1
|
Li Y, Han Q, Liu Y, Yin J, Ma J. Role of the Histone Deacetylase Family in Lipid Metabolism: Structural Specificity and Functional Diversity. Pharmacol Res 2024:107493. [PMID: 39491635 DOI: 10.1016/j.phrs.2024.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Lipids play crucial roles in signal transduction. Lipid metabolism is associated with several transcriptional regulators, including peroxisome proliferator activated receptor γ, sterol regulatory element-binding protein 1, and acetyl-CoA carboxylase. In recent years, increasing evidence has suggested that members of the histone deacetylase (HDAC) family play key roles in lipid metabolism. However, the mechanisms by which each member of this family regulates lipid metabolism remain unclear. This review discusses the latest research on the roles played by HDACs in fat metabolism. The role of HDACs in obesity, diabetes, and atherosclerosis has also been discussed. In addition, the interaction of HDACs with the gut microbiome and circadian rhythm has been reviewed, and the future development trend in HDACs has been predicted, which may potentiate therapeutic application of targeted HDACs in related metabolic diseases.
Collapse
Affiliation(s)
- Yunxia Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Qi Han
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Yuxin Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| | - Jie Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
2
|
Tang H, Yang J, Xu J, Zhang W, Geng A, Jiang Y, Mao Z. The transcription factor PAX5 activates human LINE1 retrotransposons to induce cellular senescence. EMBO Rep 2024; 25:3263-3275. [PMID: 38866979 PMCID: PMC11315925 DOI: 10.1038/s44319-024-00176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
As a hallmark of senescent cells, the derepression of Long Interspersed Elements 1 (LINE1) transcription results in accumulated LINE1 cDNA, which triggers the secretion of the senescence-associated secretory phenotype (SASP) and paracrine senescence in a cGAS-STING pathway-dependent manner. However, transcription factors that govern senescence-associated LINE1 reactivation remain ill-defined. Here, we predict several transcription factors that bind to human LINE1 elements to regulate their transcription by analyzing the conserved binding motifs in the 5'-untranslated regions (UTR) of the commonly upregulated LINE1 elements in different types of senescent cells. Further analysis reveals that PAX5 directly binds to LINE1 5'-UTR and the binding is enhanced in senescent cells. The enrichment of PAX5 at the 5'-UTR promotes cellular senescence and SASP by activating LINE1. We also demonstrate that the longevity gene SIRT6 suppresses PAX5 transcription by directly binding to the PAX5 promoter, and overexpressing PAX5 abrogates the suppressive effect of SIRT6 on stress-dependent cellular senescence. Our work suggests that PAX5 could serve as a potential target for drug development aiming to suppress LINE1 activation and treat senescence-associated diseases.
Collapse
Affiliation(s)
- Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiaqing Yang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Junhao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weina Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ying Jiang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Cheng J, Keuthan CJ, Esumi N. The many faces of SIRT6 in the retina and retinal pigment epithelium. Front Cell Dev Biol 2023; 11:1244765. [PMID: 38016059 PMCID: PMC10646311 DOI: 10.3389/fcell.2023.1244765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian sirtuin family of NAD+-dependent protein deacylases, homologues of the yeast silent information regulator 2 (Sir2). SIRT6 has remarkably diverse functions and plays a key role in a variety of biological processes for maintaining cellular and organismal homeostasis. In this review, our primary aim is to summarize recent progress in understanding SIRT6's functions in the retina and retinal pigment epithelium (RPE), with the hope of further drawing interests in SIRT6 to increase efforts in exploring the therapeutic potential of this unique protein in the vision field. Before describing SIRT6's role in the eye, we first discuss SIRT6's general functions in a wide range of biological contexts. SIRT6 plays an important role in gene silencing, metabolism, DNA repair, antioxidant defense, inflammation, aging and longevity, early development, and stress response. In addition, recent studies have revealed SIRT6's role in macrophage polarization and mitochondrial homeostasis. Despite being initially understudied in the context of the eye, recent efforts have begun to elucidate the critical functions of SIRT6 in the retina and RPE. In the retina, SIRT6 is essential for adult retinal function, regulates energy metabolism by suppressing glycolysis that affects photoreceptor cell survival, protects retinal ganglion cells from oxidative stress, and plays a role in Müller cells during early neurodegenerative events in diabetic retinopathy. In the RPE, SIRT6 activates autophagy in culture and protects against oxidative stress in mice. Taken together, this review demonstrates that better understanding of SIRT6's functions and their mechanisms, both in and out of the context of the eye, holds great promise for the development of SIRT6-targeted strategies for prevention and treatment of blinding eye diseases.
Collapse
Affiliation(s)
| | | | - Noriko Esumi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Wu T, Qu Y, Xu S, Wang Y, Liu X, Ma D. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. FASEB J 2023; 37:e23099. [PMID: 37462453 DOI: 10.1096/fj.202301012r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The abnormal lipid metabolism in diabetic cardiomyopathy can cause myocardial mitochondrial dysfunction, lipotoxicity, abnormal death of myocardial cells, and myocardial remodeling. Mitochondrial homeostasis and normal lipid metabolism can effectively slow down the development of diabetic cardiomyopathy. Recent studies have shown that SIRT6 may play an important role in the pathological changes of diabetic cardiomyopathy such as myocardial cell death, myocardial hypertrophy, and myocardial fibrosis by regulating mitochondrial oxidative stress and glucose and lipid metabolism. Therefore, understanding the function of SIRT6 and its role in the pathogenesis of diabetic cardiomyopathy is of great significance for exploring and developing new targets and drugs for the treatment of diabetic cardiomyopathy. This article reviews the latest findings of SIRT6 in the pathogenesis of diabetic cardiomyopathy, focusing on the regulation of mitochondria and lipid metabolism by SIRT6 to explore potential clinical treatments.
Collapse
Affiliation(s)
- Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwei Qu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengjie Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Xue Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
5
|
Yang X, Chung JY, Rai U, Esumi N. SIRT6 overexpression in the nucleus protects mouse retinal pigment epithelium from oxidative stress. Life Sci Alliance 2023; 6:e202201448. [PMID: 37185874 PMCID: PMC10130745 DOI: 10.26508/lsa.202201448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Retinal pigment epithelium (RPE) is essential for the survival of retinal photoreceptors. To study retinal degeneration, sodium iodate (NaIO3) has been used to cause oxidative stress-induced RPE death followed by photoreceptor degeneration. However, analyses of RPE damage itself are still limited. Here, we characterized NaIO3-induced RPE damage, which was divided into three regions: periphery with normal-shaped RPE, transitional zone with elongated cells, and center with severely damaged or lost RPE. Elongated cells in the transitional zone exhibited molecular characteristics of epithelial-mesenchymal transition. Central RPE was more susceptible to stresses than peripheral RPE. Under stresses, SIRT6, an NAD+-dependent protein deacylase, rapidly translocated from the nucleus to the cytoplasm and colocalized with stress granule factor G3BP1, leading to nuclear SIRT6 depletion. To overcome this SIRT6 depletion, SIRT6 overexpression was induced in the nucleus in transgenic mice, which protected RPE from NaIO3 and partially preserved catalase expression. These results demonstrate topological differences of mouse RPE and warrant further exploring SIRT6 as a potential target for protecting RPE from oxidative stress-induced damage.
Collapse
Affiliation(s)
- Xue Yang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin-Yong Chung
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Usha Rai
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noriko Esumi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Chrysophanol prevents IL-1β-Induced inflammation and ECM degradation in osteoarthritis via the Sirt6/NF-κB and Nrf2/NF-κB axis. Biochem Pharmacol 2023; 208:115402. [PMID: 36592706 DOI: 10.1016/j.bcp.2022.115402] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Osteoarthritis (OA) is a common joint illness that negatively impacts people's lives. The main active ingredient of cassia seed or rhubarb is chrysophanol. It has various pharmacological effects including anticancer, anti-diabetes and blood lipid regulation. Previous evidence suggests that chrysophanol has anti-inflammatory properties in various diseases, but its effect on OA has not been investigated yet. In this study, chrysophanol inhibited IL-1β -induced expression of ADAMTS-4, MMP13, COX-2 and iNOS. Meanwhile, it can inhibit aggrecan and collagen degradation in osteoarthritic chondrocytes induced by IL-1β.Further studies depicted that SIRT6 silencing eliminated the chrysophanol effect on IL-1β. The results demonstrated that chrysophanol could stimulate SIRT6 activation and, more importantly, increase SIRT6 levels. We also discovered that chrysophanol might impede the NF-κB pathway of OA mice's chondrocytes induced by IL-1β, which could be because it depends on SIRT6 activation to some extent. It had also been previously covered that chrysophanol could produce a marked effect on Nrf2/NF-κB axis [1]. Therefore, we can infer that chrysophanol may benefit chondrocytes by regulating the SIRT6/NF-κB and Nrf2/NF-κB signaling axis.We examined the anti-inflammatory mechanism and the impact of chrysophanol on mice in vitro and in vivo. In summary, we declare that chrysophanol diminishes the inflammatory reaction of OA in mice in vitro by regulating SIRT6/NF-κB and Nrf2/NF-κB signaling pathway and protects articular cartilage from degradation in vivo. We can infer that chrysophanol could be an efficient therapy for OA.
