1
|
Petrosky SJ, Williams TM, Rebeiz M. A genetic screen of transcription factors in the Drosophila melanogaster abdomen identifies novel pigmentation genes. G3 (BETHESDA, MD.) 2024; 14:jkae097. [PMID: 38820091 PMCID: PMC11373662 DOI: 10.1093/g3journal/jkae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 06/02/2024]
Abstract
Gene regulatory networks specify the gene expression patterns needed for traits to develop. Differences in these networks can result in phenotypic differences between organisms. Although loss-of-function genetic screens can identify genes necessary for trait formation, gain-of-function screens can overcome genetic redundancy and identify loci whose expression is sufficient to alter trait formation. Here, we leveraged transgenic lines from the Transgenic RNAi Project at Harvard Medical School to perform both gain- and loss-of-function CRISPR/Cas9 screens for abdominal pigmentation phenotypes. We identified measurable effects on pigmentation patterns in the Drosophila melanogaster abdomen for 21 of 55 transcription factors in gain-of-function experiments and 7 of 16 tested by loss-of-function experiments. These included well-characterized pigmentation genes, such as bab1 and dsx, and transcription factors that had no known role in pigmentation, such as slp2. Finally, this screen was partially conducted by undergraduate students in a Genetics Laboratory course during the spring semesters of 2021 and 2022. We found this screen to be a successful model for student engagement in research in an undergraduate laboratory course that can be readily adapted to evaluate the effect of hundreds of genes on many different Drosophila traits, with minimal resources.
Collapse
Affiliation(s)
- Sarah J Petrosky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Berardi S, Rhodes JA, Berner MC, Greenblum SI, Bitter MC, Behrman EL, Betancourt NJ, Bergland AO, Petrov DA, Rajpurohit S, Schmidt P. Drosophila melanogaster pigmentation demonstrates adaptive phenotypic parallelism but genomic unpredictability over multiple timescales. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607378. [PMID: 39211235 PMCID: PMC11361081 DOI: 10.1101/2024.08.09.607378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Populations are capable of responding to environmental change over ecological timescales via adaptive tracking. However, the translation from patterns of allele frequency change to rapid adaptation of complex traits remains unresolved. We used abdominal pigmentation in Drosophila melanogaster as a model phenotype to address the nature, genetic architecture, and repeatability of rapid adaptation in the field. We show that D. melanogaster pigmentation evolves as a highly parallel and deterministic response to shared environmental gradients across latitude and season in natural North American populations. We then experimentally evolved replicate, genetically diverse fly populations in field mesocosms to remove any confounding effects of demography and/or cryptic structure that may drive patterns in wild populations; we show that pigmentation rapidly responds, in parallel, in fewer than ten generations. Thus, pigmentation evolves concordantly in response to spatial and temporal climatic gradients. We next examined whether phenotypic differentiation was associated with allele frequency change at loci with established links to genetic variance in pigmentation in natural populations. We found that across all spatial and temporal scales, phenotypic patterns were associated with variation at pigmentation-related loci, and the sets of genes we identified in each context were largely nonoverlapping. Therefore, our findings suggest that parallel phenotypic evolution is associated with an unpredictable genomic response, with distinct components of the polygenic architecture shifting across each environmental gradient to produce redundant adaptive patterns. Significance Statement Shifts in global climate conditions have heightened our need to understand the dynamics and pace of adaptation in natural populations. In order to anticipate the population-level response to rapidly changing environmental conditions, we need to understand whether trait evolution is predictable over short timescales, and whether the genetic basis of adaptation is shared or distinct across multiple timescales. Here, we explored parallelism in the adaptive response of a complex phenotype, D. melanogaster pigmentation, to shared conditions that varied over multiple spatiotemporal scales. Our results demonstrate that while phenotypic adaptation proceeds as a predictable response to environmental gradients, even over short timescales, the genetic basis of the adaptive response is variable and nuanced across spatial and temporal contexts.
Collapse
|
3
|
Tan M, Park L, Chou E, Hoesel M, Toh L, Suzuki Y. Polycomb group proteins confer robustness to aposematic coloration in the milkweed bug, Oncopeltus fasciatus. Proc Biol Sci 2024; 291:20240713. [PMID: 39106954 PMCID: PMC11303025 DOI: 10.1098/rspb.2024.0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024] Open
Abstract
Aposematic coloration offers an opportunity to explore the molecular mechanisms underlying canalization. In this study, the role of epigenetic regulation underlying robustness was explored in the aposematic coloration of the milkweed bug, Oncopeltus fasciatus. Polycomb (Pc) and Enhancer of zeste (E(z)), which encode components of the Polycomb repressive complex 1 (PRC1) and PRC2, respectively, and jing, which encodes a component of the PRC2.2 subcomplex, were knocked down in the fourth instar of O. fasciatus. Knockdown of these genes led to alterations in scutellar morphology and melanization. In particular, when Pc was knocked down, the adults developed a highly melanized abdomen, head and forewings at all temperatures examined. In contrast, the E(z) and jing knockdown led to increased plasticity of the dorsal forewing melanization across different temperatures. Moreover, jing knockdown adults exhibited increased plasticity in the dorsal melanization of the head and the thorax. These observations demonstrate that histone modifiers may play a key role during the process of canalization to confer robustness in the aposematic coloration.
Collapse
Affiliation(s)
- Marie Tan
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Laura Park
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Elizabeth Chou
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Madeline Hoesel
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Lyanna Toh
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| |
Collapse
|
4
|
Morfin N, Goodwin PH, Guzman-Novoa E, Legge N, Longstaffe J. 1H NMR Profiling of Honey Bee Brains across Varying Ages and Seasons. INSECTS 2024; 15:578. [PMID: 39194783 DOI: 10.3390/insects15080578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Honey bees (Apis mellifera) provide a useful model for studying aging because of the differences in longevity between the relatively short-lived summer and long-lived winter bees, as well as bees lacking signs of cognitive senescence as they age. Bee brains were dissected from newly emerged, 14-day-, and 28-day- old bees in mid- and late summer, as well as brood nest bees in fall, winter, and spring, before, during, and after overwintering, respectively. Brains were examined with nuclear magnetic resonance (NMR) spectroscopy to analyze their metabolome. Nine variable importance in projection (VIP) variables were identified, primarily amino acids and choline derivatives. Differences in metabolite concentrations were found with different ages of summer bees, mostly between newly emerged and 14-day- old bees, such as a decrease in phenylalanine and an increase in β-alanine, but there were also changes in older adults, such as o-phosphocholine that declined in 28-day- old bees. Differences in brood nest bees were observed, including a decline in tryptophan and an increase in β-alanine. These may provide distinct metabolomic signatures with age and season. Such research holds promise for a better understanding of the complex interplays between bee physiology, development, and aging, which has implications for improving bee health and management.
Collapse
Affiliation(s)
- Nuria Morfin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- The British Columbia Technology Transfer Program, British Columbia Honey Producers' Association, P.O. Box 5594, Station B, Victoria, BC V8R 6S4, Canada
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicole Legge
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - James Longstaffe
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Issigonis M, Browder KL, Chen R, Collins JJ, Newmark PA. A niche-derived nonribosomal peptide triggers planarian sexual development. Proc Natl Acad Sci U S A 2024; 121:e2321349121. [PMID: 38889152 PMCID: PMC11214079 DOI: 10.1073/pnas.2321349121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Germ cells are regulated by local microenvironments (niches), which secrete instructive cues. Conserved developmental signaling molecules act as niche-derived regulatory factors, yet other types of niche signals remain to be identified. Single-cell RNA-sequencing of sexual planarians revealed niche cells expressing a nonribosomal peptide synthetase (nrps). Inhibiting nrps led to loss of female reproductive organs and testis hyperplasia. Mass spectrometry detected the dipeptide β-alanyl-tryptamine (BATT), which is associated with reproductive system development and requires nrps and a monoamine-transmitter-synthetic enzyme Aromatic L-amino acid decarboxylase (AADC) for its production. Exogenous BATT rescued the reproductive defects after nrps or aadc inhibition, restoring fertility. Thus, a nonribosomal, monoamine-derived peptide provided by niche cells acts as a critical signal to trigger planarian reproductive development. These findings reveal an unexpected function for monoamines in niche-germ cell signaling. Furthermore, given the recently reported role for BATT as a male-derived factor required for reproductive maturation of female schistosomes, these results have important implications for the evolution of parasitic flatworms and suggest a potential role for nonribosomal peptides as signaling molecules in other organisms.
Collapse
Affiliation(s)
- Melanie Issigonis
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI53715
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53715
| | - Katherine L. Browder
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53715
- HMI, University of Wisconsin-Madison, Madison, WI53715
| | - Rui Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - James J. Collins
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Phillip A. Newmark
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI53715
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53715
- HMI, University of Wisconsin-Madison, Madison, WI53715
| |
Collapse
|
6
|
Narbey R, Mouchel-Vielh E, Gibert JM. The H3K79me3 methyl-transferase Grappa is involved in the establishment and thermal plasticity of abdominal pigmentation in Drosophila melanogaster females. Sci Rep 2024; 14:9547. [PMID: 38664546 PMCID: PMC11045721 DOI: 10.1038/s41598-024-60184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females allows to investigate the mechanisms underlying phenotypic plasticity. Thermal plasticity of pigmentation is due to modulation of tan and yellow expression, encoding pigmentation enzymes. Furthermore, modulation of tan expression by temperature is correlated to the variation of the active histone mark H3K4me3 on its promoter. Here, we test the role of the DotCom complex, which methylates H3K79, another active mark, in establishment and plasticity of pigmentation. We show that several components of the DotCom complex are involved in the establishment of abdominal pigmentation. In particular, Grappa, the catalytic unit of this complex, plays opposite roles on pigmentation at distinct developmental stages. Indeed, its down-regulation from larval L2 to L3 stages increases female adult pigmentation, whereas its down-regulation during the second half of the pupal stage decreases adult pigmentation. These opposite effects are correlated to the regulation of distinct pigmentation genes by Grappa: yellow repression for the early role and tan activation for the late one. Lastly, reaction norms measuring pigmentation along temperature in mutants for subunits of the DotCom complex reveal that this complex is not only involved in the establishment of female abdominal pigmentation but also in its plasticity.
