1
|
Ueda Y. Development of an infiltration-based RNA preservation method for cryogen-free storage of leaves for gene expression analyses in field-grown plants. PLANT METHODS 2024; 20:187. [PMID: 39696461 DOI: 10.1186/s13007-024-01311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Gene expression is a fundamental process for plants to express their phenotype, and its analysis is the basis of molecular studies. However, the instability of RNA often poses an obstacle to analyzing plants grown in fields or remote locations where the availability of liquid nitrogen or dry ice is limited. To deepen our understanding of plant phenotypes and tolerance to field-specific stresses, it is crucial to develop methodologies to maintain plant RNA intact and safely transfer it for downstream analyses such as qPCR and RNA-seq. RESULTS In this study, the author developed a novel tissue preservation method that involved the infiltration of RNA preservation solution into the leaf apoplast using a syringe and subsequent storage at 4 °C. RNA-seq using samples stored for 5 d and principal component analyses showed that rice leaves treated with the infiltration method maintained the original transcriptome pattern better than those treated with the traditional method when the leaves were simply immersed in the solution. Additionally, it was also found that extracted RNA can be transported with minimum risk of degradation when it is bound to the membrane of RNA extraction kits. The developed infiltration method was applied to rice plants grown in a local farmer's field in northern Madagascar to analyze the expression of nutrient-responsive genes, suggesting nutrient imbalances in some of the fields examined. CONCLUSIONS This study showed that the developed infiltration method was effective in preserving the transcriptome status of rice and sorghum leaves when liquid nitrogen or a deep freezer is not available. The developed method was useful for diagnosing plants in the field based on the expression of nutrient-responsive marker genes. Moreover, the method used to protect RNA samples from degradation during transportation offers the possibility to use them for RNA-seq. This novel technique could pave the way for revealing the molecular basis of plant phenotypes by accelerating gene expression analyses using plant samples that are unique in the field.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Burgarella C, Brémaud MF, Von Hirschheydt G, Viader V, Ardisson M, Santoni S, Ranwez V, de Navascués M, David J, Glémin S. Mating systems and recombination landscape strongly shape genetic diversity and selection in wheat relatives. Evol Lett 2024; 8:866-880. [PMID: 39677571 PMCID: PMC11637685 DOI: 10.1093/evlett/qrae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2024] [Accepted: 08/03/2024] [Indexed: 12/17/2024] Open
Abstract
How and why genetic diversity varies among species is a long-standing question in evolutionary biology. Life history traits have been shown to explain a large part of observed diversity. Among them, mating systems have one of the strongest impacts on genetic diversity, with selfing species usually exhibiting much lower diversity than outcrossing relatives. Theory predicts that a high rate of selfing amplifies selection at linked sites, reducing genetic diversity genome-wide, but frequent bottlenecks and rapid population turn-over could also explain low genetic diversity in selfers. However, how linked selection varies with mating systems and whether it is sufficient to explain the observed difference between selfers and outcrossers has never been tested. Here, we used the Aegilops/Triticum grass species, a group characterized by contrasted mating systems (from obligate outcrossing to high selfing) and marked recombination rate variation across the genome, to quantify the effects of mating system and linked selection on patterns of neutral and selected polymorphism. By analyzing phenotypic and transcriptomic data of 13 species, we show that selfing strongly affects genetic diversity and the efficacy of selection by amplifying the intensity of linked selection genome-wide. In particular, signatures of adaptation were only found in the highly recombining regions in outcrossing species. These results bear implications for the evolution of mating systems and, more generally, for our understanding of the fundamental drivers of genetic diversity.
Collapse
Affiliation(s)
- Concetta Burgarella
- CNRS, Univ. Montpellier, ISEM – UMR 5554, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Marie-Fleur Brémaud
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Veronique Viader
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Morgane Ardisson
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Santoni
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Vincent Ranwez
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Miguel de Navascués
- UMR CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jacques David
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Glémin
- CNRS, Univ. Rennes, ECOBIO – UMR 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Gladieux P, van Oosterhout C, Fairhead S, Jouet A, Ortiz D, Ravel S, Shrestha RK, Frouin J, He X, Zhu Y, Morel JB, Huang H, Kroj T, Jones JDG. Extensive immune receptor repertoire diversity in disease-resistant rice landraces. Curr Biol 2024; 34:3983-3995.e6. [PMID: 39146939 DOI: 10.1016/j.cub.2024.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Plants have powerful defense mechanisms and extensive immune receptor repertoires, yet crop monocultures are prone to epidemic diseases. Rice (Oryza sativa) is susceptible to many diseases, such as rice blast caused by Magnaporthe oryzae. Varietal resistance of rice to blast relies on intracellular nucleotide binding, leucine-rich repeat (NLR) receptors that recognize specific pathogen molecules and trigger immune responses. In the Yuanyang terraces in southwest China, rice landraces rarely show severe losses to disease whereas commercial inbred lines show pronounced field susceptibility. Here, we investigate within-landrace NLR sequence diversity of nine rice landraces and eleven modern varieties using complexity reduction techniques. We find that NLRs display high sequence diversity in landraces, consistent with balancing selection, and that balancing selection at NLRs is more pervasive in landraces than modern varieties. Notably, modern varieties lack many ancient NLR haplotypes that are retained in some landraces. Our study emphasizes the value of standing genetic variation that is maintained in farmer landraces as a resource to make modern crops and agroecosystems less prone to disease. The conservation of landraces is, therefore, crucial for ensuring food security in the face of dynamic biotic and abiotic threats.
Collapse
Affiliation(s)
- Pierre Gladieux
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France.
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sebastian Fairhead
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Agathe Jouet
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Diana Ortiz
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France
| | - Sebastien Ravel
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France
| | - Ram-Krishna Shrestha
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France; UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France
| | - Xiahong He
- School of Landscape and Horticulture, Southwest Forestry University, Kunming 650233, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming 650201, China
| | - Jean-Benoit Morel
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming 650201, China.
| | - Thomas Kroj
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
4
|
Harshan P, Sukumaran S, Gopalakrishnan A. De novo transcriptome for Chiloscyllium griseum, a long-tail carpet shark of the Indian waters. Sci Data 2024; 11:285. [PMID: 38461175 PMCID: PMC10924892 DOI: 10.1038/s41597-024-03093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
Sharks have thrived in the oceans for 400 million years, experienced five extinctions and evolved into today's apex predators. However, enormous genome size, poor karyotyping and limited tissue sampling options are the bottlenecks in shark research. Sharks of the family Orectolobiformes act as model species in transcriptome research with exceptionally high reproductive fecundity, catch prominence and oviparity. The present study illustrates a de novo transcriptome for an adult grey bamboo shark, Chiloscyllium griseum (Chondrichthyes; Hemiscyllidae) using paired-end RNA sequencing. Around 150 million short Illumina reads were obtained from five different tissues and assembled using the Trinity assembler. 70,647 hits on Uniprot by BLASTX was obtained after the transcriptome annotation. The data generated serve as a basis for transcriptome-based population genetic studies and open up new avenues in the field of comparative transcriptomics and conservation biology.
Collapse
Affiliation(s)
- Pooja Harshan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
- Cochin University of Science and Technology, South Kalamassery, Ernakulam, Kerala, 682022, India.
| | - Sandhya Sukumaran
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - A Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
5
|
Gutiérrez-Ortega JS, Pérez-Farrera MA, Matsuo A, Sato MP, Suyama Y, Calonje M, Vovides AP, Kajita T, Watano Y. The phylogenetic reconstruction of the Neotropical cycad genus Ceratozamia (Zamiaceae) reveals disparate patterns of niche evolution. Mol Phylogenet Evol 2024; 190:107960. [PMID: 37918683 DOI: 10.1016/j.ympev.2023.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The cycad genus Ceratozamia comprises 40 species from Mexico, Guatemala, Belize, and Honduras, where cycads occur throughout climatically varied montane habitats. Ceratozamia has the potential to reveal the history and processes of species diversification across diverse Neotropical habitats in this region. However, the species relationships within Ceratozamia and the ecological trends during its evolution remain unclear. Here, we aimed to clarify the phylogenetic relationships, the timing of clade and species divergences, and the niche evolution throughout the phylogenetic history of Ceratozamia. Genome-wide DNA sequences were obtained with MIG-seq, and multiple data-filtering steps were used to optimize the dataset used to construct an ultrametric species tree. Divergence times among branches and ancestral niches were estimated. The niche variation among species was evaluated, summarized into two principal components, and their ancestral states were reconstructed to test whether niche shifts among branches can be explained by random processes, under a Brownian Motion model. Ceratozamia comprises three main clades, and most species relationships within the clades were resolved. Ceratozamia has diversified since the Oligocene, with major branching events occurring during the Miocene. This timing is consistent with fossil evidence, the timing estimated for other Neotropical plant groups, and the major geological events that shaped the topographic and climatic variation in Mexico. Patterns of niche evolution in the genus do not accord with the Brownian Motion model. Rather, non-random evolution with shifts towards more seasonal environments at high latitudes, or shifts towards humid or dry environments at low latitudes explain the diversification of Ceratozamia. We present a comprehensive phylogenetic reconstruction for Ceratozamia and identify for the first time the environmental factors involved in clade and species diversification within the genus. This study alleviates the controversies regarding the species relationships in the genus and provides the first evidence that latitude-associated environmental factors may influence processes of niche evolution in cycads.
