State University, 567 Wilson Rd Room 2165, East Lansing, MI 48824, USA
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824-6473, USA
| | | | - Emily G Pawlowski
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824-6473, USA
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824-6473, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| |
Collapse
|
42
|
Tsue AF, Kania EE, Lei DQ, Fields R, McGann CD, Marciniak DM, Hershberg EA, Deng X, Kihiu M, Ong SE, Disteche CM, Kugel S, Beliveau BJ, Schweppe DK, Shechner DM. Multiomic characterization of RNA microenvironments by oligonucleotide-mediated proximity-interactome mapping. Nat Methods 2024; 21:2058-2071. [PMID: 39468212 DOI: 10.1038/s41592-024-02457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/09/2024] [Indexed: 10/30/2024]
Abstract
RNA molecules form complex networks of molecular interactions that are central to their function and to cellular architecture. But these interaction networks are difficult to probe in situ. Here, we introduce Oligonucleotide-mediated proximity-interactome MAPping (O-MAP), a method for elucidating the biomolecules near an RNA of interest, within its native context. O-MAP uses RNA-fluorescence in situ hybridization-like oligonucleotide probes to deliver proximity-biotinylating enzymes to a target RNA in situ, enabling nearby molecules to be enriched by streptavidin pulldown. This induces exceptionally precise biotinylation that can be easily optimized and ported to new targets or sample types. Using the noncoding RNAs 47S, 7SK and Xist as models, we develop O-MAP workflows for discovering RNA-proximal proteins, transcripts and genomic loci, yielding a multiomic characterization of these RNAs' subcellular compartments and new regulatory interactions. O-MAP requires no genetic manipulation, uses exclusively off-the-shelf parts and requires orders of magnitude fewer cells than established methods, making it accessible to most laboratories.
Collapse
Affiliation(s)
- Ashley F Tsue
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Evan E Kania
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Shape Therapeutics, Seattle, WA, USA
| | - Diana Q Lei
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Elliot A Hershberg
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maryanne Kihiu
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sita Kugel
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brian J Beliveau
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Devin K Schweppe
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
43
|
Theodoro JL, da Justa HC, de Caires Schluga PH, Fischer ML, Minozzo JC, Gremski LH, Veiga SS. Subtranscriptome analysis of phospholipases D in Loxosceles venom glands: Confirmation of predominance, intra-species diversity, and description of novel isoforms. Int J Biol Macromol 2024; 280:136108. [PMID: 39343256 DOI: 10.1016/j.ijbiomac.2024.136108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Spiders of Loxosceles genus, or Brown spiders produce a potent venom with minimal volume and protein content. Among its toxins, phospholipases D (PLDs) are notable for causing primary local and systemic manifestations observed following envenomation. They degrade cellular phospholipids, mainly sphingomyelin and lysophosphatidylcholine. We present a robust and detailed analysis of PLD transcripts from venom glands of three major clinically relevant South American species-L. intermedia, L. laeta, and L. gaucho-using next-generation sequencing. Results confirmed that PLDs are the most highly expressed toxins, accounting for 65.4 % of expression in L. intermedia, 71.8 % in L. gaucho, and 50.4 % in L. laeta. These findings further support the idea that these enzymes form a protein family both within and across species. Eighteen contigs for PLDs were found for L. gaucho, 24 for L. intermedia, and 21 for L. laeta. A detailed analysis revealed that, although all contigs display conserved amino acid residues directly involved in catalysis, magnesium coordination, and substrate affinity, they also possess distinct primary sequences with important substitutions. Such data reinforces the hypothesis that these toxins may act synergistically. Furthermore, new PLD sequences were identified within the contigs. For L. intermedia, 14 potential new isoforms were identified; 16 for L gaucho; and 16 novel sequences for L. laeta. This indicates that there is still a wealth of undisclosed information about these toxins. These data will help identify structural and functional differences among these proteins, support future functional studies, and to the comprehensive understanding of the mechanism of action of PLDs.