Collapse
Affiliation(s)
- Raphaël Narbey
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France
| | - Emmanuèle Mouchel-Vielh
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| | - Jean-Michel Gibert
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| |
Collapse
|
7
|
Gong LL, Ma YF, Zhang MQ, Feng HY, Zhou YY, Zhao YQ, Hull JJ, Dewer Y, He M, He P. The melanin pigment gene black mediates body pigmentation and courtship behaviour in the German cockroach Blattella germanica. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:271-280. [PMID: 38623047 DOI: 10.1017/s0007485324000166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene black was functionally characterised in an urban pest, the German cockroach, Blattella germanica. RNAi knockdown of B. germanica black (Bgblack) had no effect on survival, but did result in black pigmentation of the thoraxes, abdomens, heads, wings, legs, antennae, and cerci due to cuticular accumulation of melanin. Sex-specific variation in the pigmentation pattern was apparent, with females exhibiting darker coloration on the abdomen and thorax than males. Bgblack knockdown also resulted in wing deformation and negatively impacted the contact sex pheromone-based courtship behaviour of males. This study provides evidence for black function in multiple aspects of B. germanica biology and opens new avenues of exploration for novel pest control strategies.
Collapse
Affiliation(s)
- Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Hong-Yan Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Yang-Yuntao Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Ya-Qin Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - J Joe Hull
- USDA-ARS Arid Land Agricultural Research Center, Maricopa AZ, 85138, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| |
Collapse
|
8
|
Lafuente E, Duneau D, Beldade P. Genetic basis of variation in thermal developmental plasticity for Drosophila melanogaster body pigmentation. Mol Ecol 2024; 33:e17294. [PMID: 38366327 DOI: 10.1111/mec.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Seasonal differences in insect pigmentation are attributed to the influence of ambient temperature on pigmentation development. This thermal plasticity is adaptive and heritable, and thereby capable of evolving. However, the specific genes contributing to the variation in plasticity that can drive its evolution remain largely unknown. To address this, we analysed pigmentation and pigmentation plasticity in Drosophila melanogaster. We measured two components of pigmentation in the thorax and abdomen: overall darkness and the proportion of length covered by darker pattern elements (a trident in the thorax and bands in the abdomen) in females from two developmental temperatures (17 or 28°C) and 191 genotypes. Using a GWAS approach to identify the genetic basis of variation in pigmentation and its response to temperature, we identified numerous dispersed QTLs, including some mapping to melanogenesis genes (yellow, ebony, and tan). Remarkably, we observed limited overlap between QTLs for variation within specific temperatures and those influencing thermal plasticity, as well as minimal overlap between plasticity QTLs across pigmentation components and across body parts. For most traits, consistent with selection favouring the retention of plasticity, we found that lower plasticity alleles were often at lower frequencies. The functional analysis of selected candidate QTLs and pigmentation genes largely confirmed their contributions to variation in pigmentation and/or pigmentation plasticity. Overall, our study reveals the existence and underlying basis of extensive and trait-specific genetic variation for pigmentation and pigmentation plasticity, offering a rich reservoir of raw material for natural selection to shape the evolution of these traits independently.
Collapse
Affiliation(s)
- E Lafuente
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - D Duneau
- UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - P Beldade
- cE3c (Center for Ecology, Evolution and Environmental Changes) & CHANGE (Global Change and Sustainability Institute), FCUL, Lisboa, Portugal
| |
Collapse
|
9
|
Issigonis M, Browder KL, Chen R, Collins JJ, Newmark PA. A niche-derived non-ribosomal peptide triggers planarian sexual development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570471. [PMID: 38106172 PMCID: PMC10723454 DOI: 10.1101/2023.12.06.570471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Germ cells are regulated by local microenvironments (niches), which secrete instructive cues. Conserved developmental signaling molecules act as niche-derived regulatory factors, yet other types of niche signals remain to be identified. Single-cell RNA-sequencing of sexual planarians revealed niche cells expressing a non-ribosomal peptide synthetase (nrps). Inhibiting nrps led to loss of female reproductive organs and testis hyperplasia. Mass spectrometry detected the dipeptide β-alanyl-tryptamine (BATT), which is associated with reproductive system development and requires nrps and a monoamine-transmitter-synthetic enzyme (AADC) for its production. Exogenous BATT rescued the reproductive defects after nrps or aadc inhibition, restoring fertility. Thus, a non-ribosomal, monoamine-derived peptide provided by niche cells acts as a critical signal to trigger planarian reproductive development. These findings reveal an unexpected function for monoamines in niche-germ cell signaling. Furthermore, given the recently reported role for BATT as a male-derived factor required for reproductive maturation of female schistosomes, these results have important implications for the evolution of parasitic flatworms and suggest a potential role for non-ribosomal peptides as signaling molecules in other organisms.
Collapse
Affiliation(s)
- Melanie Issigonis
- Morgridge Institute for Research, University of Wisconsin-Madison; Madison, WI 53715
- Department of Integrative Biology, University of Wisconsin-Madison; Madison, WI 53715
| | - Katherine L. Browder
- Department of Integrative Biology, University of Wisconsin-Madison; Madison, WI 53715
- Howard Hughes Medical Institute, University of Wisconsin-Madison; Madison, WI 53715
| | - Rui Chen
- Department of Pharmacology, UT Southwestern Medical Center; Dallas, TX 75390
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center; Dallas, TX 75390
| | - Phillip A. Newmark
- Morgridge Institute for Research, University of Wisconsin-Madison; Madison, WI 53715
- Department of Integrative Biology, University of Wisconsin-Madison; Madison, WI 53715
- Howard Hughes Medical Institute, University of Wisconsin-Madison; Madison, WI 53715
| |
Collapse
|
10
|
El Kholy S, Al Naggar Y. Insights into the mechanism of histamine synthesis and recycling disruption induced by exposure to CdO NPs in the fruit fly (Drosophila melanogaster). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83376-83387. [PMID: 37340164 DOI: 10.1007/s11356-023-28211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Exposure to a sublethal concentration of CdO nanoparticles impairs the vision of the fruit fly (Drosophila melanogaster) by disrupting histamine (HA) synthesis and recycling mechanisms. To gain more insights, we measured HA titer using HPLC in CdO NP-treated vs. non-treated adults in the current study and found that CdO NPs caused an increase in the level of HA in the head and the decapitated body. We asked whether HA accumulation (increase) is a response of photoreceptors or CNS histaminergic neurons, and whether there is any difference in the expression levels of HA recycling and transport encoding genes (Lovit, CarT, Ebony, Tan, BalaT) between the adult fly head and decapitated body that could explain this HA accumulation. We used GAL4/UAS system tool with three GAL4 drivers: ubiquitous tubP-GAL4, nervous system driver (elav Gal4), and compound eye drivers (sev Gal4 and GMR Gal4) to silence HA synthesis in site specific manner followed by detecting the expression level of genes involved in HA recycling and transport in both the heads and the decapitated bodies of CdO treated and non-treated flies. We found an increase in Lovit expression in the heads of treated adults, which is responsible for HA loading into synaptic vesicles and release from photoreceptors, as well as a decrease in catalytic enzymes involved in HA recycling, which leads to HA accumulation without increasing the real signal. To conclude, both photoreceptors and CNS histaminergic neurons are responsible for the increase in HA in CdO NP-treated flies, but through different mechanisms. Our results provide more insights on the underlying molecular mechanism of vision impairment because of nano-sized cadmium particles exposure.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
11
|
Hughes JT, Williams ME, Rebeiz M, Williams TM. Widespread cis- and trans-regulatory evolution underlies the origin, diversification, and loss of a sexually dimorphic fruit fly pigmentation trait. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:143-161. [PMID: 34254440 DOI: 10.1002/jez.b.23068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Changes in gene expression are a prominent feature of morphological evolution. These changes occur to hierarchical gene regulatory networks (GRNs) of transcription factor genes that regulate the expression of trait-building differentiation genes. While changes in the expression of differentiation genes are essential to phenotypic evolution, they can be caused by mutations within cis-regulatory elements (CREs) that drive their expression (cis-evolution) or within genes for CRE-interacting transcription factors (trans-evolution). Locating these mutations remains a challenge, especially when experiments are limited to one species that possesses the ancestral or derived phenotype. We investigated CREs that control the expression of the differentiation genes tan and yellow, the expression of which evolved during the gain, modification, and loss of dimorphic pigmentation among Sophophora fruit flies. We show these CREs to be necessary components of a pigmentation GRN, as deletion from Drosophila melanogaster (derived dimorphic phenotype) resulted in lost expression and lost male-specific pigmentation. We evaluated the ability of orthologous CRE sequences to drive reporter gene expression in species with modified (Drosophila auraria), secondarily lost (Drosophila ananassae), and ancestrally absent (Drosophila willistoni) pigmentation. We show that the transgene host frequently determines CRE activity, implicating trans-evolution as a significant factor for this trait's diversity. We validated the gain of dimorphic Bab transcription factor expression as a trans-change contributing to the dimorphic trait. Our findings suggest an amenability to change for the landscape of trans-regulators and begs for an explanation as to why this is so common compared to the evolution of differentiation gene CREs.