Collapse
Affiliation(s)
| | - Miguel Angel Pérez-Farrera
- Herbario Eizi Matuda, Laboratorio de Ecología Evolutiva, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico.
| | - Ayumi Matsuo
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | - Mitsuhiko P Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yoshihisa Suyama
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | | | - Andrew P Vovides
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C., 91070 Xalapa, Mexico
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Uehara, Yaeyama, Okinawa 907-1541, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Weiner AKM, Sehein T, Cote-L’Heureux A, Sleith RS, Greco M, Malekshahi C, Ryan-Embry C, Ostriker N, Katz LA. Single-cell transcriptomics supports presence of cryptic species and reveals low levels of population genetic diversity in two testate amoebae morphospecies with large population sizes. Evolution 2023; 77:2472-2483. [PMID: 37672006 PMCID: PMC10629589 DOI: 10.1093/evolut/qpad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/13/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
The enormous population sizes and wide biogeographical distribution of many microbial eukaryotes set the expectation of high levels of intraspecific genetic variation. However, studies investigating protist populations remain scarce, mostly due to limited 'omics data. Instead, most genetics studies of microeukaryotes have thus far relied on single loci, which can be misleading and do not easily allow for detection of recombination, a hallmark of sexual reproduction. Here, we analyze >40 genes from 72 single-cell transcriptomes from two morphospecies-Hyalosphenia papilio and Hyalosphenia elegans-of testate amoebae (Arcellinida, Amoebozoa) to assess genetic diversity in samples collected over four years from New England bogs. We confirm the existence of cryptic species based on our multilocus dataset, which provides evidence of recombination within and high levels of divergence between the cryptic species. At the same time, total levels of genetic diversity within cryptic species are low, suggesting that these abundant organisms have small effective population sizes, perhaps due to extinction and repopulation events coupled with efficient modes of dispersal. This study is one of the first to investigate population genetics in uncultivable heterotrophic protists using transcriptomics data and contributes towards understanding cryptic species of nonmodel microeukaryotes.
Collapse
Affiliation(s)
- Agnes K M Weiner
- Department of Biological Sciences, Smith College, Northampton, MA, United States
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bergen, Norway
| | - Taylor Sehein
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - Robin S Sleith
- Department of Biological Sciences, Smith College, Northampton, MA, United States
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Mattia Greco
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - Clara Malekshahi
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - Chase Ryan-Embry
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - Naomi Ostriker
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, United States
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, MA, United States
| |
Collapse
|
7
|
Karunarathne P, Zhou Q, Schliep K, Milesi P. A comprehensive framework for detecting copy number variants from single nucleotide polymorphism data: 'rCNV', a versatile r package for paralogue and CNV detection. Mol Ecol Resour 2023; 23:1772-1789. [PMID: 37515483 DOI: 10.1111/1755-0998.13843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Recent studies have highlighted the significant role of copy number variants (CNVs) in phenotypic diversity, environmental adaptation and species divergence across eukaryotes. The presence of CNVs also has the potential to introduce genotyping biases, which can pose challenges to accurate population and quantitative genetic analyses. However, detecting CNVs in genomes, particularly in non-model organisms, presents a formidable challenge. To address this issue, we have developed a statistical framework and an accompanying r software package that leverage allelic-read depth from single nucleotide polymorphism (SNP) data for accurate CNV detection. Our framework capitalises on two key principles. First, it exploits the distribution of allelic-read depth ratios in heterozygotes for individual SNPs by comparing it against an expected distribution based on binomial sampling. Second, it identifies SNPs exhibiting an apparent excess of heterozygotes under Hardy-Weinberg equilibrium. By employing multiple statistical tests, our method not only enhances sensitivity to sampling effects but also effectively addresses reference biases, resulting in optimised SNP classification. Our framework is compatible with various NGS technologies (e.g. RADseq, Exome-capture). This versatility enables CNV calling from genomes of diverse complexities. To streamline the analysis process, we have implemented our framework in the user-friendly r package 'rCNV', which automates the entire workflow seamlessly. We trained our models using simulated data and validated their performance on four datasets derived from different sequencing technologies, including RADseq (Chinook salmon-Oncorhynchus tshawytscha), Rapture (American lobster-Homarus americanus), Exome-capture (Norway spruce-Picea abies) and WGS (Malaria mosquito-Anopheles gambiae).
Collapse
Affiliation(s)
- Piyal Karunarathne
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
- Institute of Population Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
| | - Klaus Schliep
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
| |
Collapse
|
8
|
Blanc C, Saclier N, Le Faou E, Marie-Orleach L, Wenger E, Diblasi C, Glemin S, Galtier N, Delattre M. Cosegregation of recombinant chromatids maintains genome-wide heterozygosity in an asexual nematode. SCIENCE ADVANCES 2023; 9:eadi2804. [PMID: 37624896 PMCID: PMC10456839 DOI: 10.1126/sciadv.adi2804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
In asexual animals, female meiosis is modified to produce diploid oocytes. If meiosis still involves recombination, this is expected to lead to a rapid loss of heterozygosity, with adverse effects on fitness. Many asexuals, however, have a heterozygous genome, the underlying mechanisms being most often unknown. Cytological and population genomic analyses in the nematode Mesorhabditis belari revealed another case of recombining asexual being highly heterozygous genome-wide. We demonstrated that heterozygosity is maintained despite recombination because the recombinant chromatids of each chromosome pair cosegregate during the unique meiotic division. A theoretical model confirmed that this segregation bias is necessary to account for the observed pattern and likely to evolve under a wide range of conditions. Our study uncovers an unexpected type of non-Mendelian genetic inheritance involving cosegregation of recombinant chromatids.
Collapse
Affiliation(s)
- Caroline Blanc
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Nathanaelle Saclier
- Institut des Sciences de l'Evolution, Université Montpellier, Institut de Recherche pour le Développement, 34090 Montpellier, France
| | - Ehouarn Le Faou
- University of Rennes, CNRS, ECOBIO (Ecologie, Biodiversité, Evolution)–UMR 6553, F-35000 Rennes, France
| | - Lucas Marie-Orleach
- University of Rennes, CNRS, ECOBIO (Ecologie, Biodiversité, Evolution)–UMR 6553, F-35000 Rennes, France
| | - Eva Wenger
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Celian Diblasi
- Institut des Sciences de l'Evolution, Université Montpellier, Institut de Recherche pour le Développement, 34090 Montpellier, France
| | - Sylvain Glemin
- University of Rennes, CNRS, ECOBIO (Ecologie, Biodiversité, Evolution)–UMR 6553, F-35000 Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, Université Montpellier, Institut de Recherche pour le Développement, 34090 Montpellier, France
| | - Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
9
|
Ortiz-Sepulveda CM, Genete M, Blassiau C, Godé C, Albrecht C, Vekemans X, Van Bocxlaer B. Target enrichment of long open reading frames and ultraconserved elements to link microevolution and macroevolution in non-model organisms. Mol Ecol Resour 2023; 23:659-679. [PMID: 36349833 DOI: 10.1111/1755-0998.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Despite the increasing accessibility of high-throughput sequencing, obtaining high-quality genomic data on non-model organisms without proximate well-assembled and annotated genomes remains challenging. Here, we describe a workflow that takes advantage of distant genomic resources and ingroup transcriptomes to select and jointly enrich long open reading frames (ORFs) and ultraconserved elements (UCEs) from genomic samples for integrative studies of microevolutionary and macroevolutionary dynamics. This workflow is applied to samples of the African unionid bivalve tribe Coelaturini (Parreysiinae) at basin and continent-wide scales. Our results indicate that ORFs are efficiently captured without prior identification of intron-exon boundaries. The enrichment of UCEs was less successful, but nevertheless produced substantial data sets. Exploratory continent-wide phylogenetic analyses with ORF supercontigs (>515,000 parsimony informative sites) resulted in a fully resolved phylogeny, the backbone of which was also retrieved with UCEs (>11,000 informative sites). Variant calling on ORFs and UCEs of Coelaturini from the Malawi Basin produced ~2000 SNPs per population pair. Estimates of nucleotide diversity and population differentiation were similar for ORFs and UCEs. They were low compared to previous estimates in molluscs, but comparable to those in recently diversifying Malawi cichlids and other taxa at an early stage of speciation. Skimming off-target sequence data from the same enriched libraries of Coelaturini from the Malawi Basin, we reconstructed the maternally-inherited mitogenome, which displays the gene order inferred for the most recent common ancestor of Unionidae. Overall, our workflow and results provide exciting perspectives for integrative genomic studies of microevolutionary and macroevolutionary dynamics in non-model organisms.