Collapse
|
7
|
Simon M, Yang J, Gigas J, Earley EJ, Hillpot E, Zhang L, Zagorulya M, Tombline G, Gilbert M, Yuen SL, Pope A, Van Meter M, Emmrich S, Firsanov D, Athreya A, Biashad SA, Han J, Ryu S, Tare A, Zhu Y, Hudgins A, Atzmon G, Barzilai N, Wolfe A, Moody K, Garcia BA, Thomas DD, Robbins PD, Vijg J, Seluanov A, Suh Y, Gorbunova V. A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. EMBO J 2022; 41:e110393. [PMID: 36215696 PMCID: PMC9627671 DOI: 10.15252/embj.2021110393] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/02/2023] Open
Abstract
Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6. Surprisingly, centSIRT6 displayed weaker deacetylase activity, but stronger mADPr activity, over a range of NAD+ concentrations and substrates. Additionally, centSIRT6 displayed a stronger interaction with Lamin A/C (LMNA), which was correlated with enhanced ribosylation of LMNA. Our results suggest that enhanced SIRT6 function contributes to human longevity by improving genome maintenance via increased mADPr activity and enhanced interaction with LMNA.
Collapse
Affiliation(s)
- Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jiping Yang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Jonathan Gigas
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Eric J Earley
- Biostatistics and Epidemiology, RTI International, Durham, NC, USA
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Lei Zhang
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Maria Zagorulya
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Greg Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Michael Gilbert
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha L Yuen
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alexis Pope
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | | | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Advait Athreya
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Jeehae Han
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Seungjin Ryu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Archana Tare
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yizhou Zhu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam Hudgins
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
8
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
9
|
Afzaal A, Rehman K, Kamal S, Akash MSH. Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol 2022; 36:e23047. [PMID: 35297126 DOI: 10.1002/jbt.23047] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Sirtuins (SIRT1-7) are distinct histone deacetylases (HDACs) whose activity is determined by cellular metabolic status andnicotinamide adenine dinucleotide (NAD+ ) levels. HDACs of class III are the members of the SIRT's protein family. SIRTs are the enzymes that modulate mitochondrial activity and energy metabolism. SIRTs have been linked to a number of clinical and physiological operations, such as energy responses to low-calorie availability, aging, stress resistance, inflammation, and apoptosis. Mammalian SIRT2 orthologs have been identified as SIRT1-7 that are found in several subcellular sections, including the cytoplasm (SIRT1, 2), mitochondrial matrix (SIRT3, 4, 5), and the core (SIRT1, 2, 6, 7). For their deacetylase or ADP-ribosyl transferase action, all SIRTs require NAD+ and are linked to cellular energy levels. Evolutionarily, SIRT1 is related to yeast's SIRT2 as well as received primary attention in the circulatory system. An endogenous protein, SIRT1 is involved in the development of heart failure and plays a key role in cell death and survival. SIRT2 downregulation protects against ischemic-reperfusion damage. Increase in human longevity is caused by an increase in SIRT3 expression. Cardiomyocytes are also protected by SIRT3 from oxidative damage and aging, as well as suppressing cardiac hypertrophy. SIRT4 and SIRT5 perform their roles in the heart. SIRT6 has also been linked to a reduction in heart hypertrophy. SIRT7 is known to be involved in the regulation of stress responses and apoptosis in the heart.
Collapse
Affiliation(s)
- Ammara Afzaal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
10
|
Wu X, Wang S, Zhao X, Lai S, Yuan Z, Zhan Y, Ni K, Liu Z, Liu L, Xin R, Zhou X, Yin X, Liu X, Zhang X, Cui W, Zhang C. Clinicopathological and prognostic value of SIRT6 in patients with solid tumors: a meta-analysis and TCGA data review. Cancer Cell Int 2022; 22:84. [PMID: 35172823 PMCID: PMC8848894 DOI: 10.1186/s12935-022-02511-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSES In addition to its role in cellular progression and cancer, SIRT6, a member of nicotinamide adenine dinucleotide (NAD+)-dependent class III deacylase sirtuin family, serves a variety of roles in the body's immune system. In this study, we sought to determine the relationship between the expression of SIRT6 and the clinicopathological outcomes of patients with solid tumours by conducting a meta-analysis of the available data. METHODS The databases PubMed and ISI Web of Science were searched for relevant literature, and the results were presented here. Using Stata16.0, a meta-analysis was conducted to determine the impact of SIRT6 on clinicopathological characteristics and prognosis in malignancy patients. The results were published in the journal Cancer Research. The dataset from the Cancer Genome Atlas (TCGA) was used to investigate the prognostic significance of SIRT6 in various types of tumors. RESULTS The inclusion and exclusion criteria were met by 15 studies. In patients with solid tumours, reduced SIRT6 expression was found to be related with improved overall survival (OS) (HR = 0.66, 95% CI = 0.45-0.97, P < 0.001) as well as improved disease-free survival (DFS) (HR = 0.48, 95% CI = 0.26-0.91, P < 0.001). Low SIRT6 expression was found to be associated with a better OS in breast cancer (HR = 0.49, 95% CI = 0.27-0.89, P = 0.179), but was found to be associated with a worse OS in gastrointestinal cancer (gastric cancer and colon cancer) (HR = 1.83, 95% CI = 1.20-2.79, P = 0.939) after subgroup analysis. In terms of clinicopathological characteristics, SIRT6 expression was found to be linked with distant metastasis (OR = 2.98, 95% CI = 1.59-5.57, P = 0.694). When the data from the TCGA dataset was compared to normal tissue, it was discovered that SIRT6 expression was significantly different in 11 different types of cancers. Meanwhile, reduced SIRT6 expression was shown to be associated with improved OS (P < 0.05), which was consistent with the findings of the meta-analysis. Aside from that, the expression of SIRT6 was found to be associated with both gender and clinical stage. CONCLUSION The overall data of the present meta-analysis indicated that low expression of SIRT6 may predict a favorable survival for patients with solid tumors.
Collapse
Affiliation(s)
- Xiaojing Wu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shuyuan Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xuanzhu Zhao
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sizhen Lai
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhen Yuan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yixiang Zhan
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Kemin Ni
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhaoce Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lina Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Ran Xin
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xingyu Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xin Yin
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xinyu Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.,Tianjin Medical University, Tianjin, 300041, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.,Tianjin Institute of Coloproctology, Tianjin, 300121, China
| | - Wei Cui
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China.
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China. .,Tianjin Institute of Coloproctology, Tianjin, 300121, China.
| |
Collapse
|
11
|
Lee IS, Chang JH, Kim DW, Kim SG, Kim TW. The effect of 4-hexylresorinol administration on NAD+ level and SIRT activity in Saos-2 cells. Maxillofac Plast Reconstr Surg 2021; 43:39. [PMID: 34719767 PMCID: PMC8558123 DOI: 10.1186/s40902-021-00326-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background 4-hexylresorcinol (4HR) has been shown to have anti-oxidant activity similar to that of resveratrol. As resveratrol increases sirtuin (SIRT) activity, 4HR might behave similarly to resveratrol. Method In this study, the expression levels of SIRT1, SIRT3, and SIRT6 were evaluated after 4HR administration (1–100 μM). As NAD+ is a substrate for SIRTs, its levels with SIRT activity were also studied. Results In the results, SIRT3 (100 μM at 24 h) and SIRT6 (1–100 μM at 24 h and 10 μM at 8 h) were shown to have significantly higher expression levels compared to untreated control (p < 0.05). Pan-SIRT activity and the NAD+ level was significantly increased compared to that of the untreated control (p < 0.05; 10 and 100 μM at 24 h). Conclusion 4HR administration increased SIRT activity and the NAD+ level in Saos-2 cells.
Collapse
Affiliation(s)
- In-Song Lee
- Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, 3080, Republic of Korea
| | - Jun-Ho Chang
- Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, 3080, Republic of Korea
| | - Dae-Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Jibyun-dong, Gangneung, Gangwondo, 28644, Republic of Korea
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Jibyun-dong, Gangneung, Gangwondo, 28644, Republic of Korea.
| | - Tae-Woo Kim
- Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, 3080, Republic of Korea.
| |
Collapse
|
12
|
Li X, Liu L, Li T, Liu M, Wang Y, Ma H, Mu N, Wang H. SIRT6 in Senescence and Aging-Related Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:641315. [PMID: 33855020 PMCID: PMC8039379 DOI: 10.3389/fcell.2021.641315] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
SIRT6 belongs to the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and has established diverse roles in aging, metabolism and disease. Its function is similar to the Silent Information Regulator 2 (SIR2), which prolongs lifespan and regulates genomic stability, telomere integrity, transcription, and DNA repair. It has been demonstrated that increasing the sirtuin level through genetic manipulation extends the lifespan of yeast, nematodes and flies. Deficiency of SIRT6 induces chronic inflammation, autophagy disorder and telomere instability. Also, these cellular processes can lead to the occurrence and progression of cardiovascular diseases (CVDs), such as atherosclerosis, hypertrophic cardiomyopathy and heart failure. Herein, we discuss the implications of SIRT6 regulates multiple cellular processes in cell senescence and aging-related CVDs, and we summarize clinical application of SIRT6 agonists and possible therapeutic interventions in aging-related CVDs.
