1
|
Mohanta TK, Mishra AK, Al-Harrasi A. The 3D Genome: From Structure to Function. Int J Mol Sci 2021; 22:11585. [PMID: 34769016 PMCID: PMC8584255 DOI: 10.3390/ijms222111585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
The genome is the most functional part of a cell, and genomic contents are organized in a compact three-dimensional (3D) structure. The genome contains millions of nucleotide bases organized in its proper frame. Rapid development in genome sequencing and advanced microscopy techniques have enabled us to understand the 3D spatial organization of the genome. Chromosome capture methods using a ligation approach and the visualization tool of a 3D genome browser have facilitated detailed exploration of the genome. Topologically associated domains (TADs), lamin-associated domains, CCCTC-binding factor domains, cohesin, and chromatin structures are the prominent identified components that encode the 3D structure of the genome. Although TADs are the major contributors to 3D genome organization, they are absent in Arabidopsis. However, a few research groups have reported the presence of TAD-like structures in the plant kingdom.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; or
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
2
|
Abstract
Meiotic recombination is a fundamental process that generates genetic diversity and ensures the accurate segregation of homologous chromosomes. While a great deal is known about genetic factors that regulate recombination, relatively little is known about epigenetic factors, such as DNA methylation. In maize, we examined the effects on meiotic recombination of a mutation in a component of the RNA-directed DNA methylation pathway, Mop1 (Mediator of paramutation1), as well as a mutation in a component of the trans-acting small interference RNA biogenesis pathway, Lbl1 (Leafbladeless1). MOP1 is of particular interest with respect to recombination because it is responsible for methylation of transposable elements that are immediately adjacent to transcriptionally active genes. In the mop1 mutant, we found that meiotic recombination is uniformly decreased in pericentromeric regions but is generally increased in gene rich chromosomal arms. This observation was further confirmed by cytogenetic analysis showing that although overall crossover numbers are unchanged, they occur more frequently in chromosomal arms in mop1 mutants. Using whole genome bisulfite sequencing, our data show that crossover redistribution is driven by loss of CHH (where H = A, T, or C) methylation within regions near genes. In contrast to what we observed in mop1 mutants, no significant changes were observed in the frequency of meiotic recombination in lbl1 mutants. Our data demonstrate that CHH methylation has a significant impact on the overall recombination landscape in maize despite its low frequency relative to CG and CHG methylation.
Collapse
|
3
|
Hydroxyurea and Caffeine Impact pRb-like Protein-Dependent Chromatin Architecture Profiles in Interphase Cells of Vicia faba. Int J Mol Sci 2021; 22:ijms22094572. [PMID: 33925461 PMCID: PMC8123844 DOI: 10.3390/ijms22094572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
The survival of cells depends on their ability to replicate correctly genetic material. Cells exposed to replication stress can experience a number of problems that may lead to deregulated proliferation, the development of cancer, and/or programmed cell death. In this article, we have induced prolonged replication arrest via hydroxyurea (HU) treatment and also premature chromosome condensation (PCC) by co-treatment with HU and caffeine (CF) in the root meristem cells of Vicia faba. We have analyzed the changes in the activities of retinoblastoma-like protein (RbS807/811ph). Results obtained from the immunocytochemical detection of RbS807/811ph allowed us to distinguish five unique activity profiles of pRb. We have also performed detailed 3D modeling using Blender 2.9.1., based on the original data and some final conclusions. 3D models helped us to visualize better the events occurring within the nuclei and acted as a high-resolution aid for presenting the results. We have found that, despite the decrease in pRb activity, its activity profiles were mostly intact and clearly recognizable, with some local alterations that may correspond to the increased demand in transcriptional activity. Our findings suggest that Vicia faba’s ability to withstand harsh environments may come from its well-developed and highly effective response to replication stress.
Collapse
|
4
|
Zhang Q, Guan P, Zhao L, Ma M, Xie L, Li Y, Zheng R, Ouyang W, Wang S, Li H, Zhang Y, Peng Y, Cao Z, Zhang W, Xiao Q, Xiao Y, Fu T, Li G, Li X, Shen J. Asymmetric epigenome maps of subgenomes reveal imbalanced transcription and distinct evolutionary trends in Brassica napus. MOLECULAR PLANT 2021; 14:604-619. [PMID: 33387675 DOI: 10.1016/j.molp.2020.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/28/2020] [Accepted: 12/28/2020] [Indexed: 05/20/2023]
Abstract
The complexity of the epigenome landscape and transcriptional regulation is significantly increased during plant polyploidization, which drives genome evolution and contributes to the increased adaptability to diverse environments. However, a comprehensive epigenome map of Brassica napus is still unavailable. In this study, we performed integrative analysis of five histone modifications, RNA polymerase II occupancy, DNA methylation, and transcriptomes in two B. napus lines (2063A and B409), and established global maps of regulatory elements, chromatin states, and their dynamics for the whole genome (including the An and Cn subgenomes) in four tissue types (young leaf, flower bud, silique, and root) of these two lines. Approximately 65.8% of the genome was annotated with different epigenomic signals. Compared with the Cn subgenome, the An subgenome possesses a higher level of active epigenetic marks and lower level of repressive epigenetic marks. Genes from subgenome-unique regions contribute to the major differences between the An and Cn subgenomes. Asymmetric histone modifications between homeologous gene pairs reflect their biased expression patterns. We identified a novel bivalent chromatin state (with H3K4me1 and H3K27me3) in B. napus that is associated with tissue-specific gene expression. Furthermore, we observed that different types of duplicated genes have discrepant patterns of histone modification and DNA methylation levels. Collectively, our findings provide a valuable epigenetic resource for allopolyploid plants.
Collapse
Affiliation(s)
- Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengpeng Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqin Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shunyao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmeijuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilin Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanling Xiao
- National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Borges F, Donoghue MTA, LeBlanc C, Wear EE, Tanurdžić M, Berube B, Brooks A, Thompson WF, Hanley-Bowdoin L, Martienssen RA. Loss of Small-RNA-Directed DNA Methylation in the Plant Cell Cycle Promotes Germline Reprogramming and Somaclonal Variation. Curr Biol 2020; 31:591-600.e4. [PMID: 33275892 DOI: 10.1016/j.cub.2020.10.098] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
5-methyl cytosine is widespread in plant genomes in both CG and non-CG contexts. During replication, hemi-methylation on parental DNA strands guides symmetric CG methylation on nascent strands, but non-CG methylation requires modified histones and small RNA guides. Here, we used immortalized Arabidopsis cell suspensions to sort replicating nuclei and determine genome-wide cytosine methylation dynamics during the plant cell cycle. We find that symmetric mCG and mCHG are selectively retained in actively dividing cells in culture, whereas mCHH is depleted. mCG becomes transiently asymmetric during S phase but is rapidly restored in G2, whereas mCHG remains asymmetric throughout the cell cycle. Hundreds of loci gain ectopic CHG methylation, as well as 24-nt small interfering RNAs (siRNAs) and histone H3 lysine dimethylation (H3K9me2), without gaining CHH methylation. This suggests that spontaneous epialleles that arise in plant cell cultures are stably maintained by siRNA and H3K9me2 independent of the canonical RNA-directed DNA methylation (RdDM) pathway. In contrast, loci that fail to produce siRNA may be targeted for demethylation when the cell cycle arrests. Comparative analysis with methylomes of various tissues and cell types suggests that loss of small-RNA-directed non-CG methylation during DNA replication promotes germline reprogramming and epigenetic variation in plants propagated as clones.
Collapse
Affiliation(s)
- Filipe Borges
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Mark T A Donoghue
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Chantal LeBlanc
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Emily E Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Milos Tanurdžić
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Benjamin Berube
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ashley Brooks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - William F Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
6
|
Wheeler E, Brooks AM, Concia L, Vera DL, Wear EE, LeBlanc C, Ramu U, Vaughn MW, Bass HW, Martienssen RA, Thompson WF, Hanley-Bowdoin L. Arabidopsis DNA Replication Initiates in Intergenic, AT-Rich Open Chromatin. PLANT PHYSIOLOGY 2020; 183:206-220. [PMID: 32205451 PMCID: PMC7210620 DOI: 10.1104/pp.19.01520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 05/04/2023]
Abstract
The selection and firing of DNA replication origins play key roles in ensuring that eukaryotes accurately replicate their genomes. This process is not well documented in plants due in large measure to difficulties in working with plant systems. We developed a new functional assay to label and map very early replicating loci that must, by definition, include at least a subset of replication origins. Arabidopsis (Arabidopsis thaliana) cells were briefly labeled with 5-ethynyl-2'-deoxy-uridine, and nuclei were subjected to two-parameter flow sorting. We identified more than 5500 loci as initiation regions (IRs), the first regions to replicate in very early S phase. These were classified as strong or weak IRs based on the strength of their replication signals. Strong initiation regions were evenly spaced along chromosomal arms and depleted in centromeres, while weak initiation regions were enriched in centromeric regions. IRs are AT-rich sequences flanked by more GC-rich regions and located predominantly in intergenic regions. Nuclease sensitivity assays indicated that IRs are associated with accessible chromatin. Based on these observations, initiation of plant DNA replication shows some similarity to, but is also distinct from, initiation in other well-studied eukaryotic systems.
