1
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Cummings JF, Polhemus ME, Kester KE, Ockenhouse CF, Gasser RA, Coyne P, Wortmann G, Nielsen RK, Schaecher K, Holland CA, Krzych U, Tornieporth N, Soisson LA, Angov E, Heppner DG. A phase IIa, randomized, double-blind, safety, immunogenicity and efficacy trial of Plasmodium falciparum vaccine antigens merozoite surface protein 1 and RTS,S formulated with AS02 adjuvant in healthy, malaria-naïve adults. Vaccine 2024; 42:3066-3074. [PMID: 38584058 DOI: 10.1016/j.vaccine.2024.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND To improve the efficacy of Plasmodium falciparum malaria vaccine RTS,S/AS02, we conducted a study in 2001 in healthy, malaria-naïve adults administered RTS,S/AS02 in combination with FMP1, a recombinant merozoite surface-protein-1, C-terminal 42kD fragment. METHODS A double-blind Phase I/IIa study randomized N = 60 subjects 1:1:1:1 to one of four groups, N = 15/group, to evaluate safety, immunogenicity, and efficacy of intra-deltoid half-doses of RTS,S/AS02 and FMP1/AS02 administered in the contralateral (RTS,S + FMP1-separate) or same (RTS,S + FMP1-same) sites, or FMP1/AS02 alone (FMP1-alone), or RTS,S/AS02 alone (RTS,S-alone) on a 0-, 1-, 3-month schedule. Subjects receiving three doses of vaccine and non-immunized controls (N = 11) were infected with homologous P. falciparum 3D7 sporozoites by Controlled Human Malaria Infection (CHMI). RESULTS Subjects in all vaccination groups experienced mostly mild or moderate local and general adverse events that resolved within eight days. Anti-circumsporozoite antibody levels were lower when FMP1 and RTS,S were co-administered at the same site (35.0 µg/mL: 95 % CI 20.3-63), versus separate arms (57.4 µg/mL: 95 % CI 32.3-102) or RTS,S alone (62.0 µg/mL: 95 % CI: 37.8-101.8). RTS,S-specific lymphoproliferative responses and ex vivo ELISpot CSP-specific interferon-gamma (IFN-γ) responses were indistinguishable among groups receiving RTS,S/AS02. There was no difference in antibody to FMP1 among groups receiving FMP1/AS02. After CHMI, groups immunized with a RTS,S-containing regimen had ∼ 30 % sterile protection against parasitemia, and equivalent delays in time-to-parasitemia. The FMP1/AS02 alone group showed no sterile immunity or delay in parasitemia. CONCLUSION Co-administration of RTS,S and FMP1/AS02 reduced anti-RTS,S antibody, but did not affect tolerability, cellular immunity, or efficacy in a stringent CHMI model. Absence of efficacy or delay of patency in the sporozoite challenge model in the FMP1/AS02 group did not rule out efficacy of FMP1/AS02 in an endemic population. However, a Phase IIb trial of FMP1/AS02 in children in malaria-endemic Kenya did not demonstrate efficacy against natural infection. CLINICALTRIALS gov identifier: NCT01556945.
Collapse
Affiliation(s)
- J F Cummings
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M E Polhemus
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - K E Kester
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - C F Ockenhouse
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - R A Gasser
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - P Coyne
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - G Wortmann
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - R K Nielsen
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - K Schaecher
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - C A Holland
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - U Krzych
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - L A Soisson
- Malaria Vaccine Development Program, United States Agency for International Development, Washington, DC, USA
| | - E Angov
- Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - D G Heppner
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
3
|
Palacpac NMQ, Ishii KJ, Arisue N, Tougan T, Horii T. Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine candidate antigen and the resulting limited polymorphism. Parasitol Int 2024; 99:102845. [PMID: 38101534 DOI: 10.1016/j.parint.2023.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
The call for second generation malaria vaccines needs not only the identification of novel candidate antigens or adjuvants but also a better understanding of immune responses and the underlying protective processes. Plasmodium parasites have evolved a range of strategies to manipulate the host immune system to guarantee survival and establish parasitism. These immune evasion strategies hamper efforts to develop effective malaria vaccines. In the case of a malaria vaccine targeting the N-terminal domain of P. falciparum serine repeat antigen 5 (SE36), now in clinical trials, we observed reduced responsiveness (lowered immunogenicity) which may be attributed to immune tolerance/immune suppression. Here, immunogenicity data and insights into the immune responses to SE36 antigen from epidemiological studies and clinical trials are summarized. Documenting these observations is important to help identify gaps for SE36 continued development and engender hope that highly effective blood-stage/multi-stage vaccines can be achieved.
Collapse
Affiliation(s)
- Nirianne Marie Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | - Nobuko Arisue
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Thomson-Luque R, Stabler TC, Fürle K, Silva JC, Daubenberger C. Plasmodium falciparum merozoite surface protein 1 as asexual blood stage malaria vaccine candidate. Expert Rev Vaccines 2024; 23:160-173. [PMID: 38100310 DOI: 10.1080/14760584.2023.2295430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Malaria represents a public health challenge in tropical and subtropical regions, and currently deployed control strategies are likely insufficient to drive elimination of malaria. Development and improvement of malaria vaccines might be key to reduce disease burden. Vaccines targeting asexual blood stages of the parasite have shown limited efficacy when studied in human trials conducted over the past decades. AREAS COVERED Vaccine candidates based on the merozoite surface protein 1 (MSP1) were initially envisioned as one of the most promising approaches to provide immune protection against asexual blood-stage malaria. Successful immunization studies in monkey involved the use of the full-length MSP1 (MSP1FL) as vaccine construct. Vaccines using MSP1FL for immunization have the potential benefit of including numerous conserved B-cell and T-cell epitopes. This could result in improved parasite strain-transcending, protective immunity in the field. We review outcomes of clinical trials that utilized a variety of MSP1 constructs and formulations, including MSP1FL, either alone or in combination with other antigens, in both animal models and humans. EXPERT OPINION Novel approaches to analyze breadth and magnitude of effector functions of MSP1-targeting antibodies in volunteers undergoing experimental vaccination and controlled human malaria infection will help to define correlates of protective immunity.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG Heidelberg, Germany
| | - Thomas C Stabler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| | - Kristin Fürle
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (GHTM IHMT, UNL), Lisbon, Portugal
| | - Claudia Daubenberger
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| |
Collapse
|
5
|
Malaria Vaccines. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
6
|
Eacret JS, Parzych EM, Gonzales DM, Burns JM. Inclusion of an Optimized Plasmodium falciparum Merozoite Surface Protein 2-Based Antigen in a Trivalent, Multistage Malaria Vaccine. THE JOURNAL OF IMMUNOLOGY 2021; 206:1817-1831. [PMID: 33789984 DOI: 10.4049/jimmunol.2000927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum merozoite surface protein (PfMSP)2 is a target of parasite-neutralizing Abs. Inclusion of recombinant PfMSP2 (rPfMSP2) as a component of a multivalent malaria vaccine is of interest, but presents challenges. Previously, we used the highly immunogenic PfMSP8 as a carrier to enhance production and/or immunogenicity of malaria vaccine targets. In this study, we exploited the benefits of rPfMSP8 as a carrier to optimize a rPfMSP2-based subunit vaccine. rPfMSP2 and chimeric rPfMSP2/8 vaccines produced in Escherichia coli were evaluated in comparative immunogenicity studies in inbred (CB6F1/J) and outbred (CD1) mice, varying the dose and adjuvant. Immunization of mice with both rPfMSP2-based vaccines elicited high-titer anti-PfMSP2 Abs that recognized the major allelic variants of PfMSP2. Vaccine-induced T cells recognized epitopes present in both PfMSP2 and the PfMSP8 carrier. Competition assays revealed differences in Ab specificities induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. In contrast to aluminum hydroxide (Alum) as adjuvant, formulation of rPfMSP2 vaccines with glucopyranosyl lipid adjuvant-stable emulsion, a synthetic TLR4 agonist, elicited Th1-associated cytokines, shifting production of Abs to cytophilic IgG subclasses. The rPfMSP2/8 + glucopyranosyl lipid adjuvant-stable emulsion formulation induced significantly higher Ab titers with superior durability and capacity to opsonize P. falciparum merozoites for phagocytosis. Immunization with a trivalent vaccine including PfMSP2/8, PfMSP1/8, and the P. falciparum 25 kDa sexual stage antigen fused to PfMSP8 (Pfs25/8) induced high levels of Abs specific for epitopes in each targeted domain, with no evidence of antigenic competition. These results are highly encouraging for the addition of rPfMSP2/8 as a component of an efficacious, multivalent, multistage malaria vaccine.