Collapse
Affiliation(s)
- Xiaokang Li
- Department of Cardiology, China Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian Li
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Haiyan Wang
- Department of Cardiology, China Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Lasigliè D. Sirtuins and the prevention of immunosenescence. VITAMINS AND HORMONES 2021; 115:221-264. [PMID: 33706950 DOI: 10.1016/bs.vh.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging of hematopoietic stem cells (HSCs) has been largely described as one underlying cause of senescence of the immune-hematopoietic system (immunosenescence). A set of well-defined hallmarks characterizes aged HSCs contributing to unbalanced hematopoiesis and aging-associated functional alterations of both branches of the immune system. In this chapter, the contribution of sirtuins, a family of conserved NAD+ dependent deacetylases with key roles in metabolism, genome integrity, aging and lifespan, to immunosenescence, will be addressed. In particular, the role of SIRT6 will be deeply analyzed highlighting a multifaceted part of this deacetylase in HSCs aging as well as in the immunosenescence of dendritic cells (DCs). These and other emerging data are currently paving the way for future design and development of rejuvenation means aiming at rescuing age-related changes in immune function in the elderly and combating age-associated hematopoietic diseases.
Collapse
Affiliation(s)
- Denise Lasigliè
- Istituto Comprensivo "Franco Marro", Ministero dell'Istruzione Ministero dell'Università e della Ricerca (M.I.U.R), Villar Perosa, TO, Italy.
| |
Collapse
|
14
|
An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas. Nat Commun 2020; 11:6269. [PMID: 33293544 PMCID: PMC7722844 DOI: 10.1038/s41467-020-19983-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
Silencing of exogenous DNA can make transgene expression very inefficient. Genetic screens in the model alga Chlamydomonas have demonstrated that transgene silencing can be overcome by mutations in unknown gene(s), thus producing algal strains that stably express foreign genes to high levels. Here, we show that the silencing mechanism specifically acts on transgenic DNA. Once a permissive chromatin structure has assembled, transgene expression can persist even in the absence of mutations disrupting the silencing pathway. We have identified the gene conferring the silencing and show it to encode a sirtuin-type histone deacetylase. Loss of gene function does not appreciably affect endogenous gene expression. Our data suggest that transgenic DNA is recognized and then quickly inactivated by the assembly of a repressive chromatin structure composed of deacetylated histones. We propose that this mechanism may have evolved to provide protection from potentially harmful types of environmental DNA. Strong transgene suppression has been observed in Chlamydomonas reinhardtii, but the underlying mechanism is unknown. Here, the authors identify a sirtuin-type histone deacetylase that selectively acts on transgenic DNA to repress gene expression by assembling a repressive chromatin structure composed of deacetylated histones.
Collapse
|
15
|
Tang X, Wei Y, Wang J, Chen S, Cai J, Tang J, Xu X, Long B, Yu G, Zhang Z, He M, Qin J. Association between SIRT6 Methylation and Human Longevity in a Chinese Population. Public Health Genomics 2020; 23:190-199. [PMID: 33238266 DOI: 10.1159/000508832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/19/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sirtuin 6 gene (SIRT6) is a longevity gene that is involved in a variety of metabolic pathways, but the relationship between SIRT6 methylation and longevity has not been clarified. METHODS We conducted a case-control study on 129 residents with a family history of longevity (1 of parents, themselves, or siblings aged ≥90 years) and 86 individuals without a family history of exceptional longevity to identify the association. DNA pyrosequencing was performed to analyze the methylation status of SIRT6 promoter CpG sites. qRT-PCR and ELISA were used to estimate the SIRT6 messenger RNA (mRNA) levels and protein content. Six CpG sites (P1-P6) were identified as methylation variable positions in the SIRT6 promoter region. RESULTS At the P2 and P5 CpG sites, the methylation rates of the longevity group were lower than those of the control group (p < 0.001 and p = 0.009), which might be independent determinants of longevity. The mRNA and protein levels of SIRT6 decreased in the control group (p < 0.0001 and p = 0.038). The mRNA level negatively correlated with the methylation rates at the P2 (rs = -0.173, p = 0.011) and P5 sites (rs = -0.207, p = 0.002). Furthermore, the protein content positively correlated with the methylation rate at the P5 site (rs = 0.136, p = 0.046) but showed no significant correlation with the methylation rate at the P2 site. CONCLUSION The low level of SIRT6 methylation may be a potential protective factor of Chinese longevity.
Collapse
Affiliation(s)
- Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.,Department of General Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yi Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jian Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Shiyi Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiansheng Cai
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiexia Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xia Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Bingshuang Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Guoqi Yu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.,Department of Occupational and Environmental Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Min He
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China,
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.,The First People's Hospital of Nanning, Nanning, China
| |
Collapse
|
16
|
Amsalem Z, Arif T, Shteinfer-Kuzmine A, Chalifa-Caspi V, Shoshan-Barmatz V. The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link. Cancers (Basel) 2020; 12:cancers12041031. [PMID: 32331482 PMCID: PMC7226296 DOI: 10.3390/cancers12041031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Carcinogenesis is a complicated process that involves the deregulation of epigenetics, resulting in cellular transformational events, such as proliferation, differentiation, and metastasis. Most chromatin-modifying enzymes utilize metabolites as co-factors or substrates and thus are directly dependent on such metabolites as acetyl-coenzyme A, S-adenosylmethionine, and NAD+. Here, we show that using specific siRNA to deplete a tumor of VDAC1 not only led to reprograming of the cancer cell metabolism but also altered several epigenetic-related enzymes and factors. VDAC1, in the outer mitochondrial membrane, controls metabolic cross-talk between the mitochondria and the rest of the cell, thus regulating the metabolic and energetic functions of mitochondria, and has been implicated in apoptotic-relevant events. We previously demonstrated that silencing VDAC1 expression in glioblastoma (GBM) U-87MG cell-derived tumors, resulted in reprogramed metabolism leading to inhibited tumor growth, angiogenesis, epithelial-mesenchymal transition and invasiveness, and elimination of cancer stem cells, while promoting the differentiation of residual tumor cells into neuronal-like cells. These VDAC1 depletion-mediated effects involved alterations in transcription factors regulating signaling pathways associated with cancer hallmarks. As the epigenome is sensitive to cellular metabolism, this study was designed to assess whether depleting VDAC1 affects the metabolism-epigenetics axis. Using DNA microarrays, q-PCR, and specific antibodies, we analyzed the effects of si-VDAC1 treatment of U-87MG-derived tumors on histone modifications and epigenetic-related enzyme expression levels, as well as the methylation and acetylation state, to uncover any alterations in epigenetic properties. Our results demonstrate that metabolic rewiring of GBM via VDAC1 depletion affects epigenetic modifications, and strongly support the presence of an interplay between metabolism and epigenetics.
Collapse
Affiliation(s)
- Zohar Amsalem
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
| | - Tasleem Arif
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Vered Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Correspondence: ; Fax: +972-8-647-2992
| |
Collapse
|
17
|
Scassellati C, Ciani M, Galoforo AC, Zanardini R, Bonvicini C, Geroldi C. Molecular mechanisms in cognitive frailty: potential therapeutic targets for oxygen-ozone treatment. Mech Ageing Dev 2020; 186:111210. [PMID: 31982474 DOI: 10.1016/j.mad.2020.111210] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
In the last decade, cognitive frailty has gained great attention from the scientific community. It is characterized by high inflammation and oxidant state, endocrine and metabolic alterations, mitochondria dysfunctions and slowdown in regenerative processes and immune system, with a complex and multifactorial aetiology. Although several treatments are available, challenges regarding the efficacy and the costs persist. Here, we proposed an alternative non-pharmacological, non-side-effect, low cost therapy based on anti-inflammation, antioxidant, regenerative and anti-pathogens properties of ozone, through the activation of several molecular mechanisms (Nrf2-ARE, NF-κB, NFAT, AP-1, HIFα). We highlighted how these specific processes could be implicated in cognitive frailty to identify putative therapeutic targets for its treatment. The oxigen-ozone (O2-O3) therapy has never been tested for cognitive frailty. This work provides thus wide scientific background to build a consistent rationale for testing for the first time this therapy, that could modulate the immune, inflammatory, oxidant, metabolic, endocrine, microbiota and regenerative processes impaired in cognitive frailty. Although insights are needed, the O2-O3 therapy could represent a faster, easier, inexpensive monodomain intervention working in absence of side effects for cognitive frailty.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy; University of Pavia, Pavia, Italy
| | - Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Cristina Geroldi
- Alzheimer Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
18
|
Arsiwala T, Pahla J, van Tits LJ, Bisceglie L, Gaul DS, Costantino S, Miranda MX, Nussbaum K, Stivala S, Blyszczuk P, Weber J, Tailleux A, Stein S, Paneni F, Beer JH, Greter M, Becher B, Mostoslavsky R, Eriksson U, Staels B, Auwerx J, Hottiger MO, Lüscher TF, Matter CM. Sirt6 deletion in bone marrow-derived cells increases atherosclerosis - Central role of macrophage scavenger receptor 1. J Mol Cell Cardiol 2020; 139:24-32. [PMID: 31972266 DOI: 10.1016/j.yjmcc.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/19/2022]
Abstract
AIMS Sirtuin 6 (Sirt6) is a NAD+-dependent deacetylase that plays a key role in DNA repair, inflammation and lipid regulation. Sirt6-null mice show severe metabolic defects and accelerated aging. Macrophage-foam cell formation via scavenger receptors is a key step in atherogenesis. We determined the effects of bone marrow-restricted Sirt6 deletion on foam cell formation and atherogenesis using a mouse model. METHODS AND RESULTS Sirt6 deletion in bone marrow-derived cells increased aortic plaques, lipid content and macrophage numbers in recipient Apoe-/- mice fed a high-cholesterol diet for 12 weeks (n = 12-14, p < .001). In RAW macrophages, Sirt6 overexpression reduced oxidized low-density lipoprotein (oxLDL) uptake, Sirt6 knockdown enhanced it and increased mRNA and protein levels of macrophage scavenger receptor 1 (Msr1), whereas levels of other oxLDL uptake and efflux transporters remained unchanged. Similarly, in human primary macrophages, Sirt6 knockdown increased MSR1 protein levels and oxLDL uptake. Double knockdown of Sirt6 and Msr1 abolished the increase in oxLDL uptake observed upon Sirt6 single knockdown. FACS analyses of macrophages from aortic plaques of Sirt6-deficient bone marrow-transplanted mice showed increased MSR1 protein expression. Double knockdown of Sirt6 and the transcription factor c-Myc in RAW cells abolished the increase in Msr1 mRNA and protein levels; c-Myc overexpression increased Msr1 mRNA and protein levels. CONCLUSIONS Loss of Sirt6 in bone marrow-derived cells is proatherogenic; hereby macrophages play an important role given a c-Myc-dependent increase in MSR1 protein expression and an enhanced oxLDL uptake in human and murine macrophages. These findings assign endogenous SIRT6 in macrophages an important atheroprotective role.