Collapse
Affiliation(s)
- Emily Wheeler
- North Carolina State University, Department of Plant and Microbial Biology, Raleigh, North Carolina 27695
| | - Ashley M Brooks
- North Carolina State University, Department of Plant and Microbial Biology, Raleigh, North Carolina 27695
| | - Lorenzo Concia
- North Carolina State University, Department of Plant and Microbial Biology, Raleigh, North Carolina 27695
| | - Daniel L Vera
- Florida State University, Center for Genomics and Personalized Medicine, Tallahassee, Florida 32306
| | - Emily E Wear
- North Carolina State University, Department of Plant and Microbial Biology, Raleigh, North Carolina 27695
| | - Chantal LeBlanc
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, Texas 78758
| | - Hank W Bass
- Florida State University, Department of Biological Science, Tallahassee, Florida 32306
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - William F Thompson
- North Carolina State University, Department of Plant and Microbial Biology, Raleigh, North Carolina 27695
| | - Linda Hanley-Bowdoin
- North Carolina State University, Department of Plant and Microbial Biology, Raleigh, North Carolina 27695
| |
Collapse
|
7
|
Pontvianne F, Liu C. Chromatin domains in space and their functional implications. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:1-10. [PMID: 31881292 DOI: 10.1016/j.pbi.2019.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 05/19/2023]
Abstract
Genome organization displays functional compartmentalization. Many factors, including epigenetic modifications, transcription factors, chromatin remodelers, and RNAs, shape chromatin domains and the three-dimensional genome organization. Various types of chromatin domains with distinct epigenetic and spatial features exhibit different transcriptional activities. As part of the efforts to better understand plant functional genomics, over the past a few years, spatial distribution patterns of plant chromatin domains have been brought to light. In this review, we discuss chromatin domains associated with the nuclear periphery and the nucleolus, as well as chromatin domains staying in proximity and showing physical interactions. The functional implication of these domains is discussed, with a particular focus on the transcriptional regulation and replication timing. Finally, from a biophysical point of view, we discuss potential roles of liquid-liquid phase separation in plant nuclei in the genesis and maintenance of spatial chromatin domains.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan 66860, France; UPVD, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan 66860, France.
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen 72076, Germany.
| |
Collapse
|
8
|
Ávila Robledillo L, Koblížková A, Novák P, Böttinger K, Vrbová I, Neumann P, Schubert I, Macas J. Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci Rep 2018; 8:5838. [PMID: 29643436 PMCID: PMC5895790 DOI: 10.1038/s41598-018-24196-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/28/2018] [Indexed: 11/17/2022] Open
Abstract
Satellite DNA, a class of repetitive sequences forming long arrays of tandemly repeated units, represents substantial portions of many plant genomes yet remains poorly characterized due to various methodological obstacles. Here we show that the genome of the field bean (Vicia faba, 2n = 12), a long-established model for cytogenetic studies in plants, contains a diverse set of satellite repeats, most of which remained concealed until their present investigation. Using next-generation sequencing combined with novel bioinformatics tools, we reconstructed consensus sequences of 23 novel satellite repeats representing 0.008–2.700% of the genome and mapped their distribution on chromosomes. We found that in addition to typical satellites with monomers hundreds of nucleotides long, V. faba contains a large number of satellite repeats with unusually long monomers (687–2033 bp), which are predominantly localized in pericentromeric regions. Using chromatin immunoprecipitation with CenH3 antibody, we revealed an extraordinary diversity of centromeric satellites, consisting of seven repeats with chromosome-specific distribution. We also found that in spite of their different nucleotide sequences, all centromeric repeats are replicated during mid-S phase, while most other satellites are replicated in the first part of late S phase, followed by a single family of FokI repeats representing the latest replicating chromatin.
Collapse
Affiliation(s)
- Laura Ávila Robledillo
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic.,University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
| | - Andrea Koblížková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Katharina Böttinger
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic.,University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
| | - Iva Vrbová
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic.
| |
Collapse
|
9
|
Concia L, Brooks AM, Wheeler E, Zynda GJ, Wear EE, LeBlanc C, Song J, Lee TJ, Pascuzzi PE, Martienssen RA, Vaughn MW, Thompson WF, Hanley-Bowdoin L. Genome-Wide Analysis of the Arabidopsis Replication Timing Program. PLANT PHYSIOLOGY 2018; 176:2166-2185. [PMID: 29301956 PMCID: PMC5841712 DOI: 10.1104/pp.17.01537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/03/2018] [Indexed: 05/21/2023]
Abstract
Eukaryotes use a temporally regulated process, known as the replication timing program, to ensure that their genomes are fully and accurately duplicated during S phase. Replication timing programs are predictive of genomic features and activity and are considered to be functional readouts of chromatin organization. Although replication timing programs have been described for yeast and animal systems, much less is known about the temporal regulation of plant DNA replication or its relationship to genome sequence and chromatin structure. We used the thymidine analog, 5-ethynyl-2'-deoxyuridine, in combination with flow sorting and Repli-Seq to describe, at high-resolution, the genome-wide replication timing program for Arabidopsis (Arabidopsis thaliana) Col-0 suspension cells. We identified genomic regions that replicate predominantly during early, mid, and late S phase, and correlated these regions with genomic features and with data for chromatin state, accessibility, and long-distance interaction. Arabidopsis chromosome arms tend to replicate early while pericentromeric regions replicate late. Early and mid-replicating regions are gene-rich and predominantly euchromatic, while late regions are rich in transposable elements and primarily heterochromatic. However, the distribution of chromatin states across the different times is complex, with each replication time corresponding to a mixture of states. Early and mid-replicating sequences interact with each other and not with late sequences, but early regions are more accessible than mid regions. The replication timing program in Arabidopsis reflects a bipartite genomic organization with early/mid-replicating regions and late regions forming separate, noninteracting compartments. The temporal order of DNA replication within the early/mid compartment may be modulated largely by chromatin accessibility.
Collapse
Affiliation(s)
- Lorenzo Concia
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Ashley M Brooks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Emily Wheeler
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Gregory J Zynda
- Texas Advanced Computing Center, University of Texas at Austin, Austin, Texas 78758
| | - Emily E Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Chantal LeBlanc
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas at Austin, Austin, Texas 78758
| | - Tae-Jin Lee
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Pete E Pascuzzi
- Purdue University Libraries, Purdue University, West Lafayette, Indiana 47907
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas at Austin, Austin, Texas 78758
| | - William F Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
10
|
Dvořáčková M, Raposo B, Matula P, Fuchs J, Schubert V, Peška V, Desvoyes B, Gutierrez C, Fajkus J. Replication of ribosomal DNA in Arabidopsis occurs both inside and outside the nucleolus during S phase progression. J Cell Sci 2018; 131:jcs.202416. [PMID: 28483825 DOI: 10.1242/jcs.202416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
Ribosomal RNA genes (rDNA) have been used as valuable experimental systems in numerous studies. Here, we focus on elucidating the spatiotemporal organisation of rDNA replication in Arabidopsis thaliana To determine the subnuclear distribution of rDNA and the progression of its replication during the S phase, we apply 5-ethynyl-2'-deoxyuridine (EdU) labelling, fluorescence-activated cell sorting, fluorescence in situ hybridization and structured illumination microscopy. We show that rDNA is replicated inside and outside the nucleolus, where active transcription occurs at the same time. Nascent rDNA shows a maximum of nucleolar associations during early S phase. In addition to EdU patterns typical for early or late S phase, we describe two intermediate EdU profiles characteristic for mid S phase. Moreover, the use of lines containing mutations in the chromatin assembly factor-1 gene fas1 and wild-type progeny of fas1xfas2 crosses depleted of inactive copies allows for selective observation of the replication pattern of active rDNA. High-resolution data are presented, revealing the culmination of replication in the mid S phase in the nucleolus and its vicinity. Taken together, our results provide a detailed snapshot of replication of active and inactive rDNA during S phase progression.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Berta Raposo
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Petr Matula
- Department of Computer Graphics and Design, Faculty of Informatics, Masaryk University, Botanická 554/68a, Brno 60200, Czech Republic
| | - Joerg Fuchs
- Breeding Research Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland D-06466, Germany
| | - Veit Schubert
- Breeding Research Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland D-06466, Germany
| | - Vratislav Peška
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic.,Department of Cell Biology and Radiology, Institute of Biophysics ASCR, v.v.i., Královopolská 135, Brno 61265, Czech Republic
| | - Bénédicte Desvoyes
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Crisanto Gutierrez
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Jiří Fajkus
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic .,Department of Cell Biology and Radiology, Institute of Biophysics ASCR, v.v.i., Královopolská 135, Brno 61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czech Republic
| |
Collapse
|
11
|
Leisner CP, Yendrek CR, Ainsworth EA. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress. BMC PLANT BIOLOGY 2017; 17:242. [PMID: 29233093 PMCID: PMC5727933 DOI: 10.1186/s12870-017-1188-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/30/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O3]), or increased temperature. RESULTS All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O3] and elevated temperature, respectively. CONCLUSIONS Elevated [O3] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.
