1
|
Jay P, Jeffries D, Hartmann FE, Véber A, Giraud T. Why do sex chromosomes progressively lose recombination? Trends Genet 2024; 40:564-579. [PMID: 38677904 DOI: 10.1016/j.tig.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.
Collapse
Affiliation(s)
- Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark; Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| | - Daniel Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Fanny E Hartmann
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Luo Z, McTaggart A, Schwessinger B. Genome biology and evolution of mating-type loci in four cereal rust fungi. PLoS Genet 2024; 20:e1011207. [PMID: 38498573 PMCID: PMC10977897 DOI: 10.1371/journal.pgen.1011207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/28/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.
Collapse
Affiliation(s)
- Zhenyan Luo
- Research Biology School, Australian National University, Canberra, ACT, Australia
| | - Alistair McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | | |
Collapse
|
3
|
Duhamel M, Hood ME, Rodríguez de la Vega RC, Giraud T. Dynamics of transposable element accumulation in the non-recombining regions of mating-type chromosomes in anther-smut fungi. Nat Commun 2023; 14:5692. [PMID: 37709766 PMCID: PMC10502011 DOI: 10.1038/s41467-023-41413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
In the absence of recombination, the number of transposable elements (TEs) increases due to less efficient selection, but the dynamics of such TE accumulations are not well characterized. Leveraging a dataset of 21 independent events of recombination cessation of different ages in mating-type chromosomes of Microbotryum fungi, we show that TEs rapidly accumulated in regions lacking recombination, but that TE content reached a plateau at ca. 50% of occupied base pairs by 1.5 million years following recombination suppression. The same TE superfamilies have expanded in independently evolved non-recombining regions, in particular rolling-circle replication elements (Helitrons). Long-terminal repeat (LTR) retrotransposons of the Copia and Ty3 superfamilies also expanded, through transposition bursts (distinguished from gene conversion based on LTR divergence), with both non-recombining regions and autosomes affected, suggesting that non-recombining regions constitute TE reservoirs. This study improves our knowledge of genome evolution by showing that TEs can accumulate through bursts, following non-linear decelerating dynamics.
Collapse
Affiliation(s)
- Marine Duhamel
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France.
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Michael E Hood
- Department of Biology, Amherst College, 01002-5000, Amherst, MA, USA
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Yadav V, Sun S, Heitman J. On the evolution of variation in sexual reproduction through the prism of eukaryotic microbes. Proc Natl Acad Sci U S A 2023; 120:e2219120120. [PMID: 36867686 PMCID: PMC10013875 DOI: 10.1073/pnas.2219120120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
Almost all eukaryotes undergo sexual reproduction to generate diversity and select for fitness in their population pools. Interestingly, the systems by which sex is defined are highly diverse and can even differ between evolutionarily closely related species. While the most commonly known form of sex determination involves males and females in animals, eukaryotic microbes can have as many as thousands of different mating types for the same species. Furthermore, some species have found alternatives to sexual reproduction and prefer to grow clonally and yet undergo infrequent facultative sexual reproduction. These organisms are mainly invertebrates and microbes, but several examples are also present among vertebrates suggesting that alternative modes of sexual reproduction evolved multiple times throughout evolution. In this review, we summarize the sex-determination modes and variants of sexual reproduction found across the eukaryotic tree of life and suggest that eukaryotic microbes provide unique opportunities to study these processes in detail. We propose that understanding variations in modes of sexual reproduction can serve as a foundation to study the evolution of sex and why and how it evolved in the first place.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
5
|
Vittorelli N, Rodríguez de la Vega RC, Snirc A, Levert E, Gautier V, Lalanne C, De Filippo E, Gladieux P, Guillou S, Zhang Y, Tejomurthula S, Grigoriev IV, Debuchy R, Silar P, Giraud T, Hartmann FE. Stepwise recombination suppression around the mating-type locus in an ascomycete fungus with self-fertile spores. PLoS Genet 2023; 19:e1010347. [PMID: 36763677 PMCID: PMC9949647 DOI: 10.1371/journal.pgen.1010347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/23/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales: Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.
Collapse
Affiliation(s)
- Nina Vittorelli
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
- Département de Biologie, École Normale Supérieure, PSL Université Paris, Paris, France
| | | | - Alodie Snirc
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Emilie Levert
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Christophe Lalanne
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Elsa De Filippo
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Sonia Guillou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Yu Zhang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sravanthi Tejomurthula
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Robert Debuchy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Fanny E. Hartmann
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Duhamel M, Carpentier F, Begerow D, Hood ME, Rodríguez de la Vega RC, Giraud T. Onset and stepwise extensions of recombination suppression are common in mating-type chromosomes of Microbotryum anther-smut fungi. J Evol Biol 2022; 35:1619-1634. [PMID: 35271741 PMCID: PMC10078771 DOI: 10.1111/jeb.13991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
Sex chromosomes and mating-type chromosomes can display large genomic regions without recombination. Recombination suppression often extended stepwise with time away from the sex- or mating-type-determining genes, generating evolutionary strata of differentiation between alternative sex or mating-type chromosomes. In anther-smut fungi of the Microbotryum genus, recombination suppression evolved repeatedly, linking the two mating-type loci and extended multiple times in regions distal to the mating-type genes. Here, we obtained high-quality genome assemblies of alternative mating types for four Microbotryum fungi. We found an additional event of independent chromosomal rearrangements bringing the two mating-type loci on the same chromosome followed by recombination suppression linking them. We also found, in a new clade analysed here, that recombination suppression between the two mating-type loci occurred in several steps, with first an ancestral recombination suppression between one of the mating-type locus and its centromere; later, completion of recombination suppression up to the second mating-type locus occurred independently in three species. The estimated dates of recombination suppression between the mating-type loci ranged from 0.15 to 3.58 million years ago. In total, this makes at least nine independent events of linkage between the mating-type loci across the Microbotryum genus. Several mating-type locus linkage events occurred through the same types of chromosomal rearrangements, where similar chromosome fissions at centromeres represent convergence in the genomic changes leading to the phenotypic convergence. These findings further highlight Microbotryum fungi as excellent models to study the evolution of recombination suppression.
Collapse
Affiliation(s)
- Marine Duhamel
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
- Evolution der Pflanzen und PilzeRuhr‐Universität BochumBochumGermany
| | - Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
| | - Dominik Begerow
- Evolution der Pflanzen und PilzeRuhr‐Universität BochumBochumGermany
| | | | | | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
| |
Collapse
|
7
|
Passer AR, Clancey SA, Shea T, David-Palma M, Averette AF, Boekhout T, Porcel BM, Nowrousian M, Cuomo CA, Sun S, Heitman J, Coelho MA. Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex. eLife 2022; 11:e79114. [PMID: 35713948 PMCID: PMC9296135 DOI: 10.7554/elife.79114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Fungi are enigmatic organisms that flourish in soil, on decaying plants, or during infection of animals or plants. Growing in myriad forms, from single-celled yeast to multicellular molds and mushrooms, fungi have also evolved a variety of strategies to reproduce. Normally, fungi reproduce in one of two ways: either they reproduce asexually, with one individual producing a new individual identical to itself, or they reproduce sexually, with two individuals of different 'mating types' contributing to produce a new individual. However, individuals of some species exhibit 'homothallism' or self-fertility: these individuals can produce reproductive cells that are universally compatible, and therefore can reproduce sexually with themselves or with any other cell in the population. Homothallism has evolved multiple times throughout the fungal kingdom, suggesting it confers advantage when population numbers are low or mates are hard to find. Yet some homothallic fungi been overlooked compared to heterothallic species, whose mating types have been well characterised. Understanding the genetic basis of homothallism and how it evolved in different species can provide insights into pathogenic species that cause fungal disease. With that in mind, Passer, Clancey et al. explored the genetic basis of homothallism in Cryptococcus depauperatus, a close relative of C. neoformans, a species that causes fungal infections in humans. A combination of genetic sequencing techniques and experiments were applied to analyse, compare, and manipulate C. depauperatus' genome to see how this species evolved self-fertility. Passer, Clancey et al. showed that C. depauperatus evolved the ability to reproduce sexually by itself via a unique evolutionary pathway. The result is a form of homothallism never reported in fungi before. C. depauperatus lost some of the genes that control mating in other species of fungi, and acquired genes from the opposing mating types of a heterothallic ancestor to become self-fertile. Passer, Clancey et al. also found that, unlike other Cryptococcus species that switch between asexual and sexual reproduction, C. depauperatus grows only as long, branching filaments called hyphae, a sexual form. The species reproduces sexually with itself throughout its life cycle and is unable to produce a yeast (asexual) form, in contrast to other closely related species. This work offers new insights into how different modes of sexual reproduction have evolved in fungi. It also provides another interesting case of how genome plasticity and evolutionary pressures can produce similar outcomes, homothallism, via different evolutionary paths. Lastly, assembling the complete genome of C. depauperatus will foster comparative studies between pathogenic and non-pathogenic Cryptococcus species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Terrance Shea