Collapse
Affiliation(s)
- Jacqueline S Eacret
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Elizabeth M Parzych
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Donna M Gonzales
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - James M Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
7
|
Parzych EM, Miura K, Long CA, Burns JM. Maintaining immunogenicity of blood stage and sexual stage subunit malaria vaccines when formulated in combination. PLoS One 2020; 15:e0232355. [PMID: 32348377 PMCID: PMC7190115 DOI: 10.1371/journal.pone.0232355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/13/2020] [Indexed: 11/18/2022] Open
Abstract
Background Eradication of Plasmodium falciparum malaria will likely require a multivalent vaccine, but the development of a highly efficacious subunit-based formulation has been challenging. We previously showed that production and immunogenicity of two leading vaccine targets, PfMSP119 (blood-stage) and Pfs25 (sexual stage), could be enhanced upon genetic fusion to merozoite surface protein 8 (PfMSP8). Here, we sought to optimize a Pfs25-based formulation for use in combination with rPfMSP1/8 with the goal of maintaining the immunogenicity of each subunit. Methods Comparative mouse studies were conducted to assess the effects of adjuvant selection (Alhydrogel vs. glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE)) and antigen dose (2.5 vs. 0.5 μg) on the induction of anti-Pfs25 immune responses. The antibody response (magnitude, IgG subclass profile, and transmission-reducing activity (TRA)) and cellular responses (proliferation, cytokine production) generated in response to each formulation were assessed. Similarly, immunogenicity of a bivalent vaccine containing rPfMSP1/8 and rPfs25/8 was evaluated. Results Alum-based formulations elicited strong and comparable humoral and cellular responses regardless of antigen form (unfused rPfs25 or chimeric rPfs25/8) or dose. In contrast, GLA-SE based formulations elicited differential responses as a function of both parameters, with 2.5 μg of rPfs25/8 inducing the highest titers of functional anti-Pfs25 antibodies. Based on these data, chimeric rPfs25/8 was selected and tested in a bivalent formulation with rPfMSP1/8. Strong antibody titers against Pfs25 and PfMSP119 domains were induced with GLA-SE based formulations, with no indication of antigenic competition. Conclusions We were able to generate an immunogenic bivalent vaccine designed to target multiple parasite stages that could reduce both clinical disease and parasite transmission. The use of the same PfMSP8 carrier for two different vaccine components was effective in this bivalent formulation. As such, the incorporation of additional protective targets fused to the PfMSP8 carrier into the formulation should be feasible, further broadening the protective response.
Collapse
Affiliation(s)
- Elizabeth M. Parzych
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - James M. Burns
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Bailey JA, Berry AA, Travassos MA, Ouattara A, Boudova S, Dotsey EY, Pike A, Jacob CG, Adams M, Tan JC, Bannen RM, Patel JJ, Pablo J, Nakajima R, Jasinskas A, Dutta S, Takala-Harrison S, Lyke KE, Laurens MB, Niangaly A, Coulibaly D, Kouriba B, Doumbo OK, Thera MA, Felgner PL, Plowe CV. Microarray analyses reveal strain-specific antibody responses to Plasmodium falciparum apical membrane antigen 1 variants following natural infection and vaccination. Sci Rep 2020; 10:3952. [PMID: 32127565 PMCID: PMC7054363 DOI: 10.1038/s41598-020-60551-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/13/2020] [Indexed: 11/30/2022] Open
Abstract
Vaccines based on Plasmodium falciparum apical membrane antigen 1 (AMA1) have failed due to extensive polymorphism in AMA1. To assess the strain-specificity of antibody responses to malaria infection and AMA1 vaccination, we designed protein and peptide microarrays representing hundreds of unique AMA1 variants. Following clinical malaria episodes, children had short-lived, sequence-independent increases in average whole-protein seroreactivity, as well as strain-specific responses to peptides representing diverse epitopes. Vaccination resulted in dramatically increased seroreactivity to all 263 AMA1 whole-protein variants. High-density peptide analysis revealed that vaccinated children had increases in seroreactivity to four distinct epitopes that exceeded responses to natural infection. A single amino acid change was critical to seroreactivity to peptides in a region of AMA1 associated with strain-specific vaccine efficacy. Antibody measurements using whole antigens may be biased towards conserved, immunodominant epitopes. Peptide microarrays may help to identify immunogenic epitopes, define correlates of vaccine protection, and measure strain-specific vaccine-induced antibodies.
Collapse
Affiliation(s)
- Jason A Bailey
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark A Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Boudova
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel Y Dotsey
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Andrew Pike
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John C Tan
- Previous address: Roche Sequencing Solutions, Madison, WI, USA
- Nimble Therapeutics, Madison, WI, USA
| | - Ryan M Bannen
- Previous address: Roche Sequencing Solutions, Madison, WI, USA
- Nimble Therapeutics, Madison, WI, USA
| | - Jigar J Patel
- Previous address: Roche Sequencing Solutions, Madison, WI, USA
- Nimble Therapeutics, Madison, WI, USA
| | - Jozelyn Pablo
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Rie Nakajima
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Algis Jasinskas
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Philip L Felgner
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Christopher V Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
- Duke Global Health Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Berry AA, Gottlieb ER, Kouriba B, Diarra I, Thera MA, Dutta S, Coulibaly D, Ouattara A, Niangaly A, Kone AK, Traore K, Tolo Y, Mishcherkin V, Soisson L, Diggs CL, Blackwelder WC, Laurens MB, Sztein MB, Doumbo OK, Plowe CV, Lyke KE. Immunoglobulin G subclass and antibody avidity responses in Malian children immunized with Plasmodium falciparum apical membrane antigen 1 vaccine candidate FMP2.1/AS02 A. Malar J 2019; 18:13. [PMID: 30658710 PMCID: PMC6339315 DOI: 10.1186/s12936-019-2637-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A malaria vaccine based on Plasmodium falciparum apical membrane antigen 1 (AMA1) elicited strain specific efficacy in Malian children that waned in the second season after vaccination despite sustained AMA1 antibody titers. With the goal of identifying a humoral correlate of vaccine-induced protection, pre- and post-vaccination sera from children vaccinated with the AMA1 vaccine and from a control group that received a rabies vaccine were tested for AMA1-specific immunoglobulin G (IgG) subclasses (IgG1, IgG2, IgG3, and IgG4) and for antibody avidity. METHODS Samples from a previously completed Phase 2 AMA1 vaccine trial in children residing in Mali, West Africa were used to determine AMA1-specific IgG subclass antibody titers and avidity by ELISA. Cox proportional hazards models were used to assess correlation between IgG subclass antibody titers and risk of time to first or only clinical malaria episode and risk of multiple episodes. Asexual P. falciparum parasite density measured for each child as area under the curve were used to assess correlation between IgG subclass antibody titers and parasite burden. RESULTS AMA1 vaccination did not elicit a change in antibody avidity; however, AMA1 vaccinees had a robust IgG subclass response that persisted over the malaria transmission season. AMA1-specific IgG subclass responses were not associated with decreased risk of subsequent clinical malaria. For the AMA1 vaccine group, IgG3 levels at study day 90 correlated with high parasite burden during days 90-240. In the control group, AMA1-specific IgG subclass rise and persistence over the malaria season was modest and correlated with age. In the control group, titers of several IgG subclasses at days 90 and 240 correlated with parasite burden over the first 90 study days, and IgG3 at day 240 correlated with parasite burden during days 90-240. CONCLUSIONS Neither IgG subclass nor avidity was associated with the modest, strain-specific efficacy elicited by this blood stage malaria vaccine. Although a correlate of protection was not identified, correlations between subclass titers and age, and correlations between IgG subclass titers and parasite burden, defined by area under the curve parasitaemia levels, were observed, which expand knowledge about IgG subclass responses. IgG3, known to have the shortest half-life of the IgG subclasses, might be the most temporally relevant indicator of ongoing malaria exposure when examining antibody responses to AMA1.
Collapse
Affiliation(s)
- Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Eric R Gottlieb
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Bourema Kouriba
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Issa Diarra
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Mahamadou A Thera
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Sheetij Dutta
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Drissa Coulibaly
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amadou Niangaly
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Abdoulaye K Kone
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Karim Traore
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Youssouf Tolo
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Vladimir Mishcherkin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lorraine Soisson
- United States Agency for International Development, Washington, DC, USA
| | - Carter L Diggs
- United States Agency for International Development, Washington, DC, USA
| | - William C Blackwelder
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ogobara K Doumbo
- University of Sciences, Techniques, and Technologies, Bamako, Bamako, Mali
| | - Christopher V Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Fleck JD, Betti AH, da Silva FP, Troian EA, Olivaro C, Ferreira F, Verza SG. Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities. Molecules 2019; 24:E171. [PMID: 30621160 PMCID: PMC6337100 DOI: 10.3390/molecules24010171] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Quillaja saponaria Molina represents the main source of saponins for industrial applications. Q. saponaria triterpenoids have been studied for more than four decades and their relevance is due to their biological activities, especially as a vaccine adjuvant and immunostimulant, which have led to important research in the field of vaccine development. These saponins, alone or incorporated into immunostimulating complexes (ISCOMs), are able to modulate immunity by increasing antigen uptake, stimulating cytotoxic T lymphocyte production (Th1) and cytokines (Th2) in response to different antigens. Furthermore, antiviral, antifungal, antibacterial, antiparasitic, and antitumor activities are also reported as important biological properties of Quillaja triterpenoids. Recently, other saponins from Q. brasiliensis (A. St.-Hill. & Tul.) Mart. were successfully tested and showed similar chemical and biological properties to those of Q. saponaria barks. The aim of this manuscript is to summarize the current advances in phytochemical and pharmacological knowledge of saponins from Quillaja plants, including the particular chemical characteristics of these triterpenoids. The potential applications of Quillaja saponins to stimulate further drug discovery research will be provided.