Collapse
Affiliation(s)
- Courtney P. Leisner
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801 USA
- Current address: Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Craig R. Yendrek
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801 USA
- Current address: The Scotts Company, Marysville, OH 43040 USA
| | - Elizabeth A. Ainsworth
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801 USA
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801 USA
- USDA ARS Global Change and Photosynthesis Research Unit, 1201 W Gregory Drive, Urbana, IL 61801 USA
| |
Collapse
|
12
|
Pass DA, Sornay E, Marchbank A, Crawford MR, Paszkiewicz K, Kent NA, Murray JAH. Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. PLoS Genet 2017; 13:e1006988. [PMID: 28902852 PMCID: PMC5597176 DOI: 10.1371/journal.pgen.1006988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
All eukaryotic genomes are packaged as chromatin, with DNA interlaced with both regularly patterned nucleosomes and sub-nucleosomal-sized protein structures such as mobile and labile transcription factors (TF) and initiation complexes, together forming a dynamic chromatin landscape. Whilst details of nucleosome position in Arabidopsis have been previously analysed, there is less understanding of their relationship to more dynamic sub-nucleosomal particles (subNSPs) defined as protected regions shorter than the ~150bp typical of nucleosomes. The genome-wide profile of these subNSPs has not been previously analysed in plants and this study investigates the relationship of dynamic bound particles with transcriptional control. Here we combine differential micrococcal nuclease (MNase) digestion and a modified paired-end sequencing protocol to reveal the chromatin structure landscape of Arabidopsis cells across a wide particle size range. Linking this data to RNAseq expression analysis provides detailed insight into the relationship of identified DNA-bound particles with transcriptional activity. The use of differential digestion reveals sensitive positions, including a labile -1 nucleosome positioned upstream of the transcription start site (TSS) of active genes. We investigated the response of the chromatin landscape to changes in environmental conditions using light and dark growth, given the large transcriptional changes resulting from this simple alteration. The resulting shifts in the suites of expressed and repressed genes show little correspondence to changes in nucleosome positioning, but led to significant alterations in the profile of subNSPs upstream of TSS both globally and locally. We examined previously mapped positions for the TFs PIF3, PIF4 and CCA1, which regulate light responses, and found that changes in subNSPs co-localized with these binding sites. This small particle structure is detected only under low levels of MNase digestion and is lost on more complete digestion of chromatin to nucleosomes. We conclude that wide-spectrum analysis of the Arabidopsis genome by differential MNase digestion allows detection of sensitive features hereto obscured, and the comparisons between genome-wide subNSP profiles reveals dynamic changes in their distribution, particularly at distinct genomic locations (i.e. 5'UTRs). The method here employed allows insight into the complex influence of genetic and extrinsic factors in modifying the sub-nucleosomal landscape in association with transcriptional changes.
Collapse
Affiliation(s)
- Daniel Antony Pass
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Emily Sornay
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Angela Marchbank
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Margaret R. Crawford
- Genome Centre, University of Sussex, Sussex House, Falmer, Brighton, United Kingdom
| | - Konrad Paszkiewicz
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, United Kingdom
| | - Nicholas A. Kent
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - James A. H. Murray
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
13
|
Wear EE, Song J, Zynda GJ, LeBlanc C, Lee TJ, Mickelson-Young L, Concia L, Mulvaney P, Szymanski ES, Allen GC, Martienssen RA, Vaughn MW, Hanley-Bowdoin L, Thompson WF. Genomic Analysis of the DNA Replication Timing Program during Mitotic S Phase in Maize ( Zea mays) Root Tips. THE PLANT CELL 2017; 29:2126-2149. [PMID: 28842533 PMCID: PMC5635974 DOI: 10.1105/tpc.17.00037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/31/2017] [Accepted: 08/24/2017] [Indexed: 05/19/2023]
Abstract
All plants and animals must replicate their DNA, using a regulated process to ensure that their genomes are completely and accurately replicated. DNA replication timing programs have been extensively studied in yeast and animal systems, but much less is known about the replication programs of plants. We report a novel adaptation of the "Repli-seq" assay for use in intact root tips of maize (Zea mays) that includes several different cell lineages and present whole-genome replication timing profiles from cells in early, mid, and late S phase of the mitotic cell cycle. Maize root tips have a complex replication timing program, including regions of distinct early, mid, and late S replication that each constitute between 20 and 24% of the genome, as well as other loci corresponding to ∼32% of the genome that exhibit replication activity in two different time windows. Analyses of genomic, transcriptional, and chromatin features of the euchromatic portion of the maize genome provide evidence for a gradient of early replicating, open chromatin that transitions gradually to less open and less transcriptionally active chromatin replicating in mid S phase. Our genomic level analysis also demonstrated that the centromere core replicates in mid S, before heavily compacted classical heterochromatin, including pericentromeres and knobs, which replicate during late S phase.
Collapse
Affiliation(s)
- Emily E Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, Texas 78758
| | - Gregory J Zynda
- Texas Advanced Computing Center, University of Texas, Austin, Texas 78758
| | - Chantal LeBlanc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Tae-Jin Lee
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Lorenzo Concia
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Patrick Mulvaney
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Eric S Szymanski
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - George C Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695
| | | | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, Texas 78758
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - William F Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
14
|
Zynda GJ, Song J, Concia L, Wear EE, Hanley-Bowdoin L, Thompson WF, Vaughn MW. Repliscan: a tool for classifying replication timing regions. BMC Bioinformatics 2017; 18:362. [PMID: 28784090 PMCID: PMC5547489 DOI: 10.1186/s12859-017-1774-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/30/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Replication timing experiments that use label incorporation and high throughput sequencing produce peaked data similar to ChIP-Seq experiments. However, the differences in experimental design, coverage density, and possible results make traditional ChIP-Seq analysis methods inappropriate for use with replication timing. RESULTS To accurately detect and classify regions of replication across the genome, we present Repliscan. Repliscan robustly normalizes, automatically removes outlying and uninformative data points, and classifies Repli-seq signals into discrete combinations of replication signatures. The quality control steps and self-fitting methods make Repliscan generally applicable and more robust than previous methods that classify regions based on thresholds. CONCLUSIONS Repliscan is simple and effective to use on organisms with different genome sizes. Even with analysis window sizes as small as 1 kilobase, reliable profiles can be generated with as little as 2.4x coverage.
Collapse
Affiliation(s)
- Gregory J Zynda
- Texas Advanced Computing Center, University of Texas at Austin, 10100 Burnet Road, Austin, 78758-4497, TX, USA
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas at Austin, 10100 Burnet Road, Austin, 78758-4497, TX, USA
| | - Lorenzo Concia
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, 27695-7612, NC, USA
| | - Emily E Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, 27695-7612, NC, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, 27695-7612, NC, USA
| | - William F Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, 27695-7612, NC, USA
| | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas at Austin, 10100 Burnet Road, Austin, 78758-4497, TX, USA.
| |
Collapse
|
15
|
Savadel SD, Bass HW. Take a look at plant DNA replication: Recent insights and new questions. PLANT SIGNALING & BEHAVIOR 2017; 12:e1311437. [PMID: 28375043 PMCID: PMC5437822 DOI: 10.1080/15592324.2017.1311437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 05/21/2023]
Abstract
Recent advances in replicative DNA labeling technology have allowed new ways to study DNA replication in living plants. Temporal and spatial aspects of DNA replication programs are believed to derive from genomic structure and function. Bass et al. (2015) recently visualized DNA synthesis using 3D microscopy of nuclei at three sub-stages of S phase: early, middle and late. This addendum expands on that study by comparing plant and animal DNA replication patterns, by considering implications of the two-compartment model of euchromatin, and by exploring the meaning of the DNA labeling signals inside the nucleolus. Finally, we invite the public to explore and utilize 300 image data sets through OMERO, a teaching and research web resource for visualization, management, or analysis of microscopic data.