Collapse
Affiliation(s)
| | - Mathieu Genete
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | | - Cécile Godé
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, D-35392 Giessen, Germany.,Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
10
|
Lapègue S, Reisser C, Harrang E, Heurtebise S, Bierne N. Genetic parallelism between European flat oyster populations at the edge of their natural range. Evol Appl 2023; 16:393-407. [PMID: 36793680 PMCID: PMC9923475 DOI: 10.1111/eva.13449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Although all marine ecosystems have experienced global-scale losses, oyster reefs have shown the greatest. Therefore, substantial efforts have been dedicated to restoration of such ecosystems during the last two decades. In Europe, several pilot projects for the restoration of the native European flat oyster, Ostrea edulis, recently begun and recommendations to preserve genetic diversity and to conduct monitoring protocols have been made. In particular, an initial step is to test for genetic differentiation against homogeneity among the oyster populations potentially involved in such programs. Therefore, we conducted a new sampling of wild populations at the European scale and a new genetic analysis with 203 markers to (1) confirm and study in more detail the pattern of genetic differentiation between Atlantic and Mediterranean populations, (2) identify potential translocations that could be due to aquaculture practices and (3) investigate the populations at the fringe of the geographical range, since they seemed related despite their geographic distance. Such information should be useful to enlighten the choice of the animals to be translocated or reproduced in hatcheries for further restocking. After the confirmation of the general geographical pattern of genetic structure and the identification of one potential case of aquaculture transfer at a large scale, we were able to detect genomic islands of differentiation mainly in the form of two groups of linked markers, which could indicate the presence of polymorphic chromosomal rearrangements. Furthermore, we observed a tendency for these two islands and the most differentiated loci to show a parallel pattern of differentiation, grouping the North Sea populations with the Eastern Mediterranean and Black Sea populations, against geography. We discussed the hypothesis that this genetic parallelism could be the sign of a shared evolutionary history of the two groups of populations despite them being at the border of the distribution nowadays.
Collapse
Affiliation(s)
- Sylvie Lapègue
- MARBEC, Univ Montpellier, CNRSIfremer, IRDMontpellierFrance
| | - Céline Reisser
- MARBEC, Univ Montpellier, CNRSIfremer, IRDMontpellierFrance
| | | | | | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| |
Collapse
|
11
|
Treaster S, Deelen J, Daane JM, Murabito J, Karasik D, Harris MP. Convergent genomics of longevity in rockfishes highlights the genetics of human life span variation. SCIENCE ADVANCES 2023; 9:eadd2743. [PMID: 36630509 PMCID: PMC9833670 DOI: 10.1126/sciadv.add2743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/09/2022] [Indexed: 05/16/2023]
Abstract
Longevity is a defining, heritable trait that varies dramatically between species. To resolve the genetic regulation of this trait, we have mined genomic variation in rockfishes, which range in longevity from 11 to over 205 years. Multiple shifts in rockfish longevity have occurred independently and in a short evolutionary time frame, thus empowering convergence analyses. Our analyses reveal a common network of genes under convergent evolution, encompassing established aging regulators such as insulin signaling, yet also identify flavonoid (aryl-hydrocarbon) metabolism as a pathway modulating longevity. The selective pressures on these pathways indicate the ancestral state of rockfishes was long lived and that the changes in short-lived lineages are adaptive. These pathways were also used to explore genome-wide association studies of human longevity, identifying the aryl-hydrocarbon metabolism pathway to be significantly associated with human survival to the 99th percentile. This evolutionary intersection defines and cross-validates a previously unappreciated genetic architecture that associates with the evolution of longevity across vertebrates.
Collapse
Affiliation(s)
- Stephen Treaster
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Köln, Germany
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jacob M. Daane
- Department of Biology and Biochemistry, University of Houston, Houston TX, USA
| | - Joanne Murabito
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA
| | - Matthew P. Harris
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Scotti I, Lalagüe H, Oddou-Muratorio S, Scotti-Saintagne C, Ruiz Daniels R, Grivet D, Lefevre F, Cubry P, Fady B, González-Martínez SC, Roig A, Lesur-Kupin I, Bagnoli F, Guerin V, Plomion C, Rozenberg P, Vendramin GG. Common microgeographical selection patterns revealed in four European conifers. Mol Ecol 2023; 32:393-411. [PMID: 36301304 DOI: 10.1111/mec.16750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 01/11/2023]
Abstract
Microgeographical adaptation occurs when the effects of directional selection persist despite gene flow. Traits and genetic loci under selection can then show adaptive divergence, against the backdrop of little differentiation at other traits or loci. How common such events are and how strong the selection is that underlies them remain open questions. Here, we discovered and analysed microgeographical patterns of genomic divergence in four European and Mediterranean conifers with widely differing life-history traits and ecological requirements (Abies alba MIll., Cedrus atlantica [Endl.] Manetti, Pinus halepensis Mill. and Pinus pinaster Aiton) by screening pairs from geographically close forest stands sampled along steep ecological gradients. We inferred patterns of genomic divergence by applying a combination of divergence outlier detection methods, demographic modelling, Approximate Bayesian Computation inferences and genomic annotation to genomic data. Surprisingly for such small geographical scales, we showed that selection is strong in all species but generally affects different loci in each. A clear signature of selection was systematically detected on a fraction of the genome, of the order of 0.1%-1% of the loci depending on the species. The novel modelling method we designed for estimating selection coefficients showed that the microgeographical selection coefficient scaled by population size (Ns) was 2-30. Our results convincingly suggest that selection maintains within-population diversity at microgeographical scales in spatially heterogeneous environments. Such genetic diversity is likely to be a major reservoir of adaptive potential, helping populations to adapt under fluctuating environmental conditions.
Collapse
Affiliation(s)
| | - Hadrien Lalagüe
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Campus Agronomique, Kourou, France
| | | | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | | | | | - Philippe Cubry
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dioecy and chromosomal sex determination are maintained through allopolyploid speciation in the plant genus Mercurialis. PLoS Genet 2022; 18:e1010226. [PMID: 35793353 PMCID: PMC9292114 DOI: 10.1371/journal.pgen.1010226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/18/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Polyploidization may precipitate dramatic changes to the genome, including chromosome rearrangements, gene loss, and changes in gene expression. In dioecious plants, the sex-determining mechanism may also be disrupted by polyploidization, with the potential evolution of hermaphroditism. However, while dioecy appears to have persisted through a ploidy transition in some species, it is unknown whether the newly formed polyploid maintained its sex-determining system uninterrupted, or whether dioecy re-evolved after a period of hermaphroditism. Here, we develop a bioinformatic pipeline using RNA-sequencing data from natural populations to demonstrate that the allopolyploid plant Mercurialis canariensis directly inherited its sex-determining region from one of its diploid progenitor species, M. annua, and likely remained dioecious through the transition. The sex-determining region of M. canariensis is smaller than that of its diploid progenitor, suggesting that the non-recombining region of M. annua expanded subsequent to the polyploid origin of M. canariensis. Homeologous pairs show partial sexual subfunctionalization. We discuss the possibility that gene duplicates created by polyploidization might contribute to resolving sexual antagonism.
