1
|
Amor H, Juhasz-Böss I, Bibi R, Hammadeh ME, Jankowski PM. H2BFWT Variations in Sperm DNA and Its Correlation to Pregnancy. Int J Mol Sci 2024; 25:6048. [PMID: 38892236 PMCID: PMC11172515 DOI: 10.3390/ijms25116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Abnormalities in sperm nuclei and chromatin can interfere with normal fertilization, embryonic development, implantation, and pregnancy. We aimed to study the impact of H2BFWT gene variants in sperm DNA on ICSI outcomes in couples undergoing ART treatment. One hundred and nineteen partners were divided into pregnant (G1) and non-pregnant (G2) groups. After semen analysis, complete DNA was extracted from purified sperm samples. The sequence of the H2BFWT gene was amplified by PCR and then subjected to Sanger sequencing. The results showed that there are three mutations in this gene: rs7885967, rs553509, and rs578953. Significant differences were shown in the distribution of alternative and reference alleles between G1 and G2 (p = 0.0004 and p = 0.0020, respectively) for rs553509 and rs578953. However, there was no association between these SNPs and the studied parameters. This study is the first to shed light on the connection between H2BFWT gene variants in sperm DNA and pregnancy after ICSI therapy. This is a pilot study, so further investigations about these gene variants at the transcriptional and translational levels will help to determine its functional consequences and to clarify the mechanism of how pregnancy can be affected by sperm DNA.
Collapse
Affiliation(s)
- Houda Amor
- Departement of Obstetrics and Gynecology, IVF Laboratory, Saarland University Clinic, 66421 Homburg, Germany; (M.E.H.)
- Departement of Obstertics and Gynecology, IVF Laboratory, Freiburg University Clinic, 79106 Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Departement of Obstertics and Gynecology, IVF Laboratory, Freiburg University Clinic, 79106 Freiburg, Germany
| | - Riffat Bibi
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad 45320, Pakistan
| | - Mohamad Eid Hammadeh
- Departement of Obstetrics and Gynecology, IVF Laboratory, Saarland University Clinic, 66421 Homburg, Germany; (M.E.H.)
- Departement of Obstertics and Gynecology, IVF Laboratory, Freiburg University Clinic, 79106 Freiburg, Germany
| | - Peter Michael Jankowski
- Departement of Obstetrics and Gynecology, IVF Laboratory, Saarland University Clinic, 66421 Homburg, Germany; (M.E.H.)
| |
Collapse
|
2
|
Fischer V, Kretschmer M, Germain PL, Kaur J, Mompart-Barrenechea S, Pelczar P, Schürmann D, Schär P, Gapp K. Sperm chromatin accessibility's involvement in the intergenerational effects of stress hormone receptor activation. Transl Psychiatry 2023; 13:378. [PMID: 38065942 PMCID: PMC10709351 DOI: 10.1038/s41398-023-02684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dexamethasone is a stress hormone receptor agonist used widely in clinics. We and others previously showed that paternal administration of dexamethasone in mice affects the phenotype of their offspring. The substrate of intergenerational transmission of environmentally induced effects often involves changes in sperm RNA, yet other epigenetic modifications in the germline can be affected and are also plausible candidates. First, we tested the involvement of altered sperm RNAs in the transmission of dexamethasone induced phenotypes across generations. We did this by injecting sperm RNA into naïve fertilized oocytes, before performing metabolic and behavioral phenotyping of the offspring. We observed phenotypic changes in discordance with those found in offspring generated by in vitro fertilization using sperm from dexamethasone exposed males. Second, we investigated the effect of dexamethasone on chromatin accessibility using ATAC sequencing and found significant changes at specific genomic features and gene regulatory loci. Employing q-RT-PCR, we show altered expression of a gene in the tissue of offspring affected by accessibility changes in sperm. Third, we establish a correlation between specific DNA modifications and stress hormone receptor activity as a likely contributing factor influencing sperm accessibility. Finally, we independently investigated this dependency by genetically reducing thymine-DNA glycosylase levels and observing concomitant changes at the level of chromatin accessibility and stress hormone receptor activity.
Collapse
Affiliation(s)
- Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Laboratory of Statistical Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Jasmine Kaur
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sergio Mompart-Barrenechea
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - David Schürmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Yadav M, Zuiddam M, Schiessel H. The role of transcript regions and amino acid choice in nucleosome positioning. NAR Genom Bioinform 2023; 5:lqad080. [PMID: 37705829 PMCID: PMC10495542 DOI: 10.1093/nargab/lqad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
Eukaryotic DNA is organized and compacted in a string of nucleosomes, DNA-wrapped protein cylinders. The positions of nucleosomes along DNA are not random but show well-known base pair sequence preferences that result from the sequence-dependent elastic and geometric properties of the DNA double helix. Here, we focus on DNA around transcription start sites, which are known to typically attract nucleosomes in multicellular life forms through their high GC content. We aim to understand how these GC signals, as observed in genome-wide averages, are produced and encoded through different genomic regions (mainly 5' UTRs, coding exons, and introns). Our study uses a bioinformatics approach to decompose the genome-wide GC signal into between-region and within-region signals. We find large differences in GC signal contributions between vertebrates and plants and, remarkably, even between closely related species. Introns contribute most to the GC signal in vertebrates, while in plants the exons dominate. Further, we find signal strengths stronger on DNA than on mRNA, suggesting a biological function of GC signals along the DNA itself, as is the case for nucleosome positioning. Finally, we make the surprising discovery that both the choice of synonymous codons and amino acids contribute to the nucleosome positioning signal.
Collapse
Affiliation(s)
- Manish Yadav
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Martijn Zuiddam
- Institute Lorentz for Theoretical Physics, Leiden University, Leiden, the Netherlands
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
4
|
Zucchi A, Innocenzi E, Onorato A, Dolci S, Colopi A, Balistreri CR, Grimaldi P. PRENATAL EXPOSURE TO CB 2 RECEPTORS AGONIST DIFFERENTIALLY IMPACTS MALE AND FEMALE GERM CELLS VIA HISTONE MODIFICATION. Mech Ageing Dev 2023:111840. [PMID: 37385302 DOI: 10.1016/j.mad.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/28/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Cannabis use during pregnancy is increasing in the last few years potentially because of decreased perception of the risk of harm. Regardless, recent evidence demonstrated that prenatal cannabis exposure is associated with adverse outcomes. To date there is limited evidence of the impact of cannabis exposure during pregnancy on the reproductive health of the offspring. The biological effects of cannabis are mediated by two cannabinoid receptors, CB1 and CB2. We previously demonstrated that CB2 is highly expressed in mouse male and female fetal germ cells. In this study, we investigated the effects of prenatal exposure to a selective CB2 agonist, JWH-133, on the long-term reproductive health of male and female offspring and on the involved molecular epigenetic mechanisms. Notably, we focused on epigenetic histone modifications that can silence or activate gene expression, playing a pivotal role in cell differentiation. We reported that prenatal activation of CB2 has a sex-specific impact on germ cell development of the offspring. In male it determines a delay of germ cell differentiation coinciding with an enrichment of H3K27me3, while in female it causes a reduction of the follicles number through an increased apoptotic process not linked to modified H3K27me3 level.
Collapse
Affiliation(s)
- Alice Zucchi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Elisa Innocenzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Onorato
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
5
|
Gaspa-Toneu L, Peters AH. Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations? Curr Opin Genet Dev 2023; 79:102034. [PMID: 36893482 PMCID: PMC10109108 DOI: 10.1016/j.gde.2023.102034] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The genome of mammalian sperm is largely packaged by sperm-specific proteins termed protamines. The presence of some residual nucleosomes has, however, emerged as a potential source of paternal epigenetic inheritance between generations. Sperm nucleosomes bear important regulatory histone marks and locate at gene-regulatory regions, functional elements, and intergenic regions. It is unclear whether sperm nucleosomes are retained at specific genomic locations in a deterministic manner or are randomly preserved due to inefficient exchange of histones by protamines. Recent studies indicate heterogeneity in chromatin packaging within sperm populations and an extensive reprogramming of paternal histone marks post fertilization. Obtaining single-sperm nucleosome distributions is fundamental to estimating the potential of sperm-borne nucleosomes in instructing mammalian embryonic development and in the transmission of acquired phenotypes.
Collapse
Affiliation(s)
- Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
6
|
de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis 2023; 15:e1588. [PMID: 36181449 DOI: 10.1002/wsbm.1588] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
7
|
Chamayou S, Giacone F, Cannarella R, Guglielmino A. What Does Intracytoplasmic Sperm Injection Change in Embryonic Development? The Spermatozoon Contribution. J Clin Med 2023; 12:671. [PMID: 36675600 PMCID: PMC9867417 DOI: 10.3390/jcm12020671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The intracytoplasmic sperm injection (ICSI) technique was invented to solve severe male infertility due to altered sperm parameters. Nowadays, it is applied worldwide for the treatment of couple infertility. ICSI is performed with any available spermatozoon from surgery or ejaculated samples, whatever are the sperm motility, morphology or quantity. The aim of the present review was to study if embryo development and kinetics would be modified by (1) ICSI under the technical aspects, (2) the micro-injected spermatozoa in connection with male infertility. From published data, it can be seen that ICSI anticipates the zygote kinetics Furthermore, because fertilization rate is higher in ICSI compared to conventional in vitro fertilization (IVF), more blastocysts are obtained for clinical use in ICSI. Sperm and spermatozoa characteristics, such as sperm parameters, morphology and vitality, DNA content (levels of sperm DNA fragmentation, microdeletions, and chromosomal abnormalities), RNA content, epigenetics, and sperm recovery site (testicular, epididymis, and ejaculated), have an impact on fertilization and blastocyst rates and embryo kinetics in different ways. Even though ICSI is the most common solution to solve couples' infertility, the causes of male infertility are crucial in building a competent spermatozoa that will contribute to normal embryonic development and healthy offspring.