Collapse
Affiliation(s)
- Tasneem Arsiwala
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Jürgen Pahla
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Lambertus J van Tits
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Lavinia Bisceglie
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Daniel S Gaul
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Melroy X Miranda
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Kathrin Nussbaum
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Internal Medicine Cantonal Hospital Baden, Baden, Switzerland
| | - Przemyslaw Blyszczuk
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Julien Weber
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Anne Tailleux
- Univ. Lille - EGID; Inserm UMR1011; CHU Lille, Institut Pasteur de Lille, France
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Internal Medicine Cantonal Hospital Baden, Baden, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Raul Mostoslavsky
- Massachusetts General Hospital, Cancer Center, Harvard Medical School, Boston, USA
| | - Urs Eriksson
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Bart Staels
- Univ. Lille - EGID; Inserm UMR1011; CHU Lille, Institut Pasteur de Lille, France
| | - Johan Auwerx
- Laboratory of Integrative & Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland.
| |
Collapse
|
19
|
Chang AR, Ferrer CM, Mostoslavsky R. SIRT6, a Mammalian Deacylase with Multitasking Abilities. Physiol Rev 2020; 100:145-169. [PMID: 31437090 PMCID: PMC7002868 DOI: 10.1152/physrev.00030.2018] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian sirtuins have emerged in recent years as critical modulators of multiple biological processes, regulating cellular metabolism, DNA repair, gene expression, and mitochondrial biology. As such, they evolved to play key roles in organismal homeostasis, and defects in these proteins have been linked to a plethora of diseases, including cancer, neurodegeneration, and aging. In this review, we describe the multiple roles of SIRT6, a chromatin deacylase with unique and important functions in maintaining cellular homeostasis. We attempt to provide a framework for such different functions, for the ability of SIRT6 to interconnect chromatin dynamics with metabolism and DNA repair, and the open questions the field will face in the future, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew R Chang
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Christina M Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
20
|
Zhou S, Dai YM, Zeng XF, Chen HZ. Circadian Clock and Sirtuins in Diabetic Lung: A Mechanistic Perspective. Front Endocrinol (Lausanne) 2020; 11:173. [PMID: 32308644 PMCID: PMC7145977 DOI: 10.3389/fendo.2020.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes-induced tissue injuries in target organs such as the kidney, heart, eye, liver, skin, and nervous system contribute significantly to the morbidity and mortality of diabetes. However, whether the lung should be considered a diabetic target organ has been discussed for decades. Accumulating evidence shows that both pulmonary histological changes and functional abnormalities have been observed in diabetic patients, suggesting that the lung is a diabetic target organ. Mechanisms underlying diabetic lung are unclear, however, oxidative stress, systemic inflammation, and premature aging convincingly contribute to them. Circadian system and Sirtuins have been well-documented to play important roles in above mechanisms. Circadian rhythms are intrinsic mammalian biological oscillations with a period of near 24 h driven by the circadian clock system. This system plays an important role in the regulation of energy metabolism, oxidative stress, inflammation, cellular proliferation and senescence, thus impacting metabolism-related diseases, chronic airway diseases and cancers. Sirtuins, a family of adenine dinucleotide (NAD+)-dependent histone deacetylases, have been demonstrated to regulate a series of physiological processes and affect diseases such as obesity, insulin resistance, type 2 diabetes (T2DM), heart disease, cancer, and aging. In this review, we summarize recent advances in the understanding of the roles of the circadian clock and Sirtuins in regulating cellular processes and highlight the potential interactions of the circadian clock and Sirtuins in the context of diabetic lung.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Shuang Zhou
| | - Yi-Min Dai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Feng Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
21
|
González-Fernández R, Martín-Ramírez R, Rotoli D, Hernández J, Naftolin F, Martín-Vasallo P, Palumbo A, Ávila J. Granulosa-Lutein Cell Sirtuin Gene Expression Profiles Differ between Normal Donors and Infertile Women. Int J Mol Sci 2019; 21:ijms21010295. [PMID: 31906251 PMCID: PMC6981982 DOI: 10.3390/ijms21010295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 01/06/2023] Open
Abstract
Sirtuins are a family of deacetylases that modify structural proteins, metabolic enzymes, and histones to change cellular protein localization and function. In mammals, there are seven sirtuins involved in processes like oxidative stress or metabolic homeostasis associated with aging, degeneration or cancer. We studied gene expression of sirtuins by qRT-PCR in human mural granulosa-lutein cells (hGL) from IVF patients in different infertility diagnostic groups and in oocyte donors (OD; control group). Study 1: sirtuins genes’ expression levels and correlations with age and IVF parameters in women with no ovarian factor. We found significantly higher expression levels of SIRT1, SIRT2 and SIRT5 in patients ≥40 years old than in OD and in women between 27 and 39 years old with tubal or male factor, and no ovarian factor (NOF). Only SIRT2, SIRT5 and SIRT7 expression correlated with age. Study 2: sirtuin genes’ expression in women poor responders (PR), endometriosis (EM) and polycystic ovarian syndrome. Compared to NOF controls, we found higher SIRT2 gene expression in all diagnostic groups while SIRT3, SIRT5, SIRT6 and SIRT7 expression were higher only in PR. Related to clinical parameters SIRT1, SIRT6 and SIRT7 correlate positively with FSH and LH doses administered in EM patients. The number of mature oocytes retrieved in PR is positively correlated with the expression levels of SIRT3, SIRT4 and SIRT5. These data suggest that cellular physiopathology in PR’s follicle may be associated with cumulative DNA damage, indicating that further studies are necessary.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain; (R.G.-F.); (R.M.-R.); (D.R.); (P.M.-V.)
| | - Rita Martín-Ramírez
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain; (R.G.-F.); (R.M.-R.); (D.R.); (P.M.-V.)
| | - Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain; (R.G.-F.); (R.M.-R.); (D.R.); (P.M.-V.)
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR-National Research Council, 80131 Naples, Italy
| | - Jairo Hernández
- Centro de Asistencia a la Reproducción Humana de Canarias, 38202 La Laguna, Tenerife, Spain; (J.H.); (A.P.)
| | - Frederick Naftolin
- Department of Obstetrics and Gynecology, New York University, New York, NY 10016, USA;
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain; (R.G.-F.); (R.M.-R.); (D.R.); (P.M.-V.)
| | - Angela Palumbo
- Centro de Asistencia a la Reproducción Humana de Canarias, 38202 La Laguna, Tenerife, Spain; (J.H.); (A.P.)
- Department of Obstetrics and Gynecology, New York University, New York, NY 10016, USA;
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna, Tenerife, Spain; (R.G.-F.); (R.M.-R.); (D.R.); (P.M.-V.)
- Correspondence:
| |
Collapse
|
22
|
Welz PS, Benitah SA. Molecular Connections Between Circadian Clocks and Aging. J Mol Biol 2019; 432:3661-3679. [PMID: 31887285 DOI: 10.1016/j.jmb.2019.12.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
Abstract
The mammalian circadian clockwork has evolved as a timing system that allows the daily environmental changes to be anticipated so that behavior and tissue physiology can be adjusted accordingly. The circadian clock synchronizes the function of all cells within tissues in order to temporally separate preclusive and potentially harmful physiologic processes and to establish a coherent temporal organismal physiology. Thus, the proper functioning of the circadian clockwork is essential for maintaining cellular and tissue homeostasis. Importantly, aging reduces the robustness of the circadian clock, resulting in disturbed sleep-wake cycles, a lowered capacity to synchronize circadian rhythms in peripheral tissues, and reprogramming of the circadian clock output at the molecular function levels. These circadian clock-dependent behavioral and molecular changes in turn further accelerate the process of aging. Here we review the current knowledge about how aging affects the circadian clock, how the functional decline of the circadian clock affects aging, and how the circadian clock machinery and the molecular processes that underlie aging are intertwined.