Collapse
Affiliation(s)
- João Lucas Theodoro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | | | - Marta Luciane Fischer
- Centro de Ciências Biológicas e da Saúde, Pontifícia Universidade Católica do Paraná (PUC-PR), Curitiba 80215-901, PR, Brazil
| | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara 83302-200, PR, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil.
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil.
| |
Collapse
|
44
|
Han SW, Jewell S, Thomas-Tikhonenko A, Barash Y. Contrasting and combining transcriptome complexity captured by short and long RNA sequencing reads. Genome Res 2024; 34:1624-1635. [PMID: 39322279 PMCID: PMC11529863 DOI: 10.1101/gr.278659.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Mapping transcriptomic variations using either short- or long-read RNA sequencing is a staple of genomic research. Long reads are able to capture entire isoforms and overcome repetitive regions, whereas short reads still provide improved coverage and error rates. Yet, open questions remain, such as how to quantitatively compare the technologies, can we combine them, and what is the benefit of such a combined view? We tackle these questions by first creating a pipeline to assess matched long- and short-read data using a variety of transcriptome statistics. We find that across data sets, algorithms, and technologies, matched short-read data detects ∼30% more splice junctions, such that ∼10%-30% of the splice junctions included at ≥20% by short reads are missed by long reads. In contrast, long reads detect many more intron-retention events and can detect full isoforms, pointing to the benefit of combining the technologies. We introduce MAJIQ-L, an extension of the MAJIQ software, to enable a unified view of transcriptome variations from both technologies and demonstrate its benefits. Our software can be used to assess any future long-read technology or algorithm and can be combined with short-read data for improved transcriptome analysis.
Collapse
Affiliation(s)
- Seong Woo Han
- Department of Computer and Information Sciences, School of Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - San Jewell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrei Thomas-Tikhonenko
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Yoseph Barash
- Department of Computer and Information Sciences, School of Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
45
|
Mattick JSA, Bromley RE, Watson KJ, Adkins RS, Holt CI, Lebov JF, Sparklin BC, Tyson TS, Rasko DA, Dunning Hotopp JC. Deciphering transcript architectural complexity in bacteria and archaea. mBio 2024; 15:e0235924. [PMID: 39287442 PMCID: PMC11481537 DOI: 10.1128/mbio.02359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict transcripts (mRNA and other RNAs) in Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-Proteobacteria), Listeria monocytogenes strains Scott A and RO15 (Bacteria:Firmicute), Pseudomonas aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), and Haloferax volcanii (Archaea:Halobacteria). From >5 million E. coli K12 and >3 million E. coli E2348/69 newly generated Oxford Nanopore Technologies direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844 E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predicted E. coli K12 proteins. While the number of predicted transcripts varied by strain based on the amount of sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6-1.7 kbp, while the median size of the 5'- and 3'-untranslated regions (UTRs) were 30-90 bp. Given the lack of bacterial and archaeal transcript annotation, most predictions were of novel transcripts, but we also predicted many previously characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs associated with pathogenesis in the E. coli E2348/69 LEE pathogenicity islands. We predicted small transcripts in the 100-200 bp range as well as >10 kbp transcripts for all strains, with the longest transcript for two of the seven strains being the nuo operon transcript, and for another two strains it was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the presentation of transcripts, and UTR predictions alongside coding sequences and protein predictions in bacterial genome annotation as important resources for the research community.IMPORTANCEOur understanding of bacterial and archaeal genes and genomes is largely focused on proteins since there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with studies on the human genome, where transcripts were sequenced prior to the release of the human genome over two decades ago. We developed software for the quick, easy, and reproducible prediction of bacterial and archaeal transcripts from Oxford Nanopore Technologies direct RNA sequencing data. These predictions are urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including regulation of virulence factors, and for the development of novel RNA-based therapeutics and diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance.