Collapse
Affiliation(s)
- Savannah D. Savadel
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- CONTACT Hank W. Bass Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, Florida, 32306–4295, USA
| |
Collapse
|
16
|
Underwood CJ, Henderson IR, Martienssen RA. Genetic and epigenetic variation of transposable elements in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:135-141. [PMID: 28343122 PMCID: PMC5746046 DOI: 10.1016/j.pbi.2017.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 05/03/2023]
Abstract
Transposable elements are mobile genetic elements that are prevalent in plant genomes and are silenced by epigenetic modification. Different epigenetic modification pathways play distinct roles in the control of transposable element transcription, replication and recombination. The Arabidopsis genome contains families of all of the major transposable element classes, which are differentially enriched in particular genomic regions. Whole genome sequencing and DNA methylation profiling of hundreds of natural Arabidopsis accessions has revealed that transposable elements exhibit significant intraspecific genetic and epigenetic variation, and that genetic variation often underlies epigenetic variation. Together, epigenetic modification and the forces of selection define the scope within which transposable elements can contribute to, and control, genome evolution.
Collapse
Affiliation(s)
- Charles J Underwood
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Ian R Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Robert A Martienssen
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; HHMI-GBMF, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
17
|
Large-scale heterochromatin remodeling linked to overreplication-associated DNA damage. Proc Natl Acad Sci U S A 2016; 114:406-411. [PMID: 28028228 DOI: 10.1073/pnas.1619774114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previously, we have shown that loss of the histone 3 lysine 27 (H3K27) monomethyltransferases ARABIDOPSIS TRITHORAX-RELATED 5 (ATXR5) and ATXR6 (ATXR6) results in the overreplication of heterochromatin. Here we show that the overreplication results in DNA damage and extensive chromocenter remodeling into unique structures we have named "overreplication-associated centers" (RACs). RACs have a highly ordered structure with an outer layer of condensed heterochromatin, an inner layer enriched in the histone variant H2AX, and a low-density core containing foci of phosphorylated H2AX (a marker of double-strand breaks) and the DNA-repair enzyme RAD51. atxr5,6 mutants are strongly affected by mutations in DNA repair, such as ATM and ATR. Because of its dense packaging and repetitive DNA sequence, heterochromatin is a challenging environment in which to repair DNA damage. Previous work in animals has shown that heterochromatic breaks are translocated out of the heterochromatic domain for repair. Our results show that atxr5,6 mutants use a variation on this strategy for repairing heterochromatic DNA damage. Rather than being moved to adjacent euchromatic regions, as in animals, heterochromatin undergoes large-scale remodeling to create a compartment with low chromatin density.
Collapse
|
18
|
Mickelson-Young L, Wear E, Mulvaney P, Lee TJ, Szymanski ES, Allen G, Hanley-Bowdoin L, Thompson W. A flow cytometric method for estimating S-phase duration in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6077-6087. [PMID: 27697785 PMCID: PMC5100020 DOI: 10.1093/jxb/erw367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The duration of the DNA synthesis stage (S phase) of the cell cycle is fundamental in our understanding of cell cycle kinetics, cell proliferation, and DNA replication timing programs. Most S-phase duration estimates that exist for plants are based on indirect measurements. We present a method for directly estimating S-phase duration by pulse-labeling root tips or actively dividing suspension cells with the halogenated thymidine analog 5-ethynl-2'-deoxyuridine (EdU) and analyzing the time course of replication with bivariate flow cytometry. The transition between G1 and G2 DNA contents can be followed by measuring the mean DNA content of EdU-labeled S-phase nuclei as a function of time after the labeling pulse. We applied this technique to intact root tips of maize (Zea mays L.), rice (Oryza sativa L.), barley (Hordeum vulgare L.), and wheat (Triticum aestivum L.), and to actively dividing cell cultures of Arabidopsis (Arabidopsis thaliana (L.) Heynh.) and rice. Estimates of S-phase duration in root tips were remarkably consistent, varying only by ~3-fold, although the genome sizes of the species analyzed varied >40-fold.
Collapse
Affiliation(s)
- Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Emily Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Patrick Mulvaney
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Tae-Jin Lee
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
- Present address: Syngenta Crop Protection, LLC, Research Triangle Park, NC 27709, USA
| | - Eric S Szymanski
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
- Present address: Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - George Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - William Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
19
|
Ye J, Zhang Z, You C, Zhang X, Lu J, Ma H. Abundant protein phosphorylation potentially regulates Arabidopsis anther development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4993-5008. [PMID: 27531888 PMCID: PMC5014169 DOI: 10.1093/jxb/erw293] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4-7 and 8-12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development.
Collapse
Affiliation(s)
- Juanying Ye
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zaibao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jianan Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Yokoyama R, Hirakawa T, Hayashi S, Sakamoto T, Matsunaga S. Dynamics of plant DNA replication based on PCNA visualization. Sci Rep 2016; 6:29657. [PMID: 27417498 PMCID: PMC4945867 DOI: 10.1038/srep29657] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022] Open
Abstract
DNA replication is an essential process for the copying of genomic information in living organisms. Imaging of DNA replication in tissues and organs is mainly performed using fixed cells after incorporation of thymidine analogs. To establish a useful marker line to measure the duration of DNA replication and analyze the dynamics of DNA replication, we focused on the proliferating cell nuclear antigen (PCNA), which functions as a DNA sliding clamp for replicative DNA polymerases and is an essential component of replisomes. In this study we produced an Arabidopsis thaliana line expressing PCNA1 fused with the green fluorescent protein under the control of its own promoter (pAtPCNA1::AtPCNA1-sGFP). The duration of the S phase measured using the expression line was consistent with that measured after incorporation of a thymidine analog. Live cell imaging revealed that three distinct nuclear localization patterns (whole, dotted, and speckled) were sequentially observable. These whole, dotted, and speckled patterns of subnuclear AtPCNA1 signals were indicative of the G1 or G2 phase, early S phase and late S phase, respectively. The results indicate that the pAtPCNA1::AtPCNA1-sGFP line is a useful marker line for visualization of S-phase progression in live plant organs.
Collapse
Affiliation(s)
- Ryohei Yokoyama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takeshi Hirakawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Seri Hayashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
21
|
Yelina NE, Lambing C, Hardcastle TJ, Zhao X, Santos B, Henderson IR. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev 2016; 29:2183-202. [PMID: 26494791 PMCID: PMC4617981 DOI: 10.1101/gad.270876.115] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Yelina et al. show that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. This work demonstrates that DNA methylation plays a key role in establishing domains of meiotic recombination along chromosomes. During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes.
Collapse
Affiliation(s)
- Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Thomas J Hardcastle
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Bruno Santos
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
22
|
Wear EE, Concia L, Brooks AM, Markham EA, Lee TJ, Allen GC, Thompson WF, Hanley-Bowdoin L. Isolation of Plant Nuclei at Defined Cell Cycle Stages Using EdU Labeling and Flow Cytometry. Methods Mol Biol 2016; 1370:69-86. [PMID: 26659955 DOI: 10.1007/978-1-4939-3142-2_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
5-Ethynyl-2'-deoxyuridine (EdU) is a nucleoside analog of thymidine that can be rapidly incorporated into replicating DNA in vivo and, subsequently, detected by using "click" chemistry to couple its terminal alkyne group to fluorescent azides such as Alexa Fluor 488. Recently, EdU incorporation followed by coupling with a fluorophore has been used to visualize newly synthesized DNA in a wide range of plant species. One particularly useful application is in flow cytometry, where two-parameter sorting can be employed to analyze different phases of the cell cycle, as defined both by total DNA content and the amount of EdU pulse-labeled DNA. This approach allows analysis of the cell cycle without the need for synchronous cell populations, which can be difficult to obtain in many plant systems. The approach presented here, which was developed for fixed, EdU-labeled nuclei, can be used to prepare analytical profiles as well as to make highly purified preparations of G1, S, or G2/M phase nuclei for molecular or biochemical analysis. We present protocols for EdU pulse labeling, tissue fixation and harvesting, nuclei preparation, and flow sorting. Although developed for Arabidopsis suspension cells and maize root tips, these protocols should be modifiable to many other plant systems.