Collapse
Affiliation(s)
- Sandrine Chamayou
- Centro HERA—Unità di Medicina della Riproduzione, Via Barriera del Bosco, 51/53, Sant’Agata li Battiati, 95030 Catania, Italy
| | - Filippo Giacone
- Centro HERA—Unità di Medicina della Riproduzione, Via Barriera del Bosco, 51/53, Sant’Agata li Battiati, 95030 Catania, Italy
| | - Rossella Cannarella
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Antonino Guglielmino
- Centro HERA—Unità di Medicina della Riproduzione, Via Barriera del Bosco, 51/53, Sant’Agata li Battiati, 95030 Catania, Italy
| |
Collapse
|
8
|
Zuiddam M, Shakiba B, Schiessel H. Multiplexing mechanical and translational cues on genes. Biophys J 2022; 121:4311-4324. [PMID: 36230003 PMCID: PMC9703045 DOI: 10.1016/j.bpj.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022] Open
Abstract
The genetic code gives precise instructions on how to translate codons into amino acids. Due to the degeneracy of the genetic code-18 out of 20 amino acids are encoded for by more than one codon-more information can be stored in a basepair sequence. Indeed, various types of additional information have been discussed in the literature, e.g., the positioning of nucleosomes along eukaryotic genomes and the modulation of the translating efficiency in ribosomes to influence cotranslational protein folding. The purpose of this study is to show that it is indeed possible to carry more than one additional layer of information on top of a gene. In particular, we show how much translation efficiency and nucleosome positioning can be adjusted simultaneously without changing the encoded protein. We achieve this by mapping genes on weighted graphs that contain all synonymous genes, and then finding shortest paths through these graphs. This enables us, for example, to readjust the disrupted translational efficiency profile after a gene has been introduced from one organism (e.g., human) into another (e.g., yeast) without greatly changing the nucleosome landscape intrinsically encoded by the DNA molecule.
Collapse
Affiliation(s)
- Martijn Zuiddam
- Institute Lorentz for Theoretical Physics, Leiden University, Leiden, the Netherlands
| | - Bahareh Shakiba
- Institute Lorentz for Theoretical Physics, Leiden University, Leiden, the Netherlands
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
9
|
H4K5 Butyrylation Coexist with Acetylation during Human Spermiogenesis and Are Retained in the Mature Sperm Chromatin. Int J Mol Sci 2022; 23:ijms232012398. [PMID: 36293256 PMCID: PMC9604518 DOI: 10.3390/ijms232012398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Male germ cells experience a drastic chromatin remodeling through the nucleo-histone to nucleo-protamine (NH-NP) transition necessary for proper sperm functionality. Post-translational modifications (PTMs) of H4 Lys5, such as acetylation (H4K5ac), play a crucial role in epigenetic control of nucleosome disassembly facilitating protamine incorporation into paternal DNA. It has been shown that butyrylation on the same residue (H4K5bu) participates in temporal regulation of NH-NP transition in mice, delaying the bromodomain testis specific protein (BRDT)-dependent nucleosome disassembly and potentially marking retained nucleosomes. However, no information was available so far on this modification in human sperm. Here, we report a dual behavior of H4K5bu and H4K5ac in human normal spermatogenesis, suggesting a specific role of H4K5bu during spermatid elongation, coexisting with H4K5ac although with different starting points. This pattern is stable under different testicular pathologies, suggesting a highly conserved function of these modifications. Despite a drastic decrease of both PTMs in condensed spermatids, they are retained in ejaculated sperm, with 30% of non-colocalizing nucleosome clusters, which could reflect differential paternal genome retention. Whereas no apparent effect of these PTMs was observed associated with sperm quality, their presence in mature sperm could entail a potential role in the zygote.
Collapse
|
10
|
Olszewska M, Kordyl O, Kamieniczna M, Fraczek M, Jędrzejczak P, Kurpisz M. Global 5mC and 5hmC DNA Levels in Human Sperm Subpopulations with Differentially Protaminated Chromatin in Normo- and Oligoasthenozoospermic Males. Int J Mol Sci 2022; 23:ijms23094516. [PMID: 35562907 PMCID: PMC9099774 DOI: 10.3390/ijms23094516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetic modifications play a special role in the male infertility aetiology. Published data indicate the link between sperm quality and sperm chromatin protamination. This study aimed to determine the relationship between methylation (5mC) and hydroxymethylation (5hmC) in sperm DNA, with respect to sperm chromatin protamination in three subpopulations of fertile normozoospermic controls and infertile patients with oligo-/oligoasthenozoospermia. For the first time, a sequential staining protocol was applied, which allowed researchers to analyse 5mC/5hmC levels by immunofluorescence staining, with a previously determined chromatin protamination status (aniline blue staining), using the same spermatozoa. TUNEL assay determined the sperm DNA fragmentation level. The 5mC/5hmC levels were diversified with respect to chromatin protamination status in both studied groups of males, with the highest values observed in protaminated spermatozoa. The linkage between chromatin protamination and 5mC/5hmC levels in control males disappeared in patients with deteriorated semen parameters. A relationship between 5mC/5hmC and sperm motility/morphology was identified in the patient group. Measuring the 5mC/5hmC status of sperm DNA according to sperm chromatin integrity provides evidence of correct spermatogenesis, and its disruption may represent a prognostic marker for reproductive failure.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| | - Oliwia Kordyl
- Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland;
| | - Marzena Kamieniczna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Piotr Jędrzejczak
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| |
Collapse
|
11
|
Herbert A. The Simple Biology of Flipons and Condensates Enhances the Evolution of Complexity. Molecules 2021; 26:molecules26164881. [PMID: 34443469 PMCID: PMC8400190 DOI: 10.3390/molecules26164881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
The classical genetic code maps nucleotide triplets to amino acids. The associated sequence composition is complex, representing many elaborations during evolution of form and function. Other genomic elements code for the expression and processing of RNA transcripts. However, over 50% of the human genome consists of widely dispersed repetitive sequences. Among these are simple sequence repeats (SSRs), representing a class of flipons, that under physiological conditions, form alternative nucleic acid conformations such as Z-DNA, G4 quartets, I-motifs, and triplexes. Proteins that bind in a structure-specific manner enable the seeding of condensates with the potential to regulate a wide range of biological processes. SSRs also encode the low complexity peptide repeats to patch condensates together, increasing the number of combinations possible. In situations where SSRs are transcribed, SSR-specific, single-stranded binding proteins may further impact condensate formation. Jointly, flipons and patches speed evolution by enhancing the functionality of condensates. Here, the focus is on the selection of SSR flipons and peptide patches that solve for survival under a wide range of environmental contexts, generating complexity with simple parts.
Collapse
Affiliation(s)
- Alan Herbert
- Unit 3412, Discovery, InsideOutBio 42 8th Street, Charlestown, MA 02129, USA
| |
Collapse
|
12
|
Tarozzi N, Nadalini M, Coticchio G, Zacà C, Lagalla C, Borini A. The paternal toolbox for embryo development and health. Mol Hum Reprod 2021; 27:6311671. [PMID: 34191013 DOI: 10.1093/molehr/gaab042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/30/2021] [Indexed: 11/12/2022] Open
Abstract
The sperm is essential for reconstitution of embryonic diploidy and highly specialized developmental functions. Immediately after gamete fusion, the sperm-borne PLC-zeta triggers activation, generating intracellular free Ca2+ oscillations. Mutations in the PLC-zeta encoding gene are associated with the absence of this factor in mature sperm and inability to achieve fertilization. Sperm play also a role in the greater game of the choreography of fertilization. In the human, the sperm centrioles are introduced into the oocyte environment with gamete fusion. They interact with the oocyte cytoskeletal apparatus to form a functional pair of centrosomes and ultimately regulate pronuclear juxtaposition in preparation for the first cleavage. As a consequence, the fidelity of chromosome segregation during the first cell divisions depends on the function of sperm centrioles. Sperm DNA integrity is essential for embryo development and health. Damaged DNA does not impact on the sperm fertilization ability following ICSI. However, detrimental effects emerge at pre- and post-implantation stages. Sperm-specific epigenetic factors also play an active role in the regulation of embryonic development, as shown by correlations between reduced embryo morphological quality and incorrect chromatin packaging during spermiogenesis or abnormal methylation of sperm CpG islands. This functional landscape demonstrates that the contribution of the sperm to development goes far beyond its well-established role in fertilization. Clinical studies confirm this view and indicate sperm function as a crucial aspect of research to increase the efficacy of assisted reproduction treatments.