Collapse
Affiliation(s)
- John S. A. Mattick
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robin E. Bromley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaylee J. Watson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ricky S. Adkins
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher I. Holt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jarrett F. Lebov
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin C. Sparklin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tyonna S. Tyson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Aulia D, Lim MW, Jang IK, Seo JM, Jeon H, Kim H, Kang KM, Ogun AO, Yoon S, Lee S, Hur J, Choi TJ, Kim JO, Lee S. Safety Assessment of Camelid-Derived Single-Domain Antibody as Feed Additive for Juvenile Whiteleg Shrimp ( Litopenaeus vannamei) Against White Spot Syndrome Virus. Animals (Basel) 2024; 14:2965. [PMID: 39457895 PMCID: PMC11503928 DOI: 10.3390/ani14202965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
A six-week feeding trial was conducted to assess the safety of single-domain antibodies (sdAbs) derived from camelids against the white spot syndrome virus (WSSV) (WSSVvp28 was used as the antigen), focusing on the whole-organism responses and molecular-level changes in juvenile whiteleg shrimp (Litopenaeus vannamei). Five experimental diets with varying levels of sdAbs were formulated: CON (no sdAb supplementation); SDA8.2 (8.20% of sdAbs); SDA16.4 (16.40% of sdAbs); SDA24.6 (24.60% of sdAbs); and SDA32.8 (32.80% of sdAbs). In the CON diet, 450 mL of water per kg of diet (45%) was used to form a feed dough, while sdAbs were used to replace the water in the treatment diets. A total of 450 shrimp, with an initial body weight of 3.27 ± 0.02 g (mean ± SEM), were randomly distributed in 15 tanks (30 shrimp per tank; three tanks per treatment). Each tank was filled with 30 L of seawater (77 L capacity) in an indoor semi-recirculating system with a constant water flow rate of 1.2 L min-1. The photoperiod was maintained at 12 h of light and 12 h of dark. The water temperature, pH, salinity, and dissolved oxygen were 27.3 ± 0.1 °C, 7.61 ± 0.01, 34 ± 1 ppt, and 5.94 ± 0.04 mg L-1, respectively. During the feeding trial, the shrimp were fed the experimental diet (40% protein and 11% lipid) three times a day for six weeks. Following the feeding trial, an acute cold-water-temperature stress test was conducted by abruptly exposing the shrimp from each treatment to 15 °C for 4 h, down from 27 °C. The results showed no significant differences in the growth performance (weight gain, feed utilization efficiency, survival, etc.), plasma metabolites (aspartate aminotransferase activity, alanine aminotransferase activity, total protein, and glucose), or antioxidant enzymes (superoxide dismutase and glutathione peroxidase) among all the experimental diets (p > 0.05). In the acute cold-temperature stress test, there was no significant interaction between sdAb supplementation and temperature stress, nor any main effect from either factor, except for the main effect of temperature stress on the glucose levels, which was significantly higher in shrimp exposed to cold-temperature stress (p < 0.05). The next-generation sequencing of differentially expressed genes (DEGs) in the hepatopancreases of shrimp fed the CON, SDA16.4, and SDA32.8 diets, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, indicated that DEGs were significantly enriched in signaling pathways associated with growth, cold stress, and antioxidant systems. Overall, the results from conventional measurements suggest that the use of sdAbs against the WSSV may be safe for juvenile whiteleg shrimp. However, findings from the sophisticated analysis indicate that further research is needed to understand the molecular mechanisms underlying the observed changes, and to evaluate the long-term effects of sdAb supplementation in shrimp diets.