Collapse
Affiliation(s)
- Juliane Deise Fleck
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Andresa Heemann Betti
- Bioanalysis Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Francini Pereira da Silva
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Eduardo Artur Troian
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Cristina Olivaro
- Science and Chemical Technology Department, University Center of Tacuarembó, Udelar, Tacuarembó 45000, Uruguay.
| | - Fernando Ferreira
- Organic Chemistry Department, Carbohydrates and Glycoconjugates Laboratory, Udelar, Mondevideo 11600, Uruguay.
| | - Simone Gasparin Verza
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| |
Collapse
|
11
|
Abstract
The blood stage of the malaria parasite life cycle is responsible for all the clinical symptoms of malaria. During the blood stage, Plasmodium merozoites invade and multiply within host red blood cells (RBCs). Here, we review the progress made, challenges faced, and new strategies available for the development of blood stage malaria vaccines. We discuss our current understanding of immune responses against blood stages and the status of clinical development of various blood stage malaria vaccine candidates. We then discuss possible paths forward to develop effective blood stage malaria vaccines. This includes a discussion of protective immune mechanisms that can be elicited to target blood stage parasites, novel delivery systems, immunoassays and animal models to optimize vaccine candidates in preclinical studies, and use of challenge models to get an early readout of vaccine efficacy.
Collapse
|
12
|
Parzych EM, Miura K, Ramanathan A, Long CA, Burns JM. Evaluation of a Plasmodium-Specific Carrier Protein To Enhance Production of Recombinant Pfs25, a Leading Transmission-Blocking Vaccine Candidate. Infect Immun 2018; 86:e00486-17. [PMID: 28993460 PMCID: PMC5736822 DOI: 10.1128/iai.00486-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/03/2017] [Indexed: 01/25/2023] Open
Abstract
Challenges with the production and suboptimal immunogenicity of malaria vaccine candidates have slowed the development of a Plasmodium falciparum multiantigen vaccine. Attempting to resolve these issues, we focused on the use of highly immunogenic merozoite surface protein 8 (MSP8) as a vaccine carrier protein. Previously, we showed that a genetic fusion of the C-terminal 19-kDa fragment of merozoite surface protein 1 (MSP119) to P. falciparum MSP8 (PfMSP8) facilitated antigen production and folding and the induction of neutralizing antibodies to conformational B cell epitopes of MSP119 Here, using the PfMSP1/8 construct, we further optimized the recombinant PfMSP8 (rPfMSP8) carrier by the introduction of two cysteine-to-serine substitutions (CΔS) to improve the yield of the monomeric product. We then sought to test the broad applicability of this approach using the transmission-blocking vaccine candidate Pfs25. The production of rPfs25-based vaccines has presented challenges. Antibodies directed against the four highly constrained epidermal growth factor (EGF)-like domains of Pfs25 block sexual-stage development in mosquitoes. The sequence encoding mature Pfs25 was codon harmonized for expression in Escherichia coli We produced a rPfs25-PfMSP8 fusion protein [rPfs25/8(CΔS)] as well as unfused, mature rPfs25. rPfs25 was purified with a modest yield but required the incorporation of refolding protocols to obtain a proper conformation. In comparison, chimeric rPfs25/8(CΔS) was expressed and easily purified, with the Pfs25 domain bearing the proper conformation without renaturation. Both antigens were immunogenic in rabbits, inducing IgG that bound native Pfs25 and exhibited potent transmission-reducing activity. These data further demonstrate the utility of PfMSP8 as a parasite-specific carrier protein to enhance the production of complex malaria vaccine targets.
Collapse
Affiliation(s)
- Elizabeth M Parzych
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Aarti Ramanathan
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Carole A Long
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - James M Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Ntumngia FB, Pires CV, Barnes SJ, George MT, Thomson-Luque R, Kano FS, Alves JRS, Urusova D, Pereira DB, Tolia NH, King CL, Carvalho LH, Adams JH. An engineered vaccine of the Plasmodium vivax Duffy binding protein enhances induction of broadly neutralizing antibodies. Sci Rep 2017; 7:13779. [PMID: 29062081 PMCID: PMC5653783 DOI: 10.1038/s41598-017-13891-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
Plasmodium vivax invasion into human reticulocytes is a complex process. The Duffy binding protein (DBP) dimerization with its cognate receptor is vital for junction formation in the invasion process. Due to its functional importance, DBP is considered a prime vaccine candidate, but variation in B-cell epitopes at the dimer interface of DBP leads to induction of strain-limited immunity. We believe that the polymorphic residues tend to divert immune responses away from functionally conserved epitopes important for receptor binding or DBP dimerization. As a proof of concept, we engineered the vaccine DEKnull to ablate the dominant Bc epitope to partially overcome strain-specific immune antibody responses. Additional surface engineering on the next generation immunogen, DEKnull-2, provides an immunogenicity breakthrough to conserved protective epitopes. DEKnull-2 elicits a stronger broadly neutralizing response and reactivity with long-term persistent antibody responses of acquired natural immunity. By using novel engineered DBP immunogens, we validate that the prime targets of protective immunity are conformational epitopes at the dimer interface. These successful results indicate a potential approach that can be used generally to improve efficacy of other malaria vaccine candidates.
Collapse
Affiliation(s)
- Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, USA
| | - Camilla V Pires
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, 30190, Brazil
| | - Samantha J Barnes
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, USA
| | - Miriam T George
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, USA
| | - Richard Thomson-Luque
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, USA
| | - Flora S Kano
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, 30190, Brazil
| | - Jessica R S Alves
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, 30190, Brazil
| | - Darya Urusova
- Departments of Molecular Microbiology & Microbial Pathogenesis, and Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, 63130, USA
| | - Dhelio B Pereira
- Centro de Pesquisa em Medicina Tropical de Rondonia-CEPEM, Porto Velho, 76812-245, Brazil
| | - Niraj H Tolia
- Departments of Molecular Microbiology & Microbial Pathogenesis, and Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, 63130, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, 44106, USA
| | - Luzia H Carvalho
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, 30190, Brazil
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, USA.
| |
Collapse
|
14
|
Sepúlveda N, Morais CG, Mourão LC, Freire MF, Fontes CJF, Lacerda MVG, Drakeley CJ, Braga ÉM. Allele-specific antibodies to Plasmodium vivax merozoite surface protein-1: prevalence and inverse relationship to haemoglobin levels during infection. Malar J 2016; 15:559. [PMID: 27852258 PMCID: PMC5112628 DOI: 10.1186/s12936-016-1612-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Antigenic polymorphisms are considered as one of the main strategies employed by malaria parasites to escape from the host immune responses after infections. Merozoite surface protein-1 (MSP-1) of Plasmodium vivax, a promising vaccine candidate, is a highly polymorphic protein whose immune recognition is not well understood. Methods and results The IgG responses to conserved (MSP-119) and polymorphic (block 2 and block 10) epitopes of PvMSP-1 were evaluated in 141 P. vivax infected patients. Ten recombinant proteins corresponding to block 2 (variants BR07, BP29, BP39, BP30, BEL) and block 10 (BR07, BP29, BP39, BP01, BP13) often observed in Brazilian P. vivax isolates were assessed by ELISA in order to determine levels of specific antibodies and their respective seroprevalence. The magnitude and the frequency of variant-specific responses were very low, except for BR07 variant (>40%), which was the predominant haplotype as revealed by block 10 PvMSP-1 gene sequencing. By contrast, 89% of patients had IgG against the C-terminal conserved domain (PvMSP-119), confirming the high antigenicity of this protein. Using multiple linear and logistic regression models, there was evidence for a negative association between levels of haemoglobin and several IgG antibodies against block 2 variant antigens, with the strongest association being observed for BP39 allelic version. This variant was also found to increase the odds of anaemia in these patients. Conclusions These findings may have implications for vaccine development and represent an important step towards a better understanding of the polymorphic PvMSP-1 domain as potential targets of vaccine development. These data highlight the importance of extending the study of these polymorphic epitopes of PvMSP-1 to different epidemiological settings. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1612-z) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Designing malaria vaccines to circumvent antigen variability. Vaccine 2015; 33:7506-12. [PMID: 26475447 PMCID: PMC4731100 DOI: 10.1016/j.vaccine.2015.09.110] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines.
Collapse
|
17
|
Travassos MA, Coulibaly D, Bailey JA, Niangaly A, Adams M, Nyunt MM, Ouattara A, Lyke KE, Laurens MB, Pablo J, Jasinskas A, Nakajima R, Berry AA, Takala-Harrison S, Kone AK, Kouriba B, Rowe JA, Doumbo OK, Thera MA, Laufer MK, Felgner PL, Plowe CV. Differential recognition of terminal extracellular Plasmodium falciparum VAR2CSA domains by sera from multigravid, malaria-exposed Malian women. Am J Trop Med Hyg 2015; 92:1190-1194. [PMID: 25918203 PMCID: PMC4458824 DOI: 10.4269/ajtmh.14-0524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/03/2015] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates parasite sequestration in small capillaries through tissue-specific cytoadherence. The best characterized of these proteins is VAR2CSA, which is expressed on the surface of infected erythrocytes that bind to chondroitin sulfate in the placental matrix. Antibodies to VAR2CSA prevent placental cytoadherence and protect against placental malaria. The size and complexity of the VAR2CSA protein pose challenges for vaccine development, but smaller constitutive domains may be suitable for subunit vaccine development. A protein microarray was printed to include five overlapping fragments of the 3D7 VAR2CSA extracellular region. Malian women with a history of at least one pregnancy had antibody recognition of four of these fragments and had stronger reactivity against the two distal fragments than did nulliparous women, children, and men from Mali, suggesting that the C-terminal extracellular VAR2CSA domains are a potential focus of protective immunity. With carefully chosen sera from longitudinal studies of pregnant women, this approach has the potential to identify seroreactive VAR2CSA domains associated with protective immunity against pregnancy-associated malaria.