Collapse
Affiliation(s)
- Jesse T Hughes
- Department of Biology, University of Dayton, Dayton, Ohio, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, Dayton, Ohio, USA.,The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, USA
| |
Collapse
|
12
|
Guo H, Long GJ, Liu XZ, Ma YF, Zhang MQ, Gong LL, Dewer Y, Hull JJ, Wang MM, Wang Q, He M, He P. Functional characterization of tyrosine melanin genes in the white-backed planthopper and utilization of a spray-based nanoparticle-wrapped dsRNA technique for pest control. Int J Biol Macromol 2023; 230:123123. [PMID: 36603718 DOI: 10.1016/j.ijbiomac.2022.123123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
As a significant pest of rice the white-backed planthopper (WBPH) Sogatella furcifera is a focus of pest management. However, traditional chemical-based control methods risk the development of pesticide resistance as well as severe ecological repercussions. Although nanoparticle-encapsulated dsRNAs provide a promising alternative method for sustainable pest management, gene targets specific to WBPH have yet to be optimized. Genes in the tyrosine-melanin pathway impact epidermal melanization and sclerotization, two processes essential for insect development and metabolism, have been proposed as good candidate targets for pest management. Seven genes (aaNAT, black, DDC, ebony, tan, TH, and yellow-y) in this group were identified from WBPH genome and functionally characterized by using RNAi for their impact on WBPH body color, development, and mortality. Knockdown of SfDDC, Sfblack, SfaaNAT, and Sftan caused cuticles to turn black, whereas Sfyellow-y and Sfebony knockdown resulted in yellow coloration. SfTH knockdown resulted in pale-colored bodies and high mortality. Additionally, an Escherichia coli expression system for large-scale dsRNA production was coupled with star polycation nanoparticles to develop a sprayable RNAi method targeting SfTH that induced high WBPH mortality rates on rice seedlings. These findings lay the groundwork for the development of large-scale dsRNA nanoparticle sprays as a WBPH control method.
Collapse
Affiliation(s)
- Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, 12618 Giza, Egypt
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, 85138, USA
| | - Mei-Mei Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Qin Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
13
|
El Kholy S, Al Naggar Y. Exposure to a sublethal concentration of CdO nanoparticles impairs the vision of the fruit fly (Drosophila melanogaster) by disrupting histamine synthesis and recycling mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27936-27947. [PMID: 36394804 DOI: 10.1007/s11356-022-24034-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
While there is substantial literature on potential risks associated with exposure to emerging nanomaterials, less is known about the potential effects of hazardous metallic nanoparticles on vision, as well as the mechanisms that underpin them. The fruit fly (Drosophila melanogaster) was used as an in vivo model organism to investigate the effects of exposure to a sublethal concentration (0.03 mg CdO NPs/mL, which was 20% of the LC50) on fly vision and compound eye ultrastructure. First, we observed a reduction in phototaxis response in treated flies but no change in locomotor activity. Because histamine (HA) has been linked to arthropod vision, we investigated HA synthesis, uptake, and recycling as a possible underlying mechanism for the observed adverse effect of CdO NPs on fly vision. This was accomplished by measuring the expression of the histamine decarboxylase (hdc) gene, which encodes the enzyme that converts the amino acid histidine to histamine (HA), as well as the expression of some genes involved in HA-recycling pathways (tan, ebony, Balat, CarT, and Lovit). The results showed that CdO NPs changed the expression levels of hdc, Lovit, tan, and eboney, indicating that HA synthesis, transport, and recycling were disrupted. Furthermore, less histamine immunolabeling was found in the head tissues of CdO NP-treated flies, particularly in the optic lobes. We also observed and quantified CdO NP bioaccumulation in compound eye tissues, which resulted in a number of cytological changes. Phenotypic effects (undersized eyes) have also been observed in the compound eyes of F1 flies. Considering the significance of vision in an organism's survival, the findings of this study are extremely crucial, as long-term exposure to CdO NPs may result in blindness.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
14
|
Wang FF, Wang MH, Zhang MK, Qin P, Cuthbertson AGS, Lei CL, Qiu BL, Yu L, Sang W. Blue light stimulates light stress and phototactic behavior when received in the brain of Diaphorina citri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114519. [PMID: 36634478 DOI: 10.1016/j.ecoenv.2023.114519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Blue light with a wavelength of 400-470 nm is the composition of the visible light. However, in recent years, blue light contributed the most significance to light pollution due to the artificial light at night. Previously, we have demonstrated that the Asian citrus psyllid (ACP), Diaphorina citri, an important pest in citrus production, has significant positive phototaxis with a light-emitting diode light of 400 nm. In this study, ACP with positive phototactic behavior to 400 nm light (PH) and non-phototactic behavior to 400 nm light (NP) were collected, individually. Transcriptome dynamics of head tissues of PH and NP groups were captured by using RNA-sequencing technology, respectively. Forty-three to 46 million clean reads with high-quality values were obtained, and 1773 differential expressed genes (DEGs) were detected. Compared with the NP group, there were 841 up-regulated DEGs and 932 down-regulated DEGs in the PH group. Eight pathways were significantly enriched in the PH group in the KEGG database, while 43 up-regulated pathways and 25 down-regulated pathways were significantly enriched in the PH group in the GO database. The DGE approach was reliable validated by real time quantitative PCR. Results indicated that the blue light acted as an abiotic stress causing physiological and biochemical responses such as oxidative stress, protein denaturation, inflammation and tumor development in ACPs. Additionally, the light was absorbed by photoreceptors of ACPs, and converted into electrical signal to regulate neuromodulation. This study provides basic information for understanding the molecular mechanisms of ACP in response to blue light and provides a reference for further studies to elucidate phototactic behavior.
Collapse
Affiliation(s)
- Fei-Feng Wang
- South China Agricultural University, Guangzhou 510640, China
| | - Ming-Hui Wang
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Meng-Ke Zhang
- South China Agricultural University, Guangzhou 510640, China
| | - Peng Qin
- South China Agricultural University, Guangzhou 510640, China
| | | | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao-Li Qiu
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Lin Yu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
| | - Wen Sang
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China.
| |
Collapse
|
15
|
The Genetic Mechanisms Underlying the Concerted Expression of the yellow and tan Genes in Complex Patterns on the Abdomen and Wings of Drosophila guttifera. Genes (Basel) 2023; 14:genes14020304. [PMID: 36833231 PMCID: PMC9957387 DOI: 10.3390/genes14020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
How complex morphological patterns form is an intriguing question in developmental biology. However, the mechanisms that generate complex patterns remain largely unknown. Here, we sought to identify the genetic mechanisms that regulate the tan (t) gene in a multi-spotted pigmentation pattern on the abdomen and wings of Drosophila guttifera. Previously, we showed that yellow (y) gene expression completely prefigures the abdominal and wing pigment patterns of this species. In the current study, we demonstrate that the t gene is co-expressed with the y gene in nearly identical patterns, both transcripts foreshadowing the adult abdominal and wing melanin spot patterns. We identified cis-regulatory modules (CRMs) of t, one of which drives reporter expression in six longitudinal rows of spots on the developing pupal abdomen, while the second CRM activates the reporter gene in a spotted wing pattern. Comparing the abdominal spot CRMs of y and t, we found a similar composition of putative transcription factor binding sites that are thought to regulate the complex expression patterns of both terminal pigmentation genes y and t. In contrast, the y and t wing spots appear to be regulated by distinct upstream factors. Our results suggest that the D. guttifera abdominal and wing melanin spot patterns have been established through the co-regulation of y and t, shedding light on how complex morphological traits may be regulated through the parallel coordination of downstream target genes.
Collapse
|
16
|
Rosikon KD, Bone MC, Lawal HO. Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans. Front Physiol 2023; 14:970405. [PMID: 36875033 PMCID: PMC9978017 DOI: 10.3389/fphys.2023.970405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Neurotransmitters are crucial for the relay of signals between neurons and their target. Monoamine neurotransmitters dopamine (DA), serotonin (5-HT), and histamine are found in both invertebrates and mammals and are known to control key physiological aspects in health and disease. Others, such as octopamine (OA) and tyramine (TA), are abundant in invertebrates. TA is expressed in both Caenorhabditis elegans and Drosophila melanogaster and plays important roles in the regulation of essential life functions in each organism. OA and TA are thought to act as the mammalian homologs of epinephrine and norepinephrine respectively, and when triggered, they act in response to the various stressors in the fight-or-flight response. 5-HT regulates a wide range of behaviors in C. elegans including egg-laying, male mating, locomotion, and pharyngeal pumping. 5-HT acts predominantly through its receptors, of which various classes have been described in both flies and worms. The adult brain of Drosophila is composed of approximately 80 serotonergic neurons, which are involved in modulation of circadian rhythm, feeding, aggression, and long-term memory formation. DA is a major monoamine neurotransmitter that mediates a variety of critical organismal functions and is essential for synaptic transmission in invertebrates as it is in mammals, in which it is also a precursor for the synthesis of adrenaline and noradrenaline. In C. elegans and Drosophila as in mammals, DA receptors play critical roles and are generally grouped into two classes, D1-like and D2-like based on their predicted coupling to downstream G proteins. Drosophila uses histamine as a neurotransmitter in photoreceptors as well as a small number of neurons in the CNS. C. elegans does not use histamine as a neurotransmitter. Here, we review the comprehensive set of known amine neurotransmitters found in invertebrates, and discuss their biological and modulatory functions using the vast literature on both Drosophila and C. elegans. We also suggest the potential interactions between aminergic neurotransmitters systems in the modulation of neurophysiological activity and behavior.