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity InstituteUtrechtNetherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of AmsterdamAmsterdamNetherlands
| | - Betina M Porcel
- Génomique Métabolique, CNRS, University Evry, Université Paris-SaclayEvryFrance
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität BochumBochumGermany
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
8
|
Cronk Q. Some sexual consequences of being a plant. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210213. [PMID: 35306890 PMCID: PMC8935308 DOI: 10.1098/rstb.2021.0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Plants have characteristic features that affect the expression of sexual function, notably the existence of a haploid organism in the life cycle, and in their development, which is modular, iterative and environmentally reactive. For instance, primary selection (the first filtering of the products of meiosis) is via gametes in diplontic animals, but via gametophyte organisms in plants. Intragametophytic selfing produces double haploid sporophytes which is in effect a form of clonal reproduction mediated by sexual mechanisms. In homosporous plants, the diploid sporophyte is sexless, sex being only expressed in the haploid gametophyte. However, in seed plants, the timing and location of gamete production is determined by the sporophyte, which therefore has a sexual role, and in dioecious plants has genetic sex, while the seed plant gametophyte has lost genetic sex. This evolutionary transition is one that E.J.H. Corner called 'the transference of sexuality'. The iterative development characteristic of plants can lead to a wide variety of patterns in the distribution of sexual function, and in dioecious plants poor canalization of reproductive development can lead to intrasexual mating and the production of YY supermales or WW superfemales. Finally, plant modes of asexual reproduction (agamospermy/apogamy) are also distinctive by subverting gametophytic processes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Quentin Cronk
- Department of Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
9
|
Hartmann FE, Ament-Velásquez SL, Vogan AA, Gautier V, Le Prieur S, Berramdane M, Snirc A, Johannesson H, Grognet P, Malagnac F, Silar P, Giraud T. Size Variation of the Nonrecombining Region on the Mating-Type Chromosomes in the Fungal Podospora anserina Species Complex. Mol Biol Evol 2021; 38:2475-2492. [PMID: 33555341 PMCID: PMC8136517 DOI: 10.1093/molbev/msab040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sex chromosomes often carry large nonrecombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8-Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudohomothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of ten P. anserina strains and six closely related pseudohomothallic Podospora species. Importantly, the size of the nonrecombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The nonrecombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, transspecific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but nonnull outcrossing rates in nature in these pseudohomothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Aaron A Vogan
- Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, Paris, France
| | - Stephanie Le Prieur
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Myriam Berramdane
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Pierre Grognet
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Fabienne Malagnac
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, Paris, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
10
|
Foulongne-Oriol M, Taskent O, Kües U, Sonnenberg ASM, van Peer AF, Giraud T. Mating-Type Locus Organization and Mating-Type Chromosome Differentiation in the Bipolar Edible Button Mushroom Agaricus bisporus. Genes (Basel) 2021; 12:1079. [PMID: 34356095 PMCID: PMC8305134 DOI: 10.3390/genes12071079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
In heterothallic basidiomycete fungi, sexual compatibility is restricted by mating types, typically controlled by two loci: PR, encoding pheromone precursors and pheromone receptors, and HD, encoding two types of homeodomain transcription factors. We analysed the single mating-type locus of the commercial button mushroom variety, Agaricus bisporus var. bisporus, and of the related variety burnettii. We identified the location of the mating-type locus using genetic map and genome information, corresponding to the HD locus, the PR locus having lost its mating-type role. We found the mip1 and β-fg genes flanking the HD genes as in several Agaricomycetes, two copies of the β-fg gene, an additional HD2 copy in the reference genome of A. bisporus var. bisporus and an additional HD1 copy in the reference genome of A. bisporus var. burnettii. We detected a 140 kb-long inversion between mating types in an A. bisporus var. burnettii heterokaryon, trapping the HD genes, the mip1 gene and fragments of additional genes. The two varieties had islands of transposable elements at the mating-type locus, spanning 35 kb in the A. bisporus var. burnettii reference genome. Linkage analyses showed a region with low recombination in the mating-type locus region in the A. bisporus var. burnettii variety. We found high differentiation between β-fg alleles in both varieties, indicating an ancient event of recombination suppression, followed more recently by a suppression of recombination at the mip1 gene through the inversion in A. bisporus var. burnettii and a suppression of recombination across whole chromosomes in A. bisporus var. bisporus, constituting stepwise recombination suppression as in many other mating-type chromosomes and sex chromosomes.
Collapse
Affiliation(s)
| | - Ozgur Taskent
- Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France;
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Goettingen Center for Molecular Biosciences (GZMB), Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany;
| | - Anton S. M. Sonnenberg
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.S.M.S.); (A.F.v.P.)
| | - Arend F. van Peer
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.S.M.S.); (A.F.v.P.)
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
11
|
Brion C, Caradec C, Pflieger D, Friedrich A, Schacherer J. Pervasive Phenotypic Impact of a Large Nonrecombining Introgressed Region in Yeast. Mol Biol Evol 2021; 37:2520-2530. [PMID: 32359150 PMCID: PMC7475044 DOI: 10.1093/molbev/msaa101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To explore the origin of the diversity observed in natural populations, many studies have investigated the relationship between genotype and phenotype. In yeast species, especially in Saccharomyces cerevisiae, these studies are mainly conducted using recombinant offspring derived from two genetically diverse isolates, allowing to define the phenotypic effect of genetic variants. However, large genomic variants such as interspecies introgressions are usually overlooked even if they are known to modify the genotype–phenotype relationship. To have a better insight into the overall phenotypic impact of introgressions, we took advantage of the presence of a 1-Mb introgressed region, which lacks recombination and contains the mating-type determinant in the Lachancea kluyveri budding yeast. By performing linkage mapping analyses in this species, we identified a total of 89 loci affecting growth fitness in a large number of conditions and 2,187 loci affecting gene expression mostly grouped into two major hotspots, one being the introgressed region carrying the mating-type locus. Because of the absence of recombination, our results highlight the presence of a sexual dimorphism in a budding yeast for the first time. Overall, by describing the phenotype–genotype relationship in the Lachancea kluyveri species, we expanded our knowledge on how genetic characteristics of large introgression events can affect the phenotypic landscape.
Collapse
Affiliation(s)
- Christian Brion
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Claudia Caradec
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - David Pflieger
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
12
|
Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne‐Oriol M, Silar P, Malagnac F, Grognet P, Giraud T. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. THE NEW PHYTOLOGIST 2021; 229:2470-2491. [PMID: 33113229 PMCID: PMC7898863 DOI: 10.1111/nph.17039] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
Genomic regions determining sexual compatibility often display recombination suppression, as occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions lacking recombination can extend beyond the genes determining sexes or mating types, by several successive steps of recombination suppression. Here we review the evidence for recombination suppression around mating-type loci in fungi, sometimes encompassing vast regions of the mating-type chromosomes. The suppression of recombination at mating-type loci in fungi has long been recognized and maintains the multiallelic combinations required for correct compatibility determination. We review more recent evidence for expansions of recombination suppression beyond mating-type genes in fungi ('evolutionary strata'), which have been little studied and may be more pervasive than commonly thought. We discuss testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such expansions of recombination suppression, including (1) antagonistic selection, (2) association of additional functions to mating-type, such as uniparental mitochondria inheritance, (3) accumulation in the margin of nonrecombining regions of various factors, including deleterious mutations or transposable elements resulting from relaxed selection, or neutral rearrangements resulting from genetic drift. The study of recombination suppression in fungi could thus contribute to our understanding of recombination suppression expansion across a broader range of organisms.