Collapse
Affiliation(s)
- Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - S A Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
23
|
Breitbach ME, Greenspan S, Resnick NM, Perera S, Gurkar AU, Absher D, Levine AS. Exonic Variants in Aging-Related Genes Are Predictive of Phenotypic Aging Status. Front Genet 2019; 10:1277. [PMID: 31921313 PMCID: PMC6931058 DOI: 10.3389/fgene.2019.01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/19/2019] [Indexed: 01/31/2023] Open
Abstract
Background: Recent studies investigating longevity have revealed very few convincing genetic associations with increased lifespan. This is, in part, due to the complexity of biological aging, as well as the limited power of genome-wide association studies, which assay common single nucleotide polymorphisms (SNPs) and require several thousand subjects to achieve statistical significance. To overcome such barriers, we performed comprehensive DNA sequencing of a panel of 20 genes previously associated with phenotypic aging in a cohort of 200 individuals, half of whom were clinically defined by an "early aging" phenotype, and half of whom were clinically defined by a "late aging" phenotype based on age (65-75 years) and the ability to walk up a flight of stairs or walk for 15 min without resting. A validation cohort of 511 late agers was used to verify our results. Results: We found early agers were not enriched for more total variants in these 20 aging-related genes than late agers. Using machine learning methods, we identified the most predictive model of aging status, both in our discovery and validation cohorts, to be a random forest model incorporating damaging exon variants [Combined Annotation-Dependent Depletion (CADD) > 15]. The most heavily weighted variants in the model were within poly(ADP-ribose) polymerase 1 (PARP1) and excision repair cross complementation group 5 (ERCC5), both of which are involved in a canonical aging pathway, DNA damage repair. Conclusion: Overall, this study implemented a framework to apply machine learning to identify sequencing variants associated with complex phenotypes such as aging. While the small sample size making up our cohort inhibits our ability to make definitive conclusions about the ability of these genes to accurately predict aging, this study offers a unique method for exploring polygenic associations with complex phenotypes.
Collapse
Affiliation(s)
- Megan E. Breitbach
- HudsonAlpha Institute for Biotechnology, Hunstville, AL, United States
- Department of Biotechnology Science and Engineering, University of Alabama in Huntsville, Hunstville, AL, United States
| | - Susan Greenspan
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Neil M. Resnick
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Institute on Aging of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Subashan Perera
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Aditi U. Gurkar
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Institute on Aging of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Hunstville, AL, United States
| | - Arthur S. Levine
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Naciri I, Laisné M, Ferry L, Bourmaud M, Gupta N, Di Carlo S, Huna A, Martin N, Peduto L, Bernard D, Kirsh O, Defossez PA. Genetic screens reveal mechanisms for the transcriptional regulation of tissue-specific genes in normal cells and tumors. Nucleic Acids Res 2019; 47:3407-3421. [PMID: 30753595 PMCID: PMC6468300 DOI: 10.1093/nar/gkz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The proper tissue-specific regulation of gene expression is essential for development and homeostasis in metazoans. However, the illegitimate expression of normally tissue-restricted genes—like testis- or placenta-specific genes—is frequently observed in tumors; this promotes transformation, but also allows immunotherapy. Two important questions are: how is the expression of these genes controlled in healthy cells? And how is this altered in cancer? To address these questions, we used an unbiased approach to test the ability of 350 distinct genetic or epigenetic perturbations to induce the illegitimate expression of over 40 tissue-restricted genes in primary human cells. We find that almost all of these genes are remarkably resistant to reactivation by a single alteration in signaling pathways or chromatin regulation. However, a few genes differ and are more readily activated; one is the placenta-expressed gene ADAM12, which promotes invasion. Using cellular systems, an animal model, and bioinformatics, we find that a non-canonical but druggable TGF-β/KAT2A/TAK1 axis controls ADAM12 induction in normal and cancer cells. More broadly, our data show that illegitimate gene expression in cancer is an heterogeneous phenomenon, with a few genes activatable by simple events, and most genes likely requiring a combination of events to become reactivated.
Collapse
Affiliation(s)
- Ikrame Naciri
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Marthe Laisné
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Laure Ferry
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Morgane Bourmaud
- INSERM U1132 and USPC Paris-Diderot, Hôpital Lariboisière, Paris, France
| | - Nikhil Gupta
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Selene Di Carlo
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Lucie Peduto
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Olivier Kirsh
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Pierre-Antoine Defossez
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| |
Collapse
|
25
|
Jiang C, Sun ZM, Hu JN, Jin Y, Guo Q, Xu JJ, Chen ZX, Jiang RH, Wu YS. Cyanidin ameliorates the progression of osteoarthritis via the Sirt6/NF-κB axis in vitro and in vivo. Food Funct 2019; 10:5873-5885. [PMID: 31464310 DOI: 10.1039/c9fo00742c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is the most prevalent form of human arthritis which is characterized by the degradation of cartilage and inflammation. As a rare Sirt6 activator, cyanidin is the major component of anthocyanins commonly found in the Mediterranean diet, and increasing evidence has shown that cyanidin exhibits anti-inflammatory effects in a variety of diseases. However, the anti-inflammatory effects of cyanidin on OA have not been reported. In the present study, we identified that cyanidin treatment could strongly suppress the expression of NO, PGE2, TNF-α, IL-6, iNOs, COX-2, ADAMTS5 and MMP13, and reduce the degradation of aggrecan and collagen II in IL-1β-induced human OA chondrocytes, indicating the anti-inflammatory effect of cyanidin. Further investigation of the mechanism involved revealed that cyanidin could upregulate the Sirt6 level in a dose-dependent manner and Sirt6 silencing abolished the effect of cyanidin in IL-1β-stimulated human OA chondrocytes, indicating a stimulatory effect of cyanidin on Sirt6 activation. Meanwhile, we found that cyanidin could inhibit the NF-κB pathway in IL-1β-stimulated human OA chondrocytes and its effect may to some extent depend on Sirt6 activation, suggesting that cyanidin may exert a protective effect through regulating the Sirt6/NF-κB signaling axis. Moreover, the in vivo study also proved that cyanidin ameliorated the development of OA in surgical destabilization of the medial meniscus (DMM) mouse OA models. In conclusion, these results demonstrate that cyanidin may have therapeutic potential for the treatment of OA.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ze-Ming Sun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jia-Ning Hu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiang Guo
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jia-Jing Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ze-Xin Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ren-Hao Jiang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yao-Sen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 32500, China
| |
Collapse
|
26
|
Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int J Mol Sci 2019; 20:E4009. [PMID: 31426459 PMCID: PMC6720777 DOI: 10.3390/ijms20164009] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Ozone (O3) is a natural, highly unstable atmospheric gas that rapidly decomposes to oxygen. Although not being a radical molecule, O3 is a very strong oxidant and therefore it is potentially toxic for living organisms. However, scientific evidence proved that the effects of O3 exposure are dose-dependent: high dosages stimulate severe oxidative stress resulting in inflammatory response and tissue injury, whereas low O3 concentrations induce a moderate oxidative eustress activating antioxidant pathways. These properties make O3 a powerful medical tool, which can be used as either a disinfectant or an adjuvant agent in the therapy of numerous diseases. In this paper, the cellular mechanisms involved in the antioxidant response to O3 exposure will be reviewed with special reference to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its role in the efficacy of ozone therapy.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
27
|
Epigenetic Regulation of Skin Cells in Natural Aging and Premature Aging Diseases. Cells 2018; 7:cells7120268. [PMID: 30545089 PMCID: PMC6315602 DOI: 10.3390/cells7120268] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Skin undergoes continuous renewal throughout an individual’s lifetime relying on stem cell functionality. However, a decline of the skin regenerative potential occurs with age. The accumulation of senescent cells over time probably reduces tissue regeneration and contributes to skin aging. Keratinocytes and dermal fibroblasts undergo senescence in response to several intrinsic or extrinsic stresses, including telomere shortening, overproduction of reactive oxygen species, diet, and sunlight exposure. Epigenetic mechanisms directly regulate skin homeostasis and regeneration, but they also mark cell senescence and the natural and pathological aging processes. Progeroid syndromes represent a group of clinical and genetically heterogeneous pathologies characterized by the accelerated aging of various tissues and organs, including skin. Skin cells from progeroid patients display molecular hallmarks that mimic those associated with naturally occurring aging. Thus, investigations on progeroid syndromes strongly contribute to disclose the causal mechanisms that underlie the aging process. In the present review, we discuss the role of epigenetic pathways in skin cell regulation during physiologic and premature aging.