Collapse
|
13
|
Barbier J, Vaillant C, Volff JN, Brunet FG, Audit B. Coupling between Sequence-Mediated Nucleosome Organization and Genome Evolution. Genes (Basel) 2021; 12:genes12060851. [PMID: 34205881 PMCID: PMC8228248 DOI: 10.3390/genes12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
The nucleosome is a major modulator of DNA accessibility to other cellular factors. Nucleosome positioning has a critical importance in regulating cell processes such as transcription, replication, recombination or DNA repair. The DNA sequence has an influence on the position of nucleosomes on genomes, although other factors are also implicated, such as ATP-dependent remodelers or competition of the nucleosome with DNA binding proteins. Different sequence motifs can promote or inhibit the nucleosome formation, thus influencing the accessibility to the DNA. Sequence-encoded nucleosome positioning having functional consequences on cell processes can then be selected or counter-selected during evolution. We review the interplay between sequence evolution and nucleosome positioning evolution. We first focus on the different ways to encode nucleosome positions in the DNA sequence, and to which extent these mechanisms are responsible of genome-wide nucleosome positioning in vivo. Then, we discuss the findings about selection of sequences for their nucleosomal properties. Finally, we illustrate how the nucleosome can directly influence sequence evolution through its interactions with DNA damage and repair mechanisms. This review aims to provide an overview of the mutual influence of sequence evolution and nucleosome positioning evolution, possibly leading to complex evolutionary dynamics.
Collapse
Affiliation(s)
- Jérémy Barbier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Cédric Vaillant
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Correspondence: (J.-N.V.); (B.A.)
| | - Frédéric G. Brunet
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
| | - Benjamin Audit
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
- Correspondence: (J.-N.V.); (B.A.)
| |
Collapse
|
14
|
Jiang Z, Zhang B. On the role of transcription in positioning nucleosomes. PLoS Comput Biol 2021; 17:e1008556. [PMID: 33417594 PMCID: PMC7819601 DOI: 10.1371/journal.pcbi.1008556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/21/2021] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleosome positioning is crucial for the genome’s function. Though the role of DNA sequence in positioning nucleosomes is well understood, a detailed mechanistic understanding on the impact of transcription remains lacking. Using numerical simulations, we investigated the dependence of nucleosome density profiles on transcription level across multiple species. We found that the low nucleosome affinity of yeast, but not mouse, promoters contributes to the formation of phased nucleosomes arrays for inactive genes. For the active genes, a heterogeneous distribution of +1 nucleosomes, caused by a tug-of-war between two types of remodeling enzymes, is essential for reproducing their density profiles. In particular, while positioning enzymes are known to remodel the +1 nucleosome and align it toward the transcription start site (TSS), spacer enzymes that use a pair of nucleosomes as their substrate can shift the nucleosome array away from the TSS. Competition between these enzymes results in two types of nucleosome density profiles with well- and ill-positioned +1 nucleosome. Finally, we showed that Pol II assisted histone exchange, if occurring at a fast speed, can abolish the impact of remodeling enzymes. By elucidating the role of individual factors, our study reconciles the seemingly conflicting results on the overall impact of transcription in positioning nucleosomes across species. Nucleosome positioning plays a key role in the genome’s function by regulating the accessibility of protein binding sites as well as higher-order chromatin organization. Though significant progress has been made towards studying the role of DNA sequence in positioning the nucleosomes, our understanding on the impact of transcription lags behind. Our study uses kinetic simulations to explore the role of DNA sequence specificity, transcription factor binding, enzyme remodeling, and Pol II elongation in positioning nucleosomes. It suggests that the differences in nucleosome density profiles observed at various transcription levels in yeast and mouse embryonic stem cells can be understood from a tug-of-war between two types of remodeling enzymes.
Collapse
Affiliation(s)
- Zhongling Jiang
- Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bin Zhang
- Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- * E-mail:
| |
Collapse
|
15
|
Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, Zhang P, Tang Y, Cheng CY, Sun F. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology 2021; 162:5974117. [PMID: 33175103 DOI: 10.1210/endocr/bqaa210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 02/07/2023]
Abstract
During spermiogenesis, extensive histone modifications take place in developing haploid spermatids besides morphological alterations of the genetic material to form compact nuclei. Better understanding on the overall transcriptional dynamics and preferences of histones and enzymes involved in histone modifications may provide valuable information to dissect the epigenetic characteristics and unique chromatin status during spermiogenesis. Using single-cell RNA-Sequencing, the expression dynamics of histone variants, writers, erasers, and readers of histone acetylation and methylation, as well as histone phosphorylation, ubiquitination, and chaperones were assessed through transcriptome profiling during spermiogenesis. This approach provided an unprecedented panoramic perspective of the involving genes in epigenetic modifier/histone variant expression during spermiogenesis. Results reported here revealed the transcriptional ranks of histones, histone modifications, and their readers during spermiogenesis, emphasizing the unique preferences of epigenetic regulation in spermatids. These findings also highlighted the impact of spermatid metabolic preferences on epigenetic modifications. Despite the observed rising trend on transcription levels of all encoding genes and histone variants, the transcriptome profile of genes in histone modifications and their readers displayed a downward expression trend, suggesting that spermatid nuclei condensation is a progressive process that occurred in tandem with a gradual decrease in overall epigenetic activity during spermiogenesis.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Yiqi Shen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pingbao Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Oluwayiose OA, Josyula S, Houle E, Marcho C, Brian W Whitcomb, Rahil T, Sites CK, Pilsner JR. Association between sperm mitochondarial DNA copy number and nuclear DNA methylation. Epigenomics 2020; 12:2141-2153. [PMID: 33320694 DOI: 10.2217/epi-2020-0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Accumulating evidence associates sperm mitochondria DNA copy number (mtDNAcn) with male infertility and reproductive success. However, the mechanism underlying mtDNAcn variation is largely unknown. Patients & methods: Sperm mtDNAcn and genome-wide DNA methylation were assessed using triplex probe-based quantitative PCR and Illumina's 450K array, respectively. Multivariable models assessed the association between sperm mtDNAcn and DNA methylation profiles of 47 men seeking infertility treatment. Results: A priori candidate-gene approach showed sperm mtDNAcn was associated with 16 CpGs located at/near POLG and TWNK genes. Unbiased genome-wide analysis revealed that sperm mtDNAcn was associated with 218 sperm differentially methylated regions (q < 0.05), which displayed predominantly (94%) increases in methylation. Conclusion: Findings suggest that DNA methylation may play a role in regulating sperm mtDNAcn.
Collapse
Affiliation(s)
- Oladele A Oluwayiose
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA 01003, USA
| | - Srinihaari Josyula
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA 01003, USA
| | - Emily Houle
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA 01003, USA
| | - Chelsea Marcho
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA 01003, USA
| | - Brian W Whitcomb
- Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, MA 01002, USA
| | - Tayyab Rahil
- Division of Reproductive Endocrinology & Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA
| | - Cynthia K Sites
- Division of Reproductive Endocrinology & Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Zhao Y, Dong L, Jiang C, Wang X, Xie J, Rashid MAR, Liu Y, Li M, Bu Z, Wang H, Ma X, Sun S, Wang X, Bo C, Zhou T, Kong L. Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization. BMC Biol 2020; 18:188. [PMID: 33267868 PMCID: PMC7713161 DOI: 10.1186/s12915-020-00917-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The speciation and fast global domestication of bread wheat have made a great impact on three subgenomes of bread wheat. DNA base composition is an essential genome feature, which follows the individual-strand base equality rule and [AT]-increase pattern at the genome, chromosome, and polymorphic site levels among thousands of species. Systematic analyses on base compositions of bread wheat and its wild progenitors could facilitate further understanding of the evolutionary pattern of genome/subgenome-wide base composition of allopolyploid species and its potential causes. RESULTS Genome/subgenome-wide base-composition patterns were investigated by using the data of polymorphic site in 93 accessions from worldwide populations of bread wheat, its diploid and tetraploid progenitors, and their corresponding reference genome sequences. Individual-strand base equality rule and [AT]-increase pattern remain in recently formed hexaploid species bread wheat at the genome, subgenome, chromosome, and polymorphic site levels. However, D subgenome showed the fastest [AT]-increase across polymorphic site from Aegilops tauschii to bread wheat than that on A and B subgenomes from wild emmer to bread wheat. The fastest [AT]-increase could be detected almost all chromosome windows on D subgenome, suggesting different mechanisms between D and other two subgenomes. Interestingly, the [AT]-increase is mainly contributed by intergenic regions at non-selective sweeps, especially the fastest [AT]-increase of D subgenome. Further transition frequency and sequence context analysis indicated that three subgenomes shared same mutation type, but D subgenome owns the highest mutation rate on high-frequency mutation type. The highest mutation rate on D subgenome was further confirmed by using a bread-wheat-private SNP set. The exploration of loci/genes related to the [AT] value of D subgenome suggests the fastest [AT]-increase of D subgenome could be involved in DNA repair systems distributed on three subgenomes of bread wheat. CONCLUSIONS The highest mutation rate is detected on D subgenome of bread wheat during domestication after allopolyploidization, leading to the fastest [AT]-increase pattern of D subgenome. The phenomenon may come from the joint action of multiple repair systems inherited from its wild progenitors.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Luhao Dong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Conghui Jiang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xueqiang Wang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jianyin Xie
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | - Yanhe Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Mengyao Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhimu Bu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Silong Sun
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xiaoqian Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Cunyao Bo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Tingting Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Herbert A. Simple Repeats as Building Blocks for Genetic Computers. Trends Genet 2020; 36:739-750. [PMID: 32690316 DOI: 10.1016/j.tig.2020.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 11/15/2022]
Abstract
Processing of RNA involves heterogeneous nuclear ribonucleoproteins. The simple sequence repeats (SSRs) they bind can also adopt alternative DNA structures, like Z DNA, triplexes, G quadruplexes, and I motifs. Those SSRs capable of switching conformation under physiological conditions (called flipons) are genetic elements that can encode alternative RNA processing by their effects on RNA processivity, most likely as DNA:RNA hybrids. Flipons are elements of a binary, instructive genetic code directing how genomic sequences are compiled into transcripts. The combinatorial nature of this code provides a rich set of options for creating genetic computers able to reproduce themselves and use a heritable and evolvable code to optimize survival. The underlying computational logic potentiates a diverse set of genetic programs that modify cis-mediated heritability and disease risk.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
19
|
Herbert A. ALU non-B-DNA conformations, flipons, binary codes and evolution. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200222. [PMID: 32742689 PMCID: PMC7353975 DOI: 10.1098/rsos.200222] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
ALUs contribute to genetic diversity by altering DNA's linear sequence through retrotransposition, recombination and repair. ALUs also have the potential to form alternative non-B-DNA conformations such as Z-DNA, triplexes and quadruplexes that alter the read-out of information from the genome. I suggest here these structures enable the rapid reprogramming of cellular pathways to offset DNA damage and regulate inflammation. The experimental data supporting this form of genetic encoding is presented. ALU sequence motifs that form non-B-DNA conformations under physiological conditions are called flipons. Flipons are binary switches. They are dissipative structures that trade energy for information. By efficiently targeting cellular machines to active genes, flipons expand the repertoire of RNAs compiled from a gene. Their action greatly increases the informational capacity of linearly encoded genomes. Flipons are programmable by epigenetic modification, synchronizing cellular events by altering both chromatin state and nucleosome phasing. Different classes of flipon exist. Z-flipons are based on Z-DNA and modify the transcripts compiled from a gene. T-flipons are based on triplexes and localize non-coding RNAs that direct the assembly of cellular machines. G-flipons are based on G-quadruplexes and sense DNA damage, then trigger the appropriate protective responses. Flipon conformation is dynamic, changing with context. When frozen in one state, flipons often cause disease. The propagation of flipons throughout the genome by ALU elements represents a novel evolutionary innovation that allows for rapid change. Each ALU insertion creates variability by extracting a different set of information from the neighbourhood in which it lands. By elaborating on already successful adaptations, the newly compiled transcripts work with the old to enhance survival. Systems that optimize flipon settings through learning can adapt faster than with other forms of evolution. They avoid the risk of relying on random and irreversible codon rewrites.