Collapse
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Marine Duhamel
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
- Ruhr‐Universität Bochum, Evolution of Plants and Fungi ‐ Gebäude ND 03/174Universitätsstraße150, 44801 BochumGermany
| | - Fantin Carpentier
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Michael E. Hood
- Biology Department, Science CentreAmherst CollegeAmherstMA01002USA
| | | | - Philippe Silar
- Lab Interdisciplinaire Energies DemainUniv Paris DiderotSorbonne Paris CiteParis 13F‐75205France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Tatiana Giraud
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| |
Collapse
|
13
|
Hartmann FE, Rodríguez de la Vega RC, Gladieux P, Ma WJ, Hood ME, Giraud T. Higher Gene Flow in Sex-Related Chromosomes than in Autosomes during Fungal Divergence. Mol Biol Evol 2020; 37:668-682. [PMID: 31651949 PMCID: PMC7038665 DOI: 10.1093/molbev/msz252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonrecombining sex chromosomes are widely found to be more differentiated than autosomes among closely related species, due to smaller effective population size and/or to a disproportionally large-X effect in reproductive isolation. Although fungal mating-type chromosomes can also display large nonrecombining regions, their levels of differentiation compared with autosomes have been little studied. Anther-smut fungi from the Microbotryum genus are castrating pathogens of Caryophyllaceae plants with largely nonrecombining mating-type chromosomes. Using whole genome sequences of 40 fungal strains, we quantified genetic differentiation among strains isolated from the geographically overlapping North American species and subspecies of Silene virginica and S. caroliniana. We inferred that gene flow likely occurred at the early stages of divergence and then completely stopped. We identified large autosomal genomic regions with chromosomal inversions, with higher genetic divergence than the rest of the genomes and highly enriched in selective sweeps, supporting a role of rearrangements in preventing gene flow in genomic regions involved in ecological divergence. Unexpectedly, the nonrecombining mating-type chromosomes showed lower divergence than autosomes due to higher gene flow, which may be promoted by adaptive introgressions of less degenerated mating-type chromosomes. The fact that both mating-type chromosomes are always heterozygous and nonrecombining may explain such patterns that oppose to those found for XY or ZW sex chromosomes. The specific features of mating-type chromosomes may also apply to the UV sex chromosomes determining sexes at the haploid stage in algae and bryophytes and may help test general hypotheses on the evolutionary specificities of sex-related chromosomes.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Pierre Gladieux
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Wen-Juan Ma
- Biology Department, Science Centre, Amherst College, Amherst, MA
| | - Michael E Hood
- Biology Department, Science Centre, Amherst College, Amherst, MA
| | - Tatiana Giraud
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
14
|
Sun S, Coelho MA, Heitman J, Nowrousian M. Convergent evolution of linked mating-type loci in basidiomycete fungi. PLoS Genet 2019; 15:e1008365. [PMID: 31490920 PMCID: PMC6730849 DOI: 10.1371/journal.pgen.1008365] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Sexual development is a key evolutionary innovation of eukaryotes. In many species, mating involves interaction between compatible mating partners that can undergo cell and nuclear fusion and subsequent steps of development including meiosis. Mating compatibility in fungi is governed by the mating type (MAT) loci. In basidiomycetes, the ancestral state is hypothesized to be tetrapolar, with two genetically unlinked MAT loci containing homeodomain transcription factor genes (HD locus) and pheromone and pheromone receptor genes (P/R locus), respectively. Alleles at both loci must differ between mating partners for completion of sexual development. However, there are also basidiomycetes with bipolar mating systems, which can arise through genomic linkage of the HD and P/R loci. In the order Tremellales, bipolarity is found only in the pathogenic Cryptococcus species. Here, we describe the analysis of MAT loci from 24 species of the Trichosporonales, a sister order to the Tremellales. In all of the species analyzed, the MAT loci are fused and a single HD gene is present in each mating type, similar to the organization in the pathogenic Cryptococci. However, the HD and P/R allele combinations in the Trichosporonales are different from those in the pathogenic Cryptococci. This and the existence of tetrapolar species in the Tremellales suggest that fusion of the HD and P/R loci occurred independently in the Trichosporonales and pathogenic Cryptococci, supporting the hypothesis of convergent evolution towards fused MAT regions, similar to previous findings in other fungal groups. Unlike the fused MAT loci in several other basidiomycete lineages though, the gene content and gene order within the fused MAT loci are highly conserved in the Trichosporonales, and there is no apparent suppression of recombination extending from the MAT loci to adjacent chromosomal regions, suggesting different mechanisms for the evolution of physically linked MAT loci in these groups.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
15
|
Hadjivasiliou Z, Pomiankowski A. Evolution of asymmetric gamete signaling and suppressed recombination at the mating type locus. eLife 2019; 8:48239. [PMID: 31464685 PMCID: PMC6715347 DOI: 10.7554/elife.48239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 11/24/2022] Open
Abstract
The two partners required for sexual reproduction are rarely the same. This pattern extends to species which lack sexual dimorphism yet possess self-incompatible gametes determined at mating-type regions of suppressed recombination, likely precursors of sex chromosomes. Here we investigate the role of cellular signaling in the evolution of mating-types. We develop a model of ligand-receptor dynamics, and identify factors that determine the capacity of cells to send and receive signals. The model specifies conditions favoring the evolution of gametes producing ligand and receptor asymmetrically and shows how these are affected by recombination. When the recombination rate evolves, the conditions favoring asymmetric signaling also favor tight linkage of ligand and receptor loci in distinct linkage groups. These results suggest that selection for asymmetric gamete signaling could be the first step in the evolution of non-recombinant mating-type loci, paving the road for the evolution of anisogamy and sexes. Sexual reproduction, from birds to bees, relies on distinct classes of sex cells, known as gametes, fusing together. Most single cell organisms, rather than producing eggs and sperm, have similar sized gametes that fall into distinct ‘mating types’. However, only sex cells belonging to different mating types can fuse together and sexually reproduce. At first glance, it seems illogical that cells from the same mating type cannot reproduce with each other, as this restricts eligible partners within a population and makes finding a mate more difficult. Yet the typical pattern amongst single cell organisms is still two distinct classes of sex cells, just as in birds and bees. How did the obsession with mating between two different types become favored during evolution? One possibility is that cells with different mating types can recognize and communicate with each other more easily. Cells communicate by releasing proteins known as ligands, which bind to specific receptors found on the cell’s surface. Using mathematical modelling, Hadjivasiliou and Pomiankowski showed that natural selection typically favors ‘asymmetric’ signaling, whereby cells evolve to either produce receptor A with ligand B, or have the reverse pattern and produce receptor B with ligand A. These asymmetric mutants are favored because they avoid producing ligands that clog or activate the receptors on their own surface. As a result, different types of cells are better at recognizing each other and mating more quickly. When cells sexually reproduce they exchange genetic material with each other to produce offspring with a combination of genes that differ to their own. However, if the genes coding for ligand and receptor pairs were constantly being ‘swapped’, this could lead to new combinations, and a loss of asymmetric signaling. Hadjivasiliou and Pomiankowski showed that for asymmetric signaling to evolve, natural selection favors the genes encoding these non-compatible ligand and receptor pairs to be closely linked within the genome. This ensures that the mis-matching ligand and receptor are inherited together, preventing cells from producing pairs which can bind to themselves. This study provides an original way to address an evolutionary question which has long puzzled biologists. These findings raise further questions about how gametes evolved to become the sperm and egg, and how factors such as signaling between cells can determine the sex of more complex organisms, such as ourselves.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Andrew Pomiankowski
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
16
|
Carpentier F, Rodríguez de la Vega RC, Branco S, Snirc A, Coelho MA, Hood ME, Giraud T. Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Res 2019; 29:944-953. [PMID: 31043437 PMCID: PMC6581054 DOI: 10.1101/gr.242578.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
The degree of selfing has major impacts on adaptability and is often controlled by molecular mechanisms determining mating compatibility. Changes in compatibility systems are therefore important evolutionary events, but their underlying genomic mechanisms are often poorly understood. Fungi display frequent shifts in compatibility systems, and their small genomes facilitate elucidation of the mechanisms involved. In particular, linkage between the pre- and postmating compatibility loci has evolved repeatedly, increasing the odds of gamete compatibility under selfing. Here, we studied the mating-type chromosomes of two anther-smut fungi with unlinked mating-type loci despite a self-fertilization mating system. Segregation analyses and comparisons of high-quality genome assemblies revealed that these two species displayed linkage between mating-type loci and their respective centromeres. This arrangement renders the same improved odds of gamete compatibility as direct linkage of the two mating-type loci under the automictic mating (intratetrad selfing) of anther-smut fungi. Recombination cessation was found associated with a large inversion in only one of the four linkage events. The lack of trans-specific polymorphism at genes located in nonrecombining regions and linkage date estimates indicated that the events of recombination cessation occurred independently in the two sister species. Our study shows that natural selection can repeatedly lead to similar genomic patterns and phenotypes, and that different evolutionary paths can lead to distinct yet equally beneficial responses to selection. Our study further highlights that automixis and gene linkage to centromeres have important genetic and evolutionary consequences, while being poorly recognized despite being present in a broad range of taxa.
Collapse
Affiliation(s)
- Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Sara Branco
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
17
|
Simpson MC, Coetzee MPA, van der Nest MA, Wingfield MJ, Wingfield BD. Ceratocystidaceae exhibit high levels of recombination at the mating-type (MAT) locus. Fungal Biol 2018; 122:1184-1191. [PMID: 30449356 DOI: 10.1016/j.funbio.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/11/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
Abstract
Mating is central to many fungal life cycles and is controlled by genes at the mating-type (MAT) locus. These genes determine whether the fungus will be self-sterile (heterothallic) or self-fertile (homothallic). Species in the ascomycete family Ceratocystidaceae have different mating strategies, making them interesting to consider with regards to their MAT loci. The aim of this study was to compare the composition of the MAT locus flanking regions in 11 species of Ceratocystidaceae representing four genera. Genome assemblies for each species were examined to identify the MAT locus and determine the structure of the flanking regions. Large contigs containing the MAT locus were then functionally annotated and analysed for the presence of transposable elements. Genes typically flanking the MAT locus in sordariomycetes were found to be highly conserved in the Ceratocystidaceae. The different genera in the Ceratocystidaceae displayed little synteny outside of the immediate MAT locus flanking genes. Even though species ofCeratocystis did not show much synteny outside of the immediate MAT locus flanking genes, species of Huntiella and Endoconidiophora were comparatively syntenic. Due to the high number of transposable elements present in Ceratocystis MAT flanking regions, we hypothesise that Ceratocystis species may have undergone recombination in this region.