Collapse
Affiliation(s)
- Katarzyna D Rosikon
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Megan C Bone
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Hakeem O Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
17
|
Inoue S, Watanabe T, Hamaguchi T, Ishimaru Y, Miyawaki K, Nikawa T, Takahashi A, Noji S, Mito T. Combinatorial expression of ebony and tan generates body color variation from nymph through adult stages in the cricket, Gryllus bimaculatus. PLoS One 2023; 18:e0285934. [PMID: 37200362 DOI: 10.1371/journal.pone.0285934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Insect body colors and patterns change markedly during development in some species as they adapt to their surroundings. The contribution of melanin and sclerotin pigments, both of which are synthesized from dopamine, to cuticle tanning has been well studied. Nevertheless, little is known about how insects alter their body color patterns. To investigate this mechanism, the cricket Gryllus bimaculatus, whose body color patterns change during postembryonic development, was used as a model in this study. We focused on the ebony and tan genes, which encode enzymes that catalyze the synthesis and degradation, respectively, of the precursor of yellow sclerotin N-β-alanyl dopamine (NBAD). Expression of the G. bimaculatus (Gb) ebony and tan transcripts tended to be elevated just after hatching and the molting period. We found that dynamic alterations in the combined expression levels of Gb'ebony and Gb'tan correlated with the body color transition from the nymphal stages to the adult. The body color of Gb'ebony knockout mutants generated by CRISPR/Cas9 systemically darkened. Meanwhile, Gb'tan knockout mutants displayed a yellow color in certain areas and stages. The phenotypes of the Gb'ebony and Gb'tan mutants probably result from an over-production of melanin and yellow sclerotin NBAD, respectively. Overall, stage-specific body color patterns in the postembryonic stages of the cricket are governed by the combinatorial expression of Gb'ebony and Gb'tan. Our findings provide insights into the mechanism by which insects evolve adaptive body coloration at each developmental stage.
Collapse
Affiliation(s)
- Shintaro Inoue
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taiki Hamaguchi
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Katsuyuki Miyawaki
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takeshi Nikawa
- Departments of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| |
Collapse
|
18
|
Xie J, Han Y, Liang Y, Peng L, Wang T. Drosophila HisT is a specific histamine transporter that contributes to histamine recycling in glia. SCIENCE ADVANCES 2022; 8:eabq1780. [PMID: 36288320 PMCID: PMC9604546 DOI: 10.1126/sciadv.abq1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Histamine is an important monoamine neurotransmitter that regulates multiple physiological activities in both vertebrates and invertebrates. Clearance and recycling of histamine are critical for sustaining histaminergic transmission. However, unlike other monoamine neurotransmitters, a histamine-specific transporter capable of clearing histamine from the synaptic cleft has not been identified. Here, through an in vitro histamine uptake screening, we identified an epithelial glia-expressing transporter, HisT (Histamine Transporter), that specifically transports histamine into cells. HisT misexpression in both pre- and postsynaptic neurons revealed a critical in vivo role for HisT in histamine transport and synaptic transmission. Last, we generated null hist alleles and demonstrated key physiological roles of HisT in maintaining histamine pools and sustaining visual transmission when the de novo synthesis of histamine synthesis was reduced. Our work identifies the first transporter that specifically recycles histamine and further indicates that the histamine clearance pathway may involve both the uptake-1 and uptake-2 transport systems.
Collapse
Affiliation(s)
- Jun Xie
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yongchao Han
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yufeng Liang
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Peng
- National Institute of Biological Sciences, Beijing 102206, China
- College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Brent CS, Heu CC, Gross RJ, Fan B, Langhorst D, Hull JJ. RNAi-Mediated Manipulation of Cuticle Coloration Genes in Lygus hesperus Knight (Hemiptera: Miridae). INSECTS 2022; 13:986. [PMID: 36354810 PMCID: PMC9698757 DOI: 10.3390/insects13110986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Cuticle coloration in insects is a consequence of the accumulation of pigments in a species-specific pattern. Numerous genes are involved in regulating the underlying processes of melanization and sclerotization, and their manipulation can be used to create externally visible markers of successful gene editing. To clarify the roles for many of these genes and examine their suitability as phenotypic markers in Lygus hesperus Knight (western tarnished plant bug), transcriptomic data were screened for sequences exhibiting homology with the Drosophila melanogaster proteins. Complete open reading frames encoding putative homologs for six genes (aaNAT, black, ebony, pale, tan, and yellow) were identified, with two variants for black. Sequence and phylogenetic analyses supported preliminary annotations as cuticle pigmentation genes. In accord with observable difference in color patterning, expression varied for each gene by developmental stage, adult age, body part, and sex. Knockdown by injection of dsRNA for each gene produced varied effects in adults, ranging from the non-detectable (black 1, yellow), to moderate decreases (pale, tan) and increases (black 2, ebony) in darkness, to extreme melanization (aaNAT). Based solely on its expression profile and highly visible phenotype, aaNAT appears to be the best marker for tracking transgenic L. hesperus.
Collapse
|
20
|
Klug D, Arnold K, Mela-Lopez R, Marois E, Blandin SA. A toolbox of engineered mosquito lines to study salivary gland biology and malaria transmission. PLoS Pathog 2022; 18:e1010881. [PMID: 36223382 PMCID: PMC9555648 DOI: 10.1371/journal.ppat.1010881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Mosquito saliva is a vehicle for the transmission of vector borne pathogens such as Plasmodium parasites and different arboviruses. Despite the key role of the salivary glands in the process of disease transmission, knowledge of host-pathogen interactions taking place within this organ is very limited. To improve the experimental tractability of the salivary glands, we have generated fluorescent reporter lines in the African malaria mosquito Anopheles coluzzii using the salivary gland-specific promoters of the anopheline antiplatelet protein (AAPP), the triple functional domain protein (TRIO) and saglin (SAG) coding genes. Promoter activity was specifically observed in the distal-lateral lobes or in the median lobe of the salivary glands. Besides a comparison of the expression patterns of the selected promoters, the fluorescent probes allowed us to evaluate the inducibility of the selected promoters upon blood feeding and to measure intracellular redox changes. We also combined the aapp-DsRed fluorescent reporter line with a pigmentation-deficient yellow(-) mosquito mutant to assess the feasibility of in vivo microscopy of parasitized salivary glands. This combination allowed locating the salivary gland through the cuticle and imaging of individual sporozoites in vivo, which facilitates live imaging studies of salivary gland colonization by Plasmodium sporozoites.
Collapse
Affiliation(s)
- Dennis Klug
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Katharina Arnold
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Raquel Mela-Lopez
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Eric Marois
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Stéphanie A. Blandin
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
21
|
Tadmor E, Juravel K, Morin S, Santos-Garcia D. Evolved transcriptional responses and their trade-offs after long-term adaptation of Bemisia tabaci to a marginally-suitable host. Genome Biol Evol 2022; 14:6649882. [PMID: 35880721 PMCID: PMC9372648 DOI: 10.1093/gbe/evac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Although generalist insect herbivores can migrate and rapidly adapt to a broad range of host plants, they can face significant difficulties when accidentally migrating to novel and marginally-suitable hosts. What happens, both in performance and gene expression regulation, if these marginally-suitable hosts must be used for multiple generations before migration to a suitable host can take place, largely remains unknown. In this study, we established multigenerational colonies of the whitefly Bemisia tabaci, a generalist phloem-feeding species, adapted to a marginally-suitable host (habanero pepper) or an optimal host (cotton). We used reciprocal host tests to estimate the differences in performance of the populations on both hosts under optimal (30 oC) and mild-stressful (24 oC) temperature conditions, and documented the associated transcriptomic changes. The habanero pepper-adapted population greatly improved its performance on habanero pepper but did not reach its performance level on cotton, the original host. It also showed reduced performance on cotton, relative to the non-adapted population, and an antagonistic effect of the lower-temperature stressor. The transcriptomic data revealed that most of the expression changes, associated with long-term adaptation to habanero pepper, can be categorized as "evolved" with no initial plastic response. Three molecular functions dominated: enhanced formation of cuticle structural constituents, enhanced activity of oxidation-reduction processes involved in neutralization of phytotoxins and reduced production of proteins from the cathepsin B family. Taken together, these findings indicate that generalist insects can adapt to novel host plants by modifying the expression of a relatively small set of specific molecular functions.
Collapse
Affiliation(s)
- Ella Tadmor
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Ksenia Juravel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology University Lyon 1 - UMR CNRS 5558, Villeurbanne, France
| |
Collapse
|
22
|
Dean DM, Deitcher DL, Paster CO, Xu M, Loehlin DW. "A fly appeared": sable, a classic Drosophila mutation, maps to Yippee, a gene affecting body color, wings, and bristles. G3 (BETHESDA, MD.) 2022; 12:jkac058. [PMID: 35266526 PMCID: PMC9073688 DOI: 10.1093/g3journal/jkac058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
Insect body color is an easily assessed and visually engaging trait that is informative on a broad range of topics including speciation, biomaterial science, and ecdysis. Mutants of the fruit fly Drosophila melanogaster have been an integral part of body color research for more than a century. As a result of this long tenure, backlogs of body color mutations have remained unmapped to their genes, all while their strains have been dutifully maintained, used for recombination mapping, and part of genetics education. Stemming from a lesson plan in our undergraduate genetics class, we have mapped sable1, a dark body mutation originally described by Morgan and Bridges, to Yippee, a gene encoding a predicted member of the E3 ubiquitin ligase complex. Deficiency/duplication mapping, genetic rescue, DNA and cDNA sequencing, RT-qPCR, and 2 new CRISPR alleles indicated that sable1 is a hypomorphic Yippee mutation due to an mdg4 element insertion in the Yippee 5'-UTR. Further analysis revealed additional Yippee mutant phenotypes including curved wings, ectopic/missing bristles, delayed development, and failed adult emergence. RNAi of Yippee in the ectoderm phenocopied sable body color and most other Yippee phenotypes. Although Yippee remains functionally uncharacterized, the results presented here suggest possible connections between melanin biosynthesis, copper homeostasis, and Notch/Delta signaling; in addition, they provide insight into past studies of sable cell nonautonomy and of the genetic modifier suppressor of sable.