Collapse
Affiliation(s)
- Emily E Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Lorenzo Concia
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ashley M Brooks
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emily A Markham
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Tae-Jin Lee
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - George C Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - William F Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
23
|
Bass HW, Hoffman GG, Lee TJ, Wear EE, Joseph SR, Allen GC, Hanley-Bowdoin L, Thompson WF. Defining multiple, distinct, and shared spatiotemporal patterns of DNA replication and endoreduplication from 3D image analysis of developing maize (Zea mays L.) root tip nuclei. PLANT MOLECULAR BIOLOGY 2015; 89:339-51. [PMID: 26394866 PMCID: PMC4631726 DOI: 10.1007/s11103-015-0364-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/19/2015] [Indexed: 05/09/2023]
Abstract
Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase.
Collapse
Affiliation(s)
- Hank W Bass
- Department of Biological Science, Florida State University, 319 Stadium Drive, King Life Sciences Building, Tallahassee, FL, 32306-4295, USA.
| | - Gregg G Hoffman
- Department of Biological Science, Florida State University, 319 Stadium Drive, King Life Sciences Building, Tallahassee, FL, 32306-4295, USA
| | - Tae-Jin Lee
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Emily E Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Stacey R Joseph
- Department of Biological Science, Florida State University, 319 Stadium Drive, King Life Sciences Building, Tallahassee, FL, 32306-4295, USA
| | - George C Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695-7609, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - William F Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| |
Collapse
|
24
|
Sornay E, Forzani C, Forero-Vargas M, Dewitte W, Murray JAH. Activation of CYCD7;1 in the central cell and early endosperm overcomes cell-cycle arrest in the Arabidopsis female gametophyte, and promotes early endosperm and embryo development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:41-55. [PMID: 26261067 PMCID: PMC5102630 DOI: 10.1111/tpj.12957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 05/27/2023]
Abstract
In angiosperms, double fertilization of the egg and central cell of the megagametophyte leads to the development of the embryo and endosperm, respectively. Control of cell cycle progression in the megagametophyte is essential for successful fertilization and development. Central cell-targeted expression of the D-type cyclin CYCD7;1 (end CYCD7;1) using the imprinted FWA promoter overcomes cycle arrest of the central cell in the Arabidopsis female gametophyte in the unfertilized ovule, leading to multinucleate central cells at high frequency. Unlike FERTILIZATION-INDEPENDENT SEED (fis) mutants, but similar to lethal RETINOBLASTOMA-RELATED (rbr) mutants, no seed coat development is triggered. Unlike the case with loss of rbr, post-fertilization end CYCD7;1 in the endosperm enhances the number of nuclei during syncytial endosperm development and induces the partial abortion of developing seeds, associated with the enhanced size of the surviving seeds. The frequency of lethality was less than the frequency of multinucleate central cells, indicating that these aspects are not causally linked. These larger seeds contain larger embryos composed of more cells of wild-type size, surrounded by a seed coat composed of more cells. Seedlings arising from these larger seeds displayed faster seedling establishment and early growth. Similarly, two different embryo-lethal mutants also conferred enlarged seed size in surviving siblings, consistent with seed size increase being a general response to sibling lethality, although the cellular mechanisms were found to be distinct. Our data suggest that tight control of CYCD activity in the central cell and in the developing endosperm is required for optimal seed formation.
Collapse
Affiliation(s)
- Emily Sornay
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Céline Forzani
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Route de Saint-Cyr, 78026, Versailles, Cedex, France
| | - Manuel Forero-Vargas
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
- Facultad de Ingenieria, Universidad de Ibagué, Calle Barrio Ambalá, Ibagué, 730002, Colombia
| | - Walter Dewitte
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - James A H Murray
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
25
|
Analysis of Histones H3 and H4 Reveals Novel and Conserved Post-Translational Modifications in Sugarcane. PLoS One 2015; 10:e0134586. [PMID: 26226299 PMCID: PMC4520453 DOI: 10.1371/journal.pone.0134586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/10/2015] [Indexed: 11/29/2022] Open
Abstract
Histones are the main structural components of the nucleosome, hence targets of many regulatory proteins that mediate processes involving changes in chromatin. The functional outcome of many pathways is “written” in the histones in the form of post-translational modifications that determine the final gene expression readout. As a result, modifications, alone or in combination, are important determinants of chromatin states. Histone modifications are accomplished by the addition of different chemical groups such as methyl, acetyl and phosphate. Thus, identifying and characterizing these modifications and the proteins related to them is the initial step to understanding the mechanisms of gene regulation and in the future may even provide tools for breeding programs. Several studies over the past years have contributed to increase our knowledge of epigenetic gene regulation in model organisms like Arabidopsis, yet this field remains relatively unexplored in crops. In this study we identified and initially characterized histones H3 and H4 in the monocot crop sugarcane. We discovered a number of histone genes by searching the sugarcane ESTs database. The proteins encoded correspond to canonical histones, and their variants. We also purified bulk histones and used them to map post-translational modifications in the histones H3 and H4 using mass spectrometry. Several modifications conserved in other plants, and also novel modified residues, were identified. In particular, we report O-acetylation of serine, threonine and tyrosine, a recently identified modification conserved in several eukaryotes. Additionally, the sub-nuclear localization of some well-studied modifications (i.e., H3K4me3, H3K9me2, H3K27me3, H3K9ac, H3T3ph) is described and compared to other plant species. To our knowledge, this is the first report of histones H3 and H4 as well as their post-translational modifications in sugarcane, and will provide a starting point for the study of chromatin regulation in this crop.
Collapse
|
26
|
Sequeira-Mendes J, Gutierrez C. Links between genome replication and chromatin landscapes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:38-51. [PMID: 25847096 DOI: 10.1111/tpj.12847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 05/07/2023]
Abstract
Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
27
|
Musiałek MW, Rybaczek D. Behavior of replication origins in Eukaryota - spatio-temporal dynamics of licensing and firing. Cell Cycle 2015; 14:2251-64. [PMID: 26030591 DOI: 10.1080/15384101.2015.1056421] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Although every organism shares some common features of replication, this process varies greatly among eukaryotic species. Current data show that mathematical models of the organization of origins based on possibility theory may be applied (and remain accurate) in every model organism i.e. from yeast to humans. The major differences lie within the dynamics of origin firing and the regulation mechanisms that have evolved to meet new challenges throughout the evolution of the organism. This article elaborates on the relations between chromatin structure, organization of origins, their firing times and the impact that these features can have on genome stability, showing both differences and parallels inside the eukaryotic domain.
Collapse
Key Words
- APC, anaphase promoting complex
- ARS, autonomously replicating sequences
- ATR, ataxia telangiectasia mutated and Rad3-related kinase
- C-Frag, chromosome fragmentation
- CDK, cyclin-dependent kinase
- CDT, C-terminus domain
- CEN, centromere
- CFSs, chromosome fragile sites
- CIN, chromosome instability
- CMG, Cdc45-MCM-GINS complex
- Cdc45, cell division control protein 45
- Cdc6, cell division control protein 6
- Cdt1, chromatin licensing and DNA replication factor 1
- Chk1, checkpoint kinase 1
- Clb2, G2/mitotic-specific cyclin Clb2
- DCR, Ddb1-Cu14a-Roc1 complex
- DDK, Dbf-4-dependent kinase
- DSBs, double strand breaks
- Dbf4, protein Dbf4 homolog A
- Dfp1, Hsk1-Dfp1 kinase complex regulatory subunit Dfp1
- Dpb11, DNA replication regulator Dpb11
- E2F, E2F transcription factor
- EL, early to late origins transition
- ETG1, E2F target gene 1/replisome factor
- Fkh, fork head domain protein
- GCN5, histone acetyltransferase GCN5
- GINS, go-ichi-ni-san
- LE, late to early origins transition
- MCM2–7, minichromosome maintenance helicase complex
- NDT, N-terminus domain
- ORC, origin recognition complex
- ORCA, origin recognition complex subunit A
- PCC, premature chromosome condensation
- PCNA, proliferating cell nuclear antigen
- RO, replication origin
- RPD3, histone deacetylase 3
- RTC, replication timing control
- Rif1, replication timing regulatory factor 1
- SCF, Skp1-Cullin-F-Box ligase
- SIR, sulfite reductase
- Sld2, replication regulator Sld2
- Sld3, replication regulator Sld3
- Swi6, chromatin-associated protein swi6
- Taz1, telomere length regulator taz1
- YKU70, yeast Ku protein.