Collapse
Affiliation(s)
- Melissa C Simpson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
18
|
Feurtey A, Stukenbrock EH. Interspecific Gene Exchange as a Driver of Adaptive Evolution in Fungi. Annu Rev Microbiol 2018; 72:377-398. [DOI: 10.1146/annurev-micro-090817-062753] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Throughout evolutionary history in the kingdom Fungi, taxa have exchanged genetic information among species, as revealed in particular by analyses of genome sequences. In fungi, hybridization can occur by sexual mating or by fusion of vegetative structures giving rise to new species or leaving traces of introgression in the genome. Furthermore, gene exchange can occur by horizontal gene transfer between species and can even include organisms outside the kingdom Fungi. In several cases, interspecific gene exchange has been instrumental in rapid adaptive evolution of fungal species and has notably played a role in the emergence of new pathogens. Here we summarize mechanisms and examples of gene exchange in fungi with a particular focus on the genomic context. We emphasize the need for and potential of applying population genetic approaches to better understand the processes and the impact of interspecific gene exchange in rapid adaptive evolution and species diversification. The broad occurrence of gene exchange among fungal species challenges our species concepts in the kingdom Fungi.
Collapse
Affiliation(s)
- Alice Feurtey
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;,
| | - Eva H. Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;,
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
19
|
Branco S, Carpentier F, Rodríguez de la Vega RC, Badouin H, Snirc A, Le Prieur S, Coelho MA, de Vienne DM, Hartmann FE, Begerow D, Hood ME, Giraud T. Multiple convergent supergene evolution events in mating-type chromosomes. Nat Commun 2018; 9:2000. [PMID: 29784936 PMCID: PMC5962589 DOI: 10.1038/s41467-018-04380-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes. Supergenes result from beneficial linkage and recombination suppression between two or more genes. Giraud and colleagues use whole genome sequencing data to show convergent evolution of supergenes on mating-type chromosomes in multiple closely-related fungal lineages.
Collapse
Affiliation(s)
- Sara Branco
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Hélène Badouin
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France.,Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Stéphanie Le Prieur
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Damien M de Vienne
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Dominik Begerow
- Ruhr-Universitat Bochum, AG Geobotanik Gebaude ND 03/174 Universitatsstraße, 15044780, Bochum, Germany
| | - Michael E Hood
- Department of Biology, University of Virginia, Gilmer 051, Charlottesville, VA, 22903, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
20
|
Sun Y, Svedberg J, Hiltunen M, Corcoran P, Johannesson H. Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma. Nat Commun 2017; 8:1140. [PMID: 29074958 PMCID: PMC5658415 DOI: 10.1038/s41467-017-01317-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A common feature of eukaryote genomes is large chromosomal regions where recombination is absent or strongly reduced, but the factors that cause this reduction are not well understood. Genomic rearrangements have often been implicated, but they may also be a consequence of recombination suppression rather than a cause. In this study, we generate eight high-quality genomic data sets of the filamentous ascomycete Neurospora tetrasperma, a fungus that lacks recombination over most of its largest chromosome. The genomes surprisingly reveal collinearity of the non-recombining regions and although large inversions are enriched in these regions, we conclude these inversions to be derived and not the cause of the suppression. To our knowledge, this is the first time that non-recombining, genic regions as large as 86% of a full chromosome (or 8 Mbp), are shown to be collinear. These findings are of significant interest for our understanding of the evolution of sex chromosomes and other supergene complexes.
Collapse
Affiliation(s)
- Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jesper Svedberg
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Markus Hiltunen
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Pádraic Corcoran
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| |
Collapse
|
21
|
Yamazaki T, Ichihara K, Suzuki R, Oshima K, Miyamura S, Kuwano K, Toyoda A, Suzuki Y, Sugano S, Hattori M, Kawano S. Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita. Sci Rep 2017; 7:11679. [PMID: 28916791 PMCID: PMC5601483 DOI: 10.1038/s41598-017-11677-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/29/2017] [Indexed: 01/08/2023] Open
Abstract
The evolution of sex chromosomes and mating loci in organisms with UV systems of sex/mating type determination in haploid phases via genes on UV chromosomes is not well understood. We report the structure of the mating type (MT) locus and its evolutionary history in the green seaweed Ulva partita, which is a multicellular organism with an isomorphic haploid-diploid life cycle and mating type determination in the haploid phase. Comprehensive comparison of a total of 12.0 and 16.6 Gb of genomic next-generation sequencing data for mt- and mt+ strains identified highly rearranged MT loci of 1.0 and 1.5 Mb in size and containing 46 and 67 genes, respectively, including 23 gametologs. Molecular evolutionary analyses suggested that the MT loci diverged over a prolonged period in the individual mating types after their establishment in an ancestor. A gene encoding an RWP-RK domain-containing protein was found in the mt- MT locus but was not an ortholog of the chlorophycean mating type determination gene MID. Taken together, our results suggest that the genomic structure and its evolutionary history in the U. partita MT locus are similar to those on other UV chromosomes and that the MT locus genes are quite different from those of Chlorophyceae.
Collapse
Affiliation(s)
- Tomokazu Yamazaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Kensuke Ichihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Ryogo Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Kenshiro Oshima
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Shinichi Miyamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyoshi Kuwano
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Masahira Hattori
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
22
|
Brion C, Legrand S, Peter J, Caradec C, Pflieger D, Hou J, Friedrich A, Llorente B, Schacherer J. Variation of the meiotic recombination landscape and properties over a broad evolutionary distance in yeasts. PLoS Genet 2017; 13:e1006917. [PMID: 28763437 PMCID: PMC5554000 DOI: 10.1371/journal.pgen.1006917] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/11/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination is a major factor of genome evolution, deeply characterized in only a few model species, notably the yeast Saccharomyces cerevisiae. Consequently, little is known about variations of its properties across species. In this respect, we explored the recombination landscape of Lachancea kluyveri, a protoploid yeast species that diverged from the Saccharomyces genus more than 100 million years ago and we found striking differences with S. cerevisiae. These variations include a lower recombination rate, a higher frequency of chromosomes segregating without any crossover and the absence of recombination on the chromosome arm containing the sex locus. In addition, although well conserved within the Saccharomyces clade, the S. cerevisiae recombination hotspots are not conserved over a broader evolutionary distance. Finally and strikingly, we found evidence of frequent reversal of commitment to meiosis, resulting in return to mitotic growth after allele shuffling. Identification of this major but underestimated evolutionary phenomenon illustrates the relevance of exploring non-model species. Meiotic recombination promotes accurate chromosome segregation and genetic diversity. To date, the mechanisms and rules lying behind recombination were dissected using model organisms such as the budding yeast Saccharomyces cerevisiae. To assess the conservation and variation of this process over a broad evolutionary distance, we explored the meiotic recombination landscape in Lachancea kluyveri, a budding yeast species that diverged from S. cerevisiae more than 100 million years ago. The meiotic recombination map we generated revealed that the meiotic recombination landscape and properties significantly vary across distantly related yeast species, raising the yet to confirm possibility that recombination hotspots conservation across yeast species depends on synteny conservation. Finally, the frequent meiotic reversions we observed led us to re-evaluate their evolutionary importance.
Collapse
Affiliation(s)
- Christian Brion
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Sylvain Legrand
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Jackson Peter
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Claudia Caradec
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - David Pflieger
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Jing Hou
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Bertrand Llorente
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
- * E-mail: (JS); (BL)
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- * E-mail: (JS); (BL)
| |
Collapse
|
23
|
Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism. Proc Natl Acad Sci U S A 2017. [PMID: 28630332 DOI: 10.1073/pnas.1701658114] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sex chromosomes can display successive steps of recombination suppression known as "evolutionary strata," which are thought to result from the successive linkage of sexually antagonistic genes to sex-determining genes. However, there is little evidence to support this explanation. Here we investigate whether evolutionary strata can evolve without sexual antagonism using fungi that display suppressed recombination extending beyond loci determining mating compatibility despite lack of male/female roles associated with their mating types. By comparing full-length chromosome assemblies from five anther-smut fungi with or without recombination suppression in their mating-type chromosomes, we inferred the ancestral gene order and derived chromosomal arrangements in this group. This approach shed light on the chromosomal fusion underlying the linkage of mating-type loci in fungi and provided evidence for multiple clearly resolved evolutionary strata over a range of ages (0.9-2.1 million years) in mating-type chromosomes. Several evolutionary strata did not include genes involved in mating-type determination. The existence of strata devoid of mating-type genes, despite the lack of sexual antagonism, calls for a unified theory of sex-related chromosome evolution, incorporating, for example, the influence of partially linked deleterious mutations and the maintenance of neutral rearrangement polymorphism due to balancing selection on sexes and mating types.
Collapse
|
24
|
Roy SW. Is Genome Complexity a Consequence of Inefficient Selection? Evidence from Intron Creation in Nonrecombining Regions. Mol Biol Evol 2016; 33:3088-3094. [DOI: 10.1093/molbev/msw172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Śliwińska EB, Martyka R, Tryjanowski P. Evolutionary interaction between W/Y chromosome and transposable elements. Genetica 2016; 144:267-78. [PMID: 27000053 PMCID: PMC4879163 DOI: 10.1007/s10709-016-9895-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Abstract
The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation.
Collapse
Affiliation(s)
- Ewa B Śliwińska
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland.