Collapse
|
20
|
Neipel J, Brandani G, Schiessel H. Translational nucleosome positioning: A computational study. Phys Rev E 2020; 101:022405. [PMID: 32168683 DOI: 10.1103/physreve.101.022405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/25/2019] [Indexed: 01/26/2023]
Abstract
About three-quarters of eukaryotic DNA is wrapped into nucleosomes; DNA spools with a protein core. The affinity of a given DNA stretch to be incorporated into a nucleosome is known to depend on the base-pair sequence-dependent geometry and elasticity of the DNA double helix. This causes the rotational and translational positioning of nucleosomes. In this study we ask the question whether the latter can be predicted by a simple coarse-grained DNA model with sequence-dependent elasticity, the rigid base-pair model. Whereas this model is known to be rather robust in predicting rotational nucleosome positioning, we show that the translational positioning is a rather subtle effect that is dominated by the guanine-cytosine content dependence of entropy rather than energy. A correct qualitative prediction within the rigid base-pair framework can only be achieved by assuming that DNA elasticity effectively changes on complexation into the nucleosome complex. With that extra assumption we arrive at a model which gives an excellent quantitative agreement to experimental in vitro nucleosome maps, under the additional assumption that nucleosomes equilibrate their positions only locally.
Collapse
Affiliation(s)
- J Neipel
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Faculty of Physics, Ludwig-Maximilians-Universität München, 80333 München, Germany.,Instituut-Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands
| | - G Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - H Schiessel
- Instituut-Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands
| |
Collapse
|
21
|
Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G. Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. J Clin Med 2020; 9:jcm9030640. [PMID: 32121034 PMCID: PMC7141194 DOI: 10.3390/jcm9030640] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.
Collapse
|
22
|
Zhang MZ, Cao XM, Xu FQ, Liang XW, Fu LL, Li B, Liu WG, Li SG, Sun FZ, Huang XY, Huang WH. In the human sperm nucleus, nucleosomes form spatially restricted domains consistent with programmed nucleosome positioning. Biol Open 2019; 8:bio.041368. [PMID: 31262721 PMCID: PMC6679404 DOI: 10.1242/bio.041368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In human sperm, a fraction of its chromatin retains nucleosomes that are positioned on specific sequences containing genes and regulatory units essential for embryonic development. This nucleosome positioning (NP) feature provides an inherited epigenetic mark for sperm. However, it is not known whether there is a structural constraint for these nucleosomes and, if so, how they are localized in a three-dimensional (3D) context of the sperm nucleus. In this study, we examine the 3D organization of sperm chromatin and specifically determine its 3D localization of nucleosomes using structured illumination microscopy. A fraction of the sperm chromatin form nucleosome domains (NDs), visible as microscopic puncta ranging from 40 μm to 700 μm in diameter, and these NDs are precisely localized in the post acrosome region (PAR), outside the sperm's core chromatin. Further, NDs exist mainly in sperm from fertile men in a pilot survey with a small sample size. Together, this study uncovers a new spatially-restricted sub-nuclear structure containing NDs that are consistent with NPs of the sperm, which might represent a novel mark for healthy sperm in human.
Collapse
Affiliation(s)
- Mei-Zi Zhang
- Reproductive Medicine Center, Tianjin First central hospital, Tianjin 300192, China
| | - Xiao-Min Cao
- Reproductive Medicine Center, Tianjin First central hospital, Tianjin 300192, China
| | - Feng-Qin Xu
- Reproductive Medicine Center, Tianjin First central hospital, Tianjin 300192, China
| | - Xiao-Wei Liang
- Bejing Human Sperm Bank and National Research Institute for Family Planning, Beijing 100101, China
| | - Long-Long Fu
- Bejing Human Sperm Bank and National Research Institute for Family Planning, Beijing 100101, China
| | - Bao Li
- Department of Urology, Affiliated Hospital of Weifang Medical University, 261000 Weifang, Shandong, China
| | - Wei-Guang Liu
- Department of Urology, Affiliated Hospital of Weifang Medical University, 261000 Weifang, Shandong, China
| | - Shuo-Guo Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang-Zhen Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Ying Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Hong Huang
- Department of Urology, Affiliated Hospital of Weifang Medical University, 261000 Weifang, Shandong, China .,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
23
|
Olszewska M, Wiland E, Huleyuk N, Fraczek M, Midro AT, Zastavna D, Kurpisz M. Chromosome (re)positioning in spermatozoa of fathers and sons - carriers of reciprocal chromosome translocation (RCT). BMC Med Genomics 2019; 12:30. [PMID: 30709354 PMCID: PMC6359769 DOI: 10.1186/s12920-018-0470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background Non-random chromosome positioning has been observed in the nuclei of several different tissue types, including human spermatozoa. The nuclear arrangement of chromosomes can be altered in men with decreased semen parameters or increased DNA fragmentation and in males with chromosomal numerical or structural aberrations. An aim of this study was to determine whether and how the positioning of nine chromosome centromeres was (re)arranged in the spermatozoa of fathers and sons – carriers of the same reciprocal chromosome translocation (RCT). Methods Fluorescence in situ hybridization (FISH) was applied to analyse the positioning of sperm chromosomes in a group of 13 carriers of 11 RCTs, including two familial RCT cases: t(4;5) and t(7;10), followed by analysis of eight control individuals. Additionally, sperm chromatin integrity was evaluated using TUNEL and Aniline Blue techniques. Results In the analysed familial RCT cases, repositioning of the chromosomes occurred in a similar way when compared to the data generated in healthy controls, even if some differences between father and son were further observed. These differences might have arisen from various statuses of sperm chromatin disintegration. Conclusions Nuclear topology appears as another aspect of epigenetic genomic regulation that may influence DNA functioning. We have re-documented that chromosomal positioning is defined in control males and that a particular RCT is reflected in the individual pattern of chromosomal topology. The present study examining the collected RCT group, including two familial cases, additionally showed that chromosomal factors (karyotype and hyperhaploidy) have superior effects, strongly influencing the chromosomal topology, when confronted with sperm chromatin integrity components (DNA fragmentation or chromatin deprotamination). Electronic supplementary material The online version of this article (10.1186/s12920-018-0470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Nataliya Huleyuk
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Alina T Midro
- Department of Clinical Genetics, Medical University of Bialystok, Waszyngtona 13, PO Box 22, 15-089, Bialystok, Poland
| | - Danuta Zastavna
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine.,Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959, Rzeszow, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
24
|
Colaco S, Sakkas D. Paternal factors contributing to embryo quality. J Assist Reprod Genet 2018; 35:1953-1968. [PMID: 30206748 PMCID: PMC6240539 DOI: 10.1007/s10815-018-1304-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Advancing maternal and paternal age leads to a decrease in fertility, and hence, many infertile couples opt for assisted reproductive technologies [ART] to achieve biological parenthood. One of the key determinants of achieving a live outcome of ART, embryo quality, depends on both the quality of the oocyte and sperm that have created the embryo. Several studies have explored the effect of oocyte parameters on embryo quality, but the effects of sperm quality on the embryo have not been comprehensively evaluated. METHOD In this review, we assess the effect of various genetic factors of paternal origin on the quality and development of the embryo. RESULTS The effects of sperm aneuploidy, sperm chromatin structure, deoxyribonucleic acid [DNA] fragmentation, role of protamines and histones, sperm epigenetic profile, and Y chromosome microdeletions were explored and found to negatively affect embryo quality. CONCLUSION We propose that careful assessment of spermatozoal parameters is essential to achieve embryo development and a healthy live birth. However, the heterogeneity in test results and the different approaches of assessing a single sperm parameter highlight the need for more research and the development of standardized protocols to assess the role of sperm factors affecting embryo quality.