- dormant origins
- mathematical models of replication
- ori, origin
- origin competence
- origin efficiency
- origin firing
- origin licensing
- p53, tumor suppressor protein p53
- replication timing
Collapse
Affiliation(s)
- Marcelina W Musiałek
- a Department of Cytophysiology ; Institute of Experimental Biology; Faculty of Biology and Environmental Protection; University of Łódź ; Łódź , Poland
| | | |
Collapse
|
28
|
Ishikawa M, Hasebe M. Cell cycle reentry from the late S phase: implications from stem cell formation in the moss Physcomitrella patens. JOURNAL OF PLANT RESEARCH 2015; 128:399-405. [PMID: 25801272 DOI: 10.1007/s10265-015-0713-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
Differentiated cells are in a non-dividing, quiescent state, but some differentiated cells can reenter the cell cycle in response to appropriate stimuli. Quiescent cells are generally arrested at the G0/G1 phase, reenter the cell cycle, and progress to the S phase to replicate their genomic DNA. On the other hand, some types of cells are arrested at the different phase and reenter the cell cycle from there. In the moss Physcomitrella patens, the differentiated leaf cells of gametophores formed in the haploid generation contain approximately 2C DNA content, and DNA synthesis is necessary for reentry into the cell cycle, which is suggested to be arrested at late S phase. Here we review various cell-division reactivation processes in which cells reenter the cell cycle from the late S phase, and discuss possible mechanisms of such unusual cell cycle reentries with special emphasis on Physcomitrella.
Collapse
Affiliation(s)
- Masaki Ishikawa
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, 444-8585, Japan,
| | | |
Collapse
|
29
|
Dellino GI, Pelicci PG. Next-generation sequencing and DNA replication in human cells: the future has arrived. Future Oncol 2015; 10:683-93. [PMID: 24754597 DOI: 10.2217/fon.13.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accurate regulation of DNA replication ensures faithful transmission of eukaryotic genomes and maintenance of genomic stability and chromatin organization. However, by itself the replication process is a threat for both DNA and chromatin integrity. This becomes particularly relevant in cancer cells, where activated oncogenes induce replication-stress, including unscheduled initiation, fork stalling and collapse and, ultimately, genomic instability. Studies addressing the relationship between (epi)genome integrity and disease have been hampered by our poor knowledge of the mechanisms regulating where and when eukaryotic replication initiates. Recently developed genome-scale methods for the analysis of DNA replication in mammals will contribute to the identification of missing links between replication, chromatin regulation and genome stability in normal and cancer cells.
Collapse
Affiliation(s)
- Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | |
Collapse
|
30
|
Raynaud C, Mallory AC, Latrasse D, Jégu T, Bruggeman Q, Delarue M, Bergounioux C, Benhamed M. Chromatin meets the cell cycle. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2677-89. [PMID: 24497647 DOI: 10.1093/jxb/ert433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The cell cycle is one of the most comprehensively studied biological processes, due primarily to its significance in growth and development, and its deregulation in many human disorders. Studies using a diverse set of model organisms, including yeast, worms, flies, frogs, mammals, and plants, have greatly expanded our knowledge of the cell cycle and have contributed to the universally accepted view of how the basic cell cycle machinery is regulated. In addition to the oscillating activity of various cyclin-dependent kinase (CDK)-cyclin complexes, a plethora of proteins affecting various aspects of chromatin dynamics has been shown to be essential for cell proliferation during plant development. Furthermore, it was reported recently that core cell cycle regulators control gene expression by modifying histone patterns. This review focuses on the intimate relationship between the cell cycle and chromatin. It describes the dynamics and functions of chromatin structures throughout cell cycle progression and discusses the role of heterochromatin as a barrier against re-replication and endoreduplication. It also proposes that core plant cell cycle regulators control gene expression in a manner similar to that described in mammals. At present, our challenge in plants is to define the complete set of effectors and actors that coordinate cell cycle progression and chromatin structure and to understand better the functional interplay between these two processes.
Collapse
Affiliation(s)
- Cécile Raynaud
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Allison C Mallory
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - David Latrasse
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Teddy Jégu
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Quentin Bruggeman
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| |
Collapse
|
31
|
Abstract
This review, written from a personal perspective, traces firstly the development of plant cell cycle research from the 1970s onwards, with some focus on the work of the author and of Dr Dennis Francis. Secondly there is a discussion of the support for and discussion of plant cell cycle research in the SEB, especially through the activities of the Cell Cycle Group within the Society's Cell Biology Section. In the main part of the review, selected aspects of DNA replication that have of been of special interest to the author are discussed. These are DNA polymerases and associated proteins, pre-replication events, regulation of enzymes and other proteins, nature and activation of DNA replication origins, and DNA endoreduplication. For all these topics, there is mention of the author's own work, followed by a brief synthesis of current understanding and a look to possible future developments.
Collapse
Affiliation(s)
- John Bryant
- School of Biosciences, CLES, University of Exeter, Exeter EX4 4PS, UK
| |
Collapse
|
32
|
Desvoyes B, Fernández-Marcos M, Sequeira-Mendes J, Otero S, Vergara Z, Gutierrez C. Looking at plant cell cycle from the chromatin window. FRONTIERS IN PLANT SCIENCE 2014; 5:369. [PMID: 25120553 PMCID: PMC4110626 DOI: 10.3389/fpls.2014.00369] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/11/2014] [Indexed: 05/03/2023]
Abstract
The cell cycle is defined by a series of complex events, finely coordinated through hormonal, developmental and environmental signals, which occur in a unidirectional manner and end up in producing two daughter cells. Accumulating evidence reveals that chromatin is not a static entity throughout the cell cycle. In fact, there are many changes that include nucleosome remodeling, histone modifications, deposition and exchange, among others. Interestingly, it is possible to correlate the occurrence of several of these chromatin-related events with specific processes necessary for cell cycle progression, e.g., licensing of DNA replication origins, the E2F-dependent transcriptional wave in G1, the activation of replication origins in S-phase, the G2-specific transcription of genes required for mitosis or the chromatin packaging occurring in mitosis. Therefore, an emerging view is that chromatin dynamics must be considered as an intrinsic part of cell cycle regulation. In this article, we review the main features of several key chromatin events that occur at defined times throughout the cell cycle and discuss whether they are actually controlling the transit through specific cell cycle stages.
Collapse
Affiliation(s)
| | | | | | | | | | - Crisanto Gutierrez
- *Correspondence: Crisanto Gutierrez, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Nicolas Cabrera 1, Cantoblanco, Madrid 28049, Spain e-mail:
| |
Collapse
|
33
|
Replication of the Plant Genome. Mol Biol 2014. [DOI: 10.1007/978-1-4614-7570-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Pascuzzi PE, Flores-Vergara MA, Lee TJ, Sosinski B, Vaughn MW, Hanley-Bowdoin L, Thompson WF, Allen GC. In vivo mapping of arabidopsis scaffold/matrix attachment regions reveals link to nucleosome-disfavoring poly(dA:dT) tracts. THE PLANT CELL 2014; 26:102-20. [PMID: 24488963 PMCID: PMC3963562 DOI: 10.1105/tpc.113.121194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 11/25/2013] [Accepted: 01/10/2014] [Indexed: 05/21/2023]
Abstract
Scaffold or matrix attachment regions (S/MARs) are found in all eukaryotes. The pattern of distribution and genomic context of S/MARs is thought to be important for processes such as chromatin organization and modulation of gene expression. Despite the importance of such processes, much is unknown about the large-scale distribution and sequence content of S/MARs in vivo. Here, we report the use of tiling microarrays to map 1358 S/MARs on Arabidopsis thaliana chromosome 4 (chr4). S/MARs occur throughout chr4, spaced much more closely than in the large plant and animal genomes that have been studied to date. Arabidopsis S/MARs can be divided into five clusters based on their association with other genomic features, suggesting a diversity of functions. While some Arabidopsis S/MARs may define structural domains, most occur near the transcription start sites of genes. Genes associated with these S/MARs have an increased probability of expression, which is particularly pronounced in the case of transcription factor genes. Analysis of sequence motifs and 6-mer enrichment patterns show that S/MARs are preferentially enriched in poly(dA:dT) tracts, sequences that resist nucleosome formation, and the majority of S/MARs contain at least one nucleosome-depleted region. This global view of S/MARs provides a framework to begin evaluating genome-scale models for S/MAR function.