Collapse
Affiliation(s)
- Derek M Dean
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - David L Deitcher
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Caleigh O Paster
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Manting Xu
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - David W Loehlin
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| |
Collapse
|
23
|
Berni M, Lima L, Bressan D, Julio A, Bonfim L, Simão Y, Pane A, Ramos I, Oliveira PL, Araujo H. Atypical strategies for cuticle pigmentation in the blood-feeding hemipteran Rhodnius prolixus. Genetics 2022; 221:6571811. [PMID: 35445704 PMCID: PMC9157140 DOI: 10.1093/genetics/iyac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
Pigmentation in insects has been linked to mate selection and predator evasion, thus representing an important aspect for natural selection. Insect body color is classically associated to the activity of tyrosine pathway enzymes, and eye color to pigment synthesis through the tryptophan and guanine pathways, and their transport by ABC proteins. Among the hemiptera, the genetic basis for pigmentation in kissing bugs such as Rhodnius prolixus, that transmit Chagas disease to humans, has not been addressed. Here we report the functional analysis of R. prolixus eye and cuticle pigmentation genes. Consistent with data for most insect clades, we show that knockdown for yellow results in a yellow cuticle, while scarlet and cinnabar knockdowns display red eyes as well as cuticle phenotypes. In addition, tyrosine pathway aaNATpreto knockdown resulted in a striking dark cuticle that displays no color pattern or UV reflectance. In contrast, knockdown of ebony and tan, that encode NBAD branch tyrosine pathway enzymes, did not generate the expected dark and light brown phenotypes, respectively, as reported for other insects. We hypothesize that R. prolixus, which requires tyrosine pathway enzymes for detoxification from the blood diet, evolved an unusual strategy for cuticle pigmentation based on the preferential use of a color erasing function of the aaNATpreto tyrosine pathway branch. We also show that genes classically involved in the generation and transport of eye pigments regulate red body color in R. prolixus. This is the first systematic approach to identify the genes responsible for the generation of color in a blood-feeding hemiptera, providing potential visible markers for future transgenesis.
Collapse
Affiliation(s)
- Marcus Berni
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Leonardo Lima
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Daniel Bressan
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Alison Julio
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Larissa Bonfim
- Institute for Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Yasmin Simão
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Attilio Pane
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Isabela Ramos
- Institute for Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Pedro L Oliveira
- Institute for Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Helena Araujo
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
24
|
Ze LJ, Jin L, Li GQ. Silencing of Adc and Ebony Causes Abnormal Darkening of Cuticle in Henosepilachna vigintioctopunctata. Front Physiol 2022; 13:829675. [PMID: 35283776 PMCID: PMC8907826 DOI: 10.3389/fphys.2022.829675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
N-β-alanyldopamine (NBAD) is a precursor of N-acylquinone sclerotin utilized for cross-linking between cuticular proteins for cuticle during insect molting. The importance of NBAD in cuticle tanning has not been well compared among different developing stages of insects. Henosepilachna vigintioctopunctata, a typical polyphagous pest feeding on a large number of Solanaceae and Cucurbitaceae plants in Asian countries, displays diverse cuticle pigmentation patterns among developing stages and body regions. Here, we found that the expression of three genes (Hvadc, Hvebony, and Hvtan) involved in NBAD biosynthesis peaked in the 4-day-old pupae or 0-day-old adults of H. vigintioctopunctata. At the first, second, third, and fourth larval instar and pupal stage, their transcript levels were high just before and/or right after the molting. Moreover, they were more abundantly transcribed at the larval heads than in the bodies. RNA interference (RNAi) of either Hvadc or Hvebony at the third instar larvae selectively deepened the color of the larval head capsules, antennae, mouthpart, scoli, strumae, and legs; and depletion of the two genes blackened the pupal head capsules, antennae, mouthpart, and legs. However, the knockdown of either Hvadc or Hvebony darkened the whole bodies of the adults. Conversely, RNAi of Hvtan at the third instar stage had little influence on the pigmentation in the larvae, pupae, and adults. These findings demonstrated that Adc and Ebony are important in cuticle pigmentation of H. vigintioctopunctata and suggested that larger quantities of NBAD were present in adults and play more important roles in pigmentation than larvae/pupae.
Collapse
|
25
|
Zhang L, Tang Y, Chen H, Zhu X, Gong X, Wang S, Luo J, Han Q. Arylalkalamine N-acetyltransferase-1 acts on a secondary amine in the yellow fever mosquito, Aedes aegypti. FEBS Lett 2022; 596:1081-1091. [PMID: 35178730 DOI: 10.1002/1873-3468.14316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Abstract
Arylalkylamine N-acetyltransferase (aaNAT) in Aedes aegypti is primarily involved in cuticle pigmentation and formation. The reported arylalkylamine substrates are all primary amines. In this study, we report a novel substrate, a secondary amine, of Ae. aegypti aaNAT1. The recombinant aaNAT1 protein exhibited high activity to a secondary amine, epinephrine, which has not been reported for any aaNATs previously. Structure-activity relationship study demonstrated that aaNAT1 has an epinephrine binding site, and molecular docking and dynamic simulation showed that epinephrine is quite stable in the active cavity. Further functional studies demonstrated that epinephrine affected mosquito fecundity, egg hatching and development. The new biochemical function of aaNAT1 in metabolizing epinephrine could reduce some negative effects of the compound in the mosquito.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaojing Zhu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Xue Gong
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Shouchuang Wang
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
26
|
Common Themes and Future Challenges in Understanding Gene Regulatory Network Evolution. Cells 2022; 11:cells11030510. [PMID: 35159319 PMCID: PMC8834487 DOI: 10.3390/cells11030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022] Open
Abstract
A major driving force behind the evolution of species-specific traits and novel structures is alterations in gene regulatory networks (GRNs). Comprehending evolution therefore requires an understanding of the nature of changes in GRN structure and the responsible mechanisms. Here, we review two insect pigmentation GRNs in order to examine common themes in GRN evolution and to reveal some of the challenges associated with investigating changes in GRNs across different evolutionary distances at the molecular level. The pigmentation GRN in Drosophila melanogaster and other drosophilids is a well-defined network for which studies from closely related species illuminate the different ways co-option of regulators can occur. The pigmentation GRN for butterflies of the Heliconius species group is less fully detailed but it is emerging as a useful model for exploring important questions about redundancy and modularity in cis-regulatory systems. Both GRNs serve to highlight the ways in which redeployment of trans-acting factors can lead to GRN rewiring and network co-option. To gain insight into GRN evolution, we discuss the importance of defining GRN architecture at multiple levels both within and between species and of utilizing a range of complementary approaches.
Collapse
|
27
|
Zhang L, Li MZ, Chen ZH, Tang Y, Liao CH, Han Q. Arylalkalamine N-acetyltransferase-1 functions on cuticle pigmentation in the yellow fever mosquito, Aedes aegypti. INSECT SCIENCE 2021; 28:1591-1600. [PMID: 33369191 DOI: 10.1111/1744-7917.12895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the acetylation of dopamine, 5-hydroxy-tryptamine, tryptamine, octopamine, norepinephrine and other arylalkylamines to form respective N-acetyl-arylalkylamines. Depending on the products formed, aaNATs are involved in a variety of physiological functions. In the yellow fever mosquito, Aedes aegypti, a number of aaNATs and aaNAT-like proteins have been reported. However, the primary function of each individual aaNAT is yet to be identified. In this study we investigated the function of Ae. aegypti aaNAT1 (Ae-aaNAT1) in cuticle pigmentation and development of morphology. Ae-aaNAT1 transcripts were detected at all stages of development with highest expressions after pupation and right before adult eclosion. Ae-aaNAT1 mutant mosquitoes generated using clustered regularly interspaced palindromic repeats (CRISPR) - CRISPR-associated protein 9 had no obvious effect on larval and pupal development. However, the mutant mosquitoes exhibited a roughened exoskeletal surface, darker cuticles, and color pattern changes suggesting that Ae-aaNAT1 plays a role in development of the morphology and pigmentation of Ae. aegypti adult cuticles. The mutant also showed less blood feeding efficiency and lower fecundity when compared with the wild-type. The mutation of Ae-aaNAT1 influenced expression of genes involved in cuticle formation. In summary, Ae-aaNAT1 mainly functions on cuticular pigmentation and also affects blood feeding efficiency and fecundity.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Miao-Zhen Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Zhao-Hui Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Cheng-Hong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| |
Collapse
|
28
|
Cooley AM, Schmitz S, Cabrera EJ, Cutter M, Sheffield M, Gingerich I, Thomas G, Lincoln CNM, Moore VH, Moore AE, Davidson SA, Lonberg N, Fournier EB, Love SM, Posch G, Bihrle MB, Mayer SD, Om K, Wilson L, Doe CQ, Vincent CE, Wong ERT, Wall I, Wicks J, Roberts S. Melanic pigmentation and light preference within and between two Drosophila species. Ecol Evol 2021; 11:12542-12553. [PMID: 34594519 PMCID: PMC8462139 DOI: 10.1002/ece3.7998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022] Open
Abstract
Environmental adaptation and species divergence often involve suites of co-evolving traits. Pigmentation in insects presents a variable, adaptive, and well-characterized class of phenotypes for which correlations with multiple other traits have been demonstrated. In Drosophila, the pigmentation genes ebony and tan have pleiotropic effects on flies' response to light, creating the potential for correlated evolution of pigmentation and vision. Here, we investigate differences in light preference within and between two sister species, Drosophila americana and D. novamexicana, which differ in pigmentation in part because of evolution at ebony and tan and occupy environments that differ in many variables including solar radiation. We hypothesized that lighter pigmentation would be correlated with a greater preference for environmental light and tested this hypothesis using a habitat choice experiment. In a first set of experiments, using males of D. novamexicana line N14 and D. americana line A00, the light-bodied D. novamexicana was found slightly but significantly more often than D. americana in the light habitat. A second experiment, which included additional lines and females as well as males, failed to find any significant difference between D. novamexicana-N14 and D. americana-A00. Additionally, the other dark line of D. americana (A04) was found in the light habitat more often than the light-bodied D. novamexicana-N14, in contrast to our predictions. However, the lightest line of D. americana, A01, was found substantially and significantly more often in the light habitat than the two darker lines of D. americana, thus providing partial support for our hypothesis. Finally, across all four lines, females were found more often in the light habitat than their more darkly pigmented male counterparts. Additional replication is needed to corroborate these findings and evaluate conflicting results, with the consistent effect of sex within and between species providing an especially intriguing avenue for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Galen Posch
- Biology DepartmentWhitman CollegeWalla WallaWAUSA
| | | | | | - Kuenzang Om
- Biology DepartmentWhitman CollegeWalla WallaWAUSA
| | | | - Casey Q. Doe
- Biology DepartmentWhitman CollegeWalla WallaWAUSA
| | | | | | - Ilona Wall
- Biology DepartmentWhitman CollegeWalla WallaWAUSA
| | - Jarred Wicks
- Biology DepartmentWhitman CollegeWalla WallaWAUSA
| | | |
Collapse
|
29
|
CRISPR/Cas9-mediated knockout of the NlCSAD gene results in darker cuticle pigmentation and a reduction in female fecundity in Nilaparvata lugens (Hemiptera: Delphacidae). Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110921. [DOI: 10.1016/j.cbpa.2021.110921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/24/2022]
|
30
|
Popadić A, Tsitlakidou D. Regional patterning and regulation of melanin pigmentation in insects. Curr Opin Genet Dev 2021; 69:163-170. [PMID: 34087530 DOI: 10.1016/j.gde.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Insects display an immense diversity in melanin pigmentation, which is generated by the interplay between the regulatory genes (that provide general patterning information) and effector genes (that provide coloration of the pattern). However, recent studies encompassing several different orders (Hemiptera, Blattodea, Coleoptera, and Lepidoptera) have shown that knockdowns of melanin producing genes alone can generate distinct region-specific patterns. This review surveys the most recent studies to further document the regional patterning of effector genes, and highlights the new advances and their implications for future research.