Collapse
|
28
|
Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid Redox Signal 2018; 28:643-661. [PMID: 28891317 PMCID: PMC5824489 DOI: 10.1089/ars.2017.7290] [Citation(s) in RCA: 492] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Antioxidant and redox signaling (ARS) events are regulated by critical molecules that modulate antioxidants, reactive oxygen species (ROS) or reactive nitrogen species (RNS), and/or oxidative stress within the cell. Imbalances in these molecules can disturb cellular functions to become pathogenic. Sirtuins serve as important regulators of ARS in cells. Recent Advances: Sirtuins (SIRTs 1-7) are a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases with the ability to deacetylate histone and nonhistone targets. Recent studies show that sirtuins modulate the regulation of a variety of cellular processes associated with ARS. SIRT1, SIRT3, and SIRT5 protect the cell from ROS, and SIRT2, SIRT6, and SIRT7 modulate key oxidative stress genes and mechanisms. Interestingly, SIRT4 has been shown to induce ROS production and has antioxidative roles as well. CRITICAL ISSUES A complete understanding of the roles of sirtuins in redox homeostasis of the cell is very important to understand the normal functioning as well as pathological manifestations. In this review, we have provided a critical discussion on the role of sirtuins in the regulation of ARS. We have also discussed mechanistic interactions among different sirtuins. Indeed, a complete understanding of sirtuin biology could be critical at multiple fronts. FUTURE DIRECTIONS Sirtuins are emerging to be important in normal mammalian physiology and in a variety of oxidative stress-mediated pathological situations. Studies are needed to dissect the mechanisms of sirtuins in maintaining redox homeostasis. Efforts are also required to assess the targetability of sirtuins in the management of redox-regulated diseases. Antioxid. Redox Signal. 28, 643-661.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | | | - Nicholas J Mack
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
29
|
SIRT6 Suppresses Cancer Stem-like Capacity in Tumors with PI3K Activation Independently of Its Deacetylase Activity. Cell Rep 2017; 18:1858-1868. [PMID: 28228253 PMCID: PMC5329120 DOI: 10.1016/j.celrep.2017.01.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/22/2016] [Accepted: 01/25/2017] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cells (CSCs) have high tumorigenic capacity. Here, we show that stem-like traits of specific human cancer cells are reduced by overexpression of the histone deacetylase sirtuin 6 (SIRT6). SIRT6-sensitive cancer cells bear mutations that activate phosphatidylinositol-3-kinase (PI3K) signaling, and overexpression of SIRT6 reduces growth, progression, and grade of breast cancer in a mouse model with PI3K activation. Tumor metabolomic and transcriptomic analyses reveal that SIRT6 overexpression dampens PI3K signaling and stem-like characteristics and causes metabolic rearrangements in this cancer model. Ablation of a PI3K activating mutation in otherwise isogenic cancer cells is sufficient to convert SIRT6-sensitive into SIRT6-insensitive cells. SIRT6 overexpression suppresses PI3K signaling at the transcriptional level and antagonizes tumor sphere formation independent of its histone deacetylase activity. Our data identify SIRT6 as a putative molecular target that hinders stemness of tumors with PI3K activation. Enhanced SIRT6 hinders stemness of human cancer cells with PI3K activation Enhanced SIRT6 rearranges metabolism of cancer cells with PI3K activation Enhanced SIRT6 reduces grade and progression of murine tumors with PI3K activation Anti-cancer-stemness action is independent of SIRT6 histone deacetylase activity
Collapse
|
30
|
Liu F, Bu HF, Geng H, De Plaen IG, Gao C, Wang P, Wang X, Kurowski JA, Yang H, Qian J, Tan XD. Sirtuin-6 preserves R-spondin-1 expression and increases resistance of intestinal epithelium to injury in mice. Mol Med 2017; 23:272-284. [PMID: 29387864 PMCID: PMC5654826 DOI: 10.2119/molmed.2017.00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022] Open
Abstract
Sirtuin-6 (Sirt6) is a critical epigenetic regulator, but its function in the gut is unknown. Here, we studied the role of intestinal epithelial Sirt6 in colitis-associated intestinal epithelial injury. We found that Sirt6, which is predominantly expressed in epithelial cells in intestinal crypts, is decreased in colitis in both mice and humans. Colitis-derived inflammatory mediators including interferon-γ and reactive oxygen species strongly inhibited Sirt6 protein expression in young adult mouse colonocyte (YAMC) cells. The susceptibility of the cells to injurious insults was increased after knockdown of Sirt6 expression. In contrast, YAMC cells with Sirt6 overexpression exhibited more resistance to injurious insult. Furthermore, intestinal epithelial-specific Sirt6 (Sirt6IEC-KO) knockout mice exhibited greater susceptibility to dextran sulfate sodium (DSS)-induced colitis. RNA sequencing transcriptome analysis revealed that inflammatory mediators such as tumor necrosis factor (TNF)-α suppressed expression of R-spondin-1 (Rspo1, a critical growth factor for intestinal epithelial cells) in Sirt6-silenced YAMC cells in vitro. In addition, lipopolysaccharide was found to inhibit colonic Rspo1 expression in Sirt6IEC-KO mice but not their control littermates. Furthermore, Sirt6IEC-KO mice with DSS-induced colitis also exhibited in a significant decrease in Rspo1 expression in colons. In vitro, knockdown of Rspo1 attenuated the effect of ectopic expression of Sirt6 on protection of YAMC cells against cell death challenges. In conclusion, Sirt6 plays an important role in protecting intestinal epithelial cells against inflammatory injury in a mechanism associated with preserving Rspo1 levels in the cells.
Collapse
Affiliation(s)
- Fangyi Liu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Heng-Fu Bu
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Isabelle G De Plaen
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chao Gao
- Center of Clinical Reproductive Medicine, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Peng Wang
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xiao Wang
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jacob A Kurowski
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao-Di Tan
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
31
|
Joo D, An S, Choi BG, Kim K, Choi YM, Ahn KJ, An IS, Cha HJ. MicroRNA-378b regulates α-1-type 1 collagen expression via sirtuin 6 interference. Mol Med Rep 2017; 16:8520-8524. [DOI: 10.3892/mmr.2017.7657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 02/10/2017] [Indexed: 11/06/2022] Open
|
32
|
SIRT6 regulated nucleosomal occupancy affects Hexokinase 2 expression. Exp Cell Res 2017; 357:98-106. [DOI: 10.1016/j.yexcr.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022]
|
33
|
Deota S, Shukla N, Kolthur-Seetharam U. Spatio-Temporal Control of Cellular and Organismal Physiology by Sirtuins. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Sirtuins Expression and Their Role in Retinal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3187594. [PMID: 28197299 PMCID: PMC5288547 DOI: 10.1155/2017/3187594] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023]
Abstract
Sirtuins have received considerable attention since the discovery that silent information regulator 2 (Sir2) extends the lifespan of yeast. Sir2, a nicotinamide adenine dinucleotide- (NAD-) dependent histone deacetylase, serves as both a transcriptional effector and energy sensor. Oxidative stress and apoptosis are implicated in the pathogenesis of neurodegenerative eye diseases. Sirtuins confer protection against oxidative stress and retinal degeneration. In mammals, the sirtuin (SIRT) family consists of seven proteins (SIRT1–SIRT7). These vary in tissue specificity, subcellular localization, and enzymatic activity and targets. In this review, we present the current knowledge of the sirtuin family and discuss their structure, cellular location, and biological function with a primary focus on their role in different neuroophthalmic diseases including glaucoma, optic neuritis, and age-related macular degeneration. The potential role of certain therapeutic targets is also described.
Collapse
|
35
|
Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY) 2016; 8:34-49. [PMID: 26761436 PMCID: PMC4761712 DOI: 10.18632/aging.100870] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells that critically influence decisions about immune activation or tolerance. Impaired DC function is at the core of common chronic disorders and contributes to reduce immunocompetence during aging. Knowledge on the mechanisms regulating DC generation and function is necessary to understand the immune system and to prevent disease and immunosenescence. Here we show that the sirtuin Sirt6, which was previously linked to healthspan promotion, stimulates the development of myeloid, conventional DCs (cDCs). Sirt6-knockout (Sirt6KO) mice exhibit low frequencies of bone marrow cDC precursors and low yields of bone marrow-derived cDCs compared to wild-type (WT) animals. Sirt6KO cDCs express lower levels of class II MHC, of costimulatory molecules, and of the chemokine receptor CCR7, and are less immunostimulatory compared to WT cDCs. Similar effects in terms of differentiation and immunostimulatory capacity were observed in human monocyte-derived DCs in response to SIRT6 inhibition. Finally, while Sirt6KO cDCs show an overall reduction in their ability to produce IL-12, TNF-α and IL-6 secretion varies dependent on the stimulus, being reduced in response to CpG, but increased in response to other Toll-like receptor ligands. In conclusion, Sirt6 plays a crucial role in cDC differentiation and function and reduced Sirt6 activity may contribute to immunosenescence.