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland.
| | - Rafał Martyka
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| |
Collapse
|
26
|
Corcoran P, Anderson JL, Jacobson DJ, Sun Y, Ni P, Lascoux M, Johannesson H. Introgression maintains the genetic integrity of the mating-type determining chromosome of the fungus Neurospora tetrasperma. Genome Res 2016; 26:486-98. [PMID: 26893460 PMCID: PMC4817772 DOI: 10.1101/gr.197244.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/16/2016] [Indexed: 01/01/2023]
Abstract
Genome evolution is driven by a complex interplay of factors, including selection, recombination, and introgression. The regions determining sexual identity are particularly dynamic parts of eukaryotic genomes that are prone to molecular degeneration associated with suppressed recombination. In the fungus Neurospora tetrasperma, it has been proposed that this molecular degeneration is counteracted by the introgression of nondegenerated DNA from closely related species. In this study, we used comparative and population genomic analyses of 92 genomes from eight phylogenetically and reproductively isolated lineages of N. tetrasperma, and its three closest relatives, to investigate the factors shaping the evolutionary history of the genomes.We found that suppressed recombination extends across at least 6 Mbp (∼ 63%) of the mating-type (mat) chromosome in N. tetrasperma and is associated with decreased genetic diversity, which is likely the result primarily of selection at linked sites. Furthermore, analyses of molecular evolution revealed an increased mutational load in this region, relative to recombining regions. However, comparative genomic and phylogenetic analyses indicate that the mat chromosomes are temporarily regenerated via introgression from sister species; six of eight lineages show introgression into one of their mat chromosomes, with multiple Neurospora species acting as donors. The introgressed tracts have been fixed within lineages, suggesting that they confer an adaptive advantage in natural populations, and our analyses support the presence of selective sweeps in at least one lineage. Thus, these data strongly support the previously hypothesized role of introgression as a mechanism for the maintenance of mating-type determining chromosomal regions.
Collapse
Affiliation(s)
- Pádraic Corcoran
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden; Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jennifer L Anderson
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - David J Jacobson
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Yu Sun
- Department of Cell and Molecular Biology, Uppsala University, 752 36 Uppsala, Sweden
| | | | - Martin Lascoux
- Department of Ecology and Genetics, Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
27
|
Heitman J. Evolution of sexual reproduction: a view from the Fungal Kingdom supports an evolutionary epoch with sex before sexes. FUNGAL BIOL REV 2015; 29:108-117. [PMID: 26834823 DOI: 10.1016/j.fbr.2015.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sexual reproduction is conserved throughout each supergroup within the eukaryotic tree of life, and therefore thought to have evolved once and to have been present in the last eukaryotic common ancestor (LECA). Given the antiquity of sex, there are features of sexual reproduction that are ancient and ancestral, and thus shared in diverse extant organisms. On the other hand, the vast evolutionary distance that separates any given extant species from the LECA necessarily implies that other features of sex will be derived. While most types of sex we are familiar with involve two opposite sexes or mating types, recent studies in the fungal kingdom have revealed novel and unusual patterns of sexual reproduction, including unisexual reproduction. In this mode of reproduction a single mating type can on its own undergo self-fertile/homothallic reproduction, either with itself or with other members of the population of the same mating type. Unisexual reproduction has arisen independently as a derived feature in several different lineages. That a myriad of different types of sex determination and sex determinants abound in animals, plants, protists, and fungi suggests that sex specification itself may not be ancestral and instead may be a derived trait. If so, then the original form of sexual reproduction may have been unisexual, onto which sexes were superimposed as a later feature. In this model, unisexual reproduction is both an ancestral and a derived trait. In this review, we consider what is new and what is old about sexual reproduction from the unique vantage point of the fungal kingdom.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
28
|
Idnurm A, Hood ME, Johannesson H, Giraud T. Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination. FUNGAL BIOL REV 2015; 29:220-229. [PMID: 26688691 PMCID: PMC4680991 DOI: 10.1016/j.fbr.2015.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is striking that, while central to sexual reproduction, the genomic regions determining sex or mating-types are often characterized by suppressed recombination that leads to a decrease in the efficiency of selection, shelters genetic load, and inevitably contributes to their genic degeneration. Research on model and lesser-explored fungi has revealed similarities in recombination suppression of the genomic regions involved in mating compatibility across eukaryotes, but fungi also provide opposite examples of enhanced recombination in the genomic regions that determine their mating types. These contrasted patterns of genetic recombination (sensu lato, including gene conversion and ectopic recombination) in regions of the genome involved in mating compatibility point to important yet complex processes occurring in their evolution. A number of pieces in this puzzle remain to be solved, in particular on the unclear selective forces that may cause the patterns of recombination, prompting theoretical developments and experimental studies. This review thus points to fungi as a fascinating group for studying the various evolutionary forces at play in the genomic regions involved in mating compatibility.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, VIC 3010, Australia
| | - Michael E. Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA
| | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex, France
| |
Collapse
|
29
|
The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen. Genetics 2015; 201:1213-28. [PMID: 26392286 DOI: 10.1534/genetics.115.180968] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/17/2015] [Indexed: 12/30/2022] Open
Abstract
Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host.
Collapse
|
30
|
Perlin MH, Amselem J, Fontanillas E, Toh SS, Chen Z, Goldberg J, Duplessis S, Henrissat B, Young S, Zeng Q, Aguileta G, Petit E, Badouin H, Andrews J, Razeeq D, Gabaldón T, Quesneville H, Giraud T, Hood ME, Schultz DJ, Cuomo CA. Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genomics 2015; 16:461. [PMID: 26076695 PMCID: PMC4469406 DOI: 10.1186/s12864-015-1660-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Background The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. Results We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14 % of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. Conclusions The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1660-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Joelle Amselem
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France. .,Institut National de la Recherche Agronomique (INRA), Biologie et gestion des risques en agriculture (BIOGER), Thiverval-Grignon, France.
| | - Eric Fontanillas
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Sebastien Duplessis
- INRA, UMR 1136, Interactions Arbres-Microorganismes, Champenoux, France. .,UMR 1136, Université de Lorraine, Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France.
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France. .,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Elsa Petit
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France. .,Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France.
| | - Helene Badouin
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Jared Andrews
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Dominique Razeeq
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Spain.
| | - Hadi Quesneville
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France.
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA, 01002, USA.
| | - David J Schultz
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
31
|
Chaos of Rearrangements in the Mating-Type Chromosomes of the Anther-Smut Fungus Microbotryum lychnidis-dioicae. Genetics 2015; 200:1275-84. [PMID: 26044594 PMCID: PMC4574255 DOI: 10.1534/genetics.115.177709] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/02/2015] [Indexed: 12/02/2022] Open
Abstract
Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres. Suppressed recombination of the mating-type chromosomes is revealed to span nearly 90% of their lengths, with extreme levels of rearrangements, transposable element accumulation, and differentiation between the two mating types. We observed no correlation between allelic divergence and physical position in the nonrecombining regions of the mating-type chromosomes. This may result from gene conversion or from rearrangements of ancient evolutionary strata, i.e., successive steps of suppressed recombination. Centromeres were found to be composed mainly of copia-like transposable elements and to possess specific minisatellite repeats identical between the different chromosomes. We also identified subtelomeric motifs. In addition, extensive signs of degeneration were detected in the nonrecombining regions in the form of transposable element accumulation and of hundreds of gene losses on each mating-type chromosome. Furthermore, our study highlights the potential of the latest breakthrough PacBio chemistry to resolve complex genome architectures.
Collapse
|
32
|
Fontanillas E, Hood ME, Badouin H, Petit E, Barbe V, Gouzy J, de Vienne DM, Aguileta G, Poulain J, Wincker P, Chen Z, Toh SS, Cuomo CA, Perlin MH, Gladieux P, Giraud T. Degeneration of the nonrecombining regions in the mating-type chromosomes of the anther-smut fungi. Mol Biol Evol 2015; 32:928-43. [PMID: 25534033 PMCID: PMC4379399 DOI: 10.1093/molbev/msu396] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dimorphic mating-type chromosomes in fungi are excellent models for understanding the genomic consequences of recombination suppression. Their suppressed recombination and reduced effective population size are expected to limit the efficacy of natural selection, leading to genomic degeneration. Our aim was to identify the sequences of the mating-type chromosomes (a1 and a2) of the anther-smut fungi and to investigate degeneration in their nonrecombining regions. We used the haploid a1 Microbotryum lychnidis-dioicae reference genome sequence. The a1 and a2 mating-type chromosomes were both isolated electrophoretically and sequenced. Integration with restriction-digest optical maps identified regions of recombination and nonrecombination in the mating-type chromosomes. Genome sequence data were also obtained for 12 other Microbotryum species. We found strong evidence of degeneration across the genus in the nonrecombining regions of the mating-type chromosomes, with significantly higher rates of nonsynonymous substitution (dN/dS) than in nonmating-type chromosomes or in recombining regions of the mating-type chromosomes. The nonrecombining regions of the mating-type chromosomes also showed high transposable element content, weak gene expression, and gene losses. The levels of degeneration did not differ between the a1 and a2 mating-type chromosomes, consistent with the lack of homogametic/heterogametic asymmetry between them, and contrasting with X/Y or Z/W sex chromosomes.