Collapse
|
14
|
Castel J, Hourdez S, Pradillon F, Daguin-Thiébaut C, Ballenghien M, Ruault S, Corre E, Tran Lu Y A, Mary J, Gagnaire PA, Bonhomme F, Breusing C, Broquet T, Jollivet D. Inter-Specific Genetic Exchange Despite Strong Divergence in Deep-Sea Hydrothermal Vent Gastropods of the Genus Alviniconcha. Genes (Basel) 2022; 13:985. [PMID: 35741747 PMCID: PMC9223106 DOI: 10.3390/genes13060985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Deep hydrothermal vents are highly fragmented and unstable habitats at all temporal and spatial scales. Such environmental dynamics likely play a non-negligible role in speciation. Little is, however, known about the evolutionary processes that drive population-level differentiation and vent species isolation and, more specifically, how geography and habitat specialisation interplay in the species history of divergence. In this study, the species range and divergence of Alviniconcha snails that occupy active Western Pacific vent fields was assessed by using sequence variation data of the mitochondrial Cox1 gene, RNAseq, and ddRAD-seq. Combining morphological description and sequence datasets of the three species across five basins, we confirmed that A. kojimai, A. boucheti, and A. strummeri, while partially overlapping over their range, display high levels of divergence in the three genomic compartments analysed that usually encompass values retrieved for reproductively isolated species with divergences rang from 9% to 12.5% (mtDNA) and from 2% to 3.1% (nuDNA). Moreover, the three species can be distinguished on the basis of their external morphology by observing the distribution of bristles and the shape of the columella. According to this sampling, A. boucheti and A. kojimai form an east-to-west species abundance gradient, whereas A. strummeri is restricted to the Futuna Arc/Lau and North Fiji Basins. Surprisingly, population models with both gene flow and population size heterogeneities among genomes indicated that these three species are still able to exchange genes due to secondary contacts at some localities after a long period of isolation.
Collapse
Affiliation(s)
- Jade Castel
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Stéphane Hourdez
- Laboratoire d’Ecogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, Sorbonne Université, CNRS, UMR 8222, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| | - Florence Pradillon
- Unité Biologie et Ecologie des Ecosystèmes Marins Profonds, Université de Brest, Ifremer, CNRS, 29280 Plouzané, France;
| | - Claire Daguin-Thiébaut
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Marion Ballenghien
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Stéphanie Ruault
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Erwan Corre
- ABiMS Bioinformatics Facility, Station biologique de Roscoff, Sorbonne Université, CNRS, FR2424, Place G. Teissier, 29680 Roscoff, France;
| | - Adrien Tran Lu Y
- Team MBE, Department Genφ, ISEM, Université de Montpellier, CNRS, EPHE, IRD, 34110 Montpellier, France; (A.T.L.Y.); (P.-A.G.); (F.B.)
| | - Jean Mary
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Pierre-Alexandre Gagnaire
- Team MBE, Department Genφ, ISEM, Université de Montpellier, CNRS, EPHE, IRD, 34110 Montpellier, France; (A.T.L.Y.); (P.-A.G.); (F.B.)
| | - François Bonhomme
- Team MBE, Department Genφ, ISEM, Université de Montpellier, CNRS, EPHE, IRD, 34110 Montpellier, France; (A.T.L.Y.); (P.-A.G.); (F.B.)
| | - Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Rd, Narragansett, RI 02882, USA;
| | - Thomas Broquet
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Didier Jollivet
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| |
Collapse
|
15
|
Clark LV, Mays W, Lipka AE, Sacks EJ. A population-level statistic for assessing Mendelian behavior of genotyping-by-sequencing data from highly duplicated genomes. BMC Bioinformatics 2022; 23:101. [PMID: 35317727 PMCID: PMC8939213 DOI: 10.1186/s12859-022-04635-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Given the economic and environmental importance of allopolyploids and other species with highly duplicated genomes, there is a need for methods to distinguish paralogs, i.e. duplicate sequences within a genome, from Mendelian loci, i.e. single copy sequences that pair at meiosis. The ratio of observed to expected heterozygosity is an effective tool for filtering loci but requires genotyping to be performed first at a high computational cost, whereas counting the number of sequence tags detected per genotype is computationally quick but very ineffective in inbred or polyploid populations. Therefore, new methods are needed for filtering paralogs. Results We introduce a novel statistic, Hind/HE, that uses the probability that two reads sampled from a genotype will belong to different alleles, instead of observed heterozygosity. The expected value of Hind/HE is the same across all loci in a dataset, regardless of read depth or allele frequency. In contrast to methods based on observed heterozygosity, it can be estimated and used for filtering loci prior to genotype calling. In addition to filtering paralogs, it can be used to filter loci with null alleles or high overdispersion, and identify individuals with unexpected ploidy and hybrid status. We demonstrate that the statistic is useful at read depths as low as five to 10, well below the depth needed for accurate genotype calling in polyploid and outcrossing species. Conclusions Our methodology for estimating Hind/HE across loci and individuals, as well as determining reasonable thresholds for filtering loci, is implemented in polyRAD v1.6, available at https://github.com/lvclark/polyRAD. In large sequencing datasets, we anticipate that the ability to filter markers and identify problematic individuals prior to genotype calling will save researchers considerable computational time. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04635-9.
Collapse
Affiliation(s)
- Lindsay V Clark
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Wittney Mays
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik J Sacks
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
16
|
Bataillon T, Gauthier P, Villesen P, Santoni S, Thompson JD, Ehlers BK. From genotype to phenotype: Genetic redundancy and the maintenance of an adaptive polymorphism in the context of high gene flow. Evol Lett 2022; 6:189-202. [PMID: 35386834 PMCID: PMC8966474 DOI: 10.1002/evl3.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/23/2021] [Accepted: 01/16/2022] [Indexed: 11/11/2022] Open
Abstract
A central question in evolution is how several adaptive phenotypes are maintained within a species. Theory predicts that the genetic determination of a trait, and in particular the amounts of redundancy in the mapping of genotypes to phenotypes, mediates evolutionary outcomes of phenotypic selection. In Mediterranean wild thyme, numerous discrete chemical phenotypes (chemotypes) occur in close geographic proximity. Chemotypes are defined by the predominant monoterpene produced by individual plants in their essential oil. In this study, we analyze the ecological genetics of six chemotypes nested within two well‐established chemical families (hereafter ecotypes). Ecotypes, and chemotypes within ecotypes, are spatially segregated, and their distributions track local differences in the abiotic environment. By combining population genomic, phenotypic, and environmental data from 700 individuals, we show how the genetics of ecotype determination mediates this evolutionary response. Variation in three terpene‐synthase loci explains variation in ecotype identity, with one single locus accounting for as much as 78% of this variation. Phenotypic selection combined with low segregating genotypic redundancy of ecotypes leaves a clear footprint at the genomic level: alleles associated with ecotype identity track environmental variation despite extensive gene flow. Different chemotypes within each ecotype differentially track environmental variation. Their identity is determined by multiple loci and displays a wider range of genotypic redundancy that dilutes phenotypic selection on their characteristic alleles. Our study thus provides a novel illustration of how genetic redundancy of a phenotype modulates the ability of selection to maintain adaptive differentiation. Identifying the precise genetics of the chemical polymorphism in thyme is the next crucial step for our understanding of the origin and maintenance of a polymorphism that is present in many aromatic plants.
Collapse
Affiliation(s)
- Thomas Bataillon
- Bioinformatics Research Center Aarhus University Aarhus 8000 Denmark
| | - Perrine Gauthier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD Univ Paul Valéry Montpellier 3 Montpellier 34293 France
| | - Palle Villesen
- Bioinformatics Research Center Aarhus University Aarhus 8000 Denmark
| | - Sylvain Santoni
- UMR AGAP Institut Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier 34398 France
| | - John D. Thompson
- CEFE, Univ Montpellier, CNRS, EPHE, IRD Univ Paul Valéry Montpellier 3 Montpellier 34293 France
| | - Bodil K. Ehlers
- Department of Ecoscience Aarhus University Silkeborg 8600 Denmark
| |
Collapse
|
17
|
Postel Z, Poux C, Gallina S, Varré JS, Godé C, Schmitt E, Meyer E, Van Rossum F, Touzet P. Reproductive isolation among lineages of Silene nutans (Caryophyllaceae): A potential involvement of plastid-nuclear incompatibilities. Mol Phylogenet Evol 2022; 169:107436. [DOI: 10.1016/j.ympev.2022.107436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
|
18
|
Käfer J, Bewick A, Andres-Robin A, Lapetoule G, Harkess A, Caïus J, Fogliani B, Gâteblé G, Ralph P, dePamphilis CW, Picard F, Scutt C, Marais GAB, Leebens-Mack J. A derived ZW chromosome system in Amborella trichopoda, representing the sister lineage to all other extant flowering plants. THE NEW PHYTOLOGIST 2022; 233:1636-1642. [PMID: 34342006 DOI: 10.1111/nph.17662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The genetic basis and evolution of sex determination in dioecious plants is emerging as an active area of research with exciting advances in genome sequencing and analysis technologies. As the sole species within the sister lineage to all other extant flowering plants, Amborella trichopoda is an important model for understanding the evolution and development of flowers. Plants typically produce only male or female flowers, but sex determination mechanisms are unknown for the species. Sequence data derived from plants of natural origin and an F1 mapping population were used to identify sex-linked genes and the nonrecombining region. Amborella trichopoda has a ZW sex determination system. Analysis of genes in a 4 Mb nonrecombining sex-determination region reveals recent divergence of Z and W gametologs, and few Z- and W-specific genes. The sex chromosomes of A. trichopoda evolved less than 16.5 Myr ago, long after the divergence of the extant angiosperms.