Collapse
|
36
|
Abstract
There is a dynamic interplay between metabolic processes and gene regulation via the remodeling of chromatin. Most chromatin-modifying enzymes use cofactors, which are products of metabolic processes. This article explores the biosynthetic pathways of the cofactors nicotinamide adenine dinucleotide (NAD), acetyl coenzyme A (acetyl-CoA), S-adenosyl methionine (SAM), α-ketoglutarate, and flavin adenine dinucleotide (FAD), and their role in metabolically regulating chromatin processes. A more detailed look at the interaction between chromatin and the metabolic processes of circadian rhythms and aging is described as a paradigm for this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Shelley L Berger
- Department of Cell & Developmental Biology, Department of Biology, and Department of Genetics, Epigenetics Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6508
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697-4049
| |
Collapse
|
37
|
Association of SIRT6 Gene Polymorphisms with Human Longevity. IRANIAN JOURNAL OF PUBLIC HEALTH 2016; 45:1420-1426. [PMID: 28032059 PMCID: PMC5182250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/20/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND We aimed to identify the role of SIRT6 gene polymorphism rs350846 in human longevity. METHODS SIRT6 C/G genotypes were determined using Taqman SNP Genotyping Assays in 169 long-lived inhabitants (LG group aged 90-110 yr), 158 healthy internal controls (internal control group; aged 26-82 yr) and 176 healthy external controls (external control group; aged 20-82 yr) without a family history of exceptional longevity. Statistical analysis was conducted using SPSS 16.0. RESULTS BMI and TG level were lower in the longevity than in the two control groups, while serum LDL-c and HDL-c and SBP and DBP levels in long-lived individuals were higher than in the two control groups (P<0.01). The waist circumference was obviously different (P=0.001) among the three groups, with the maximum observed in the external group. No statistically significant differences of the gender FBG and TC were seen in long-lived individuals than in the two control groups. Significant genotype differences existed among the different groups except for the longevity and internal control group. The frequency of the minor allele-C was 0.319. The minor allele frequency of rs350846 in SIRT6 was much higher in the external control than in the other groups. BMI, SBP and HDL-c displayed significant effect on longevity. CONCLUSION The C allele of rs350846 in SIRT6 gene, CC and CG genotypes as well as BMI, systolic pressure and HDL-c are associated with longevity. Further studies are needed to validate our results.
Collapse
|
38
|
Xu S, Huang H, Chen YN, Deng YT, Zhang B, Xiong XD, Yuan Y, Zhu Y, Huang H, Xie L, Liu X. DNA damage responsive miR-33b-3p promoted lung cancer cells survival and cisplatin resistance by targeting p21 WAF1/CIP1. Cell Cycle 2016; 15:2920-2930. [PMID: 27559850 DOI: 10.1080/15384101.2016.1224043] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, the development of resistance to cisplatin is a major obstacle in clinical therapy. The principal mechanism of cisplatin is the induction of DNA damage, thus the capability of DNA damage response (DDR) is a key factor that influences the cisplatin sensitivity of cancer cells. Recent advances have demonstrated that miRNAs (microRNAs) exerted critical roles in DNA damage response; nonetheless, the association between DNA damage responsive miRNAs and cisplatin resistance and its underlying molecular mechanism still require further investigation. The present study has attempted to identify differentially expressed miRNAs in cisplatin induced DNA damage response in lung cancer cells, and probe into the effects of the misexpressed miRNAs on cisplatin sensitivity. Deep sequencing showed that miR-33b-3p was dramatically down-regulated in cisplatin-induced DNA damage response in A549 cells; and ectopic expression of miR-33b-3p endowed the lung cancer cells with enhanced survival and decreased γH2A.X expression level under cisplatin treatment. Consistently, silencing of miR-33b-3p in the cisplatin-resistant A549/DDP cells evidently sensitized the cells to cisplatin. Furthermore, we identified CDKN1A (p21) as a functional target of miR-33b-3p, a critical regulator of G1/S checkpoint, which potentially mediated the protection effects of miR-33b-3p against cisplatin. In aggregate, our results suggested that miR-33b-3p modulated the cisplatin sensitivity of cancer cells might probably through impairing the DNA damage response. And the knowledge of the drug resistance conferred by miR-33b-3p has great clinical implications for improving the efficacy of chemotherapies for treating lung cancers.
Collapse
Affiliation(s)
- Shun Xu
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Haijiao Huang
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Yu-Ning Chen
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Yun-Ting Deng
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Bing Zhang
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Xing-Dong Xiong
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Yuan Yuan
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Yanmei Zhu
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Haiyong Huang
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Luoyijun Xie
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| | - Xinguang Liu
- a Institute of Aging Research, Guangdong Medical University , Dongguan , P.R. China.,b Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan , P.R. China.,c Institute of Biochemistry & Molecular Biology, Guangdong Medical University , Zhanjiang , P.R. China
| |
Collapse
|
39
|
Wu AR, Quake SR. Microfluidics Technologies for Low Cell Number Chromatin Immunoprecipitation. Cold Spring Harb Protoc 2016; 2016:pdb.prot084996. [PMID: 26700100 DOI: 10.1101/pdb.prot084996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein-DNA interactions are responsible for numerous critical cellular events: For example, gene expression and silencing are mediated by transcription factor protein binding and histone protein modifications, and DNA replication and repair rely on site-specific protein binding. Chromatin immunoprecipitation (ChIP) is the only molecular assay that directly determines, in a living cell, the binding association between a protein of interest and specific genomic loci. It is an indispensible tool in the biologist's toolbox, but the many limitations of this technique prevent broad adoption of ChIP in biological studies. The typical ChIP assay can take up to 1 wk to complete, and the process is technically tricky, yet tedious. The ChIP assay yields are also low, thus requiring on the order of millions to billions of cells as starting material, which makes the assay unfeasible for studies using rare or precious samples. For example, fluorescence-activated cell sorting (FACS) of cancer stem cells (CSCs) obtained from primary tumors, rarely yields more than ~100,000 CSCs per tumor. This protocol describes a microfluidics-based strategy for performing ChIP, which uses automation and scalability to reduce both total and hands-on assay time, and improve throughput. It allows whole fixed cells as input, and enables automated ChIP from as few as 2000 cells.
Collapse
Affiliation(s)
- Angela R Wu
- Department of Bioengineering, Stanford University, Stanford, California 94305
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, California 94305; Howard Hughes Medical Institute, Stanford, California 94305
| |
Collapse
|
40
|
Cai J, Zuo Y, Wang T, Cao Y, Cai R, Chen FL, Cheng J, Mu J. A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity. Oncogene 2016; 35:4949-56. [PMID: 26898756 DOI: 10.1038/onc.2016.24] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/18/2015] [Accepted: 11/06/2015] [Indexed: 02/07/2023]
Abstract
Sirt6 is a histone deacetylase with NAD(+)-dependent activity. Sirt6 has been shown as a tumor suppressor partially via inhibiting the expression of c-Myc target genes and ribosome biogenesis. However, how to regulate Sirt6 activity is largely unknown. In this study, we identify that Sirt6 can be modified by small ubiquitin-like modifier. Sirt6 SUMOylation deficiency specifically decreases its deacetylation of H3K56 but not H3K9 in vivo. Mechanistically, we find that SUMOylation deficiency decreases Sirt6 binding with c-Myc, decreasing Sirt6 occupancy on the locus of c-Myc target genes. Therefore, Sirt6 SUMOylation deficiency reduces its deacetylation of H3k56 and its repression of c-Myc target genes. Moreover, Sirt6 SUMOylation deficiency reduces its suppression of cell proliferation and tumorigenesis. Thus, these results reveal that SUMOylation has an important role in regulation of Sirt6 deacetylation on H3K56, as well as its tumor suppressive activity.
Collapse
Affiliation(s)
- J Cai
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - T Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - R Cai
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - F-L Chen
- Shanghai Third People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Mu
- Department of Thoracic Surgery, Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The circadian clock is an intricate biological timekeeper that is subject to fine-tuning mechanisms in order to maintain synchrony with the surrounding environment. One such mechanism is performed by the mammalian sirtuins that provide plasticity to the circadian clock by sensing cellular metabolic state. The sirtuins modulate the circadian epigenome and subsequent transcriptional control, and alterations to this organized system manifest in metabolic consequences, aging phenotypes and possibly cancer. RECENT FINDINGS New information regarding sirtuin-dependent control of the circadian clock has emerged. In addition to sirtuin (SIRT)1 and SIRT3, SIRT6 has been demonstrated as a critical regulator of circadian transcription that also serves as an interface with metabolic homeostasis. Also, new metabolic functions of SIRT1 have been described in the brain, which are critical to relay nutritional inputs to the central clock. SUMMARY This review focuses on the link between the circadian clock and the sirtuins, with an emphasis on new findings. In addition, speculation on the possible connections at the physiological level will be made that could further link the clock to aging and cancer.