Collapse
Affiliation(s)
- Aleksandar Popadić
- Biological Sciences Department, Wayne State University, Detroit, MI 48202, USA.
| | - Despina Tsitlakidou
- Biological Sciences Department, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
31
|
Ismail NIB, Kato Y, Matsuura T, Gómez-Canela C, Barata C, Watanabe H. Reduction of histamine and enhanced spinning behavior of Daphnia magna caused by scarlet mutant. Genesis 2020; 59:e23403. [PMID: 33348442 DOI: 10.1002/dvg.23403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/09/2022]
Abstract
The ABC transporter, Scarlet, and its binding partner, White are involved in pigment synthesis in the insect eye and mutations in these genes are used as genetic markers. Recent studies have suggested that these transporters also have additional functions in the neuronal system. In our previous study, we generated scarlet mutant in the small crustacean, Daphnia magna and showed that the mutant lacked the eye pigment in the mutant. Here, we show that the scarlet mutant exhibits spinning behavior. This phenotype is partly associated with the presence of light. Metabolomic analysis of a juvenile mutant revealed that the scarlet mutant has approximately one-tenth of the histamine content of the wild type. Application of histamine to the scarlet mutant rescued the spinning behavior in juveniles, suggesting that the spinning behavior of the mutant is caused by the reduction of histamine. However, the altered behavior was not rescued in the adult mutant by the addition of histamine, suggesting that Scarlet plays an irreversible role in the development of histaminergic neurons. These results suggest that Scarlet plays an important role in histaminergic signaling, which might be related to control the spinning behavior, in addition to its role in eye pigmentation.
Collapse
Affiliation(s)
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.,Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Barcelona, Spain
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
32
|
Vesicular neurotransmitter transporters in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183308. [PMID: 32305263 DOI: 10.1016/j.bbamem.2020.183308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
Drosophila melanogaster express vesicular transporters for the storage of neurotransmitters acetylcholine, biogenic amines, GABA, and glutamate. The large array of powerful molecular-genetic tools available in Drosophila enhances the use of this model organism for studying transporter function and regulation.
Collapse
|
33
|
Dion WA, Shittu MO, Steenwinkel TE, Raja KKB, Kokate PP, Werner T. The modular expression patterns of three pigmentation genes prefigure unique abdominal morphologies seen among three Drosophila species. Gene Expr Patterns 2020; 38:119132. [PMID: 32828854 PMCID: PMC7725850 DOI: 10.1016/j.gep.2020.119132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
To understand how novel animal body colorations emerged, one needs to ask how the development of color patterns differs among closely related species. Here we examine three species of fruit flies - Drosophila guttifera (D. guttifera), D. palustris, and D. subpalustris - displaying a varying number of abdominal spot rows. Through in situ hybridization experiments, we examine the mRNA expression patterns for the pigmentation genes Dopa decarboxylase (Ddc), tan (t), and yellow (y) during pupal development. Our results show that Ddc, t, and y are co-expressed in modular, identical patterns, each foreshadowing the adult abdominal spots in D. guttifera, D. palustris, and D. subpalustris. We suggest that differences in the expression patterns of these three genes partially underlie the morphological diversity of the quinaria species group.
Collapse
Affiliation(s)
- William A Dion
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Mujeeb O Shittu
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Tessa E Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Komal K B Raja
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Prajakta P Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
34
|
Gibert JM. [Phenotypic plasticity in insects]. Biol Aujourdhui 2020; 214:33-44. [PMID: 32773028 DOI: 10.1051/jbio/2020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 11/14/2022]
Abstract
Insects represent 85% of the animals. They have adapted to many environments and play a major role in ecosystems. Many insect species exhibit phenotypic plasticity. We here report on the mechanisms involved in phenotypic plasticity of different insects (aphids, migratory locust, map butterfly, honeybee) and also on the nutritional size plasticity in Drosophila and the plasticity of the wing eye-spots of the butterfly Bicyclus anynana. We also describe in more detail our work concerning the thermal plasticity of pigmentation in Drosophila. We have shown that the expression of the tan, yellow and Ddc genes, encoding enzymes of the melanin synthesis pathway, is modulated by temperature and that it is a consequence, at least in part, of the temperature-sensitive expression of the bab locus genes that repress them.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement (IBPS-LBD), 75005 Paris, France
| |
Collapse
|
35
|
Sramkoski LL, McLaughlin WN, Cooley AM, Yuan DC, John A, Wittkopp PJ. Genetic architecture of a body colour cline in Drosophila americana. Mol Ecol 2020; 29:2840-2854. [PMID: 32603541 PMCID: PMC7482988 DOI: 10.1111/mec.15531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Phenotypic variation within a species is often structured geographically in clines. In Drosophila americana, a longitudinal cline for body colour exists within North America that appears to be due to local adaptation. The tan and ebony genes have been hypothesized to contribute to this cline, with alleles of both genes that lighten body colour found in D. americana. These alleles are similar in sequence and function to the allele fixed in D. americana's more lightly pigmented sister species, Drosophila novamexicana. Here, we examine the frequency and geographic distribution of these D. novamexicana-like alleles in D. americana. Among alleles from over 100 strains of D. americana isolated from 21 geographic locations, we failed to identify additional alleles of tan or ebony with as much sequence similarity to D. novamexicana as the D. novamexicana-like alleles previously described. However, using genetic analysis of 51 D. americana strains derived from 20 geographic locations, we identified one new allele of ebony and one new allele of tan segregating in D. americana that are functionally equivalent to the D. novamexicana allele. An additional 5 alleles of tan also showed marginal evidence of functional similarity. Given the rarity of these alleles, however, we conclude that they are unlikely to be driving the pigmentation cline. Indeed, phenotypic distributions of the 51 backcross populations analysed indicate a more complex genetic architecture, with diversity in the number and effects of loci altering pigmentation observed both within and among populations of D. americana. This genetic heterogeneity poses a challenge to association studies and genomic scans for clinal variation, but might be common in natural populations.
Collapse
Affiliation(s)
| | - Wesley N. McLaughlin
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Arielle M. Cooley
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - David C. Yuan
- Department of Molecular, Cellular, and Developmental Biology
| | - Alisha John
- Department of Molecular, Cellular, and Developmental Biology
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
| |
Collapse
|
36
|
Kuwalekar M, Deshmukh R, Padvi A, Kunte K. Molecular Evolution and Developmental Expression of Melanin Pathway Genes in Lepidoptera. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
37
|
Lamb AM, Wang Z, Simmer P, Chung H, Wittkopp PJ. ebony Affects Pigmentation Divergence and Cuticular Hydrocarbons in Drosophila americana and D. novamexicana. Front Ecol Evol 2020; 8. [PMID: 37035752 PMCID: PMC10077920 DOI: 10.3389/fevo.2020.00184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drosophila pigmentation has been a fruitful model system for understanding the genetic and developmental mechanisms underlying phenotypic evolution. For example, prior work has shown that divergence of the tan gene contributes to pigmentation differences between two members of the virilis group: Drosophila novamexicana, which has a light yellow body color, and D. americana, which has a dark brown body color. Quantitative trait locus (QTL) mapping and expression analysis has suggested that divergence of the ebony gene might also contribute to pigmentation differences between these two species. Here, we directly test this hypothesis by using CRISPR/Cas9 genome editing to generate ebony null mutants in D. americana and D. novamexicana and then using reciprocal hemizygosity testing to compare the effects of each species' ebony allele on pigmentation. We find that divergence of ebony does indeed contribute to the pigmentation divergence between species, with effects on both the overall body color as well as a difference in pigmentation along the dorsal abdominal midline. Motivated by recent work in D. melanogaster, we also used the ebony null mutants to test for effects of ebony on cuticular hydrocarbon (CHC) profiles. We found that ebony affects CHC abundance in both species, but does not contribute to qualitative differences in the CHC profiles between these two species. Additional transgenic resources for working with D. americana and D. novamexicana, such as white mutants of both species and yellow mutants in D. novamexicana, were generated in the course of this work and are also described. Taken together, this study advances our understanding of loci contributing to phenotypic divergence and illustrates how the latest genome editing tools can be used for functional testing in non-model species.