Collapse
Affiliation(s)
- Eric Fontanillas
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | | | - Hélène Badouin
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | - Elsa Petit
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France Department of Biology, Amherst College
| | - Valérie Barbe
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Jérôme Gouzy
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Damien M de Vienne
- Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5558, Université Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gabriela Aguileta
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France CNRS UMR 8030, Evry, France
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville
| | | | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville
| | - Pierre Gladieux
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| |
Collapse
|
33
|
Immler S, Otto SP. The evolution of sex chromosomes in organisms with separate haploid sexes. Evolution 2015; 69:694-708. [PMID: 25582562 DOI: 10.1111/evo.12602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/11/2014] [Indexed: 11/29/2022]
Abstract
The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings.
Collapse
Affiliation(s)
- Simone Immler
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| | | |
Collapse
|
34
|
Whittle CA, Votintseva A, Ridout K, Filatov DA. Recent and massive expansion of the mating-type-specific region in the smut fungus Microbotryum. Genetics 2015; 199:809-16. [PMID: 25567990 PMCID: PMC4349073 DOI: 10.1534/genetics.114.171702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/22/2014] [Indexed: 12/25/2022] Open
Abstract
The presence of large genomic regions with suppressed recombination (SR) is a key shared property of some sex- and mating-type determining (mat) chromosomes identified to date in animals, plants, and fungi. Why such regions form and how they evolve remain central questions in evolutionary genetics. The smut fungus Microbotryum lychnis-dioicae is a basidiomycete fungus in which dimorphic mat chromosomes have been reported, but the size, age, and evolutionary dynamics of the SR region remains unresolved. To identify the SR region in M. lychnis-dioicae and to study its evolution, we sequenced 12 genomes (6 per mating type) of this species and identified the genomic contigs that show fixed sequence differences between the mating types. We report that the SR region spans more than half of the mat chromosome (>2.3 Mbp) and that it is of very recent origin (∼2 × 10(6) years) as the average sequence divergence between mating types was only 2% in the SR region. This contrasts with a much higher divergence in and around the mating-type determining pheromone receptor locus in the SR, suggesting a recent and massive expansion of the SR region. Our results comprise the first reported case of recent massive SR expansion documented in a basidiomycete fungus.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Antonina Votintseva
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Kate Ridout
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
35
|
Abstract
Owing to their small size and paucity of phenotypic characters, progress in the evolutionary biology of microbes in general, and human pathogenic fungi in particular, has been linked to a series of advances in DNA sequencing over the past quarter century. Phylogenetics was the first area to benefit, with the achievement of a basic understanding of fungal phylogeny. Population genetics was the next advance, finding cryptic species everywhere, and recombination in species previously thought to be asexual. Comparative genomics saw the next advance, in which variation in gene content and changes in gene family size were found to be important sources of variation. Fungal population genomics is showing that gene flow among closely related populations and species provides yet another source of adaptive, genetic variation. Now, two means to associate genetic variation with phenotypic variation, "reverse ecology" for adaptive phenotypes, and genome-wide association of any phenotype, are letting evolutionary biology make a profound contribution to molecular developmental biology of pathogenic fungi.
Collapse
Affiliation(s)
- John W Taylor
- University of California, Berkeley, California 94720-3102
| |
Collapse
|
36
|
Abstract
We used comparative and population genomics to study intron evolutionary dynamics in the fungal model genus Neurospora. For our investigation, we used well-annotated genomes of N. crassa, N. discreta, and N. tetrasperma, and 92 resequenced genomes of N. tetrasperma from natural populations. By analyzing the four well-annotated genomes, we identified 9495 intron sites in 7619 orthologous genes. Our data supports nonhomologous end joining (NHEJ) and tandem duplication as mechanisms for intron gains in the genus and the RT-mRNA process as a mechanism for intron loss. We found a moderate intron gain rate (5.78–6.89 × 10−13 intron gains per nucleotide site per year) and a high intron loss rate (7.53–13.76 × 10−10 intron losses per intron sites per year) as compared to other eukaryotes. The derived intron gains and losses are skewed to high frequencies, relative to neutral SNPs, in natural populations of N. tetrasperma, suggesting that selection is involved in maintaining a high intron turnover. Furthermore, our analyses of the association between intron population-level frequency and genomic features suggest that selection is involved in shaping a 5′ intron position bias and a low intron GC content. However, intron sequence analyses suggest that the gained introns were not exposed to recent selective sweeps. Taken together, this work contributes to our understanding of the importance of mutational bias and selection in shaping the intron distribution in eukaryotic genomes.
Collapse
|
37
|
Ahmed S, Cock JM, Pessia E, Luthringer R, Cormier A, Robuchon M, Sterck L, Peters AF, Dittami SM, Corre E, Valero M, Aury JM, Roze D, Van de Peer Y, Bothwell J, Marais GAB, Coelho SM. A haploid system of sex determination in the brown alga Ectocarpus sp. Curr Biol 2014; 24:1945-57. [PMID: 25176635 DOI: 10.1016/j.cub.2014.07.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/11/2014] [Accepted: 07/15/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND A common feature of most genetic sex-determination systems studied so far is that sex is determined by nonrecombining genomic regions, which can be of various sizes depending on the species. These regions have evolved independently and repeatedly across diverse groups. A number of such sex-determining regions (SDRs) have been studied in animals, plants, and fungi, but very little is known about the evolution of sexes in other eukaryotic lineages. RESULTS We report here the sequencing and genomic analysis of the SDR of Ectocarpus, a brown alga that has been evolving independently from plants, animals, and fungi for over one giga-annum. In Ectocarpus, sex is expressed during the haploid phase of the life cycle, and both the female (U) and the male (V) sex chromosomes contain nonrecombining regions. The U and V of this species have been diverging for more than 70 mega-annum, yet gene degeneration has been modest, and the SDR is relatively small, with no evidence for evolutionary strata. These features may be explained by the occurrence of strong purifying selection during the haploid phase of the life cycle and the low level of sexual dimorphism. V is dominant over U, suggesting that femaleness may be the default state, adopted when the male haplotype is absent. CONCLUSIONS The Ectocarpus UV system has clearly had a distinct evolutionary trajectory not only to the well-studied XY and ZW systems but also to the UV systems described so far. Nonetheless, some striking similarities exist, indicating remarkable universality of the underlying processes shaping sex chromosome evolution across distant lineages.
Collapse
Affiliation(s)
- Sophia Ahmed
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France; Medical Biology Centre, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - J Mark Cock
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Eugenie Pessia
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Centre National de la Recherche Scientifique, Université Lyon 1, 69622 Villeurbanne, France
| | - Remy Luthringer
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Alexandre Cormier
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Marine Robuchon
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France; Evolutionary Biology and Ecology of Algae, CNRS UMI 3604, Sorbonne Université, UPMC, PUCCh, UACH, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Lieven Sterck
- Department of Plant Systems Biology (VIB) and Department of Plant Biotechnology and Bioinformatics (Ghent University), Technologiepark 927, 9052 Gent, Belgium
| | | | - Simon M Dittami
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Erwan Corre
- ABiMS Platform, FR2424, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Myriam Valero
- Evolutionary Biology and Ecology of Algae, CNRS UMI 3604, Sorbonne Université, UPMC, PUCCh, UACH, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 91000 Evry, France
| | - Denis Roze
- Evolutionary Biology and Ecology of Algae, CNRS UMI 3604, Sorbonne Université, UPMC, PUCCh, UACH, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Yves Van de Peer
- Department of Plant Systems Biology (VIB) and Department of Plant Biotechnology and Bioinformatics (Ghent University), Technologiepark 927, 9052 Gent, Belgium; Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria 0028, South Africa
| | - John Bothwell
- Medical Biology Centre, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Centre National de la Recherche Scientifique, Université Lyon 1, 69622 Villeurbanne, France
| | - Susana M Coelho
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| |
Collapse
|
38
|
Whittle CA, Sun Y, Johannesson H. Dynamics of transcriptome evolution in the model eukaryote Neurospora. J Evol Biol 2014; 27:1125-35. [PMID: 24848562 DOI: 10.1111/jeb.12386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/23/2014] [Accepted: 03/28/2014] [Indexed: 12/27/2022]
Abstract
Mounting evidence indicates that changes in the transcriptome contribute significantly to the phenotypic differentiation of closely related species. Nonetheless, further genome-wide studies, spanning a broad range of organisms, are needed to decipher the factors driving transcriptome evolution. The model Neurospora (Ascomycota) comprises a simple system for empirically studying the evolutionary dynamics of the transcriptome. Here, we studied the evolution of gene expression in Neurospora crassa and Neurospora tetrasperma and show that patterns of transcriptome evolution are connected to genome evolution, tissue type and sexual identity (mating types, mat A and mat a) in these eukaryotes. Based on the comparisons of inter- and intraspecies expression divergence, our data reveal that rapid expression divergence is more apt to occur in sexual/female (SF) than vegetative/male (VM) tissues. In addition, interspecies gene expression and protein sequence divergence were strongly correlated for SF, but not VM, tissue. A correlation between transcriptome and protein evolution parallels findings from certain animals, but not yeast, and add support for the theory that expression evolution differs fundamentally among multicellular and unicellular eukaryotes. Finally, we found that sexual identity in these hermaphroditic Neurospora species is connected to interspecies expression divergence in a tissue-dependent manner: rapid divergence occurred for mat A- and mat a-biased genes from SF and VM tissues, respectively. Based on these findings, it is hypothesized that rapid interspecies transcriptome evolution is shifting the mating types of Neurospora towards distinct female and male phenotypes, that is, sexual dimorphism.