Collapse
Affiliation(s)
- Deni Aulia
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Myung Woon Lim
- Joongkyeom Co., Ltd., Goyang-si 10260, Republic of Korea; (M.W.L.); (I.K.J.)
| | - In Kwon Jang
- Joongkyeom Co., Ltd., Goyang-si 10260, Republic of Korea; (M.W.L.); (I.K.J.)
| | - Jeong Min Seo
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea; (J.M.S.); (K.-M.K.); (T.-J.C.)
| | - Hyuncheol Jeon
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Haham Kim
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Kyung-Min Kang
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea; (J.M.S.); (K.-M.K.); (T.-J.C.)
| | - Abayomi Oladimeji Ogun
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Sooa Yoon
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Suhyun Lee
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Junhyeok Hur
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Tae-Jin Choi
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea; (J.M.S.); (K.-M.K.); (T.-J.C.)
| | - Jong-Oh Kim
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea; (J.M.S.); (K.-M.K.); (T.-J.C.)
| | - Seunghyung Lee
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| |
Collapse
|
47
|
Wells JR, Padua MB, Haaning AM, Smith AM, Morris SA, Tariq M, Ware SM. Non-coding cause of congenital heart defects: Abnormal RNA splicing with multiple isoforms as a mechanism for heterotaxy. HGG ADVANCES 2024; 5:100353. [PMID: 39275801 PMCID: PMC11470249 DOI: 10.1016/j.xhgg.2024.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/16/2024] Open
Abstract
Heterotaxy is a disorder characterized by severe congenital heart defects (CHDs) and abnormal left-right patterning in other thoracic or abdominal organs. Clinical and research-based genetic testing has previously focused on evaluation of coding variants to identify causes of CHDs, leaving non-coding causes of CHDs largely unknown. Variants in the transcription factor zinc finger of the cerebellum 3 (ZIC3) cause X-linked heterotaxy. We identified an X-linked heterotaxy pedigree without a coding variant in ZIC3. Whole-genome sequencing revealed a deep intronic variant (ZIC3 c.1224+3286A>G) predicted to alter RNA splicing. An in vitro minigene splicing assay confirmed the variant acts as a cryptic splice acceptor. CRISPR-Cas9 served to introduce the ZIC3 c.1224+3286A>G variant into human embryonic stem cells demonstrating pseudoexon inclusion caused by the variant. Surprisingly, Sanger sequencing of the resulting ZIC3 c.1224+3286A>G amplicons revealed several isoforms, many of which bypass the normal coding sequence of the third exon of ZIC3, causing a disruption of a DNA-binding domain and a nuclear localization signal. Short- and long-read mRNA sequencing confirmed these initial results and identified additional splicing patterns. Assessment of four isoforms determined abnormal functions in vitro and in vivo while treatment with a splice-blocking morpholino partially rescued ZIC3. These results demonstrate that pseudoexon inclusion in ZIC3 can cause heterotaxy and provide functional validation of non-coding disease causation. Our results suggest the importance of non-coding variants in heterotaxy and the need for improved methods to identify and classify non-coding variation that may contribute to CHDs.
Collapse
Affiliation(s)
- John R Wells
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maria B Padua
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Allison M Haaning
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amanda M Smith
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shaine A Morris
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
| | - Muhammad Tariq
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie M Ware
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
48
|
Sun B, Li Q, Xiao X, Zhang J, Zhou Y, Huang Y, Gao J, Cao X. The loach haplotype-resolved genome and the identification of Mex3a involved in fish air breathing. CELL GENOMICS 2024; 4:100670. [PMID: 39389021 PMCID: PMC11602589 DOI: 10.1016/j.xgen.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Fish air breathing is crucial for the transition of vertebrates from water to land. So far, the genes involved in fish air breathing have not been well identified. Here, we performed gene enrichment analysis of positively selected genes (PSGs) in loach (Misgurnus anguillicaudatus, an air-breathing fish) in comparison to Triplophysa tibetana (a non-air-breathing fish), haplotype-resolved genome assembly of the loach, and gene evolutionary analysis of air-breathing and non-air-breathing fishes and found that the PSG mex3a originated from ancient air-breathing fish species. Deletion of Mex3a impaired loach air-breathing capacity by inhibiting angiogenesis through its interaction with T-box transcription factor 20. Mex3a overexpression significantly promoted angiogenesis. Structural analysis and point mutation revealed the critical role of the 201st amino acid in loach Mex3a for angiogenesis. Our findings innovatively indicate that the ancient mex3a is a fish air-breathing gene, which holds significance for understanding fish air breathing and provides a valuable resource for cultivating hypoxia-tolerant fish varieties.