Collapse
Affiliation(s)
- Stacy Colaco
- Molecular and Cellular Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400012, India.
| | | |
Collapse
|
25
|
Arhondakis S, Varriale A. Distribution of Nucleosome-enriched Sequences of Human Sperm Chromatin Along Isochores. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2018; 3:54-60. [DOI: 10.14218/erhm.2018.00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Castillo J, Jodar M, Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update 2018; 24:535-555. [DOI: 10.1093/humupd/dmy017] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Villarroel, Barcelona, Spain
| |
Collapse
|
27
|
Blossey R, Schiessel H. The Latest Twists in Chromatin Remodeling. Biophys J 2018; 114:2255-2261. [PMID: 29310890 DOI: 10.1016/j.bpj.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 02/03/2023] Open
Abstract
In its most restrictive interpretation, the notion of chromatin remodeling refers to the action of chromatin-remodeling enzymes on nucleosomes with the aim of displacing and removing them from the chromatin fiber (the effective polymer formed by a DNA molecule and proteins). This local modification of the fiber structure can have consequences for the initiation and repression of the transcription process, and when the remodeling process spreads along the fiber, it also results in long-range effects essential for fiber condensation. There are three regulatory levels of relevance that can be distinguished for this process: the intrinsic sequence preference of the histone octamer, which rules the positioning of the nucleosome along the DNA, notably in relation to the genetic information coded in DNA; the recognition or selection of nucleosomal substrates by remodeling complexes; and, finally, the motor action on the nucleosome exerted by the chromatin remodeler. Recent work has been able to provide crucial insights at each of these three levels that add new twists to this exciting and unfinished story, which we highlight in this perspective.
Collapse
Affiliation(s)
- Ralf Blossey
- University of Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, Lille, France.
| | - Helmut Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Leiden, the Netherlands
| |
Collapse
|
28
|
Culkin J, de Bruin L, Tompitak M, Phillips R, Schiessel H. The role of DNA sequence in nucleosome breathing. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:106. [PMID: 29185124 PMCID: PMC7001874 DOI: 10.1140/epje/i2017-11596-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/14/2017] [Indexed: 05/05/2023]
Abstract
Roughly 3/4 of human genomes are sequestered by nucleosomes, DNA spools with a protein core, dictating a broad range of biological processes, ranging from gene regulation, recombination, and replication, to chromosome condensation. Nucleosomes are dynamical structures and temporarily expose wrapped DNA through spontaneous unspooling from either end, a process called site exposure or nucleosome breathing. Here we ask how this process is influenced by the mechanical properties of the wrapped DNA, which is known to depend on the underlying base pair sequence. Using a coarse-grained nucleosome model we calculate the accessibility profiles for site exposure. We find that the process is very sensitive to sequence effects, so that evolution could potentially tune the accessibility of nucleosomal DNA and would only need a small number of mutations to do so.
Collapse
Affiliation(s)
- Jamie Culkin
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Lennart de Bruin
- Laboratory for Computation and Visualization in Mathematics and Mechanics, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Tompitak
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Rob Phillips
- Department of Applied Physics and Division of Biology and Biological Engineering, California Institute of Technology, 91125, Pasadena, CA, USA
| | - Helmut Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands.
| |
Collapse
|
29
|
Zuiddam M, Everaers R, Schiessel H. Physics behind the mechanical nucleosome positioning code. Phys Rev E 2017; 96:052412. [PMID: 29347769 DOI: 10.1103/physreve.96.052412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 06/07/2023]
Abstract
The positions along DNA molecules of nucleosomes, the most abundant DNA-protein complexes in cells, are influenced by the sequence-dependent DNA mechanics and geometry. This leads to the "nucleosome positioning code", a preference of nucleosomes for certain sequence motives. Here we introduce a simplified model of the nucleosome where a coarse-grained DNA molecule is frozen into an idealized superhelical shape. We calculate the exact sequence preferences of our nucleosome model and find it to reproduce qualitatively all the main features known to influence nucleosome positions. Moreover, using well-controlled approximations to this model allows us to come to a detailed understanding of the physics behind the sequence preferences of nucleosomes.
Collapse
Affiliation(s)
- Martijn Zuiddam
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Ralf Everaers
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique and Centre Blaise Pascal, F-69342 Lyon, France
| | - Helmut Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
30
|
Tompitak M, de Bruin L, Eslami-Mossallam B, Schiessel H. Designing nucleosomal force sensors. Phys Rev E 2017; 95:052402. [PMID: 28618598 DOI: 10.1103/physreve.95.052402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 11/07/2022]
Abstract
About three quarters of our DNA is wrapped into nucleosomes: DNA spools with a protein core. It is well known that the affinity of a given DNA stretch to be incorporated into a nucleosome depends on the geometry and elasticity of the basepair sequence involved, causing the positioning of nucleosomes. Here we show that DNA elasticity can have a much deeper effect on nucleosomes than just their positioning: it affects their "identities". Employing a recently developed computational algorithm, the mutation Monte Carlo method, we design nucleosomes with surprising physical characteristics. Unlike any other nucleosomes studied so far, these nucleosomes are short-lived when put under mechanical tension whereas other physical properties are largely unaffected. This suggests that the nucleosome, the most abundant DNA-protein complex in our cells, might more properly be considered a class of complexes with a wide array of physical properties, and raises the possibility that evolution has shaped various nucleosome species according to their genomic context.
Collapse
Affiliation(s)
- M Tompitak
- Instituut-Lorentz for Theoretical Physics, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - L de Bruin
- Section de Mathématiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - B Eslami-Mossallam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - H Schiessel
- Instituut-Lorentz for Theoretical Physics, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| |
Collapse
|
31
|
Genomes of Multicellular Organisms Have Evolved to Attract Nucleosomes to Promoter Regions. Biophys J 2017; 112:505-511. [PMID: 28131316 DOI: 10.1016/j.bpj.2016.12.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023] Open
Abstract
Sequences that influence nucleosome positioning in promoter regions, and their relation to gene regulation, have been the topic of much research over the last decade. In yeast, significant nucleosome-depleted regions are found, which facilitate transcription. With the arrival of nucleosome positioning maps for the human genome, it was discovered that in our genome, unlike in that of yeast, promoters encode for high nucleosome occupancy. In this work, we look at the genomes of a range of different organisms, to provide a catalog of nucleosome positioning signals in promoters across the tree of life. We utilize a computational model of the nucleosome, based on crystallographic analyses of the structure and elasticity of the nucleosome, to predict the nucleosome positioning signals in promoter regions. To be able to apply our model to large genomic datasets, we introduce an approximative scheme that makes use of the limited range of correlations in nucleosomal sequence preferences to create a computationally efficient approximation of the full biophysical model. Our predictions show that a clear distinction between unicellular and multicellular life is visible in the intrinsically encoded nucleosome affinity. Furthermore, the strength of the nucleosome positioning signals correlates with the complexity of the organism. We conclude that encoding for high nucleosome occupancy, as in the human genome, is in fact a universal feature of multicellular life.
Collapse
|
32
|
Hao C, Gely-Pernot A, Kervarrec C, Boudjema M, Becker E, Khil P, Tevosian S, Jégou B, Smagulova F. Exposure to the widely used herbicide atrazine results in deregulation of global tissue-specific RNA transcription in the third generation and is associated with a global decrease of histone trimethylation in mice. Nucleic Acids Res 2016; 44:9784-9802. [PMID: 27655631 PMCID: PMC5175363 DOI: 10.1093/nar/gkw840] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023] Open
Abstract
The epigenetic events imposed during germline reprogramming and affected by harmful exposure can be inherited and transferred to subsequent generations via gametes inheritance. In this study, we examine the transgenerational effects promoted by widely used herbicide atrazine (ATZ). We exposed pregnant outbred CD1 female mice and the male progeny was crossed for three generations with untreated females. We demonstrate here that exposure to ATZ affects meiosis, spermiogenesis and reduces the spermatozoa number in the third generation (F3) male mice. We suggest that changes in testis cell types originate from modified transcriptional network in undifferentiated spermatogonia. Importantly, exposure to ATZ dramatically increases the number of transcripts with novel transcription initiation sites, spliced variants and alternative polyadenylation sites. We found the global decrease in H3K4me3 occupancy in the third generation males. The regions with altered H3K4me3 occupancy in F3 ATZ-derived males correspond to altered H3K4me3 occupancy of F1 generation and 74% of changed peaks in F3 generation are associated with enhancers. The regions with altered H3K4me3 occupancy are enriched in SP family and WT1 transcription factor binding sites. Our data suggest that the embryonic exposure to ATZ affects the development and the changes induced by ATZ are transferred up to three generations.