Collapse
Affiliation(s)
- C A Whittle
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
39
|
Corcoran P, Dettman JR, Sun Y, Luque EM, Corrochano LM, Taylor JW, Lascoux M, Johannesson H. A global multilocus analysis of the model fungus Neurospora reveals a single recent origin of a novel genetic system. Mol Phylogenet Evol 2014; 78:136-47. [PMID: 24845789 DOI: 10.1016/j.ympev.2014.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 02/13/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
The large diversity of mating systems observed in the fungal kingdom underlines the importance of mating system change in fungal evolution. The selfing species Neurospora tetrasperma has evolved a novel method of achieving self-fertility by a mating system referred to as pseudohomothallism. However, little is known about the origin of N. tetrasperma and its relationship to the self-sterile, heterothallic, Neurospora species. In this study, we used a combination of phylogenetic and population genetic analyses to reconstruct the evolutionary history of N. tetrasperma and its heterothallic relatives. We sequenced 9 unlinked nuclear loci from 106 strains of N. tetrasperma sampled from across the globe, and a sample of 28 heterothallic strains of Neurospora. Our analyses provide strong support for monophyly of N. tetrasperma, but reject the monophyly of N. crassa. We estimate that N. tetrasperma is of a recent origin and that it diverged from the heterothallic species ∼1 million years ago. We also extend previous findings on the diversification within the N. tetrasperma clade, with 10 lineages identified. Taken together, these findings indicate that N. tetrasperma is younger than has been previously reported and that a rapid diversification of lineages has occurred within the N. tetrasperma clade.
Collapse
Affiliation(s)
- Pádraic Corcoran
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden.
| | - Jeremy R Dettman
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yu Sun
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Eva M Luque
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | | | - John W Taylor
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Martin Lascoux
- Department of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Leducq JB. Ecological Genomics of Adaptation and Speciation in Fungi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:49-72. [DOI: 10.1007/978-94-007-7347-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Bolton MD, de Jonge R, Inderbitzin P, Liu Z, Birla K, Van de Peer Y, Subbarao KV, Thomma BPHJ, Secor GA. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution. Fungal Genet Biol 2013; 62:43-54. [PMID: 24216224 DOI: 10.1016/j.fgb.2013.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022]
Abstract
Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species.
Collapse
Affiliation(s)
- Melvin D Bolton
- Northern Crop Science Laboratory, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States.
| | - Ronnie de Jonge
- Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Patrik Inderbitzin
- Department of Plant Pathology, University of California, Davis, CA, United States
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Keshav Birla
- Northern Crop Science Laboratory, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States; Department of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, United States
| | - Bart P H J Thomma
- Department of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Gary A Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
42
|
Species and population level molecular profiling reveals cryptic recombination and emergent asymmetry in the dimorphic mating locus of C. reinhardtii. PLoS Genet 2013; 9:e1003724. [PMID: 24009520 PMCID: PMC3757049 DOI: 10.1371/journal.pgen.1003724] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
Heteromorphic sex-determining regions or mating-type loci can contain large regions of non-recombining sequence where selection operates under different constraints than in freely recombining autosomal regions. Detailed studies of these non-recombining regions can provide insights into how genes are gained and lost, and how genetic isolation is maintained between mating haplotypes or sex chromosomes. The Chlamydomonas reinhardtii mating-type locus (MT) is a complex polygenic region characterized by sequence rearrangements and suppressed recombination between its two haplotypes, MT+ and MT−. We used new sequence information to redefine the genetic contents of MT and found repeated translocations from autosomes as well as sexually controlled expression patterns for several newly identified genes. We examined sequence diversity of MT genes from wild isolates of C. reinhardtii to investigate the impacts of recombination suppression. Our population data revealed two previously unreported types of genetic exchange in Chlamydomonas MT—gene conversion in the rearranged domains, and crossover exchanges in flanking domains—both of which contribute to maintenance of genetic homogeneity between haplotypes. To investigate the cause of blocked recombination in MT we assessed recombination rates in crosses where the parents were homozygous at MT. While normal recombination was restored in MT+×MT+ crosses, it was still suppressed in MT−×MT− crosses. These data revealed an underlying asymmetry in the two MT haplotypes and suggest that sequence rearrangements are insufficient to fully account for recombination suppression. Together our findings reveal new evolutionary dynamics for mating loci and have implications for the evolution of heteromorphic sex chromosomes and other non-recombining genomic regions. Sex chromosomes and mating-type loci are often atypical in their structure and evolutionary dynamics. One distinguishing feature is the absence of recombination that results in genetic isolation and promotes rapid evolution and sometimes degeneration. We investigated gene content, sex-regulated expression, and recombination of mating locus (MT) genes in the unicellular alga Chlamydomonas reinhardtii. Despite the lack of observable recombination in and around Chlamydomonas MT, genes from its two mating types are far more similar to each other than expected for a non-recombining region. This discrepancy is explained by our finding evidence of genetic exchange between the two mating types within wild populations. In addition, we observed an unexpected asymmetry in the recombination behavior of the two mating types that may have contributed to the preferential expansion of one MT haplotype over the other through insertion of new genes. Our data suggest a mechanism to explain the emergence of heteromorphic sex chromosomes in haploid organisms by asymmetric expansion rather than by loss or degeneration as occurs in some Y or W chromosomes from diploid organisms. Our observations support a revised view of recombination in sex-determining regions as a quantitative phenomenon that can significantly affect rates of evolution and sex-linked genetic diversification.
Collapse
|
43
|
van der Nest MA, Steenkamp ET, Wilken MP, Stenlid J, Wingfield MJ, Wingfield BD, Slippers B. Mutualism and asexual reproduction influence recognition genes in a fungal symbiont. Fungal Biol 2013; 117:439-50. [PMID: 23809654 DOI: 10.1016/j.funbio.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 04/23/2013] [Accepted: 05/01/2013] [Indexed: 11/20/2022]
Abstract
Mutualism between microbes and insects is common and alignment of the reproductive interests of microbial symbionts with this lifestyle typically involves clonal reproduction and vertical transmission by insect partners. Here the Amylostereum fungus-Sirex woodwasp mutualism was used to consider whether their prolonged association and predominance of asexuality have affected the mating system of the fungal partner. Nucleotide information for the pheromone receptor gene rab1, as well as the translation elongation factor 1α gene and ribosomal RNA internal transcribed spacer region were utilized. The identification of rab1 alleles in Amylostereum chailletii and Amylostereum areolatum populations revealed that this gene is more polymorphic than the other two regions, although the diversity of all three regions was lower than what has been observed in free-living Agaricomycetes. Our data suggest that suppressed recombination might be implicated in the diversification of rab1, while no evidence of balancing selection was detected. We also detected positive selection at only two codons, suggesting that purifying selection is important for the evolution of rab1. The symbiotic relationship with their insect partners has therefore influenced the diversity of this gene and influenced the manner in which selection drives and maintains this diversity in A. areolatum and A. chailletii.
Collapse
MESH Headings
- Animals
- Basidiomycota/genetics
- Basidiomycota/physiology
- Cluster Analysis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Genes, Mating Type, Fungal
- Hymenoptera/microbiology
- Molecular Sequence Data
- Peptide Elongation Factor 1/genetics
- Polymorphism, Genetic
- Receptors, Pheromone/genetics
- Recombination, Genetic
- Sequence Analysis, DNA
- Symbiosis
Collapse
Affiliation(s)
- Magriet A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute-FABI, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | |
Collapse
|
44
|
Samils N, Gioti A, Karlsson M, Sun Y, Kasuga T, Bastiaans E, Wang Z, Li N, Townsend JP, Johannesson H. Sex-linked transcriptional divergence in the hermaphrodite fungus Neurospora tetrasperma. Proc Biol Sci 2013; 280:20130862. [PMID: 23782882 PMCID: PMC3712418 DOI: 10.1098/rspb.2013.0862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the filamentous ascomycete Neurospora tetrasperma, a large (approx. 7 Mbp) region of suppressed recombination surrounds the mating-type (mat) locus. While the remainder of the genome is largely homoallelic, this region of recombinational suppression, extending over 1500 genes, is associated with sequence divergence. Here, we used microarrays to examine how the molecular phenotype of gene expression level is linked to this divergent region, and thus to the mating type. Culturing N. tetrasperma on agar media that induce sexual/female or vegetative/male tissue, we found 196 genes significantly differentially expressed between mat A and mat a mating types. Our data show that the genes exhibiting mat-linked expression are enriched in the region genetically linked to mating type, and sequence and expression divergence are positively correlated. Our results indicate that the phenotype of mat A strains is optimized for traits promoting sexual/female development and the phenotype of mat a strains for vegetative/male development. This discovery of differentially expressed genes associated with mating type provides a link between genotypic and phenotypic divergence in this taxon and illustrates a fungal analogue to sexual dimorphism found among animals and plants.