Collapse
Affiliation(s)
- Abigail M. Lamb
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Zinan Wang
- Department of Entomology, Michigan State University, East Lansing, MI, United States
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Patricia Simmer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI, United States
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Ecology and Evolutionary Biology, and Behavior Program, University of Michigan, Ann Arbor, MI, United States
- Correspondence: Patricia J Wittkopp,
| |
Collapse
|
38
|
Zhang R, Zhang Z, Huang Y, Qian A, Tan A. A single ortholog of teashirt and tiptop regulates larval pigmentation and adult appendage patterning in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103369. [PMID: 32243904 DOI: 10.1016/j.ibmb.2020.103369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Two paralogous genes, teashirt (tsh) and tiptop (tio), encode zinc-finger transcription factors and play important roles in insect growth and development. In the fruit fly, Drosophila melanogaster, tsh promotes trunk segmental identities and contributes to the patterning of other tissues during the embryonic stage. During the adult stage, tsh contributes to the specification and patterning of appendages, including the leg, wing and eye. While tio acts redundantly with tsh, flies lacking tio function are viable without deleterious phenotypes. This gene pair is present in the genomes of all Drosophila species but only as a single homologue in several other insect species. In Oncopeltus fasciatus and Tribolium castaneum, tsh/tio has been functionally characterized as specifying the identity of the leg during the adult stage. However, in lepidopteran insects which include large numbers of pests in agriculture and forestry, as well as the major silk producer silkworm Bombyx mori, the biological functions of tsh/tio are still poorly understood. In the current study, we performed functional analysis of tsh/tio by using both CRISPR/Cas9-mediated mutagenesis and transposon-mediated ectopic expression in B. mori. The results show that loss of tsh/tio function affected pigmentation during the larval stage and appendage pattering during the adult stage. RNA-seq analysis and subsequent q-RT-PCR analysis revealed that depletion of tsh/tio significantly elevated the expression of the kynurenine 3-monooxygenase gene, as well as melanin synthase-related genes during the larval stage. Furthermore, ubiquitous ectopic expression of tsh/tio induces developmental retardation and eventually larval lethality. These data reveal evolutionarily conserved functions of tsh/tio in controlling adult appendage patterning, as well as the novel function of regulating larval pigmentation in B. mori, providing novel insights into how tsh/tio regulates insect growth and development.
Collapse
Affiliation(s)
- Ru Zhang
- Faculty of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Airong Qian
- Faculty of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
39
|
Fukutomi Y, Kondo S, Toyoda A, Shigenobu S, Koshikawa S. Transcriptome analysis reveals wingless regulates neural development and signaling genes in the region of wing pigmentation of a polka-dotted fruit fly. FEBS J 2020; 288:99-110. [PMID: 32307851 DOI: 10.1111/febs.15338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/14/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
How evolutionary novelties have arisen is one of the central questions in evolutionary biology. Preexisting gene regulatory networks or signaling pathways have been shown to be co-opted for building novel traits in several organisms. However, the structure of entire gene regulatory networks and evolutionary events of gene co-option for emergence of a novel trait are poorly understood. In this study, to explore the genetic and molecular bases of the novel wing pigmentation pattern of a polka-dotted fruit fly (Drosophila guttifera), we performed de novo genome sequencing and transcriptome analyses. As a result, we comprehensively identified the genes associated with the pigmentation pattern. Furthermore, we revealed that 151 of these associated genes were positively or negatively regulated by wingless, a master regulator of wing pigmentation. Genes for neural development, Wnt signaling, Dpp signaling, and effectors (such as enzymes) for melanin pigmentation were included among these 151 genes. None of the known regulatory genes that regulate pigmentation pattern formation in other fruit fly species were included. Our results suggest that the novel pigmentation pattern of a polka-dotted fruit fly might have emerged through multistep co-options of multiple gene regulatory networks, signaling pathways, and effector genes, rather than recruitment of one large gene circuit.
Collapse
Affiliation(s)
- Yuichi Fukutomi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.,Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Koshikawa S. Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis-regulatory evolution. Dev Growth Differ 2020; 62:269-278. [PMID: 32171022 PMCID: PMC7384037 DOI: 10.1111/dgd.12661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
Fruit flies (Drosophila and its close relatives, or “drosophilids”) are a group that includes an important model organism, Drosophila melanogaster, and also very diverse species distributed worldwide. Many of these species have black or brown pigmentation patterns on their wings, and have been used as material for evo‐devo research. Pigmentation patterns are thought to have evolved rapidly compared with body plans or body shapes; hence they are advantageous model systems for studying evolutionary gains of traits and parallel evolution. Various groups of drosophilids, including genus Idiomyia (Hawaiian Drosophila), have a variety of pigmentations, ranging from simple black pigmentations around crossveins to a single antero‐distal spot and a more complex mottled pattern. Pigmentation patterns are sometimes obviously used for sexual displays; however, in some cases they may have other functions. The process of wing formation in Drosophila, the general mechanism of pigmentation formation, and the transport of substances necessary for pigmentation, including melanin precursors, through wing veins are summarized here. Lastly, the evolution of the expression of genes regulating pigmentation patterns, the role of cis‐regulatory regions, and the conditions required for the evolutionary emergence of pigmentation patterns are discussed. Future prospects for research on the evolution of wing pigmentation pattern formation in drosophilids are presented, particularly from the point of view of how they compare with other studies of the evolution of new traits.
Collapse
Affiliation(s)
- Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Hughes JT, Williams ME, Johnson R, Grover S, Rebeiz M, Williams TM. Gene Regulatory Network Homoplasy Underlies Recurrent Sexually Dimorphic Fruit Fly Pigmentation. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Bai X, Zeng T, Ni XY, Su HA, Huang J, Ye GY, Lu YY, Qi YX. CRISPR/Cas9-mediated knockout of the eye pigmentation gene white leads to alterations in colour of head spots in the oriental fruit fly, Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2019; 28:837-849. [PMID: 31106480 DOI: 10.1111/imb.12592] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/16/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The intensely studied white gene is widely used as a genetic marker in Drosophila melanogaster. Here, we cloned and characterized the white gene in an important pest of the fruit industry, Bactrocera dorsalis, to understand its functional role in pigmentation. We obtained BdWhite knockout strains, based on the wild-type strain, using the CRISPR/Cas9 genome editing system, and found that mutants lost pigmentation in the compound eye and their black head spots. We then examined differences in the expression levels of genes associated with melanin pigmentation between mutants and the wild-type strain using quantitative reverse transcription PCR. We found that transcription levels of the Bd-yellow1 were lower in the head of mutants than in the wild-type strain, and there were no significant differences in expression of the other six genes between mutants and the wild type. Since yellow is critical for melanin biosynthesis (Heinze et al., Scientific Reports. 2017;7:4582), the lower levels of expression of Bd-yellow1 in mutants led to reduced dark pigmentation in head spots. Our results provide the first evidence, to our knowledge, that white may play a functional role in cuticle pigmentation by affecting the expression of yellow.
Collapse
Affiliation(s)
- X Bai
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - T Zeng
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - X-Y Ni
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - H-A Su
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - J Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - G-Y Ye
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y-Y Lu
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Y-X Qi
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Massey JH, Chung D, Siwanowicz I, Stern DL, Wittkopp PJ. The yellow gene influences Drosophila male mating success through sex comb melanization. eLife 2019; 8:e49388. [PMID: 31612860 PMCID: PMC6794089 DOI: 10.7554/elife.49388] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/06/2019] [Indexed: 12/28/2022] Open
Abstract
Drosophila melanogaster males perform a series of courtship behaviors that, when successful, result in copulation with a female. For over a century, mutations in the yellow gene, named for its effects on pigmentation, have been known to reduce male mating success. Prior work has suggested that yellow influences mating behavior through effects on wing extension, song, and/or courtship vigor. Here, we rule out these explanations, as well as effects on the nervous system more generally, and find instead that the effects of yellow on male mating success are mediated by its effects on pigmentation of male-specific leg structures called sex combs. Loss of yellow expression in these modified bristles reduces their melanization, which changes their structure and causes difficulty grasping females prior to copulation. These data illustrate why the mechanical properties of anatomy, not just neural circuitry, must be considered to fully understand the development and evolution of behavior.