Collapse
Affiliation(s)
- Bing Sun
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingshan Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Xiao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhou
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuwei Huang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
49
|
Nguinkal JA, Zoclanclounon YAB, Brunner RM, Chen Y, Goldammer T. Haplotype-resolved and near-T2T genome assembly of the African catfish (Clarias gariepinus). Sci Data 2024; 11:1095. [PMID: 39375414 PMCID: PMC11458897 DOI: 10.1038/s41597-024-03906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Airbreathing catfish are stenohaline freshwater fish capable of withstanding various environmental conditions and farming practices, including breathing atmospheric oxygen. This unique ability has enabled them to thrive in semi-terrestrial habitats. However, the genomic mechanisms underlying their adaptation to adverse ecological environments remain largely unexplored, primarily due to the limited availability of high-quality genomic resources. Here, we present a haplotype-resolved and near telomere-to-telomere (T2T) genome assembly of the African catfish (Clarias gariepinus), utilizing Oxford Nanopore, PacBio HiFi, Illumina and Hi-C sequencing technologies. The primary assembly spans 969.62 Mb with only 47 contigs, achieving a contig N50 of 33.71 Mb. Terminal telomeric signals were detected in 22 of 47 contigs, suggesting T2T assembled chromosomes. BUSCO analysis confirmed gene space completeness of 99% against the Actinopterygii dataset, highlighting the high quality of the assembly. Genome annotation identified 25,655 protein-coding genes and estimated 43.94% genome-wide repetitive elements. This data provides valuable genomic resources to advance aquaculture practices and to explore the genomic underpinnings of the ecological resilience of airbreathing catfish and related teleosts.
Collapse
Affiliation(s)
- Julien A Nguinkal
- Research Institute for Farm Animals (FBN), Fish Genetics Unit, Dummerstorf, 18196, Germany.
- Bernhard-Nocht Institute for Tropical Medicine, Department of Infectious Disease Epidemiology, Hamburg, 20359, Germany.
| | | | - Ronald M Brunner
- Research Institute for Farm Animals (FBN), Fish Genetics Unit, Dummerstorf, 18196, Germany
| | - Yutang Chen
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Tom Goldammer
- Research Institute for Farm Animals (FBN), Fish Genetics Unit, Dummerstorf, 18196, Germany.
- University of Rostock, Faculty of Agriculture and Environmental Sciences, Rostock, 18059, Germany.
| |
Collapse
|
50
|
Ruiz-Orera J, Miller DC, Greiner J, Genehr C, Grammatikaki A, Blachut S, Mbebi J, Patone G, Myronova A, Adami E, Dewani N, Liang N, Hummel O, Muecke MB, Hildebrandt TB, Fritsch G, Schrade L, Zimmermann WH, Kondova I, Diecke S, van Heesch S, Hübner N. Evolution of translational control and the emergence of genes and open reading frames in human and non-human primate hearts. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1217-1235. [PMID: 39317836 PMCID: PMC11473369 DOI: 10.1038/s44161-024-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease.
Collapse
Affiliation(s)
- Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Duncan C Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
| | - Johannes Greiner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carolin Genehr
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
| | - Aliki Grammatikaki
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Susanne Blachut
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jeanne Mbebi
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anna Myronova
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Nikita Dewani
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ning Liang
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Oliver Hummel
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael B Muecke
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Freie Universitaet Berlin, Berlin, Germany
| | - Guido Fritsch
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lisa Schrade
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen, Germany
- DZNE (German Center for Neurodegenerative Diseases), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Ivanela Kondova
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Charité-Universitätsmedizin, Berlin, Germany.
- Helmholtz Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
| |
Collapse
|