Collapse
Affiliation(s)
- Mark A. Travassos
- *Address correspondence to Mark A. Travassos, Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Room 480, Baltimore, MD 21201. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bailey JA, Pablo J, Niangaly A, Travassos MA, Ouattara A, Coulibaly D, Laurens MB, Takala-Harrison SL, Lyke KE, Skinner J, Berry AA, Jasinskas A, Nakajima-Sasaki R, Kouriba B, Thera MA, Felgner PL, Doumbo OK, Plowe CV. Seroreactivity to a large panel of field-derived Plasmodium falciparum apical membrane antigen 1 and merozoite surface protein 1 variants reflects seasonal and lifetime acquired responses to malaria. Am J Trop Med Hyg 2015; 92:9-12. [PMID: 25294612 PMCID: PMC4347399 DOI: 10.4269/ajtmh.14-0140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/26/2014] [Indexed: 11/07/2022] Open
Abstract
Parasite antigen diversity poses an obstacle to developing an effective malaria vaccine. A protein microarray containing Plasmodium falciparum apical membrane antigen 1 (AMA1, n = 57) and merozoite surface protein 1 19-kD (MSP119, n = 10) variants prevalent at a malaria vaccine testing site in Bandiagara, Mali, was used to assess changes in seroreactivity caused by seasonal and lifetime exposure to malaria. Malian adults had significantly higher magnitude and breadth of seroreactivity to variants of both antigens than did Malian children. Seroreactivity increased over the course of the malaria season in children and adults, but the difference was more dramatic in children. These results help to validate diversity-covering protein microarrays as a promising tool for measuring the breadth of antibody responses to highly variant proteins, and demonstrate the potential of this new tool to help guide the development of malaria vaccines with strain-transcending efficacy.
Collapse
Affiliation(s)
- Jason A Bailey
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Jozelyn Pablo
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Amadou Niangaly
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Mark A Travassos
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Amed Ouattara
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Drissa Coulibaly
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Matthew B Laurens
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Shannon L Takala-Harrison
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Kirsten E Lyke
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Jeff Skinner
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Andrea A Berry
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Algis Jasinskas
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Rie Nakajima-Sasaki
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Bourema Kouriba
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Mahamadou A Thera
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Philip L Felgner
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Ogobara K Doumbo
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Christopher V Plowe
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland; Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California; Laboratory of Immunogenetics, National Institutes of Health, Bethesda, Maryland; Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, University of Sciences, Techniques and Technology, Bamako, Mali
| |
Collapse
|
19
|
Coulibaly D, Travassos MA, Kone AK, Tolo Y, Laurens MB, Traore K, Diarra I, Niangaly A, Daou M, Dembele A, Sissoko M, Guindo B, Douyon R, Guindo A, Kouriba B, Sissoko MS, Sagara I, Plowe CV, Doumbo OK, Thera MA. Stable malaria incidence despite scaling up control strategies in a malaria vaccine-testing site in Mali. Malar J 2014; 13:374. [PMID: 25238721 PMCID: PMC4180968 DOI: 10.1186/1475-2875-13-374] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background The recent decline in malaria incidence in many African countries has been attributed to the provision of prompt and effective anti-malarial treatment using artemisinin-based combination therapy (ACT) and to the widespread distribution of long-lasting, insecticide-treated bed nets (LLINs). At a malaria vaccine-testing site in Bandiagara, Mali, ACT was introduced in 2004, and LLINs have been distributed free of charge since 2007 to infants after they complete the Expanded Programme of Immunization (EPI) schedule and to pregnant women receiving antenatal care. These strategies may have an impact on malaria incidence. Methods To document malaria incidence, a cohort of 400 children aged 0 to 14 years was followed for three to four years up to July 2013. Monthly cross-sectional surveys were done to measure the prevalence of malaria infection and anaemia. Clinical disease was measured both actively and passively through continuous availability of primary medical care. Measured outcomes included asymptomatic Plasmodium infection, anaemia and clinical malaria episodes. Results The incidence rate of clinical malaria varied significantly from June 2009 to July 2013 without a clear downward trend. A sharp seasonality in malaria illness incidence was observed with higher clinical malaria incidence rates during the rainy season. Parasite and anaemia point prevalence also showed seasonal variation with much higher prevalence rates during rainy seasons compared to dry seasons. Conclusions Despite the scaling up of malaria prevention and treatment, including the widespread use of bed nets, better diagnosis and wider availability of ACT, malaria incidence did not decrease in Bandiagara during the study period.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mahamadou A Thera
- Malaria Research & Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali.
| |
Collapse
|
20
|
Cheong FW, Fong MY, Lau YL, Mahmud R. Immunogenicity of bacterial-expressed recombinant Plasmodium knowlesi merozoite surface protein-142 (MSP-142). Malar J 2013; 12:454. [PMID: 24354660 PMCID: PMC3878241 DOI: 10.1186/1475-2875-12-454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/17/2013] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-142. Methods A ~42 kDa recombinant P. knowlesi MSP-142 (pkMSP-142) was expressed using an Escherichia coli system. The purified pkMSP-142 was evaluated with malaria and non-malaria human patient sera (n = 189) using Western blots and ELISA. The immunogenicity of pkMSP-142 was evaluated in mouse model. Results The purified pkMSP-142 had a sensitivity of 91.0% for detection of human malaria in both assays. Specificity was 97.5 and 92.6% in Western blots and ELISA, respectively. Levels of cytokine interferon-gamma, interleukin-2, interleukin-4, and interleukin-10 significantly increased in pkMSP-142-immunized mice as compared to the negative control mice. pkMSP-142-raised antibody had high endpoint titres, and the IgG isotype distribution was IgG1 > IgG2b > IgG3 > IgG2a. Conclusions pkMSP-142 was highly immunogenic and able to detect human malaria. Hence, pkMSP-142 would be a useful candidate for malaria vaccine development and seroprevalence studies.
Collapse
Affiliation(s)
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
21
|
Alaro JR, Partridge A, Miura K, Diouf A, Lopez AM, Angov E, Long CA, Burns JM. A chimeric Plasmodium falciparum merozoite surface protein vaccine induces high titers of parasite growth inhibitory antibodies. Infect Immun 2013; 81:3843-54. [PMID: 23897613 PMCID: PMC3811772 DOI: 10.1128/iai.00522-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/23/2013] [Indexed: 01/20/2023] Open
Abstract
The C-terminal 19-kDa domain of Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is an established target of protective antibodies. However, clinical trials of PfMSP142, a leading blood-stage vaccine candidate which contains the protective epitopes of PfMSP119, revealed suboptimal immunogenicity and efficacy. Based on proof-of-concept studies in the Plasmodium yoelii murine model, we produced a chimeric vaccine antigen containing recombinant PfMSP119 (rPfMSP119) fused to the N terminus of P. falciparum merozoite surface protein 8 that lacked its low-complexity Asn/Asp-rich domain, rPfMSP8 (ΔAsn/Asp). Immunization of mice with the chimeric rPfMSP1/8 vaccine elicited strong T cell responses to conserved epitopes associated with the rPfMSP8 (ΔAsn/Asp) fusion partner. While specific for PfMSP8, this T cell response was adequate to provide help for the production of high titers of antibodies to both PfMSP119 and rPfMSP8 (ΔAsn/Asp) components. This occurred with formulations adjuvanted with either Quil A or with Montanide ISA 720 plus CpG oligodeoxynucleotide (ODN) and was observed in both inbred and outbred strains of mice. PfMSP1/8-induced antibodies were highly reactive with two major alleles of PfMSP119 (FVO and 3D7). Of particular interest, immunization with PfMSP1/8 elicited higher titers of PfMSP119-specific antibodies than a combined formulation of rPfMSP142 and rPfMSP8 (ΔAsn/Asp). As a measure of functionality, PfMSP1/8-specific rabbit IgG was shown to potently inhibit the in vitro growth of blood-stage parasites of the FVO and 3D7 strains of P. falciparum. These data support the further testing and evaluation of this chimeric PfMSP1/8 antigen as a component of a multivalent vaccine for P. falciparum malaria.