Collapse
Affiliation(s)
- Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | - Adam Bewick
- Department of Plant Biology, University of Georgia, Athens, GA, 30602-7271, USA
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Amélie Andres-Robin
- Laboratoire Reproduction et Développement des plantes, UMR 5667, Ecole Normale Supérieure de Lyon, CNRS, Lyon, F-69364, France
| | - Garance Lapetoule
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - José Caïus
- Institute of Plant Sciences, Plateforme transcriptOmique de l'IPS2 (POPS), Université de Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Bruno Fogliani
- Institut Agronomique néo-Calédonien (IAC), BP 73 Port Laguerre, Païta, 98890, New Caledonia
- Institute of Exact and Applied Sciences (ISEA), Université de la Nouvelle-Calédonie, BP R4, Nouméa Cedex, 98851, New Caledonia
| | - Gildas Gâteblé
- Institut Agronomique néo-Calédonien (IAC), BP 73 Port Laguerre, Païta, 98890, New Caledonia
| | - Paula Ralph
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Claude W dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Franck Picard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | - Charlie Scutt
- Laboratoire Reproduction et Développement des plantes, UMR 5667, Ecole Normale Supérieure de Lyon, CNRS, Lyon, F-69364, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
- LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, 1349-017, Portugal
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, 30602-7271, USA
| |
Collapse
|
19
|
Mahfooz S, Singh P, Akhter Y. A comparative study of microsatellites among crocodiles and development of genomic resources for the critically endangered Indian gharial. Genetica 2022; 150:67-75. [DOI: 10.1007/s10709-021-00148-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
|
20
|
SNP Development in Penaeus vannamei via Next-Generation Sequencing and DNA Pool Sequencing. FISHES 2021. [DOI: 10.3390/fishes6030036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Next-generation sequencing and pool sequencing have been widely used in SNP (single-nucleotide polymorphism) detection and population genetics research; however, there are few reports on SNPs related to the growth of Penaeus vannamei. The purpose of this study was to call SNPs from rapid-growing (RG) and slow-growing (SG) individuals’ transcriptomes and use DNA pool sequencing to assess the reliability of SNPs. Two parameters were applied to detect SNPs. One parameter was the p-values generated using Fisher’s exact test, which were used to calculate the significance of allele frequency differences between RG and SG. The other one was the AFI (minor allele frequency imbalance), which was defined to highlight the fold changes in MAF (minor allele frequency) values between RG and SG. There were 216,015 hypothetical SNPs, which were obtained based on the transcriptome data. Finally, 104 high-quality SNPs and 96,819 low-quality SNPs were predicted. Then, 18 high-quality SNPs and 17 low-quality SNPs were selected to assess the reliability of the detection process. Here, 72.22% (13/18) accuracy was achieved for high-quality SNPs, while only 52.94% (9/17) accuracy was achieved for low-quality SNPs. These SNPs enrich the data for population genetics studies of P. vannamei and may play a role in the development of SNP markers for future breeding studies.
Collapse
|
21
|
Prentout D, Stajner N, Cerenak A, Tricou T, Brochier-Armanet C, Jakse J, Käfer J, Marais GAB. Plant genera Cannabis and Humulus share the same pair of well-differentiated sex chromosomes. THE NEW PHYTOLOGIST 2021; 231:1599-1611. [PMID: 33978992 DOI: 10.1111/nph.17456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
We recently described, in Cannabis sativa, the oldest sex chromosome system documented so far in plants (12-28 Myr old). Based on the estimated age, we predicted that it should be shared by its sister genus Humulus, which is known also to possess XY chromosomes. Here, we used transcriptome sequencing of an F1 family of H. lupulus to identify and study the sex chromosomes in this species using the probabilistic method SEX-DETector. We identified 265 sex-linked genes in H. lupulus, which preferentially mapped to the C. sativa X chromosome. Using phylogenies of sex-linked genes, we showed that a region of the sex chromosomes had already stopped recombining in an ancestor of both species. Furthermore, as in C. sativa, Y-linked gene expression reduction is correlated to the position on the X chromosome, and highly Y degenerated genes showed dosage compensation. We report, for the first time in Angiosperms, a sex chromosome system that is shared by two different genera. Thus, recombination suppression started at least 21-25 Myr ago, and then (either gradually or step-wise) spread to a large part of the sex chromosomes (c. 70%), leading to a degenerated Y chromosome.
Collapse
Affiliation(s)
- Djivan Prentout
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Natasa Stajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Andreja Cerenak
- Slovenian Institute of Hop Research and Brewing, Cesta Zalskega Tabora 2, Zalec, SI-3310, Slovenia
| | - Theo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Celine Brochier-Armanet
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
- LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 1349-017, Portugal
| |
Collapse
|
22
|
Genomic Approaches for Conservation Management in Australia under Climate Change. Life (Basel) 2021; 11:life11070653. [PMID: 34357024 PMCID: PMC8304512 DOI: 10.3390/life11070653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Conservation genetics has informed threatened species management for several decades. With the advent of advanced DNA sequencing technologies in recent years, it is now possible to monitor and manage threatened populations with even greater precision. Climate change presents a number of threats and challenges, but new genomics data and analytical approaches provide opportunities to identify critical evolutionary processes of relevance to genetic management under climate change. Here, we discuss the applications of such approaches for threatened species management in Australia in the context of climate change, identifying methods of facilitating viability and resilience in the face of extreme environmental stress. Using genomic approaches, conservation management practices such as translocation, targeted gene flow, and gene-editing can now be performed with the express intention of facilitating adaptation to current and projected climate change scenarios in vulnerable species, thus reducing extinction risk and ensuring the protection of our unique biodiversity for future generations. We discuss the current barriers to implementing conservation genomic projects and the efforts being made to overcome them, including communication between researchers and managers to improve the relevance and applicability of genomic studies. We present novel approaches for facilitating adaptive capacity and accelerating natural selection in species to encourage resilience in the face of climate change.
Collapse
|
23
|
Käfer J, Lartillot N, Marais GAB, Picard F. Detecting sex-linked genes using genotyped individuals sampled in natural populations. Genetics 2021; 218:iyab053. [PMID: 33764439 PMCID: PMC8225351 DOI: 10.1093/genetics/iyab053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
We propose a method, SDpop, able to infer sex-linkage caused by recombination suppression typical of sex chromosomes. The method is based on the modeling of the allele and genotype frequencies of individuals of known sex in natural populations. It is implemented in a hierarchical probabilistic framework, accounting for different sources of error. It allows statistical testing for the presence or absence of sex chromosomes, and detection of sex-linked genes based on the posterior probabilities in the model. Furthermore, for gametologous sequences, the haplotype and level of nucleotide polymorphism of each copy can be inferred, as well as the divergence between them. We test the method using simulated data, as well as data from both a relatively recent and an old sex chromosome system (the plant Silene latifolia and humans) and show that, for most cases, robust predictions are obtained with 5 to 10 individuals per sex.
Collapse
Affiliation(s)
- Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| | - Nicolas Lartillot
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| | - Franck Picard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| |
Collapse
|
24
|
RNA sequencing describes both population structure and plasticity-selection dynamics in a non-model fish. BMC Genomics 2021; 22:273. [PMID: 33858341 PMCID: PMC8048188 DOI: 10.1186/s12864-021-07592-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 01/03/2023] Open
Abstract
Background Messenger RNA sequencing is becoming more common in studies of non-model species and is most often used for gene expression-based investigations. However, the method holds potential for numerous other applications as well—including analyses of alternative splicing, population structure, and signatures of selection. To maximize the utility of mRNA data sets, distinct analyses may be combined such as by exploring dynamics between gene expression with signatures of selection in the context of population structure. Here, we compare two published data sets describing two populations of a minnow species endemic to the San Francisco Estuary (Sacramento splittail, Pogonichthys macrolepidotus): a microsatellite data set showing population structure, and an mRNA whole transcriptome data set obtained after the two populations were exposed to a salinity challenge. We compared measures of population structure and genetic variation using single nucleotide polymorphisms (SNPs) called from mRNA from the whole transcriptome sequencing study with those patterns determined from microsatellites. For investigating plasticity and evolution, intra- and inter-population transcriptome plasticity was investigated with differential gene expression, differential exon usage, and gene expression variation. Outlier SNP analysis was also performed on the mRNA data set and signatures of selection and phenotypic plasticity were investigated on an individual-gene basis. Results We found that mRNA sequencing revealed patterns of population structure consistent with those found with microsatellites, but with lower magnitudes of genetic variation and population differentiation consistent with widespread purifying selection expected when using mRNA. In addition, within individual genes, phenotypic plasticity or signatures of selection were found in almost mutual exclusion (except heatr6, nfu1, slc22a6, sya, and mmp13). Conclusions These results show that an mRNA sequencing data set may have multiple uses, including describing population structure and for investigating the mechanistic interplay of evolution and plasticity in adaptation. MRNA sequencing thus complements traditional sequencing methods used for population genetics, in addition to its utility for describing phenotypic plasticity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07592-4.