Collapse
Affiliation(s)
- Pete E. Pascuzzi
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | | | - Tae-Jin Lee
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Bryon Sosinski
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, Texas 78758
| | - Linda Hanley-Bowdoin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - William F. Thompson
- Departments of Plant Biology, Genetics, and Crop Science, North Carolina State University, Raleigh, North Carolina 27695
| | - George C. Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695
- Address correspondence to
| |
Collapse
|
35
|
Julienne H, Zoufir A, Audit B, Arneodo A. Human genome replication proceeds through four chromatin states. PLoS Comput Biol 2013; 9:e1003233. [PMID: 24130466 PMCID: PMC3794905 DOI: 10.1371/journal.pcbi.1003233] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a framework for further studies in different cell types, in both health and disease. Previous studies revealed spatially coherent and biological-meaningful chromatin mark combinations in human cells. Here, we analyze thirteen epigenetic mark maps in the human cell line K562 at 100 kb resolution of MRT data. The complexity of epigenetic data is reduced to four chromatin states that display remarkable similarities with those reported in fly, worm and plants. These states have different MRT: (C1) is transcriptionally active, early replicating, enriched in CTCF; (C2) is Polycomb repressed, mid-S replicating; (C3) lacks of marks and replicates late and (C4) is a late-replicating gene-poor HP1 repressed heterochromatin state. When mapping these states inside the 876 replication U-domains of K562, the replication fork polarity gradient observed in these U-domains comes along with a remarkable epigenetic organization from C1 at U-domain borders to C2, C3 and ultimately C4 at centers. The remaining genome half displays early replicating, gene rich and high GC domains of intermingled C1 and C2 states segregating from late replicating, gene poor and low GC domains of concatenated C3 and/or C4 states. This constitutes the first evidence of epigenetic compartmentalization of the human genome into replication domains likely corresponding to autonomous units in the 3D chromatin architecture.
Collapse
Affiliation(s)
- Hanna Julienne
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Azedine Zoufir
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Audit
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Alain Arneodo
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
36
|
Abstract
Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.
Collapse
Affiliation(s)
- Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
37
|
Abstract
The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.
Collapse
Affiliation(s)
- David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
38
|
Nucleus and Genome: DNA Replication. Mol Biol 2013. [DOI: 10.1007/978-1-4939-0263-7_1-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
dela Paz JS, Stronghill PE, Douglas SJ, Saravia S, Hasenkampf CA, Riggs CD. Chromosome fragile sites in Arabidopsis harbor matrix attachment regions that may be associated with ancestral chromosome rearrangement events. PLoS Genet 2012; 8:e1003136. [PMID: 23284301 PMCID: PMC3527283 DOI: 10.1371/journal.pgen.1003136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022] Open
Abstract
Mutations in the BREVIPEDICELLUS (BP) gene of Arabidopsis thaliana condition a pleiotropic phenotype featuring defects in internode elongation, the homeotic conversion of internode to node tissue, and downward pointing flowers and pedicels. We have characterized five mutant alleles of BP, generated by EMS, fast neutrons, x-rays, and aberrant T–DNA insertion events. Curiously, all of these mutagens resulted in large deletions that range from 140 kbp to over 900 kbp just south of the centromere of chromosome 4. The breakpoints of these mutants were identified by employing inverse PCR and DNA sequencing. The south breakpoints of all alleles cluster in BAC T12G13, while the north breakpoint locations are scattered. With the exception of a microhomology at the bp-5 breakpoint, there is no homology in the junction regions, suggesting that double-stranded breaks are repaired via non-homologous end joining. Southwestern blotting demonstrated the presence of nuclear matrix binding sites in the south breakpoint cluster (SBC), which is A/T rich and possesses a variety of repeat sequences. In situ hybridization on pachytene chromosome spreads complemented the molecular analyses and revealed heretofore unrecognized structural variation between the Columbia and Landsberg erecta genomes. Data mining was employed to localize other large deletions around the HY4 locus to the SBC region and to show that chromatin modifications in the region shift from a heterochromatic to euchromatic profile. Comparisons between the BP/HY4 regions of A. lyrata and A. thaliana revealed that several chromosome rearrangement events have occurred during the evolution of these two genomes. Collectively, the features of the region are strikingly similar to the features of characterized metazoan chromosome fragile sites, some of which are associated with karyotype evolution. Chromosome evolution involves both small-scale (e.g. single nucleotide) changes, as well as large-scale rearrangements such as inversions, translocations, and fusion events. We investigated mutations of the BREVIPEDICELLUS gene of Arabidopsis, which is a master regulator of inflorescence architecture. These mutations are not due to single nucleotide changes, but rather to large deletions, some spanning nearly one million base pairs. Molecular and biochemical analyses reveal that the chromosome breakpoints cluster in an area that is rich in repetitive elements and harbor multiple binding sites for nuclear matrix proteins. Data mining revealed intriguing correlations between the breakpoint cluster and hotspots of genetic recombination, regions of the chromosome that have undergone several rearrangement events during evolution, and changes in histone protein modifications. We propose that these unstable regions are chromosome fragile sites that assist in marking a boundary between gene-poor, transcriptionally repressed centromeric chromatin and a more relaxed chromatin domain that is gene-rich.
Collapse
Affiliation(s)
- Joelle S dela Paz
- Department of Biological Sciences and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Sanchez MDLP, Costas C, Sequeira-Mendes J, Gutierrez C. Regulating DNA replication in plants. Cold Spring Harb Perspect Biol 2012; 4:a010140. [PMID: 23209151 PMCID: PMC3504439 DOI: 10.1101/cshperspect.a010140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed.
Collapse
Affiliation(s)
- Maria de la Paz Sanchez
- Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
41
|
Henderson IR. Control of meiotic recombination frequency in plant genomes. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:556-561. [PMID: 23017241 DOI: 10.1016/j.pbi.2012.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/18/2012] [Accepted: 09/05/2012] [Indexed: 05/27/2023]
Abstract
Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.
| |
Collapse
|
42
|
Yelina NE, Choi K, Chelysheva L, Macaulay M, de Snoo B, Wijnker E, Miller N, Drouaud J, Grelon M, Copenhaver GP, Mezard C, Kelly KA, Henderson IR. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 2012; 8:e1002844. [PMID: 22876192 PMCID: PMC3410864 DOI: 10.1371/journal.pgen.1002844] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/07/2012] [Indexed: 12/25/2022] Open
Abstract
Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1) mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.
Collapse
Affiliation(s)
- Nataliya E. Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Liudmila Chelysheva
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Versailles, France
| | | | | | - Erik Wijnker
- Wageningen University, Wageningen, The Netherlands
| | - Nigel Miller
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jan Drouaud
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Versailles, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Versailles, France
| | - Gregory P. Copenhaver
- Department of Biology and The Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Christine Mezard
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Versailles, France
| | - Krystyna A. Kelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Stroud H, Hale CJ, Feng S, Caro E, Jacob Y, Michaels SD, Jacobsen SE. DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis. PLoS Genet 2012; 8:e1002808. [PMID: 22792077 PMCID: PMC3390372 DOI: 10.1371/journal.pgen.1002808] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/18/2012] [Indexed: 12/17/2022] Open
Abstract
The relationship between epigenetic marks on chromatin and the regulation of DNA replication is poorly understood. Mutations of the H3K27 methyltransferase genes, ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6, result in re-replication (repeated origin firing within the same cell cycle). Here we show that mutations that reduce DNA methylation act to suppress the re-replication phenotype of atxr5 atxr6 mutants. This suggests that DNA methylation, a mark enriched at the same heterochromatic regions that re-replicate in atxr5/6 mutants, is required for aberrant re-replication. In contrast, RNA sequencing analyses suggest that ATXR5/6 and DNA methylation cooperatively transcriptionally silence transposable elements (TEs). Hence our results suggest a complex relationship between ATXR5/6 and DNA methylation in the regulation of DNA replication and transcription of TEs. Before cell division the genome is required to replicate once to ensure that each daughter cell inherits a full copy of genomic DNA. Eukaryotic DNA is wrapped around histones to form nucleosomes. Chemical modifications of DNA and histones are known to regulate gene expression. There is growing evidence that these modifications also regulate DNA replication, however very little is understood. Two histone methyltransferases, ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6, are required to prevent over-replication of normally silent regions of the genome called heterochromatin. Heterochromatin is enriched with transposable elements (TEs) that are silenced by modifications such as DNA methylation. We find that losses of DNA methylation suppress the over-replication defect in an atxr5 atxr6 mutant background. This suggests that DNA methylation positively regulates DNA replication in the absence of ATXR5/6. We further study the relationship between ATXR5/6 and DNA methylation in regulating the expression of TEs and find that they cooperatively silence TEs. Together these findings reveal relationships between DNA and histone modifications in regulating basic biological processes such as DNA replication and gene expression.