Collapse
Affiliation(s)
- Chunxiang Hao
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Aurore Gely-Pernot
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France.,EHESP, 2 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Christine Kervarrec
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Melissa Boudjema
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Emmanuelle Becker
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Pavel Khil
- Clinical Center, National Institute of Health, Bethesda, MD 20892, USA
| | - Sergei Tevosian
- University of Florida, Department of Physiological Sciences, Box 100144, 1333 Center Drive, 32610 Gainesville, FL, USA
| | - Bernard Jégou
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France.,EHESP, 2 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Fatima Smagulova
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| |
Collapse
|
33
|
Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat Rev Urol 2016; 13:584-95. [PMID: 27578043 DOI: 10.1038/nrurol.2016.157] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic inheritance and its underlying molecular mechanisms are among the most intriguing areas of current biological and medical research. To date, studies have shown that both female and male germline development follow distinct paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. Fertilizing male and female germ cells deliver not only their haploid genomes but also their epigenomes, which contain the code for preimplantation and postimplantation reprogramming and embryonal development. For example, in spermatozoa, DNA methylation profile, DNA-associated proteins, protamine 1:protamine 2 ratio, nucleosome distribution pattern, histone modifications and other properties make up a unique epigenetic landscape. However, epigenetic factors and mechanisms possess certain plasticity and are affected by environmental conditions. Paternal and maternal lifestyle, including physical activity, nutrition and exposure to hazardous substances, can alter the epigenome and, moreover, can affect the health of their children. In male reproductive health, data are emerging on epigenetically mediated effects of a man's diet on sperm quality, for example through phytochemicals, minerals and vitamins, and nutritional support for subfertile men is already being used. In addition, studies in animal models and human epidemiological data point toward a transgenerational effect of the paternally contributed sperm epigenome on offspring health.
Collapse
|
34
|
Alternative Computational Analysis Shows No Evidence for Nucleosome Enrichment at Repetitive Sequences in Mammalian Spermatozoa. Dev Cell 2016; 37:98-104. [PMID: 27046835 DOI: 10.1016/j.devcel.2016.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/24/2015] [Accepted: 03/09/2016] [Indexed: 11/24/2022]
Abstract
Samans et al. (2014) reported the enrichment of nucleosomes in human and bovine spermatozoa at centromere repeats and retrotransposon sequences such as LINE-1 and SINE. We demonstrate here that nucleosomal enrichments at repetitive sequences as reported result from bioinformatic analyses that make redundant use of sequencing reads that map to multiple locations in the genome. To illustrate that this computational approach is flawed, we observed comparable artificial enrichments at repetitive sequences when aligning control genomic DNA or simulated reads of uniform genome coverage. These results imply that the main conclusions of the article by Samans et al. (2014) are confounded by an inappropriate computational methodology used to analyze the primary data.
Collapse
|
35
|
Dere E, Wilson SK, Anderson LM, Boekelheide K. From the Cover: Sperm Molecular Biomarkers Are Sensitive Indicators of Testicular Injury following Subchronic Model Toxicant Exposure. Toxicol Sci 2016; 153:327-40. [PMID: 27466211 DOI: 10.1093/toxsci/kfw137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional testis histopathology endpoints remain the gold standard for evaluating testicular insult and injury in a non-clinical setting, but are invasive and unfeasible for monitoring these effects clinically in humans. Assessing testicular injury in humans relies on semen and serum hormone analyses, both of which are insensitive and poor indicators of effect. Therefore, we hypothesized that sperm messenger RNA (mRNA) transcripts and DNA methylation marks can be used as translatable and sensitive indicators or testicular injury. Dose-response studies using adult male Fischer 344 rats subchronically exposed to model Sertoli cell toxicants (0.14, 0.21, and 0.33% 2,5-hexanedione, and 30, 50, and 70 mg/kg/day carbendazim), and a model germ cell toxicant (1.4, 3.4, and 5.1 mg/kg/day cyclophosphamide) for 3 months were evaluated for testicular injury by traditional histopathological endpoints, changes in sperm mRNA transcript levels using custom PCR arrays, and alterations in sperm DNA methylation via reduced representation bisulfite sequencing. Testis histopathological evaluation and PCR array analysis of the sperm transcriptome identified dose-dependent changes elicited by toxicant exposure (P < 0.05). Global sperm DNA methylation analysis of subchronic 0.33% 2,5-hexandione and 5.1 mg/kg/day cyclophosphamide exposure using a Monte Carlo approach did not identify differentially methylated regions (methylation difference > 10% and q < 0.05) with robust signatures. Overall, these results suggest that sperm mRNA transcripts are sensitive indicators of low dose toxicant-induced testicular injury in the rat, while sperm DNA methylation changes are not. Additionally, the Monte Carlo analysis is a powerful approach that can be used to assess the robustness of signals resulting from -omic studies.
Collapse
Affiliation(s)
- Edward Dere
- *Division of Urology, Rhode Island Hospital, Providence, Rhode Island 02903 Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Shelby K Wilson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Linnea M Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
36
|
Castillo J, Estanyol JM, Ballescá JL, Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl 2016; 17:601-9. [PMID: 25926607 PMCID: PMC4492051 DOI: 10.4103/1008-682x.153302] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The classical idea about the function of the mammalian sperm chromatin is that it serves to transmit a highly protected and transcriptionally inactive paternal genome, largely condensed by protamines, to the next generation. In addition, recent sperm chromatin genome-wide dissection studies indicate the presence of a differential distribution of the genes and repetitive sequences in the protamine-condensed and histone-condensed sperm chromatin domains, which could be potentially involved in regulatory roles after fertilization. Interestingly, recent proteomic studies have shown that sperm chromatin contains many additional proteins, in addition to the abundant histones and protamines, with specific modifications and chromatin affinity features which are also delivered to the oocyte. Both gene and protein signatures seem to be altered in infertile patients and, as such, are consistent with the potential involvement of the sperm chromatin landscape in early embryo development. This present work reviews the available information on the composition of the human sperm chromatin and its epigenetic potential, with a particular focus on recent results derived from high-throughput genomic and proteomic studies. As a complement, we provide experimental evidence for the detection of phosphorylations and acetylations in human protamine 1 using a mass spectrometry approach. The available data indicate that the sperm chromatin is much more complex than what it was previously thought, raising the possibility that it could also serve to transmit crucial paternal epigenetic information to the embryo.
Collapse
Affiliation(s)
| | | | | | - Rafael Oliva
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143; Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Centre, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain
| |
Collapse
|
37
|
Tillo D, Mukherjee S, Vinson C. Inheritance of Cytosine Methylation. J Cell Physiol 2016; 231:2346-52. [DOI: 10.1002/jcp.25350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Desiree Tillo
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda Maryland
| | - Sanjit Mukherjee
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda Maryland
| | - Charles Vinson
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
38
|
Abstract
The paternal contribution to fertilization and embryogenesis is frequently overlooked as the spermatozoon is often considered to be a silent vessel whose only function is to safely deliver the paternal genome to the maternal oocyte. In this article, we hope to demonstrate that this perception is far from the truth. Typically, infertile men have been unable to conceive naturally (or through regular IVF), and therefore, a perturbation of the genetic integrity of sperm heads in infertile males has been under-considered. The advent of intracytoplasmic sperm injection (ICSI) however has led to very successful treatment of male factor infertility and subsequent widespread use in IVF clinics worldwide. Until recently, little concern has been raised about the genetic quality of sperm in ICSI patients or the impact genetic aberrations could have on fertility and embryogenesis. This review highlights the importance of chromatin packaging in the sperm nucleus as essential for the establishment and maintenance of a viable pregnancy.
Collapse
|
39
|
Kocer A, Henry-Berger J, Noblanc A, Champroux A, Pogorelcnik R, Guiton R, Janny L, Pons-Rejraji H, Saez F, Johnson GD, Krawetz SA, Alvarez JG, Aitken RJ, Drevet JR. Oxidative DNA damage in mouse sperm chromosomes: Size matters. Free Radic Biol Med 2015; 89:993-1002. [PMID: 26510519 DOI: 10.1016/j.freeradbiomed.2015.10.419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 01/24/2023]
Abstract
Normal embryo and foetal development as well as the health of the progeny are mostly dependent on gamete nuclear integrity. In the present study, in order to characterize more precisely oxidative DNA damage in mouse sperm we used two mouse models that display high levels of sperm oxidative DNA damage, a common alteration encountered both in in vivo and in vitro reproduction. Immunoprecipitation of oxidized sperm DNA coupled to deep sequencing showed that mouse chromosomes may be largely affected by oxidative alterations. We show that the vulnerability of chromosomes to oxidative attack inversely correlated with their size and was not linked to their GC richness. It was neither correlated with the chromosome content in persisting nucleosomes nor associated with methylated sequences. A strong correlation was found between oxidized sequences and sequences rich in short interspersed repeat elements (SINEs). Chromosome position in the sperm nucleus as revealed by fluorescent in situ hybridization appears to be a confounder. These data map for the first time fragile mouse sperm chromosomal regions when facing oxidative damage that may challenge the repair mechanisms of the oocyte post-fertilization.