Collapse
|
25
|
Muyle A, Martin H, Zemp N, Mollion M, Gallina S, Tavares R, Silva A, Bataillon T, Widmer A, Glémin S, Touzet P, Marais GAB. Dioecy Is Associated with High Genetic Diversity and Adaptation Rates in the Plant Genus Silene. Mol Biol Evol 2021; 38:805-818. [PMID: 32926156 PMCID: PMC7947750 DOI: 10.1093/molbev/msaa229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
About 15,000 angiosperm species (∼6%) have separate sexes, a phenomenon known as dioecy. Why dioecious taxa are so rare is still an open question. Early work reported lower species richness in dioecious compared with nondioecious sister clades, raising the hypothesis that dioecy may be an evolutionary dead-end. This hypothesis has been recently challenged by macroevolutionary analyses that detected no or even positive effect of dioecy on diversification. However, the possible genetic consequences of dioecy at the population level, which could drive the long-term fate of dioecious lineages, have not been tested so far. Here, we used a population genomics approach in the Silene genus to look for possible effects of dioecy, especially for potential evidence of evolutionary handicaps of dioecy underlying the dead-end hypothesis. We collected individual-based RNA-seq data from several populations in 13 closely related species with different sexual systems: seven dioecious, three hermaphroditic, and three gynodioecious species. We show that dioecy is associated with increased genetic diversity, as well as higher selection efficacy both against deleterious mutations and for beneficial mutations. The results hold after controlling for phylogenetic inertia, differences in species census population sizes and geographic ranges. We conclude that dioecious Silene species neither show signs of increased mutational load nor genetic evidence for extinction risk. We discuss these observations in the light of the possible demographic differences between dioecious and self-compatible hermaphroditic species and how this could be related to alternatives to the dead-end hypothesis to explain the rarity of dioecy.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA
| | - Hélène Martin
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
- Département de Biologie, Institut de Biologie Integrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Niklaus Zemp
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
| | - Maéva Mollion
- Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
| | - Sophie Gallina
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
| | - Raquel Tavares
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Alexandre Silva
- Centro de Interpretação da Serra da Estrela (CISE), Seia, Portugal
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus C, Denmark
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Sylvain Glémin
- CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Évolution)]—UMR 6553, University of Rennes, Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Touzet
- University of Lille, CNRS, UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
26
|
Xie X, Jiang J, Chen M, Huang M, Jin L, Li X. De novo Transcriptome Assembly of Myllocerinus aurolineatus Voss in Tea Plants. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.631990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myllocerinus aurolineatus Voss is a species of the insecta class in the arthropod. In this study, we first observed and identified M. aurolineatus Voss in tea plants in Guizhou, China, where it caused severe quantity and quality losses in tea plants. Knowledge on M. aurolineatus Voss genome is inadequate, especially for biological or functional research. We performed the first transcriptome sequencing by using the Illumina Hiseq™ technique on M. aurolineatus Voss. Over 55.9 million high-quality paired-end reads were generated and assembled into 69,439 unigenes using the Trinity short read software, resulting in a cluster of 1,207 bp of the N50 length. A total of 69,439 genes were predicted by BLAST to known proteins in the NCBI database and were distributed into Gene Ontology (20,190), eukaryotic complete genomes (12,488), and the Kyoto Encyclopedia of Genes and Genomes (3,170). We also identified 96,790 single-nucleotide polymorphisms and 13,121 simple sequence repeats in these unigenes. Our transcriptome data provide a useful resource for future functional studies of M. aurolineatus Voss for dispersal control in tea plants.
Collapse
|
27
|
Burgarella C, Berger A, Glémin S, David J, Terrier N, Deu M, Pot D. The Road to Sorghum Domestication: Evidence From Nucleotide Diversity and Gene Expression Patterns. FRONTIERS IN PLANT SCIENCE 2021; 12:666075. [PMID: 34527004 PMCID: PMC8435843 DOI: 10.3389/fpls.2021.666075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/20/2021] [Indexed: 05/17/2023]
Abstract
Native African cereals (sorghum, millets) ensure food security to millions of low-income people from low fertility and drought-prone regions of Africa and Asia. In spite of their agronomic importance, the genetic bases of their phenotype and adaptations are still not well-understood. Here we focus on Sorghum bicolor, which is the fifth cereal worldwide for grain production and constitutes the staple food for around 500 million people. We leverage transcriptomic resources to address the adaptive consequences of the domestication process. Gene expression and nucleotide variability were analyzed in 11 domesticated and nine wild accessions. We documented a downregulation of expression and a reduction of diversity both in nucleotide polymorphism (30%) and gene expression levels (18%) in domesticated sorghum. These findings at the genome-wide level support the occurrence of a global reduction of diversity during the domestication process, although several genes also showed patterns consistent with the action of selection. Nine hundred and forty-nine genes were significantly differentially expressed between wild and domesticated gene pools. Their functional annotation points to metabolic pathways most likely contributing to the sorghum domestication syndrome, such as photosynthesis and auxin metabolism. Coexpression network analyzes revealed 21 clusters of genes sharing similar expression patterns. Four clusters (totaling 2,449 genes) were significantly enriched in differentially expressed genes between the wild and domesticated pools and two were also enriched in domestication and improvement genes previously identified in sorghum. These findings reinforce the evidence that the combined and intricated effects of the domestication and improvement processes do not only affect the behaviors of a few genes but led to a large rewiring of the transcriptome. Overall, these analyzes pave the way toward the identification of key domestication genes valuable for genetic resources characterization and breeding purposes.
Collapse
Affiliation(s)
- Concetta Burgarella
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Concetta Burgarella
| | - Angélique Berger
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Glémin
- CNRS, Univ. Rennes, ECOBIO – UMR 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jacques David
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Nancy Terrier
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Monique Deu
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- David Pot
| |
Collapse
|
28
|
Saclier N, Chardon P, Malard F, Konecny-Dupré L, Eme D, Bellec A, Breton V, Duret L, Lefebure T, Douady CJ. Bedrock radioactivity influences the rate and spectrum of mutation. eLife 2020; 9:56830. [PMID: 33252037 PMCID: PMC7723406 DOI: 10.7554/elife.56830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
All organisms on Earth are exposed to low doses of natural radioactivity but some habitats are more radioactive than others. Yet, documenting the influence of natural radioactivity on the evolution of biodiversity is challenging. Here, we addressed whether organisms living in naturally more radioactive habitats accumulate more mutations across generations using 14 species of waterlice living in subterranean habitats with contrasted levels of radioactivity. We found that the mitochondrial and nuclear mutation rates across a waterlouse species’ genome increased on average by 60% and 30%, respectively, when radioactivity increased by a factor of three. We also found a positive correlation between the level of radioactivity and the probability of G to T (and complementary C to A) mutations, a hallmark of oxidative stress. We conclude that even low doses of natural bedrock radioactivity influence the mutation rate possibly through the accumulation of oxidative damage, in particular in the mitochondrial genome.