Collapse
Affiliation(s)
- Hume Stroud
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christopher J. Hale
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Suhua Feng
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Elena Caro
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yannick Jacob
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Scott D. Michaels
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Steven E. Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Xu D, Huang W, Li Y, Wang H, Huang H, Cui X. Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:792-808. [PMID: 22026817 DOI: 10.1111/j.1365-313x.2011.04831.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation. The defective cell cycle progression is caused by aberrant DNA replication and increased DNA damage, which activate the DNA replication checkpoint to arrest the cell cycle. Elongator interacts with proliferating cell nuclear antigen (PCNA) and is required for efficient histone 3 (H3) and H4 acetylation coupled with DNA replication. Levels of chromatin-bound H3K56Ac and H4K5Ac known to associate with replicons during DNA replication were reduced in the mutants of both Elongator and chromatin assembly factor 1 (CAF-1), another protein complex that physically interacts with PCNA for DNA replication-coupled chromatin assembly. Disruptions of CAF-1 also led to severe leaf polarity defects, which indicated that Elongator and CAF-1 act, at least partially, in the same pathway to promote cell cycle progression. Collectively, our results demonstrate that Elongator is an important regulator of mitotic cell cycle, and the Elongator pathway plays critical roles in promoting leaf polarity formation.
Collapse
Affiliation(s)
- Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | | | | | |
Collapse
|
45
|
Yelina NE, Choi K, Chelysheva L, Macaulay M, de Snoo B, Wijnker E, Miller N, Drouaud J, Grelon M, Copenhaver GP, Mezard C, Kelly KA, Henderson IR. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 2012. [PMID: 27472382 DOI: 10.1371/journal.pgen] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1) mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.
Collapse
Affiliation(s)
- Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tuteja N, Tran NQ, Dang HQ, Tuteja R. Plant MCM proteins: role in DNA replication and beyond. PLANT MOLECULAR BIOLOGY 2011; 77:537-45. [PMID: 22038093 DOI: 10.1007/s11103-011-9836-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/09/2011] [Indexed: 05/18/2023]
Abstract
Mini-chromosome maintenance (MCM) proteins form heterohexameric complex (MCM2-7) to serve as licensing factor for DNA replication to make sure that genomic DNA is replicated completely and accurately once during S phase in a single cell cycle. MCMs were initially identified in yeast for their role in plasmid replication or cell cycle progression. Each of six MCM contains highly conserved sequence called "MCM box", which contains two ATPase consensus Walker A and Walker B motifs. Studies on MCM proteins showed that (a) the replication origins are licensed by stable binding of MCM2-7 to form pre-RC (pre-replicative complex) during G1 phase of the cell cycle, (b) the activation of MCM proteins by CDKs (cyclin-dependent kinases) and DDKs (Dbf4-dependent kinases) and their helicase activity are important for pre-RC to initiate the DNA replication, and (c) the release of MCMs from chromatin renders the origins "unlicensed". DNA replication licensing in plant is, in general, less characterized. The MCMs have been reported from Arabidopsis, maize, tobacco, pea and rice, where they are found to be highly expressed in dividing tissues such as shoot apex and root tips, localized in nucleus and cytosol and play important role in DNA replication, megagametophyte and embryo development. The identification of six MCM coding genes from pea and Arabidopsis suggest six distinct classes of MCM protein in higher plant, and the conserved function right across the eukaryotes. This overview of MCMs contains an emphasis on MCMs from plants and the novel role of MCM6 in abiotic stress tolerance.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | | | |
Collapse
|
47
|
Sequeira-Mendes J, Gómez M. On the opportunistic nature of transcription and replication initiation in the metazoan genome. Bioessays 2011; 34:119-25. [PMID: 22086495 DOI: 10.1002/bies.201100126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cellular identity and its response to external or internal signalling variations are encoded in a cell's genome as regulatory information. The genomic regions that specify this type of information are highly variable and degenerated in their sequence determinants, as it is becoming increasingly evident through the application of genome-scale methods to study gene expression. Here, we speculate that the same scenario applies to the regulatory regions controlling where DNA replication starts in the metazoan genome. We propose that replication origins cannot be defined as unique genomic features, but rather that DNA synthesis initiates opportunistically from accessible DNA sites, making cells highly robust and adaptable to environmental or developmental changes.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
48
|
Interaction of HTLV-1 Tax with minichromosome maintenance proteins accelerates the replication timing program. Blood 2011; 119:151-60. [PMID: 22058115 DOI: 10.1182/blood-2011-05-356790] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tax oncoprotein encoded by the human T-cell leukemia virus type 1 plays a pivotal role in viral persistence and pathogenesis. Human T-cell leukemia virus type 1-infected cells proliferate faster than normal lymphocytes, expand through mitotic division, and accumulate genomic lesions. Here, we show that Tax associates with the minichromosome maintenance MCM2-7 helicase complex and localizes to origins of replication. Tax modulates the spatiotemporal program of origin activation and fires supplementary origins at the onset of S phase. Thereby, Tax increases the DNA replication rate, accelerates S phase progression, but also generates a replicative stress characterized by the presence of genomic lesions. Mechanistically, Tax favors p300 recruitment and histone hyperacetylation at late replication domains, advancing their replication timing in early S phase.
Collapse
|
49
|
Woody JL, Shoemaker RC. Gene expression: sizing it all up. Front Genet 2011; 2:70. [PMID: 22303365 PMCID: PMC3268623 DOI: 10.3389/fgene.2011.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/29/2011] [Indexed: 11/13/2022] Open
Abstract
Genomic architecture appears to be a largely unexplored component of gene expression. That architecture can be related to chromatin domains, transposable element neighborhoods, epigenetic modifications of the genome, and more. Although surely not the end of the story, we are learning that when it comes to gene expression, size is also important. We have been surprised to find that certain patterns of expression, tissue specific versus constitutive, or high expression versus low expression, are often associated with physical attributes of the gene and genome. Multiple studies have shown an inverse relationship between gene expression patterns and various physical parameters of the genome such as intron size, exon size, intron number, and size of intergenic regions. An increase in expression level and breadth often correlates with a decrease in the size of physical attributes of the gene. Three models have been proposed to explain these relationships. Contradictory results were found in several organisms when expression level and expression breadth were analyzed independently. However, when both factors were combined in a single study a novel relationship was revealed. At low levels of expression, an increase in expression breadth correlated with an increase in genic, intergenic, and intragenic sizes. Contrastingly, at high levels of expression, an increase in expression breadth inversely correlated with the size of the gene. In this article we explore the several hypotheses regarding genome physical parameters and gene expression.
Collapse
|
50
|
Costas C, Sanchez MDLP, Sequeira-Mendes J, Gutierrez C. Progress in understanding DNA replication control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:203-9. [PMID: 21763530 DOI: 10.1016/j.plantsci.2011.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/07/2011] [Accepted: 04/24/2011] [Indexed: 05/19/2023]
Abstract
Completion of genome duplication during the S-phase of the cell cycle is crucial for the maintenance of genomic integrity. In eukaryotes, chromosomal DNA replication is accomplished by the activity of multiple origins of DNA replication scattered across the genome. Origin specification, selection and activity as well as the availability of replication factors and the regulation of DNA replication licensing, have unique and common features among eukaryotes. Although the initial studies on the semiconservative nature of chromosome duplication were carried out in the mid 1950s in Vicia faba, since then plant DNA replication studies have been scarce. However, they have received an unprecedented drive in the last decade after the completion of sequencing the Arabidopsis thaliana genome, and more recently of other plant genomes. In particular, the past year has witnessed major advances with the use of genomic approaches to study chromosomal replication timing, DNA replication origins and licensing control mechanisms. In this minireview article we discuss these recent discoveries in plants in the context of what is known at the genomic level in other eukaryotes. These studies constitute the basis for addressing in the future key questions about replication origin specification and function that will be of relevance not only for plants but also for the rest of multicellular organisms.
Collapse
Affiliation(s)
- Celina Costas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|