Collapse
Affiliation(s)
- Ayhan Kocer
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Joelle Henry-Berger
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Anais Noblanc
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Alexandre Champroux
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Romain Pogorelcnik
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Rachel Guiton
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Laurent Janny
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France; CHU Estaing, Assistance Médicale à la Procréation, Clermont-Ferrand, France
| | - Hanae Pons-Rejraji
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France; CHU Estaing, Assistance Médicale à la Procréation, Clermont-Ferrand, France
| | - Fabrice Saez
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Graham D Johnson
- Center for Molecular Medicine & Genetics, Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Stephen A Krawetz
- Center for Molecular Medicine & Genetics, Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Juan G Alvarez
- Centro ANDROGEN, La Coruña, Spain; Harvard Medical School, Boston, MA 02115, USA
| | - R John Aitken
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Joël R Drevet
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France.
| |
Collapse
|
40
|
Olszewska M, Wanowska E, Kishore A, Huleyuk N, Georgiadis AP, Yatsenko AN, Mikula M, Zastavna D, Wiland E, Kurpisz M. Genetic dosage and position effect of small supernumerary marker chromosome (sSMC) in human sperm nuclei in infertile male patient. Sci Rep 2015; 5:17408. [PMID: 26616419 PMCID: PMC4663790 DOI: 10.1038/srep17408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/28/2015] [Indexed: 11/12/2022] Open
Abstract
Chromosomes occupy specific distinct areas in the nucleus of the sperm cell that may be altered in males with disrupted spermatogenesis. Here, we present alterations in the positioning of the human chromosomes 15, 18, X and Y between spermatozoa with the small supernumerary marker chromosome (sSMC; sSMC+) and spermatozoa with normal chromosome complement (sSMC−), for the first time described in the same ejaculate of an infertile, phenotypically normal male patient. Using classical and confocal fluorescent microscopy, the nuclear colocalization of chromosomes 15 and sSMC was analyzed. The molecular cytogenetic characteristics of sSMC delineated the karyotype as 47,XY,+der(15)(pter->p11.2::q11.1->q11.2::p11.2->pter)mat. Analysis of meiotic segregation showed a 1:1 ratio of sSMC+ to sSMC− spermatozoa, while evaluation of sperm aneuploidy status indicated an increased level of chromosome 13, 18, 21 and 22 disomy, up to 7 × (2.7 − 15.1). Sperm chromatin integrity assessment did not reveal any increase in deprotamination in the patient’s sperm chromatin. Importantly, we found significant repositioning of chromosomes X and Y towards the nuclear periphery, where both chromosomes were localized in close proximity to the sSMC. This suggests the possible influence of sSMC/XY colocalization on meiotic chromosome division, resulting in abnormal chromosome segregation, and leading to male infertility in the patient.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Elzbieta Wanowska
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Archana Kishore
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Andrew P Georgiadis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Alexander N Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh 15213, PA, USA
| | - Mariya Mikula
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Danuta Zastavna
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Department of Reproductive Biology and Stem Cells, Strzeszynska 32, 60-479 Poznan, Poland
| |
Collapse
|
41
|
Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, Cohen T, Xia J, Suderman M, Hallett M, Trasler J, Peters AHFM, Kimmins S. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 2015; 350:aab2006. [PMID: 26449473 DOI: 10.1126/science.aab2006] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/18/2015] [Indexed: 12/28/2022]
Abstract
A father's lifetime experiences can be transmitted to his offspring to affect health and development. However, the mechanisms underlying paternal epigenetic transmission are unclear. Unlike in somatic cells, there are few nucleosomes in sperm, and their function in epigenetic inheritance is unknown. We generated transgenic mice in which overexpression of the histone H3 lysine 4 (H3K4) demethylase KDM1A (also known as LSD1) during spermatogenesis reduced H3K4 dimethylation in sperm. KDM1A overexpression in one generation severely impaired development and survivability of offspring. These defects persisted transgenerationally in the absence of KDM1A germline expression and were associated with altered RNA profiles in sperm and offspring. We show that epigenetic inheritance of aberrant development can be initiated by histone demethylase activity in developing sperm, without changes to DNA methylation at CpG-rich regions.
Collapse
Affiliation(s)
- Keith Siklenka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Serap Erkek
- Friedrich Miescher Institute for Biomedical Research (FMI), CH-4058 Basel, Switzerland. Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Maren Godmann
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Romain Lambrot
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Serge McGraw
- Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christine Lafleur
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Tamara Cohen
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Jianguo Xia
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada. Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Matthew Suderman
- MRC Integrative Epidemiology Unity, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Michael Hallett
- McGill Centre for Bioinformatics, School of Computer Science, Faculty of Science, McGill University, Montreal, Quebec, Canada
| | - Jacquetta Trasler
- Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada. Department of Human Genetics and Department of Pharmacology and Therapeutics, Research Institute of the McGill University Health Centre at the Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), CH-4058 Basel, Switzerland. Faculty of Sciences, University of Basel, Basel, Switzerland.
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada. Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
42
|
Milekic MH, Xin Y, O'Donnell A, Kumar KK, Bradley-Moore M, Malaspina D, Moore H, Brunner D, Ge Y, Edwards J, Paul S, Haghighi FG, Gingrich JA. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Mol Psychiatry 2015; 20:995-1001. [PMID: 25092244 DOI: 10.1038/mp.2014.84] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/14/2014] [Accepted: 06/17/2014] [Indexed: 12/15/2022]
Abstract
Advanced paternal age (APA) has been shown to be a significant risk factor in the offspring for neurodevelopmental psychiatric disorders, such as schizophrenia and autism spectrum disorders. During aging, de novo mutations accumulate in the male germline and are frequently transmitted to the offspring with deleterious effects. In addition, DNA methylation during spermatogenesis is an active process, which is susceptible to errors that can be propagated to subsequent generations. Here we test the hypothesis that the integrity of germline DNA methylation is compromised during the aging process. A genome-wide DNA methylation screen comparing sperm from young and old mice revealed a significant loss of methylation in the older mice in regions associated with transcriptional regulation. The offspring of older fathers had reduced exploratory and startle behaviors and exhibited similar brain DNA methylation abnormalities as observed in the paternal sperm. Offspring from old fathers also had transcriptional dysregulation of developmental genes implicated in autism and schizophrenia. Our findings demonstrate that DNA methylation abnormalities arising in the sperm of old fathers are a plausible mechanism to explain some of the risks that APA poses to resulting offspring.
Collapse
Affiliation(s)
- M H Milekic
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| | - Y Xin
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| | - A O'Donnell
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - K K Kumar
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| | - M Bradley-Moore
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| | - D Malaspina
- 1] Department of Psychiatry, New York University, New York, NY, USA [2] Department of Psychiatry, New York University, and The NY OMH Creedmoor Psychiatric Center, New York, NY, USA
| | - H Moore
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| | - D Brunner
- 1] Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA [2] PsychoGenics, New York, NY, USA
| | - Y Ge
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - J Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - S Paul
- Helen & Robert Appel Institute for Alzheimer's Research, Mind and Brain Institute, Weill Cornell Medical School, New York, NY, USA
| | - F G Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J A Gingrich
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
43
|
Pantano L, Jodar M, Bak M, Ballescà JL, Tommerup N, Oliva R, Vavouri T. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes. RNA (NEW YORK, N.Y.) 2015; 21:1085-1095. [PMID: 25904136 PMCID: PMC4436662 DOI: 10.1261/rna.046482.114] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 02/19/2015] [Indexed: 05/29/2023]
Abstract
At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline.
Collapse
Affiliation(s)
- Lorena Pantano
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Can Ruti Campus, Badalona, Barcelona 08916, Spain
| | - Meritxell Jodar
- Genetics Unit, Department of Physiological Sciences, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biochemistry and Molecular Genetics Service, Hospital Clinic, 08036 Barcelona, Spain
| | - Mads Bak
- Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen, DK-2200 Copenhagen, Denmark Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Josep Lluís Ballescà
- Andrology Unit, Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Hospital Clínic, 08036 Barcelona, Spain
| | - Niels Tommerup
- Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen, DK-2200 Copenhagen, Denmark Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rafael Oliva
- Genetics Unit, Department of Physiological Sciences, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biochemistry and Molecular Genetics Service, Hospital Clinic, 08036 Barcelona, Spain
| | - Tanya Vavouri
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Can Ruti Campus, Badalona, Barcelona 08916, Spain Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital GermansTrias i Pujol, Badalona, Barcelona 08916, Spain
| |
Collapse
|
44
|
Miller D. Confrontation, Consolidation, and Recognition: The Oocyte's Perspective on the Incoming Sperm. Cold Spring Harb Perspect Med 2015; 5:a023408. [PMID: 25957313 PMCID: PMC4526728 DOI: 10.1101/cshperspect.a023408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
From the oocyte's perspective, the incoming sperm poses a significant challenge. Despite (usually) arising from a male of the same species, the sperm is a "foreign" body that may carry with it additional, undesirable factors such as transposable elements (mainly retroposons) into the egg. These factors can arise either during spermatogenesis or while the sperm is moving through the epididymis or the female genital tract. Furthermore, in addition to the paternal genome, the sperm also carries its own complex repertoire of RNAs into the egg that includes mRNAs, lncRNAs, and sncRNAs. Last, the paternal genome itself is efficiently packaged into a protamine (nucleo-toroid) and histone (nucleosome)-based chromatin scaffold within which much of the RNA is embedded. Taken together, the sperm delivers a far more complex package to the egg than was originally thought. Understanding this complexity, at both the compositional and structural level, depends largely on investigating sperm chromatin from both the genomic (DNA packaging) and epigenomic (RNA carriage and extant histone modifications) perspectives. Why this complexity has arisen and its likely purpose requires us to look more closely at what happens in the oocyte when the sperm gains entry and the processes that then take place preparing the paternal (and maternal) genomes for syngamy.