Collapse
Affiliation(s)
- James R. Alaro
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Andrea Partridge
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ababacar Diouf
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ana M. Lopez
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Evelina Angov
- U.S. Military Malaria Research Program, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Carole A. Long
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Wilson PT, Malhotra I, Mungai P, King CL, Dent AE. Transplacentally transferred functional antibodies against Plasmodium falciparum decrease with age. Acta Trop 2013; 128:149-53. [PMID: 23911334 DOI: 10.1016/j.actatropica.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/17/2013] [Accepted: 07/21/2013] [Indexed: 11/16/2022]
Abstract
Transplacental transfer of antibodies from clinically malaria immune pregnant women to their fetuses is thought to provide passive protection against malaria during infancy. However, the presences and duration of functional antibodies against Plasmodium falciparum (Pf) in newborns has not been described. We used growth inhibition assays (GIA) to measure total anti-malaria functional antibodies present at birth and over the following year. Samples were drawn from cord blood (n=86) and in infants at six and 12 months of life (n=86 and 65 respectively). Three laboratory Pf strains (D10, W2mef, 3D7) and a field isolate (Msambweni 2006) were used in the assays. Median (ranges) GIA levels for cord plasma differed between laboratory parasite strains: D10, 0% (0-81); W2mef, 6% (0-80); 3D7, 18% (0-88); Msambweni 2006, 6% (0-43) (P<0.001, Wilcoxon signed-rank test). GIA levels against all Pf strains were found to decline in infants from birth to six months (P<0.01, Wilcoxon, signed-rank test). Functional antibodies as measured by GIA are transferred to the fetus and wane in the infants over time. Infant protection from clinical malaria disease may in part be mediated by these functional anti-malaria antibodies.
Collapse
Affiliation(s)
- Patrick T Wilson
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | |
Collapse
|
23
|
Otsyula N, Angov E, Bergmann-Leitner E, Koech M, Khan F, Bennett J, Otieno L, Cummings J, Andagalu B, Tosh D, Waitumbi J, Richie N, Shi M, Miller L, Otieno W, Otieno GA, Ware L, House B, Godeaux O, Dubois MC, Ogutu B, Ballou WR, Soisson L, Diggs C, Cohen J, Polhemus M, Heppner DG, Ockenhouse CF, Spring MD. Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP1(42)) administered intramuscularly with adjuvant system AS01. Malar J 2013; 12:29. [PMID: 23342996 PMCID: PMC3582548 DOI: 10.1186/1475-2875-12-29] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/14/2013] [Indexed: 01/06/2023] Open
Abstract
Background The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. Conclusions Given that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings. Trial registrations Clinical Trials NCT00666380
Collapse
Affiliation(s)
- Nekoye Otsyula
- Walter Reed Project, Kenya Medical Research Institute, Kisumu, Kenya
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bustamante LY, Bartholdson SJ, Crosnier C, Campos MG, Wanaguru M, Nguon C, Kwiatkowski DP, Wright GJ, Rayner JC. A full-length recombinant Plasmodium falciparum PfRH5 protein induces inhibitory antibodies that are effective across common PfRH5 genetic variants. Vaccine 2013; 31:373-9. [PMID: 23146673 PMCID: PMC3538003 DOI: 10.1016/j.vaccine.2012.10.106] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
The lack of an effective licensed vaccine remains one of the most significant gaps in the portfolio of tools being developed to eliminate Plasmodium falciparum malaria. Vaccines targeting erythrocyte invasion - an essential step for both parasite development and malaria pathogenesis - have faced the particular challenge of genetic diversity. Immunity-driven balancing selection pressure on parasite invasion proteins often results in the presence of multiple, antigenically distinct, variants within a population, leading to variant-specific immune responses. Such variation makes it difficult to design a vaccine that covers the full range of diversity, and could potentially facilitate the evolution of vaccine-resistant parasite strains. In this study, we investigate the effect of genetic diversity on invasion inhibition by antibodies to a high priority P. falciparum invasion candidate antigen, P. falciparum Reticulocyte Binding Protein Homologue 5 (PfRH5). Previous work has shown that virally delivered PfRH5 can induce antibodies that protect against a wide range of genetic variants. Here, we show that a full-length recombinant PfRH5 protein expressed in mammalian cells is biochemically active, as judged by saturable binding to its receptor, basigin, and is able to induce antibodies that strongly inhibit P. falciparum growth and invasion. Whole genome sequencing of 290 clinical P. falciparum isolates from across the world identifies only five non-synonymous PfRH5 SNPs that are present at frequencies of 10% or more in at least one geographical region. Antibodies raised against the 3D7 variant of PfRH5 were able to inhibit nine different P. falciparum strains, which between them included all of the five most common PfRH5 SNPs in this dataset, with no evidence for strain-specific immunity. We conclude that protein-based PfRH5 vaccines are an urgent priority for human efficacy trials.
Collapse
Affiliation(s)
- Leyla Y. Bustamante
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - S. Josefin Bartholdson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Cecile Crosnier
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Marta G. Campos
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Madushi Wanaguru
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Chea Nguon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Dominic P. Kwiatkowski
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Gavin J. Wright
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
25
|
Plowe CV. Malaria Vaccines. Infect Dis (Lond) 2013. [DOI: 10.1007/978-1-4614-5719-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Bergmann-Leitner ES, Duncan EH, Mease RM, Angov E. Impact of pre-existing MSP1(42)-allele specific immunity on potency of an erythrocytic Plasmodium falciparum vaccine. Malar J 2012; 11:315. [PMID: 22958482 PMCID: PMC3502560 DOI: 10.1186/1475-2875-11-315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/30/2012] [Indexed: 01/03/2023] Open
Abstract
Background MSP1 is the major surface protein on merozoites and a prime candidate for a blood stage malaria vaccine. Preclinical and seroepidemiological studies have implicated antibodies to MSP1 in protection against blood stage parasitaemia and/or reduced parasite densities, respectively. Malaria endemic areas have multiple strains of Plasmodium falciparum circulating at any given time, giving rise to complex immune responses, an issue which is generally not addressed in clinical trials conducted in non-endemic areas. A lack of understanding of the effect of pre-existing immunity to heterologous parasite strains may significantly contribute to vaccine failure in the field. The purpose of this study was to model the effect of pre-existing immunity to MSP142 on the immunogenicity of blood-stage malaria vaccines based on alternative MSP1 alleles. Methods Inbred and outbred mice were immunized with various recombinant P. falciparum MSP142 proteins that represent the two major alleles of MSP142, MAD20 (3D7) and Wellcome (K1, FVO). Humoral immune responses were analysed by ELISA and LuminexTM, and functional activity of induced MSP142-specific antibodies was assessed by growth inhibition assays. T-cell responses were characterized using ex vivo ELISpot assays. Results Analysis of the immune responses induced by various immunization regimens demonstrated a strong allele-specific response at the T cell level in both inbred and outbred mice. The success of heterologous regimens depended on the degree of homology of the N-terminal p33 portion of the MSP142, likely due to the fact that most T cell epitopes reside in this part of the molecule. Analysis of humoral immune responses revealed a marked cross-reactivity between the alleles. Functional analyses showed that some of the heterologous regimens induced antibodies with improved growth inhibitory activities. Conclusion The development of a more broadly efficacious MSP1 based vaccine may be hindered by clonally imprinted p33 responses mainly restricted at the T cell level. In this study, the homology of the p33 sequence between the clonally imprinted response and the vaccine allele determines the magnitude of vaccine induced responses.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- Malaria Vaccine Branch, US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | |
Collapse
|
27
|
Safety reporting in developing country vaccine clinical trials-a systematic review. Vaccine 2012; 30:3255-65. [PMID: 22406279 DOI: 10.1016/j.vaccine.2012.02.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/17/2012] [Accepted: 02/23/2012] [Indexed: 12/30/2022]
Abstract
With more vaccines becoming available worldwide, vaccine research is on the rise in developing countries. To gain a better understanding of safety reporting from vaccine clinical research in developing countries, we conducted a systematic review in Medline and Embase (1989-2011) of published randomized clinical trials (RCTs) reporting safety outcomes with ≥50% developing country participation (PROSPERO systematic review registration number: CRD42012002025). Developing country vaccine RCTs were analyzed with respect to the number of participants, age groups studied, inclusion of safety information, number of reported adverse events following immunization (AEFI), type and duration of safety follow-up, use of standardized AEFI case definitions, grading of AEFI severity, and the reporting of levels of diagnostic certainty for AEFI. The systematic search yielded a total number of 50 randomized vaccine clinical trials investigating 12 different vaccines, most commonly rotavirus and malaria vaccines. In these trials, 94,459 AEFI were reported from 446,908 participants receiving 735,920 vaccine doses. All 50 RCTs mentioned safety outcomes with 70% using definitions for at least one AEFI. The most commonly defined AEFI was fever (27), followed by local (16) and systemic reactions (14). Logistic regression analysis revealed a positive correlation between the implementation of a fever case definition and the reporting rate for fever as an AEFI (p=0.027). Overall, 16 different definitions for fever and 7 different definitions for erythema were applied. Predefined AEFI case definitions by the Brighton Collaboration were used in only two out of 50 RCTs. The search was limited to RCTs published in English or German and may be missing studies published locally. The reported systematic review suggests room for improvement with respect to the harmonization of safety reporting from developing country vaccine clinical trials and the implementation of standardized case definitions.
Collapse
|
28
|
Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar J 2012; 11:11. [PMID: 22230255 PMCID: PMC3286401 DOI: 10.1186/1475-2875-11-11] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Collapse
Affiliation(s)
- Lauren Schwartz
- Initiative for Vaccine Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Avenue Appia 20, 1211-CH 27, Geneva, Switzerland
| | | | | | | |
Collapse
|
29
|
Abstract
Vaccines are the most powerful public health tools mankind has created, but malaria parasites are bigger, more complicated, and wilier than the viruses and bacteria that have been conquered or controlled with vaccines. Despite decades of research toward a vaccine for malaria, this goal has remained elusive. Nevertheless, recent advances justify optimism that a licensed malaria vaccine is within reach. A subunit recombinant protein vaccine that affords in the neighborhood of 50% protective efficacy against clinical malaria is in the late stages of clinical evaluation in Africa. Incremental improvements on this successful vaccine are possible and worth pursuing, but the best hope for a highly efficacious malaria vaccine that would improve prospects for malaria eradication may lie with the use of attenuated whole parasites and powerful immune-boosting adjuvants.