Collapse
Affiliation(s)
- Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, California, USA
| |
Collapse
|
42
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1056-75. [PMID: 26361874 DOI: 10.1152/ajplung.00152.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
43
|
Winnik S, Auwerx J, Sinclair DA, Matter CM. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 2015; 36:3404-12. [PMID: 26112889 PMCID: PMC4685177 DOI: 10.1093/eurheartj/ehv290] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022] Open
Abstract
Sirtuins (Sirt1–Sirt7) comprise a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes. While deacetylation reflects their main task, some of them have deacylase, adenosine diphosphate-ribosylase, demalonylase, glutarylase, and desuccinylase properties. Activated upon caloric restriction and exercise, they control critical cellular processes in the nucleus, cytoplasm, and mitochondria to maintain metabolic homeostasis, reduce cellular damage and dampen inflammation—all of which serve to protect against a variety of age-related diseases, including cardiovascular pathologies. This review focuses on the cardiovascular effects of Sirt1, Sirt3, Sirt6, and Sirt7. Most is known about Sirt1. This deacetylase protects from endothelial dysfunction, atherothrombosis, diet-induced obesity, type 2 diabetes, liver steatosis, and myocardial infarction. Sirt3 provides beneficial effects in the context of left ventricular hypertrophy, cardiomyopathy, oxidative stress, metabolic homeostasis, and dyslipidaemia. Sirt6 is implicated in ameliorating dyslipidaemia, cellular senescence, and left ventricular hypertrophy. Sirt7 plays a role in lipid metabolism and cardiomyopathies. Most of these data were derived from experimental findings in genetically modified mice, where NFκB, Pcsk9, low-density lipoprotein-receptor, PPARγ, superoxide dismutase 2, poly[adenosine diphosphate-ribose] polymerase 1, and endothelial nitric oxide synthase were identified among others as crucial molecular targets and/or partners of sirtuins. Of note, there is translational evidence for a role of sirtuins in patients with endothelial dysfunction, type 1 or type 2 diabetes and longevity. Given the availability of specific Sirt1 activators or pan-sirtuin activators that boost levels of the sirtuin cofactor NAD+, we anticipate that this field will move quickly from bench to bedside.
Collapse
Affiliation(s)
- Stephan Winnik
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David A Sinclair
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Genetics Department, Harvard Medical School, Boston, MA, USA
| | - Christian M Matter
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
45
|
Endisha H, Merrill-Schools J, Zhao M, Bristol M, Wang X, Kubben N, Elmore LW. Restoring SIRT6 Expression in Hutchinson-Gilford Progeria Syndrome Cells Impedes Premature Senescence and Formation of Dysmorphic Nuclei. Pathobiology 2015; 82:9-20. [PMID: 25765721 DOI: 10.1159/000368856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Mice overexpressing SIRT6 live longer than wild-type mice while SIRT6 knockout mice exhibit similar degenerative phenotypes as individuals with Hutchinson-Gilford progeria syndrome (HGPS). Thus, we sought to test whether levels of SIRT6 are reduced in cells from individuals with HGPS and whether restored SIRT6 expression may impede premature aging phenotypes. METHODS Levels of endogenous SIRT6 and progerin in HGPS and normal fibroblasts were assessed by Western blotting and immunofluorescence. A tetracycline-inducible system was utilized to test whether progerin causes a rapid reduction in SIRT6 protein. SIRT6 was overexpressed in HGPS cells via lentiviral infection with biological endpoints including senescence-associated β-galactosidase (SA-β-gal) positivity, frequency of nuclear atypia, the number of 53BP1-positive DNA damage foci and growth rates. RESULTS Typical HGPS fibroblasts express lower levels of SIRT6 than fibroblasts from normal and atypical HGPS donors. Experimental induction of progerin did not cause a detectable reduction of SIRT6 protein. However, overexpression of SIRT6 in HGPS cells was associated with a reduced frequency of SA-β-gal positivity, fewer misshapen nuclei, fewer DNA damage foci, and increased growth rates. CONCLUSIONS Typical HGPS fibroblasts exhibit reduced levels of SIRT6 protein via a mechanism that remains to be elucidated. Our findings suggest that restoring SIRT6 expression in HGPS cells may partially impede senescence and the formation of dysmorphic nuclei. © 2015 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Helal Endisha
- Department of Pathology, Virginia Commonwealth University, Richmond, Va., USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Cardinale A, de Stefano MC, Mollinari C, Racaniello M, Garaci E, Merlo D. Biochemical characterization of sirtuin 6 in the brain and its involvement in oxidative stress response. Neurochem Res 2014; 40:59-69. [PMID: 25366464 DOI: 10.1007/s11064-014-1465-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/02/2014] [Accepted: 10/23/2014] [Indexed: 12/21/2022]
Abstract
Sirtuin 6 (SIRT6) is a member of nicotinamide adenine dinucleotide-dependent deacetylase protein family and has been implicated in the control of glucose and lipid metabolism, cancer, genomic stability and DNA repair. Moreover, SIRT6 regulates the expression of a large number of genes involved in stress response and aging. The role of SIRT6 in brain function and neuronal survival is largely unknown. Here, we biochemically characterized SIRT6 in brain tissues and primary neuronal cultures and found that it is highly expressed in cortical and hippocampal regions and enriched in the synaptosomal membrane fraction. Immunoblotting analysis on cortical and hippocampal neurons showed that SIRT6 is downregulated during maturation in vitro, reaching the lowest expression at 11 days in vitro. In addition, SIRT6 overexpression in terminally differentiated cortical and hippocampal neurons, mediated by a neuron-specific recombinant adeno-associated virus, downregulated cell viability under oxidative stress condition. By contrast, under control condition, SIRT6 overexpression had no detrimental effect. Overall these results suggest that SIRT6 may play a role in synaptic function and neuronal maturation and it may be implicated in the regulation of neuronal survival.
Collapse
|
47
|
SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun 2014; 5:5011. [PMID: 25247314 PMCID: PMC4185372 DOI: 10.1038/ncomms6011] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/18/2014] [Indexed: 02/08/2023] Open
Abstract
L1 retrotransposons are an abundant class of transposable elements which pose a threat to genome stability and may play a role in age-related pathologies such as cancer. Recent evidence indicates that L1s become more active in somatic tissues during the course of aging; the mechanisms underlying this phenomenon remain unknown, however. Here we report that the longevity regulating protein, SIRT6, is a powerful repressor of L1 activity. Specifically, SIRT6 binds to the 5′UTR of L1 loci, where it mono-ADP ribosylates the nuclear corepressor protein, KAP1, and facilitates KAP1 interaction with the heterochromatin factor, HP1α, thereby contributing to the packaging of L1 elements into transcriptionally repressive heterochromatin. During the course of aging, and also in response to DNA damage, however, we find that SIRT6 is depleted from L1 loci, allowing for the activation of these previously silenced retroelements.
Collapse
|
48
|
Masri S, Sassone-Corsi P. Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci Signal 2014; 7:re6. [PMID: 25205852 DOI: 10.1126/scisignal.2005685] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The circadian clock is a finely tuned system of transcriptional and translational regulation that is required for daily synchrony of organismal physiological processes. Additional layers of complexity that contribute to efficient clock function involve posttranslational modifications and enzymatic feedback loops. SIRT1, the founding member of the sirtuin family of protein deacetylases, was the first sirtuin to be reported to modulate circadian function. SIRT1 affects the circadian clock by its actions in the nucleus. Moreover, recent data implicate SIRT3 and SIRT6 in controlling mitochondrial and nuclear circadian functions, revealing previously unappreciated roles that extend to various subcellular domains, including fatty acid metabolism in the mitochondria. This review focuses on the roles of sirtuins in directing circadian functions in diverse organelles and speculates on the endogenous signals that may mediate the segregated roles of this family of enzymes.
Collapse
Affiliation(s)
- Selma Masri
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
49
|
Masri S, Rigor P, Cervantes M, Ceglia N, Sebastian C, Xiao C, Roqueta-Rivera M, Deng C, Osborne TF, Mostoslavsky R, Baldi P, Sassone-Corsi P. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 2014; 158:659-72. [PMID: 25083875 PMCID: PMC5472354 DOI: 10.1016/j.cell.2014.06.050] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/29/2014] [Accepted: 06/20/2014] [Indexed: 01/11/2023]
Abstract
Circadian rhythms are intimately linked to cellular metabolism. Specifically, the NAD(+)-dependent deacetylase SIRT1, the founding member of the sirtuin family, contributes to clock function. Whereas SIRT1 exhibits diversity in deacetylation targets and subcellular localization, SIRT6 is the only constitutively chromatin-associated sirtuin and is prominently present at transcriptionally active genomic loci. Comparison of the hepatic circadian transcriptomes reveals that SIRT6 and SIRT1 separately control transcriptional specificity and therefore define distinctly partitioned classes of circadian genes. SIRT6 interacts with CLOCK:BMAL1 and, differently from SIRT1, governs their chromatin recruitment to circadian gene promoters. Moreover, SIRT6 controls circadian chromatin recruitment of SREBP-1, resulting in the cyclic regulation of genes implicated in fatty acid and cholesterol metabolism. This mechanism parallels a phenotypic disruption in fatty acid metabolism in SIRT6 null mice as revealed by circadian metabolome analyses. Thus, genomic partitioning by two independent sirtuins contributes to differential control of circadian metabolism.
Collapse
Affiliation(s)
- Selma Masri
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul Rigor
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicholas Ceglia
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Carlos Sebastian
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Cuiying Xiao
- Genetics of Development and Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manuel Roqueta-Rivera
- Metabolic Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Chuxia Deng
- Genetics of Development and Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy F Osborne
- Metabolic Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Pierre Baldi
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA; INSERM U904, Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
50
|
|