Collapse
Affiliation(s)
- David Miller
- Institute of Cardiovascular and Metabolic Medicine (LICAMM), LIGHT Laboratories, University of Leeds, Leeds, LS2 9JT West Yorkshire, United Kingdom
| |
Collapse
|
45
|
Vieweg M, Dvorakova-Hortova K, Dudkova B, Waliszewski P, Otte M, Oels B, Hajimohammad A, Turley H, Schorsch M, Schuppe HC, Weidner W, Steger K, Paradowska-Dogan A. Methylation analysis of histone H4K12ac-associated promoters in sperm of healthy donors and subfertile patients. Clin Epigenetics 2015; 7:31. [PMID: 25806092 PMCID: PMC4372182 DOI: 10.1186/s13148-015-0058-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/12/2015] [Indexed: 11/24/2022] Open
Abstract
Background Histone to protamine exchange and the hyperacetylation of the remaining histones are hallmarks of spermiogenesis. Acetylation of histone H4 at lysine 12 (H4K12ac) was observed prior to full decondensation of sperm chromatin after fertilization suggesting an important role for the regulation of gene expression in early embryogenesis. Similarly, DNA methylation may contribute to gene silencing of several developmentally important genes. Following the identification of H4K12ac-binding promoters in sperm of fertile and subfertile patients, we aimed to investigate whether the depletion of histone-binding is associated with aberrant DNA methylation in sperm of subfertile men. Furthermore, we monitored the transmission of H4K12ac, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) from the paternal chromatin to the embryo applying mouse in vitro fertilization and immunofluorescence. Results Chromatin immunoprecipitation (ChIP) with anti-H4K12ac antibody was performed with chromatin isolated from spermatozoa of subfertile patients with impaired sperm chromatin condensation assessed by aniline blue staining. Fertile donors were used as control. DNA methylation analysis of selected H4K12ac-interacting promoters in spermatozoa was performed by pyrosequencing. Depletion of binding sites for H4K12ac was observed within the following developmentally important promoters: AFF4, EP300, LRP5, RUVBL1, USP9X, NCOA6, NSD1, and POU2F1. We found 5% to 10% hypomethylation within CpG islands of selected promoters in the sperm of fertile donors, and it was not significantly altered in the subfertile group. Our results demonstrate that the H4K12ac depletion in selected developmentally important promoters of subfertile patients was not accompanied by a change of DNA methylation. Using a murine model, immunofluorescence revealed that H4K12ac co-localize with 5mC in the sperm nucleus. During fertilization, when the pronuclei are formed, the paternal pronucleus exhibits a strong acetylation signal on H4K12, while in the maternal pronucleus, there is a permanent increase of H4K12ac until pronuclei fusion. Simultaneously, there is an increase of the 5hmC signal and a decrease of the 5mC signal. Conclusions We suggest that aberrant histone acetylation within developmentally important gene promoters in subfertile men, but not DNA methylation, may reflect insufficient sperm chromatin compaction affecting the transfer of epigenetic marks to the oocyte. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0058-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Markus Vieweg
- Section Molecular Andrology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Katerina Dvorakova-Hortova
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic.,Biocev Group, Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Barbora Dudkova
- Biocev Group, Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Przemyslaw Waliszewski
- Department of Urology, Pediatric Urology and Andrology, Justus Liebieg University of Giessen, 35392 Giessen, Germany
| | - Marie Otte
- Fertility Center, 35578 Wetzlar, Germany
| | | | | | | | | | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebieg University of Giessen, 35392 Giessen, Germany
| | - Wolfgang Weidner
- Department of Urology, Pediatric Urology and Andrology, Justus Liebieg University of Giessen, 35392 Giessen, Germany
| | - Klaus Steger
- Section Molecular Andrology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Agnieszka Paradowska-Dogan
- Section Molecular Andrology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
46
|
Li X, Scanlon MJ, Yu J. Evolutionary patterns of DNA base composition and correlation to polymorphisms in DNA repair systems. Nucleic Acids Res 2015; 43:3614-25. [PMID: 25765652 PMCID: PMC4402523 DOI: 10.1093/nar/gkv197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/24/2015] [Indexed: 11/15/2022] Open
Abstract
DNA base composition is a fundamental genome feature. However, the evolutionary pattern of base composition and its potential causes have not been well understood. Here, we report findings from comparative analysis of base composition at the whole-genome level across 2210 species, the polymorphic-site level across eight population comparison sets, and the mutation-site level in 12 mutation-tracking experiments. We first demonstrate that base composition follows the individual-strand base equality rule at the genome, chromosome and polymorphic-site levels. More intriguingly, clear separation of base-composition values calculated across polymorphic sites was consistently observed between basal and derived groups, suggesting common underlying mechanisms. Individuals in the derived groups show an A&T-increase/G&C-decrease pattern compared with the basal groups. Spontaneous and induced mutation experiments indicated these patterns of base composition change can emerge across mutation sites. With base-composition across polymorphic sites as a genome phenotype, genome scans with human 1000 Genomes and HapMap3 data identified a set of significant genomic regions enriched with Gene Ontology terms for DNA repair. For three DNA repair genes (BRIP1, PMS2P3 and TTDN), ENCODE data provided evidence for interaction between genomic regions containing these genes and regions containing the significant SNPs. Our findings provide insights into the mechanisms of genome evolution.
Collapse
Affiliation(s)
- Xianran Li
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
47
|
Vonka V, Petráčková M. Immunology of chronic myeloid leukemia: current concepts and future goals. Expert Rev Clin Immunol 2015; 11:511-22. [PMID: 25728856 DOI: 10.1586/1744666x.2015.1019474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although chronic myeloid leukemia is a rare malignancy, it has developed into a model system for the study of a variety of aspects of cancer biology and immunology. The introduction of tyrosine kinase inhibitors has resulted in a significant prolongation of the survival rates of chronic myeloid leukemia patients but has not resulted in a cure. There is a growing conviction that this aim can be achieved through immunotherapy. For this concept to be successful, a considerable increase in the present understanding of chronic myeloid leukemia immunology is required. The authors attempt to review and evaluate the current findings that demonstrate a number of immunological aberrations in patients prior to the start of any therapy and their normalization after achieving remission. They also discuss the recent clinical trials with experimental therapeutic vaccines and then present their own strategy on how to address the problem.
Collapse
Affiliation(s)
- Vladimír Vonka
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | | |
Collapse
|
48
|
Zhou LQ, Dean J. Reprogramming the genome to totipotency in mouse embryos. Trends Cell Biol 2015; 25:82-91. [PMID: 25448353 PMCID: PMC4312727 DOI: 10.1016/j.tcb.2014.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 02/03/2023]
Abstract
Despite investigative interest, the artificial derivation of pluripotent stem cells remains inefficient and incomplete reprogramming hinders its potential as a reliable tool in regenerative medicine. By contrast, fusion of terminally differentiated gametes at fertilization activates efficient epigenetic reprogramming to ensure totipotency of early embryos. Understanding the epigenetic mechanisms required for the transition from the fertilized egg to the embryo can improve efforts to reprogram differentiated cells to pluripotent/totipotent cells for therapeutic use. We review recent discoveries that are providing insight into the molecular mechanisms required for epigenetic reprogramming to totipotency in vivo.
Collapse
Affiliation(s)
- Li-quan Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Abstract
Poised (bivalent) chromatin is defined by the simultaneous presence of histone modifications associated with both gene activation and repression. This epigenetic feature was first observed at promoters of lineage-specific regulatory genes in embryonic stem cells in culture. More recent work has shown that, in vivo, mammalian germ cells maintain poised chromatin at promoters of many genes that regulate somatic development, and that they retain this state from fetal stages through meiosis and gametogenesis. We hypothesize that the poised chromatin state is essential for germ cell identity and function. We propose three roles for poised chromatin in the mammalian germ line: prevention of DNA methylation, maintenance of germ cell identity and preparation for totipotency. We discuss these roles in the context of recently proposed models for germline potency and epigenetic inheritance.
Collapse
Affiliation(s)
- Bluma J Lesch
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David C Page
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
50
|
Casas E, Vavouri T. Sperm epigenomics: challenges and opportunities. Front Genet 2014; 5:330. [PMID: 25278962 PMCID: PMC4166955 DOI: 10.3389/fgene.2014.00330] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/03/2014] [Indexed: 11/16/2022] Open
Abstract
Sperm is a highly differentiated cell type whose function is to deliver a haploid genome to the oocyte. The sperm “epigenomes” were traditionally considered to be insignificant – the sperm is transcriptionally inactive, its genome is packaged in sperm-specific protamine toroids instead of nucleosomes, and its DNA methylation profile is erased immediately post-fertilization. Yet, in recent years there has been an increase in the number of reported cases of apparent epigenetic inheritance through the male germline, suggesting that the sperm epigenome may transmit information between generations. At the same time, technical advances have made the genome-wide profiling of different layers of the sperm epigenome feasible. As a result, a large number of datasets have been recently generated and analyzed with the aim to better understand what non-genetic material is contained within the sperm and whether it has any function post-fertilization. Here, we provide an overview of the current knowledge of the sperm epigenomes as well as the challenges in analysing them and the opportunities in understanding the potential non-genetic carriers of information in sperm.
Collapse
Affiliation(s)
- Eduard Casas
- Institute of Predictive and Personalized Medicine of Cancer Barcelona, Spain
| | - Tanya Vavouri
- Institute of Predictive and Personalized Medicine of Cancer Barcelona, Spain
| |
Collapse
|