Collapse
Affiliation(s)
- Nicklas Samils
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, PO Box 7026, 75007 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McDaniel SF, Neubig KM, Payton AC, Quatrano RS, Cove DJ. Recent gene-capture on the UV sex chromosomes of the moss Ceratodon purpureus. Evolution 2013; 67:2811-22. [PMID: 24094335 DOI: 10.1111/evo.12165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/02/2013] [Indexed: 01/12/2023]
Abstract
Sex chromosomes evolve from ordinary autosomes through the expansion and subsequent degeneration of a region of suppressed recombination that is inherited through one sex. Here we investigate the relative timing of these processes in the UV sex chromosomes of the moss Ceratodon purpureus using molecular population genetic analyses of eight newly discovered sex-linked loci. In this system, recombination is suppressed on both the female-transmitted (U) sex chromosome and the male-transmitted (V) chromosome. Genes on both chromosomes therefore should show the deleterious effects of suppressed recombination and sex-limited transmission, while purifying selection should maintain homologs of genes essential for both sexes on both sex chromosomes. Based on analyses of eight sex-linked loci, we show that the nonrecombining portions of the U and V chromosomes expanded in at least two events (~0.6-1.3 MYA and ~2.8-3.5 MYA), after the divergence of C. purpureus from its dioecious sister species, Trichodon cylindricus and Cheilothela chloropus. Both U- and V-linked copies showed reduced nucleotide diversity and limited population structure, compared to autosomal loci, suggesting that the sex chromosomes experienced more recent selective sweeps that the autosomes. Collectively these results highlight the dynamic nature of gene composition and molecular evolution on nonrecombining portions of the U and V sex chromosomes.
Collapse
Affiliation(s)
- Stuart F McDaniel
- Biology Department, University of Florida, Gainesville, Florida, 32611.
| | | | | | | | | |
Collapse
|
46
|
Abstract
It is now well established that plants have an important place in studies of sex chromosome evolution because of the repeated independent evolution of separate sexes and sex chromosomes. There has been considerable recent progress in studying plant sex chromosomes. In this review, I focus on how these recent studies have helped clarify or answer several important questions about sex chromosome evolution, and I shall also try to clarify some common misconceptions. I also outline future work that will be needed to make further progress, including testing some important ideas by genetic, molecular, and developmental approaches. Systems with different ages can clearly help show the time course of events during changes from an ancestral co-sexual state (hermaphroditism or monoecy), and I will also explain how different questions can be studied in lineages whose dioecy or sex chromosomes evolved at different times in the past.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
47
|
Abstract
Genomic regions that determine mating compatibility are subject to distinct evolutionary forces that can lead to a cessation of meiotic recombination and the accumulation of structural changes between members of the homologous chromosome pair. The relatively recent discovery of dimorphic mating-type chromosomes in fungi can aid the understanding of sex chromosome evolution that is common to dioecious plants and animals. For the anther-smut fungus, Microbotryum lychnidis-dioicae (= M. violaceum isolated from Silene latifolia), the extent of recombination cessation on the dimorphic mating-type chromosomes has been conflictingly reported. Comparison of restriction digest optical maps for the two mating-type chromosomes shows that divergence extends over 90% of the chromosome lengths, flanked at either end by two pseudoautosomal regions. Evidence to support the expansion of recombination cessation in stages from the mating-type locus toward the pseudoautosomal regions was not found, but evidence of such expansion could be obscured by ongoing processes that affect genome structure. This study encourages the comparison of forces that may drive large-scale recombination suppression in fungi and other eukaryotes characterized by dimorphic chromosome pairs associated with sexual life cycles.
Collapse
|
48
|
Whittle CA, Johannesson H. Neurospora as a model to empirically test central hypotheses in eukaryotic genome evolution. Bioessays 2012; 34:934-7. [DOI: 10.1002/bies.201200110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Sun Y, Corcoran P, Menkis A, Whittle CA, Andersson SGE, Johannesson H. Large-scale introgression shapes the evolution of the mating-type chromosomes of the filamentous ascomycete Neurospora tetrasperma. PLoS Genet 2012; 8:e1002820. [PMID: 22844246 PMCID: PMC3406010 DOI: 10.1371/journal.pgen.1002820] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/17/2012] [Indexed: 12/14/2022] Open
Abstract
The significance of introgression as an evolutionary force shaping natural populations is well established, especially in animal and plant systems. However, the abundance and size of introgression tracts, and to what degree interspecific gene flow is the result of adaptive processes, are largely unknown. In this study, we present medium coverage genomic data from species of the filamentous ascomycete Neurospora, and we use comparative genomics to investigate the introgression landscape at the genomic level in this model genus. We revealed one large introgression tract in each of the three investigated phylogenetic lineages of Neurospora tetrasperma (sizes of 5.6 Mbp, 5.2 Mbp, and 4.1 Mbp, respectively). The tract is located on the chromosome containing the locus conferring sexual identity, the mating-type (mat) chromosome. The region of introgression is confined to the region of suppressed recombination and is found on one of the two mat chromosomes (mat a). We used Bayesian concordance analyses to exclude incomplete lineage sorting as the cause for the observed pattern, and multilocus genealogies from additional species of Neurospora show that the introgression likely originates from two closely related, freely recombining, heterothallic species (N. hispaniola and N. crassa/N. perkinsii). Finally, we investigated patterns of molecular evolution of the mat chromosome in Neurospora, and we show that introgression is correlated with reduced level of molecular degeneration, consistent with a shorter time of recombination suppression. The chromosome specific (mat) and allele specific (mat a) introgression reported herein comprise the largest introgression tracts reported to date from natural populations. Furthermore, our data contradicts theoretical predictions that introgression should be less likely on sex-determining chromosomes. Taken together, the data presented herein advance our general understanding of introgression as a force shaping eukaryotic genomes. Introgression is a process by which genetic material from one species becomes infiltrated into another, genetically distinct species. Introgression usually occurs via sexual reproduction: individuals of two species mate and produce a hybrid offspring, then the offspring repeatedly backcross with one of the parental species. Introgression has long been recognized as a key process in evolution, as it may contribute to speciation, diversification, and adaptation to new environments. The importance and prevalence of introgression has been well established in plant and animal systems, and in this study we use a fungal model system, Neurospora, to study the introgression at the genomic level. We gathered genomic data from six genomes, and by comparative genomics we revealed genetic transfer of DNA regions of unprecedentedly large sizes, covering over 50% of the mating-type chromosomes, and used phylogenetic analyses to reveal the origin and direction of the transfer. Introgression was found solely on the mating-type chromosomes, which contradicts theoretical predictions for sex-determining chromosomes. We argue that this unexpected pattern is due to the fact that fungi do not have differentiated sexes (female/male) and thereby are free from sex-biased evolutionary forces. Instead, we suggest that introgression between fungal species may result in reinvigoration of genomic regions exposed to suppressed recombination.
Collapse
Affiliation(s)
- Yu Sun
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Pádraic Corcoran
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carrie A. Whittle
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | | | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
50
|
Corcoran P, Jacobson DJ, Bidartondo MI, Hickey PC, Kerekes JF, Taylor JW, Johannesson H. Quantifying functional heterothallism in the pseudohomothallic ascomycete Neurospora tetrasperma. Fungal Biol 2012; 116:962-75. [PMID: 22954339 DOI: 10.1016/j.funbio.2012.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Neurospora tetrasperma is a pseudohomothallic filamentous ascomycete that has evolved from heterothallic ancestors. Throughout its life cycle, it is predominantly heterokaryotic for mating type, and thereby self-fertile. However, studies of N. tetrasperma have revealed the occasional production of self-sterile asexual and sexual spores of a single-mating type, indicating that it can be functionally heterothallic. Here, we report the extensive sampling and isolation of natural, heterokaryotic, strains of N. tetrasperma from the United Kingdom (UK): 99 strains were collected from Surrey, England, and four from Edinburgh, Scotland. We verified by phylogenetic analyses that these strains belong to N. tetrasperma. We isolated cultures from single germinated asexual spores (conidia) from 17 of these newly sampled UK strains from Surrey, and 16 previously sampled strains of N. tetrasperma from New Zealand (NZ). Our results show that the N. tetrasperma strains from the UK population produced a significantly greater proportion of self-sterile, homokaryotic conidia than the NZ population: the proportion of homokaryotic conidia was 42.6 % (133/312 spores) and 15.3 % (59/386) from the UK and the NZ populations, respectively. Although homokaryons recovered from several strains show a bias for one of the mating types, the total ratio of mat A to mat a mating type in homokaryons (UK: 72/61, NZ 28/31) did not deviate significantly from the expected 1:1 ratio for either of these populations. These results indicate that different populations exhibit differences in their life cycle characteristics, and that a higher degree of outcrossing might be expected from the UK population. This study points to the importance of studying multiple strains and populations when investigating life history traits of an organism with a complex life cycle, as previously undetected differences between populations may be revealed.
Collapse
Affiliation(s)
- Pádraic Corcoran
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|