Collapse
Affiliation(s)
- Mahamadou A Thera
- Malaria Research and Training Center, Faculty of Medicine, University of Bamako, Bamako, Mali, West Africa.
| | | |
Collapse
|
30
|
Kusi KA, Faber BW, van der Eijk M, Thomas AW, Kocken CHM, Remarque EJ. Immunization with different PfAMA1 alleles in sequence induces clonal imprint humoral responses that are similar to responses induced by the same alleles as a vaccine cocktail in rabbits. Malar J 2011; 10:40. [PMID: 21320299 PMCID: PMC3050776 DOI: 10.1186/1475-2875-10-40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/14/2011] [Indexed: 11/23/2022] Open
Abstract
Background Antibodies to key Plasmodium falciparum surface antigens have been shown to be important effectors that mediate clinical immunity to malaria. The cross-strain fraction of anti-malarial antibodies may however be required to achieve strain-transcending immunity. Such antibody responses against Plasmodium falciparum apical membrane antigen 1 (PfAMA1), a vaccine target molecule that is expressed in both liver and blood stages of the parasite, can be elicited through immunization with a mixture of allelic variants of the parasite molecule. Cross-strain antibodies are most likely elicited against epitopes that are shared by the allelic antigens in the vaccine cocktail. Methods A standard competition ELISA was used to address whether the antibody response can be further focused on shared epitopes by exclusively boosting these common determinants through immunization of rabbits with different PfAMA1 alleles in sequence. The in vitro parasite growth inhibition assay was used to further evaluate the functional effects of the broadened antibody response that is characteristic of multi-allele vaccine strategies. Results A mixed antigen immunization protocol elicited humoral responses that were functionally similar to those elicited by a sequential immunization protocol (p > 0.05). Sequential exposure to the different PfAMA1 allelic variants induced immunological recall of responses to previous alleles and yielded functional cross-strain antibodies that would be capable of optimal growth inhibition of variant parasites at high enough concentrations. Conclusions These findings may have implications for the current understanding of the natural acquisition of clinical immunity to malaria as well as for rational vaccine design.
Collapse
Affiliation(s)
- Kwadwo A Kusi
- Department of Parasitology, Biomedical Primate Research Centre, Postbox 3306, 2280 GH Rijswijk, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Lau OS, Ng DWK, Chan WWL, Chang SP, Sun SSM. Production of the 42-kDa fragment of Plasmodium falciparum merozoite surface protein 1, a leading malaria vaccine antigen, in Arabidopsis thaliana seeds. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:994-1004. [PMID: 20444208 DOI: 10.1111/j.1467-7652.2010.00526.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Malaria is widely associated with poverty, and a low-cost vaccine against malaria is highly desirable for implementing comprehensive vaccination programmes in developing countries. Production of malaria antigens in plants is a promising approach, but its development has been hindered by poor expression of the antigens in plant cells. In the present study, we targeted plant seeds as a low-cost vaccine production platform and successfully expressed the Plasmodium falciparum 42-kDa fragment of merozoite surface protein 1 (MSP1₄₂), a leading malaria vaccine candidate, at a high level in transgenic Arabidopsis seeds. We overcame hurdles of transcript and protein instabilities of MSP1₄₂ in plants by synthesizing a plant-optimized MSP1₄₂ cDNA and either targeting the recombinant protein to protein storage vacuoles or fusing it with a stable plant storage protein. An exceptional improvement in MSP1₄₂ expression, from an undetectable level to 5% of total extractable protein, was achieved with these combined strategies. Importantly, the plant-derived MSP1₄₂ maintains its natural antigenicity and can be recognized by immune sera from malaria-infected patients. Our results provide a strong basis for the development of a plant-based, low-cost malaria vaccine.
Collapse
Affiliation(s)
- On Sun Lau
- Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | |
Collapse
|
32
|
Protective immune responses elicited by immunization with a chimeric blood-stage malaria vaccine persist but are not boosted by Plasmodium yoelii challenge infection. Vaccine 2010; 28:6876-84. [PMID: 20709001 DOI: 10.1016/j.vaccine.2010.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/17/2010] [Accepted: 08/02/2010] [Indexed: 11/20/2022]
Abstract
An efficacious malaria vaccine remains elusive despite concerted efforts. Using the Plasmodium yoelii murine model, we previously reported that immunization with the C-terminal 19 kDa domain of merozoite surface protein 1 (MSP1(19)) fused to full-length MSP8 protected against lethal P. yoelii 17XL, well beyond that achieved by single or combined immunizations with the component antigens. Here, we continue the evaluation of the chimeric PyMSP1/8 vaccine. We show that immunization with rPyMSP1/8 vaccine elicited an MSP8-restricted T cell response that was sufficient to provide help for both PyMSP1(19) and PyMSP8-specific B cells to produce high and sustained levels of protective antibodies. The enhanced efficacy of immunization with rPyMSP1/8, in comparison to a combined formulation of rPyMSP1(42) and rPyMSP8, was not due to improved conformation of protective B cell epitopes in the chimeric molecule. Unexpectedly, rPyMSP1/8 vaccine-induced antibody responses were not boosted by exposure to P. yoelii 17XL infected RBCs. However, rPyMSP1/8 immunized and infected mice mounted robust responses to a diverse set of blood-stage antigens. The data support the further development of an MSP1/8 chimeric vaccine but also suggest that vaccines that prime for responses to a diverse set of parasite proteins will be required to maximize vaccine efficacy.
Collapse
|
33
|
Takala SL, Coulibaly D, Thera MA, Batchelor AH, Cummings MP, Escalante AA, Ouattara A, Traoré K, Niangaly A, Djimdé AA, Doumbo OK, Plowe CV. Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Sci Transl Med 2010; 1:2ra5. [PMID: 20165550 DOI: 10.1126/scitranslmed.3000257] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Vaccines directed against the blood stages of Plasmodium falciparum malaria are intended to prevent the parasite from invading and replicating within host cells. No blood-stage malaria vaccine has shown clinical efficacy in humans. Most malaria vaccine antigens are parasite surface proteins that have evolved extensive genetic diversity, and this diversity could allow malaria parasites to escape vaccine-induced immunity. We examined the extent and within-host dynamics of genetic diversity in the blood-stage malaria vaccine antigen apical membrane antigen-1 in a longitudinal study in Mali. Two hundred and fourteen unique apical membrane antigen-1 haplotypes were identified among 506 human infections, and amino acid changes near a putative invasion machinery binding site were strongly associated with the development of clinical symptoms, suggesting that these residues may be important to consider in designing polyvalent apical membrane antigen-1 vaccines and in assessing vaccine efficacy in field trials. This extreme diversity may pose a serious obstacle to an effective polyvalent recombinant subunit apical membrane antigen-1 vaccine.
Collapse
Affiliation(s)
- Shannon L Takala
- Howard Hughes Medical Institute and Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guilbride DL, Gawlinski P, Guilbride PDL. Why functional pre-erythrocytic and bloodstage malaria vaccines fail: a meta-analysis of fully protective immunizations and novel immunological model. PLoS One 2010; 5:e10685. [PMID: 20502667 PMCID: PMC2873430 DOI: 10.1371/journal.pone.0010685] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 04/16/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. METHODOLOGY/PRINCIPAL FINDINGS We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. CONCLUSIONS/SIGNIFICANCE We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications for accelerated local eliminations of malaria, and significantly increases potential for eradication.
Collapse
|
35
|
Weiss R, Gabler M, Jacobs T, Gilberger TW, Thalhamer J, Scheiblhofer S. Differential effects of C3d on the immunogenicity of gene gun vaccines encoding Plasmodium falciparum and Plasmodium berghei MSP1(42). Vaccine 2010; 28:4515-22. [PMID: 20438877 DOI: 10.1016/j.vaccine.2010.04.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/31/2010] [Accepted: 04/19/2010] [Indexed: 11/18/2022]
Abstract
The complement fragment C3d mediates B-cell activation via simultaneous engagement of the B-cell receptor and CD21 by antigen/C3d conjugates. Several studies demonstrated the potential of C3d as a molecular adjuvant for vaccination. In this work, C3d exerted differential effects on humoral immune responses after gene gun immunization of mice with plasmids encoding the malaria blood stage antigen MSP1(42) depending on the nature of the protein (Plasmodium falciparum vs. Plasmodium berghei MSP), the localization of the C3d moiety (C-terminal vs. N-terminal), and the presence of putative N-glycosylation sites. No improvement of protective efficacy by C3d attachment or mutation of glycosylation sites could be demonstrated by in vitro parasite growth inhibition assays or in vivo blood stage parasite challenges. Our data underscore the controversial role of C3d as molecular adjuvant.