Collapse
Affiliation(s)
- Nathanaëlle Saclier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Patrick Chardon
- LPC, Université Clermont Auvergne, CNRS/IN2P3 UMR6533, Clermont-Ferrand, France
| | - Florian Malard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Lara Konecny-Dupré
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - David Eme
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Arnaud Bellec
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France.,Univ Lyon, Université Jean Moulin Lyon 3, CNRS UMR 5600 Environnement Ville Société, Lyon, France
| | - Vincent Breton
- LPC, Université Clermont Auvergne, CNRS/IN2P3 UMR6533, Clermont-Ferrand, France
| | - Laurent Duret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Tristan Lefebure
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Christophe J Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
29
|
Nolen ZJ, Yildirim B, Irisarri I, Liu S, Groot Crego C, Amby DB, Mayer F, Gilbert MTP, Pereira RJ. Historical isolation facilitates species radiation by sexual selection: Insights from
Chorthippus
grasshoppers. Mol Ecol 2020; 29:4985-5002. [DOI: 10.1111/mec.15695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Zachary J. Nolen
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
- Department of Biology Lund University Lund Sweden
| | - Burcin Yildirim
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
| | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
- Department of Organismal Biology (Systematic Biology) Uppsala University Uppsala Sweden
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics University of Goettingen, Campus Institute Data Science Goettingen Germany
| | - Shanlin Liu
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- College of Plant Protection China Agricultural University Beijing China
| | - Clara Groot Crego
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
| | | | - Frieder Mayer
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
| | | | - Ricardo J. Pereira
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| |
Collapse
|
30
|
Arnoux S, Fraïsse C, Sauvage C. Genomic inference of complex domestication histories in three Solanaceae species. J Evol Biol 2020; 34:270-283. [PMID: 33107098 DOI: 10.1111/jeb.13723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Domestication is a human-induced selection process that imprints the genomes of domesticated populations over a short evolutionary time scale and that occurs in a given demographic context. Reconstructing historical gene flow, effective population size changes and their timing is therefore of fundamental interest to understand how plant demography and human selection jointly shape genomic divergence during domestication. Yet, the comparison under a single statistical framework of independent domestication histories across different crop species has been little evaluated so far. Thus, it is unclear whether domestication leads to convergent demographic changes that similarly affect crop genomes. To address this question, we used existing and new transcriptome data on three crop species of Solanaceae (eggplant, pepper and tomato), together with their close wild relatives. We fitted twelve demographic models of increasing complexity on the unfolded joint allele frequency spectrum for each wild/crop pair, and we found evidence for both shared and species-specific demographic processes between species. A convergent history of domestication with gene flow was inferred for all three species, along with evidence of strong reduction in the effective population size during the cultivation stage of tomato and pepper. The absence of any reduction in size of the crop in eggplant stands out from the classical view of the domestication process; as does the existence of a "protracted period" of management before cultivation. Our results also suggest divergent management strategies of modern cultivars among species as their current demography substantially differs. Finally, the timing of domestication is species-specific and supported by the few historical records available.
Collapse
Affiliation(s)
- Stéphanie Arnoux
- INRA UR1052 GAFL, Centre de Recherche INRA PACA, Avignon Cedex 9, France.,Vilmorin SA, Lédenon, France
| | | | - Christopher Sauvage
- INRA UR1052 GAFL, Centre de Recherche INRA PACA, Avignon Cedex 9, France.,Syngenta SAS France, Saint Sauveur, France
| |
Collapse
|
31
|
Galtier N, Rousselle M. How Much Does Ne Vary Among Species? Genetics 2020; 216:559-572. [PMID: 32839240 PMCID: PMC7536855 DOI: 10.1534/genetics.120.303622] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
Genetic drift is an important evolutionary force of strength inversely proportional to Ne , the effective population size. The impact of drift on genome diversity and evolution is known to vary among species, but quantifying this effect is a difficult task. Here we assess the magnitude of variation in drift power among species of animals via its effect on the mutation load - which implies also inferring the distribution of fitness effects of deleterious mutations. To this aim, we analyze the nonsynonymous (amino-acid changing) and synonymous (amino-acid conservative) allele frequency spectra in a large sample of metazoan species, with a focus on the primates vs. fruit flies contrast. We show that a Gamma model of the distribution of fitness effects is not suitable due to strong differences in estimated shape parameters among taxa, while adding a class of lethal mutations essentially solves the problem. Using the Gamma + lethal model and assuming that the mean deleterious effects of nonsynonymous mutations is shared among species, we estimate that the power of drift varies by a factor of at least 500 between large-Ne and small-Ne species of animals, i.e., an order of magnitude more than the among-species variation in genetic diversity. Our results are relevant to Lewontin's paradox while further questioning the meaning of the Ne parameter in population genomics.
Collapse
Affiliation(s)
- Nicolas Galtier
- Institute of Evolution Sciences of Montpellier (ISEM), CNRS, University of Montpellier, IRD, EPHE, 34095 Montpellier, France
| | - Marjolaine Rousselle
- Institute of Evolution Sciences of Montpellier (ISEM), CNRS, University of Montpellier, IRD, EPHE, 34095 Montpellier, France
- Bioinformatics Research Centre, Aarhus University, DK Aarhus, Denmark
| |
Collapse
|
32
|
Kočí J, Röslein J, Pačes J, Kotusz J, Halačka K, Koščo J, Fedorčák J, Iakovenko N, Janko K. No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Mol Ecol 2020; 29:3038-3055. [PMID: 32627290 PMCID: PMC7540418 DOI: 10.1111/mec.15539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation-based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness-related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time-dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.
Collapse
Affiliation(s)
- Jan Kočí
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Röslein
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Pačes
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia.,Institute of Molecular Genetics, Czech Academy of Science, Prague, Czechia
| | - Jan Kotusz
- Museum of Natural History, University of Wrocław, Wrocław, Poland
| | - Karel Halačka
- Institute of Vertebrate Biology, Czech Academy of Science, Brno, Czechia
| | - Ján Koščo
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Jakub Fedorčák
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Nataliia Iakovenko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Karel Janko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| |
Collapse
|
33
|
Fruchard C, Badouin H, Latrasse D, Devani RS, Muyle A, Rhoné B, Renner SS, Banerjee AK, Bendahmane A, Marais GAB. Evidence for Dosage Compensation in Coccinia grandis, a Plant with a Highly Heteromorphic XY System. Genes (Basel) 2020; 11:E787. [PMID: 32668777 PMCID: PMC7397054 DOI: 10.3390/genes11070787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 01/17/2023] Open
Abstract
About 15,000 angiosperms are dioecious, but the mechanisms of sex determination in plants remain poorly understood. In particular, how Y chromosomes evolve and degenerate, and whether dosage compensation evolves as a response, are matters of debate. Here, we focus on Coccinia grandis, a dioecious cucurbit with the highest level of X/Y heteromorphy recorded so far. We identified sex-linked genes using RNA sequences from a cross and a model-based method termed SEX-DETector. Parents and F1 individuals were genotyped, and the transmission patterns of SNPs were then analyzed. In the >1300 sex-linked genes studied, maximum X-Y divergence was 0.13-0.17, and substantial Y degeneration is implied by an average Y/X expression ratio of 0.63 and an inferred gene loss on the Y of ~40%. We also found reduced Y gene expression being compensated by elevated expression of corresponding genes on the X and an excess of sex-biased genes on the sex chromosomes. Molecular evolution of sex-linked genes in C. grandis is thus comparable to that in Silene latifolia, another dioecious plant with a strongly heteromorphic XY system, and cucurbits are the fourth plant family in which dosage compensation is described, suggesting it might be common in plants.
Collapse
Affiliation(s)
- Cécile Fruchard
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| | - Hélène Badouin
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| | - David Latrasse
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
| | - Ravi S. Devani
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India;
| | - Aline Muyle
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA;
| | - Bénédicte Rhoné
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
- Institut de Recherche pour le Développement (IRD), Université Montpellier, DIADE, F-34394 Montpellier, France
| | - Susanne S. Renner
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany;
| | - Anjan K. Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
| | - Gabriel A. B. Marais
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| |
Collapse
|
34
|
Hartigan A, Kosakyan A, Pecková H, Eszterbauer E, Holzer AS. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genomics 2020; 21:404. [PMID: 32546190 PMCID: PMC7296530 DOI: 10.1186/s12864-020-6705-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/27/2020] [Indexed: 01/24/2023] Open
Abstract
Background Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Myxozoans are obligate cnidarian parasites, alternating between invertebrate and fish hosts. Their genes are highly divergent from other metazoans, and available genomic and transcriptomic datasets are limited. Some myxozoans are important aquaculture pathogens such as Sphaerospora molnari replicating in the blood of farmed carp before reaching the gills for sporogenesis and transmission. Proliferative stages cause a massive systemic lymphocyte response and the disruption of the gill epithelia by spore-forming stages leads to respiratory problems and mortalities. In the absence of a S. molnari genome, we utilized a de novo approach to assemble the first transcriptome of proliferative myxozoan stages to identify S. molnari proteases that are upregulated during the first stages of infection when the parasite multiplies massively, rather than in late spore-forming plasmodia. Furthermore, a subset of orthologs was used to characterize 3D structures and putative druggable targets. Results An assembled and host filtered transcriptome containing 9436 proteins, mapping to 29,560 contigs was mined for protease virulence factors and revealed that cysteine proteases were most common (38%), at a higher percentage than other myxozoans or cnidarians (25–30%). Two cathepsin Ls that were found upregulated in spore-forming stages with a presenilin like aspartic protease and a dipeptidyl peptidase. We also identified downregulated proteases in the spore-forming development when compared with proliferative stages including an astacin metallopeptidase and lipases (qPCR). In total, 235 transcripts were identified as putative proteases using a MEROPS database. In silico analysis of highly transcribed cathepsins revealed potential drug targets within this data set that should be prioritised for development. Conclusions In silico surveys for proteins are essential in drug discovery and understanding host-parasite interactions in non-model systems. The present study of S. molnari’s protease arsenal reveals previously unknown proteases potentially used for host exploitation and immune evasion. The pioneering dataset serves as a model for myxozoan virulence research, which is of particular importance as myxozoan diseases have recently been shown to emerge and expand geographically, due to climate change.