Collapse
Affiliation(s)
- Jonathan H Massey
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daayun Chung
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborUnited States
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborUnited States
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
44
|
Liu Y, Ramos-Womack M, Han C, Reilly P, Brackett KL, Rogers W, Williams TM, Andolfatto P, Stern DL, Rebeiz M. Changes throughout a Genetic Network Mask the Contribution of Hox Gene Evolution. Curr Biol 2019; 29:2157-2166.e6. [PMID: 31257142 DOI: 10.1016/j.cub.2019.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Hox genes pattern the anterior-posterior axis of animals and are posited to drive animal body plan evolution, yet their precise role in evolution has been difficult to determine. Here, we identified evolutionary modifications in the Hox gene Abd-B that dramatically altered its expression along the body plan of Drosophila santomea. Abd-B is required for pigmentation in Drosophila yakuba, the sister species of D. santomea, and changes to Abd-B expression would be predicted to make large contributions to the loss of body pigmentation in D. santomea. However, manipulating Abd-B expression in current-day D. santomea does not affect pigmentation. We attribute this epistatic interaction to four other genes within the D. santomea pigmentation network, three of which have evolved expression patterns that do not respond to Abd-B. Our results demonstrate how body plans may evolve through small evolutionary steps distributed throughout Hox-regulated networks. Polygenicity and epistasis may hinder efforts to identify genes and mechanisms underlying macroevolutionary traits.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Margarita Ramos-Womack
- Department of Ecology Evolution and Behavior, Princeton University, Princeton, NJ 08544, USA
| | - Clair Han
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Patrick Reilly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | - William Rogers
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, Sherman Fairchild Center for Life Sciences, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
45
|
Chen J, Lu HR, Zhang L, Liao CH, Han Q. RNA interference-mediated knockdown of 3, 4-dihydroxyphenylacetaldehyde synthase affects larval development and adult survival in the mosquito Aedes aegypti. Parasit Vectors 2019; 12:311. [PMID: 31234914 PMCID: PMC6591897 DOI: 10.1186/s13071-019-3568-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cuticle is an indispensable structure that protects the mosquito against adverse environmental conditions and prevents pathogen entry. While most cuticles are hard and rigid, some parts of cuticle are soft and flexible to allow movement and blood-feeding. It has been reported that 3, 4-dihydroxyphenylacetaldehyde (DOPAL) synthase is associated with flexible cuticle formation in Aedes aegypti. However, the molecular function of DOPAL synthase in the ontogenesis of mosquito remains largely unknown. In this study, we characterized gene expression profiles of DOPAL synthase and investigated its functions in larvae and female adults of Aedes agypti by RNAi. RESULTS Our results suggest that the expression of DOPAL synthase is different during development and the transcriptional level reached its peak at the female white pupal stage, and DOPAL synthase was more highly expressed in the cuticle and midgut than other tissues in the adult. The development process from larva to pupa was slowed down strikingly by feeding the first-instar larvae with chitosan/DOPAL synthase dsRNA nanoparticles. A qRT-PCR analysis confirmed that the dsRNA-mediated transcription of the DOPAL synthase was reduced > 50% in fourth-instar larvae. Meanwhile, larval molt was abnormal during development. Transmission electron microscopy results indicated that the formation of endocuticle and exocuticle was blocked. In addition, we detected that the dsDOPAL synthase RNA caused significant mortality when injected into the female adult mosquitoes. CONCLUSIONS Our findings demonstrate that DOPAL synthase plays a critical role in mosquito larval development and adult survival and suggest that DOPAL synthase could be a good candidate gene in RNAi intervention strategies in mosquito control.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China.,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Hao-Ran Lu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China.,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Lei Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China.,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Cheng-Hong Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China. .,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, China. .,Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
46
|
Zhang Y, Li H, Du J, Zhang J, Shen J, Cai W. Three Melanin Pathway Genes, TH, yellow, and aaNAT, Regulate Pigmentation in the Twin-Spotted Assassin Bug, Platymeris biguttatus (Linnaeus). Int J Mol Sci 2019; 20:ijms20112728. [PMID: 31163651 PMCID: PMC6600426 DOI: 10.3390/ijms20112728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/04/2022] Open
Abstract
Pigmentation plays a vital role in insect survival and reproduction. Many melanin pathway genes have been studied in holometabolous insects; however, they have only been studied in two hemimetabolous insect genera, Oncopeltus and Periplaneta. Here we analyzed three melanin pathway genes (TH, yellow, and aaNAT) using RNA interference (RNAi) in another hemimetabolous insect, namely the twin-spotted assassin bug, Platymeris biguttatus. TH was highly expressed in freshly molted nymphs and adults. TH RNAi resulted in a complete loss of black pigment, with yellow coloration maintained. Therefore, black pigment in this assassin bug is solely generated from the melanin pathway, whereas yellow pigment is generated from other unknown pigmentation pathways. yellow and aaNAT were highly expressed in the white spot of the hemelytra. Downregulation of yellow caused a brown phenotype with high mortality, indicating an important role of yellow functions in cuticle formation and in the process of converting melanin from brown to black. Interestingly, aaNAT RNAi caused not only loss of white pigment, but also loss of yellow and red pigments. This phenotype of aaNAT has not been reported in other insects. Our results provide new information for understanding the melanin pathway in which aaNAT is essential for the formation of colorless patterns.
Collapse
Affiliation(s)
- Yinqiao Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Junzheng Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Massey JH, Akiyama N, Bien T, Dreisewerd K, Wittkopp PJ, Yew JY, Takahashi A. Pleiotropic Effects of ebony and tan on Pigmentation and Cuticular Hydrocarbon Composition in Drosophila melanogaster. Front Physiol 2019; 10:518. [PMID: 31118901 PMCID: PMC6504824 DOI: 10.3389/fphys.2019.00518] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila.
Collapse
Affiliation(s)
- Jonathan H. Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Noriyoshi Akiyama
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Tanja Bien
- Institute for Hygiene, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Patricia J. Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
48
|
Stenesen D, Moehlman AT, Schellinger JN, Rodan AR, Krämer H. The glial sodium-potassium-2-chloride cotransporter is required for synaptic transmission in the Drosophila visual system. Sci Rep 2019; 9:2475. [PMID: 30792494 PMCID: PMC6385505 DOI: 10.1038/s41598-019-38850-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Drosophila Ncc69 gene encodes a Na+-K+-2Cl−-cotransporter (NKCC) that is critical for regulating intra- and extracellular ionic conditions in different tissues. Here, we show that the Ncc69 transporter is necessary for fly vision and that its expression is required non-autonomously in glia to maintain visual synaptic transmission. Flies mutant for Ncc69 exhibit normal photoreceptor depolarization in response to a light pulse but lack the ON and OFF-transients characteristic of postsynaptic responses of lamina neurons, indicating a failure in synaptic transmission. We also find that synaptic transmission requires the Ncc69 regulatory kinases WNK and Fray in glia. The ERG phenotype is associated with a defect in the recycling of the histamine neurotransmitter. Ncc69 mutants exhibit higher levels of the transport metabolite carcinine in lamina cartridges, with its accumulation most intense in the extracellular space. Our work reveals a novel role of glial NKCC transporters in synaptic transmission, possibly through regulating extracellular ionic conditions.
Collapse
Affiliation(s)
- Drew Stenesen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Biology Department, University of Dallas, Irving, TX, 75062, USA
| | - Andrew T Moehlman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeffrey N Schellinger
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Internal Medicine, Division of Nephrology and Hypertension and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA. .,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA.
| | - Helmut Krämer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
49
|
Abstract
As the nervous system evolved from the diffused to centralised form, the neurones were joined by the appearance of the supportive cells, the neuroglia. Arguably, these non-neuronal cells evolve into a more diversified cell family than the neurones are. The first ancestral neuroglia appeared in flatworms being mesenchymal in origin. In the nematode C. elegans proto-astrocytes/supportive glia of ectodermal origin emerged, albeit the ensheathment of axons by glial cells occurred later in prawns. The multilayered myelin occurred by convergent evolution of oligodendrocytes and Schwann cells in vertebrates above the jawless fishes. Nutritive partitioning of the brain from the rest of the body appeared in insects when the hemolymph-brain barrier, a predecessor of the blood-brain barrier was formed. The defensive cellular mechanism required specialisation of bona fide immune cells, microglia, a process that occurred in the nervous system of leeches, bivalves, snails, insects and above. In ascending phylogeny, new type of glial cells, such as scaffolding radial glia, appeared and as the bran sizes enlarged, the glia to neurone ratio increased. Humans possess some unique glial cells not seen in other animals.
Collapse
|
50
|
Grover S, Williams ME, Kaiser R, Hughes JT, Gresham L, Rebeiz M, Williams TM. Augmentation of a wound response element accompanies the origin of a Hox-regulated Drosophila abdominal pigmentation trait. Dev Biol 2018; 441:159-175. [PMID: 29981311 PMCID: PMC6075670 DOI: 10.1016/j.ydbio.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 11/16/2022]
Abstract
A challenge for evolutionary research is to uncover how new morphological traits evolve the coordinated spatial and temporal expression patterns of genes that govern their formation during development. Detailed studies are often limited to characterizing how one or a few genes contributed to a trait's emergence, and thus our knowledge of how entire GRNs evolve their coordinated expression of each gene remains unresolved. The melanic color patterns decorating the male abdominal tergites of Drosophila (D.) melanogaster evolved in part by novel expression patterns for genes acting at the terminus of a pigment metabolic pathway, driven by cis-regulatory elements (CREs) with distinct mechanisms of Hox regulation. Here, we examined the expression and evolutionary histories of two important enzymes in this pathway, encoded by the pale and Ddc genes. We found that while both genes exhibit dynamic patterns of expression, a robust pattern of Ddc expression specifically evolved in the lineage of fruit flies with pronounced melanic abdomens. Derived Ddc expression requires the activity of a CRE previously shown to activate expression in response to epidermal wounding. We show that a binding site for the Grainy head transcription factor that promotes the ancestral wound healing function of this CRE is also required for abdominal activity. Together with previous findings in this system, our work shows how the GRN for a novel trait emerged by assembling unique yet similarly functioning CREs from heterogeneous starting points.
Collapse
Affiliation(s)
- Sumant Grover
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Melissa E Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Rebecca Kaiser
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Jesse T Hughes
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Lauren Gresham
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA; The Integrative Science and Engineering Center, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|