Collapse
Affiliation(s)
- Richard Weiss
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
36
|
Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Kone AK, Guindo AB, Traore K, Sissoko M, Diallo DA, Diarra I, Kouriba B, Daou M, Dolo A, Baby M, Sissoko MS, Sagara I, Niangaly A, Traore I, Olotu A, Godeaux O, Leach A, Dubois MC, Ballou WR, Cohen J, Thompson D, Dube T, Soisson L, Diggs CL, Takala SL, Lyke KE, House B, Lanar DE, Dutta S, Heppner DG, Plowe CV. Safety and immunogenicity of an AMA1 malaria vaccine in Malian children: results of a phase 1 randomized controlled trial. PLoS One 2010; 5:e9041. [PMID: 20140214 PMCID: PMC2816207 DOI: 10.1371/journal.pone.0009041] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 01/07/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The objective was to evaluate the safety and immunogenicity of the AMA1-based malaria vaccine FMP2.1/AS02(A) in children exposed to seasonal falciparum malaria. METHODOLOGY/PRINCIPAL FINDINGS A Phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02(A) is a recombinant protein (FMP2.1) based on apical membrane antigen 1 (AMA1) from the 3D7 clone of P. falciparum, formulated in the Adjuvant System AS02(A). The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). One hundred healthy Malian children aged 1-6 years were recruited into 3 cohorts and randomized to receive either 10 microg FMP2.1 in 0.1 mL AS02(A), or 25 microg FMP2.1 in 0.25 mL AS02(A), or 50 microg FMP2.1 50 microg in 0.5 mL AS02(A), or rabies vaccine. Three doses of vaccine were given at 0, 1 and 2 months, and children were followed for 1 year. Solicited symptoms were assessed for 7 days and unsolicited symptoms for 30 days after each vaccination. Serious adverse events were assessed throughout the study. Transient local pain and swelling were common and more frequent in all malaria vaccine dosage groups than in the comparator group, but were acceptable to parents of participants. Levels of anti-AMA1 antibodies measured by ELISA increased significantly (at least 100-fold compared to baseline) in all 3 malaria vaccine groups, and remained high during the year of follow up. CONCLUSION/SIGNIFICANCE The FMP2.1/AS02(A) vaccine had a good safety profile, was well-tolerated, and induced high and sustained antibody levels in malaria-exposed children. This malaria vaccine is being evaluated in a Phase 2 efficacy trial in children at this site. TRIAL REGISTRATION ClinicalTrials.gov NCT00358332 [NCT00358332].
Collapse
Affiliation(s)
- Mahamadou A. Thera
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Matthew B. Laurens
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Ando B. Guindo
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Karim Traore
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Mady Sissoko
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Dapa A. Diallo
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Issa Diarra
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Modibo Daou
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Mounirou Baby
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | | | - Issaka Sagara
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Idrissa Traore
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Ally Olotu
- GlaxoSmithKline Biologicals, Rixensart, Belgium
| | | | | | | | | | - Joe Cohen
- GlaxoSmithKline Biologicals, Rixensart, Belgium
| | - Darby Thompson
- EMMES Corporation, Rockville, Maryland, United States of America
| | - Tina Dube
- EMMES Corporation, Rockville, Maryland, United States of America
| | - Lorraine Soisson
- Malaria Vaccine Development Program, U.S. Agency for International Development, Washington, D.C., United States of America
| | - Carter L. Diggs
- Malaria Vaccine Development Program, U.S. Agency for International Development, Washington, D.C., United States of America
| | - Shannon L. Takala
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kirsten E. Lyke
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Brent House
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - David E. Lanar
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheetij Dutta
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - D. Gray Heppner
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Christopher V. Plowe
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Barry AE, Schultz L, Buckee CO, Reeder JC. Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite, Plasmodium falciparum. PLoS One 2009; 4:e8497. [PMID: 20041125 PMCID: PMC2795866 DOI: 10.1371/journal.pone.0008497] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 12/07/2009] [Indexed: 11/21/2022] Open
Abstract
The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next-generation malaria vaccines.
Collapse
Affiliation(s)
- Alyssa E Barry
- Centre for Population Health, Burnet Institute, Melbourne, Australia.
| | | | | | | |
Collapse
|
38
|
Abstract
Malaria remains one of the most devastating infectious diseases that threaten humankind. Human malaria is caused by five different species of Plasmodium parasites, each transmitted by the bite of female Anopheles mosquitoes. Plasmodia are eukaryotic protozoans with more than 5000 genes and a complex life cycle that takes place in the mosquito vector and the human host. The life cycle can be divided into pre-erythrocytic stages, erythrocytic stages and mosquito stages. Malaria vaccine research and development faces formidable obstacles because many vaccine candidates will probably only be effective in a specific species at a specific stage. In addition, Plasmodium actively subverts and escapes immune responses, possibly foiling vaccine-induced immunity. Although early successful vaccinations with irradiated, live-attenuated malaria parasites suggested that a vaccine is possible, until recently, most efforts have focused on subunit vaccine approaches. Blood-stage vaccines remain a primary research focus, but real progress is evident in the development of a partially efficacious recombinant pre-erythrocytic subunit vaccine and a live-attenuated sporozoite vaccine. It is unlikely that partially effective vaccines will eliminate malaria; however, they might prove useful in combination with existing control strategies. Elimination of malaria will probably ultimately depend on the development of highly effective vaccines.
Collapse
|
39
|
Dent AE, Chelimo K, Sumba PO, Spring MD, Crabb BS, Moormann AM, Tisch DJ, Kazura JW. Temporal stability of naturally acquired immunity to Merozoite Surface Protein-1 in Kenyan adults. Malar J 2009; 8:162. [PMID: 19607717 PMCID: PMC2719655 DOI: 10.1186/1475-2875-8-162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/16/2009] [Indexed: 11/10/2022] Open
Abstract
Background Naturally acquired immunity to blood-stage Plasmodium falciparum infection develops with age and after repeated infections. In order to identify immune surrogates that can inform vaccine trials conducted in malaria endemic populations and to better understand the basis of naturally acquired immunity it is important to appreciate the temporal stability of cellular and humoral immune responses to malaria antigens. Methods Blood samples from 16 adults living in a malaria holoendemic region of western Kenya were obtained at six time points over the course of 9 months. T cell immunity to the 42 kDa C-terminal fragment of Merozoite Surface Protein-1 (MSP-142) was determined by IFN-γ ELISPOT. Antibodies to the 42 kDa and 19 kDa C-terminal fragments of MSP-1 were determined by serology and by functional assays that measure MSP-119 invasion inhibition antibodies (IIA) to the E-TSR (3D7) allele and growth inhibitory activity (GIA). The haplotype of MSP-119 alleles circulating in the population was determined by PCR. The kappa test of agreement was used to determine stability of immunity over the specified time intervals of 3 weeks, 6 weeks, 6 months, and 9 months. Results MSP-1 IgG antibodies determined by serology were most consistent over time, followed by MSP-1 specific T cell IFN-γ responses and GIA. MSP-119 IIA showed the least stability over time. However, the level of MSP-119 specific IIA correlated with relatively higher rainfall and higher prevalence of P. falciparum infection with the MSP-119 E-TSR haplotype. Conclusion Variation in the stability of cellular and humoral immune responses to P. falciparum blood stage antigens needs to be considered when interpreting the significance of these measurements as immune endpoints in residents of malaria endemic regions.
Collapse
Affiliation(s)
- Arlene E Dent
- Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Anti-apical-membrane-antigen-1 antibody is more effective than anti-42-kilodalton-merozoite-surface-protein-1 antibody in inhibiting plasmodium falciparum growth, as determined by the in vitro growth inhibition assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:963-8. [PMID: 19439523 DOI: 10.1128/cvi.00042-09] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apical membrane antigen 1 (AMA1) and the 42-kDa merozoite surface protein 1 (MSP1(42)) are leading malaria vaccine candidates. Several preclinical and clinical trials have been conducted, and an in vitro parasite growth inhibition assay has been used to evaluate the biological activities of the resulting antibodies. In a U.S. phase 1 trial with AMA1-C1/Alhydrogel plus CPG 7909, the vaccination elicited anti-AMA1 immunoglobulin G (IgG) which showed up to 96% inhibition. However, antibodies induced by MSP1(42)-C1/Alhydrogel plus CPG 7909 vaccine showed less than 32% inhibition in vitro. To determine whether anti-MSP1(42) IgG had less growth-inhibitory activity than anti-AMA1 IgG in vitro, the amounts of IgG that produced 50% inhibition of parasite growth (Ab(50)) were compared for rabbit and human antibodies. The Ab(50)s of rabbit and human anti-MSP1(42) IgGs were significantly higher (0.21 and 0.62 mg/ml, respectively) than those of anti-AMA1 IgGs (0.07 and 0.10 mg/ml, respectively) against 3D7 parasites. Ab(50) data against FVO parasites also demonstrated significant differences. We further investigated the Ab(50)s of mouse and monkey anti-AMA1 IgGs and showed that there were significant differences between the species (mouse, 0.28 mg/ml, and monkey, 0.14 mg/ml, against 3D7 parasites). Although it is unknown whether growth-inhibitory activity in vitro reflects protective immunity in vivo, this study showed that the Ab(50) varies with both antigen and species. Our data provide a benchmark for antibody levels for future AMA1- or MSP1(42)-based vaccine development efforts in preclinical and clinical trials.
Collapse
|
41
|
|
42
|
Ogutu BR, Apollo OJ, McKinney D, Okoth W, Siangla J, Dubovsky F, Tucker K, Waitumbi JN, Diggs C, Wittes J, Malkin E, Leach A, Soisson LA, Milman JB, Otieno L, Holland CA, Polhemus M, Remich SA, Ockenhouse CF, Cohen J, Ballou WR, Martin SK, Angov E, Stewart VA, Lyon JA, Heppner DG, Withers MR. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS One 2009; 4:e4708. [PMID: 19262754 PMCID: PMC2650803 DOI: 10.1371/journal.pone.0004708] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 01/05/2009] [Indexed: 11/19/2022] Open
Abstract
Objective The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children. Methods A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12–47 months in general good health.Children were randomised in a 1∶1 fashion to receive either FMP1/AS02 (50 µg) or Rabipur® rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature ≥37.5°C with asexual parasitaemia of ≥50,000 parasites/µL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations. Results 374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-142 antibody concentrations increased from1.3 µg/mL to 27.3 µg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: −26% to +28%; p-value = 0.7). Conclusions FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-142 vaccine development should focus on other formulations and antigen constructs. Trial Registration Clinicaltrials.gov NCT00223990
Collapse
Affiliation(s)
- Bernhards R Ogutu
- US Army Medical Research Unit-Kenya and the Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Reed ZH, Kieny MP, Engers H, Friede M, Chang S, Longacre S, Malhotra P, Pan W, Long C. Comparison of immunogenicity of five MSP1-based malaria vaccine candidate antigens in rabbits. Vaccine 2009; 27:1651-60. [DOI: 10.1016/j.vaccine.2008.10.093] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
|
44
|
Prediction of merozoite surface protein 1 and apical membrane antigen 1 vaccine efficacies against Plasmodium chabaudi malaria based on prechallenge antibody responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:293-302. [PMID: 19116303 DOI: 10.1128/cvi.00230-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 1(42) (MSP1(42)) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP1(42) (PcMSP1(42)) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP1(42) vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP1(42) vaccines.
Collapse
|
45
|
Cheesman S, Tanabe K, Sawai H, O'Mahony E, Carter R. Strain-specific immunity may drive adaptive polymorphism in the merozoite surface protein 1 of the rodent malaria parasite Plasmodium chabaudi. INFECTION GENETICS AND EVOLUTION 2008; 9:248-55. [PMID: 19121414 DOI: 10.1016/j.meegid.2008.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/01/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
Clinical immunity against malaria is slow to develop, poorly understood and strongly strain-specific. Understanding how strain-specific immunity develops and identifying the parasite antigens involved is crucial to developing effective vaccines against the disease. In previous experiments we have shown that strain-specific protective immunity (SSPI) exists between genetically distinct strains (cloned lines) of the rodent malaria parasite Plasmodium chabaudi chabaudi in mice [Cheesman, S., Raza, A., Carter, R., 2006. Mixed strain infections and strain-specific protective immunity in the rodent malaria parasite P. chabaudi chabaudi in mice. Infect. Immun. 74, 2996-3001]. In two subsequent studies, we identified the highly polymorphic Merozoite Surface Protein 1 (MSP-1) as being the principal candidate molecule for the control of SSPI against P. c. chabaudi malaria [Martinelli et al., 2005; Pattaradilokrat, S., Cheesman, S.J., Carter R., 2007. Linkage group selection: towards identifying genes controlling strain-specific protective immunity in malaria. PLoS ONE 2(9):e857]. In the present study, we sequenced the whole msp1 gene of several genetically distinct strains of P. chabaudi and found high levels of genetic diversity. Protein sequence alignments reveal extensive allelic polymorphism between the P. chabaudi strains, concentrated primarily within five regions of the protein. The 3'-end sequence region, encoding the C-terminal 21 kDa region (MSP-1(21)), which is analogous and homologous to MSP-1(19) of Plasmodium falciparum, appears to have been subject to balancing selection. We have found that the strains with the lowest sequence identity at MSP-1(21) (i.e. AS/CB and AJ/CB) induce robust and reciprocal SSPI in experimental mice. In contrast, two strains that do not induce reciprocal SSPI are identical at the 21 kDa region. Final identification of the region(s) controlling SSPI will provide important information to help guide decisions about MSP-1 based vaccines.
Collapse
Affiliation(s)
- Sandra Cheesman
- Institute for Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, The University of Edinburgh, The Kings Buildings, West Mains Road, Edinburgh EH93JT, UK.
| | | | | | | | | |
Collapse
|
46
|
Antibody-mediated growth inhibition of Plasmodium falciparum: relationship to age and protection from parasitemia in Kenyan children and adults. PLoS One 2008; 3:e3557. [PMID: 18958285 PMCID: PMC2570335 DOI: 10.1371/journal.pone.0003557] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/09/2008] [Indexed: 12/01/2022] Open
Abstract
Background Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria. Methods A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories. Results Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children <4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012–2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition. Conclusion Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age.
Collapse
|
47
|
Abstract
The demonstration of efficacy of two candidate malaria vaccines in children living in malaria-endemic areas, namely RTS,S from the circumsporozoite protein that reduced infection and clinical malaria in Mozambique, and an asexual blood-stage vaccine combining MSP1/MSP2/RESA that reduced parasite density in Papua New Guinea, allows one to believe that a malaria vaccine will be available for the fight against malaria in the next decade. Even if long-lasting impregnated bednets and indoor residual spraying have proven to be effective in reducing malaria transmission, these interventions may not be sufficient in the long-run since they rely on too few compounds and are, thus, vulnerable to the emergence of resistance. New tools, such as malaria vaccines, may, therefore, provide an added value to achieve the goal of local elimination and subsequent eradication of malaria. A promising candidate for that purpose would be a highly efficacious multicomponent vaccine that includes at least a sexual-stage antigen, the appropriate initial setting would be an area with low endemicity and limited population exchange, and the most suitable mode of delivery would be mass vaccination. For nonimmune populations, such as travelers visiting malaria-endemic areas, the usefulness of the first generation of malaria vaccine(s) will be limited, since the level of protection that is foreseen is unlikely to achieve that of malaria chemoprophylaxis. Only long-term travelers, expatriates and soldiers might realistically benefit from a pre-erythrocytic and/or blood-stage vaccine with an intermediate level of efficacy.
Collapse
|
48
|
Adjuvant formulations possess differing efficacy in the potentiation of antibody and cell mediated responses to a human malaria vaccine under selective immune genes knockout environment. Int Immunopharmacol 2008; 8:1012-22. [PMID: 18486913 DOI: 10.1016/j.intimp.2008.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 01/25/2023]
Abstract
Infections and chronic diseases can alter the host's immunological balance or result in immunodeficiencies. We hypothesize that this may also affect the performance of vaccine adjuvants. Accordingly, the potency and adjuvanticity of eight adjuvant formulations based on Montanide ISA720, MF59, monophosphoryl lipid A (MPL), QS21 (saponin derivative), MPL-SE (stable emulsion of a MPL derivative), and MPL-AF (MPL in aqueous formulation) were studied in immune gene knockout mice, IFN-gamma -/-, IL-4 -/-, and STAT6 -/-, using the P. falciparum MSP1 vaccine, P30P2MSP1-19 as a model immunogen. The adjuvants showed preferential requirements for the immune mediators to induce immune responses to MSP1-19, and the effects were formulation-specific. While emulsion-type adjuvants were highly effective in mice, their potency was more readily suppressed by immune knockouts; and additions of immunomodulators were required to restore efficacy. Formulated adjuvants had characteristics distinct from their individual components, and multi-components formulations were not necessarily superior. We conclude that perturbation of immune environments will have measurable impact on adjuvants' potency. Evaluation of adjuvants in immune knockout models may be a supplementary approach to measure and compare adjuvants' efficacy, and to further unveil their distinct biological activities.
Collapse
|
49
|
Abstract
The development and implementation of a malaria vaccine would constitute a major breakthrough for global health. Recently, numerous new candidates have entered clinical testing, following strategies that are as diverse as the malaria cycle is complex. While promising results have been obtained, some candidate vaccines have not fulfilled expectations. The challenges are not merely scientific; further progresses will require the development of competent investigator networks, partnerships between academics, industry and funding agencies, and continuous political commitment. In this review, we present the developmental status of all malaria vaccine candidates that are currently in human clinical testing against Plasmodium falciparum, as well as selected malaria vaccine candidates at preclinical development stage, and discuss the main challenges facing the field of malaria vaccine development.
Collapse
Affiliation(s)
- Johan Vekemans
- GlaxoSmithKline Biologicals, Emerging Diseases, Global Clinical Research and Development Vaccines, Rixensart, Belgium.
| | | |
Collapse
|
50
|
Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults: results of a phase 1 randomized controlled trial. PLoS One 2008; 3:e1465. [PMID: 18213374 PMCID: PMC2186380 DOI: 10.1371/journal.pone.0001465] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/17/2007] [Indexed: 11/19/2022] Open
Abstract
Background The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria. Methodology/Principal Findings A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18–55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 µg/AS02A 0.25 mL or FMP2.1 50 µg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively. Conclusion/Significance The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site. Trial Registration ClinicalTrials.gov NCT00308061
Collapse
|