Collapse
Affiliation(s)
- Ashlie Hartigan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia.
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Hana Pecková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Edit Eszterbauer
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| |
Collapse
|
35
|
An easy and robust method for isolation and validation of single-nucleotide polymorphic markers from a first Erysiphe alphitoides draft genome. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01580-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Rousselle M, Simion P, Tilak MK, Figuet E, Nabholz B, Galtier N. Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals. PLoS Genet 2020; 16:e1008668. [PMID: 32251427 PMCID: PMC7162527 DOI: 10.1371/journal.pgen.1008668] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/16/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
Whether adaptation is limited by the beneficial mutation supply is a long-standing question of evolutionary genetics, which is more generally related to the determination of the adaptive substitution rate and its relationship with species effective population size (Ne) and genetic diversity. Empirical evidence reported so far is equivocal, with some but not all studies supporting a higher adaptive substitution rate in large-Ne than in small-Ne species. We gathered coding sequence polymorphism data and estimated the adaptive amino-acid substitution rate ωa, in 50 species from ten distant groups of animals with markedly different population mutation rate θ. We reveal the existence of a complex, timescale dependent relationship between species adaptive substitution rate and genetic diversity. We find a positive relationship between ωa and θ among closely related species, indicating that adaptation is indeed limited by the mutation supply, but this was only true in relatively low-θ taxa. In contrast, we uncover no significant correlation between ωa and θ at a larger taxonomic scale, suggesting that the proportion of beneficial mutations scales negatively with species' long-term Ne.
Collapse
Affiliation(s)
| | - Paul Simion
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LEGE, Department of Biology, University of Namur, Namur, Belgium
| | - Marie-Ka Tilak
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Emeric Figuet
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Benoit Nabholz
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nicolas Galtier
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
37
|
Prentout D, Razumova O, Rhoné B, Badouin H, Henri H, Feng C, Käfer J, Karlov G, Marais GAB. An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Res 2020; 30:164-172. [PMID: 32033943 PMCID: PMC7050526 DOI: 10.1101/gr.251207.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Cannabissativa–derived tetrahydrocannabinol (THC) production is increasing very fast worldwide. C. sativa is a dioecious plant with XY Chromosomes, and only females (XX) are useful for THC production. Identifying the sex chromosome sequence would improve early sexing and better management of this crop; however, the C. sativa genome projects have failed to do so. Moreover, as dioecy in the Cannabaceae family is ancestral, C. sativa sex chromosomes are potentially old and thus very interesting to study, as little is known about old plant sex chromosomes. Here, we RNA-sequenced a C. sativa family (two parents and 10 male and female offspring, 576 million reads) and performed a segregation analysis for all C. sativa genes using the probabilistic method SEX-DETector. We identified >500 sex-linked genes. Mapping of these sex-linked genes to a C. sativa genome assembly identified the largest chromosome pair being the sex chromosomes. We found that the X-specific region (not recombining between X and Y) is large compared to other plant systems. Further analysis of the sex-linked genes revealed that C. sativa has a strongly degenerated Y Chromosome and may represent the oldest plant sex chromosome system documented so far. Our study revealed that old plant sex chromosomes can have large, highly divergent nonrecombining regions, yet still be roughly homomorphic.
Collapse
Affiliation(s)
- Djivan Prentout
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Olga Razumova
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia.,N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Moscow 127276, Russia
| | - Bénédicte Rhoné
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France.,Institut de Recherche pour le Développement, UMR DIADE, IRD, Université de Montpellier, F-34394 Montpellier, France
| | - Hélène Badouin
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Hélène Henri
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Cong Feng
- Chongqing Medical University, Yuzhong District, Chongqing, 400016, China.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Gennady Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| |
Collapse
|
38
|
Prentout D, Razumova O, Rhoné B, Badouin H, Henri H, Feng C, Käfer J, Karlov G, Marais GAB. An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Res 2020; 30:164-172. [PMID: 32033943 DOI: 10.1101/721324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/24/2020] [Indexed: 05/22/2023]
Abstract
Cannabis sativa-derived tetrahydrocannabinol (THC) production is increasing very fast worldwide. C. sativa is a dioecious plant with XY Chromosomes, and only females (XX) are useful for THC production. Identifying the sex chromosome sequence would improve early sexing and better management of this crop; however, the C. sativa genome projects have failed to do so. Moreover, as dioecy in the Cannabaceae family is ancestral, C. sativa sex chromosomes are potentially old and thus very interesting to study, as little is known about old plant sex chromosomes. Here, we RNA-sequenced a C. sativa family (two parents and 10 male and female offspring, 576 million reads) and performed a segregation analysis for all C. sativa genes using the probabilistic method SEX-DETector. We identified >500 sex-linked genes. Mapping of these sex-linked genes to a C. sativa genome assembly identified the largest chromosome pair being the sex chromosomes. We found that the X-specific region (not recombining between X and Y) is large compared to other plant systems. Further analysis of the sex-linked genes revealed that C. sativa has a strongly degenerated Y Chromosome and may represent the oldest plant sex chromosome system documented so far. Our study revealed that old plant sex chromosomes can have large, highly divergent nonrecombining regions, yet still be roughly homomorphic.
Collapse
Affiliation(s)
- Djivan Prentout
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Olga Razumova
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Moscow 127276, Russia
| | - Bénédicte Rhoné
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
- Institut de Recherche pour le Développement, UMR DIADE, IRD, Université de Montpellier, F-34394 Montpellier, France
| | - Hélène Badouin
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Hélène Henri
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Cong Feng
- Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Gennady Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| |
Collapse
|
39
|
Variant Calling Using Whole Genome Resequencing and Sequence Capture for Population and Evolutionary Genomic Inferences in Norway Spruce (Picea Abies). COMPENDIUM OF PLANT GENOMES 2020. [DOI: 10.1007/978-3-030-21001-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Hussin NA, Najimudin N, Ab Majid AH. The de novo transcriptome of workers head of the higher group termite Globitermes sulphureus Haviland (Blattodea: Termitidae). Heliyon 2019; 5:e02969. [PMID: 31872129 PMCID: PMC6909072 DOI: 10.1016/j.heliyon.2019.e02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/04/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022] Open
Abstract
The subterranean termite Globitermus sulphureus is an important Southeast Asian pest with limited genomic resources that causes damages to agriculture crops and building structures. Therefore, the main goal of this study was to survey the G. sulphureus transcriptome composition. Here, we performed de novo transcriptome for G. sulphureus workers’ heads using Illumina HiSeq paired-end sequencing technology. A total of 88, 639, 408 clean reads were collected and assembled into 243, 057 transcripts and 193, 344 putative genes. The transcripts were annotated with the Trinotate pipeline. In total, 27, 061 transcripts were successfully annotated using BLASTX against the SwissProt database and 17, 816 genes were assigned to 47, 598 GO terms. We classified 14, 223 transcripts into COG classification, resulting in 25 groups of functional annotations. Next, a total of 12, 194 genes were matched in the KEGG pathway and 392 metabolic pathways were predicted based on the annotation. Moreover, we detected two endogenous cellulases in the sequences. The RT-qPCR analysis showed that there were significant differences in the expression levels of two genes β-glucosidase and endo-β-1,4-glucanase between worker and soldier heads of G. sulphureus. This is the first study to characterize the complete head transcriptome of a higher termite G. sulphureus using a high-throughput sequencing. Our study may provide an overview and comprehensive molecular resource for comparative studies of the transcriptomics and genomics of termites.
Collapse
Affiliation(s)
- Nurul Akmar Hussin
- Household and Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Abdul Hafiz Ab Majid
- Household and Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
41
|
Utilization of Tissue Ploidy Level Variation in de Novo Transcriptome Assembly of Pinus sylvestris. G3-GENES GENOMES GENETICS 2019; 9:3409-3421. [PMID: 31427456 PMCID: PMC6778806 DOI: 10.1534/g3.119.400357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Compared to angiosperms, gymnosperms lag behind in the availability of assembled and annotated genomes. Most genomic analyses in gymnosperms, especially conifer tree species, rely on the use of de novo assembled transcriptomes. However, the level of allelic redundancy and transcript fragmentation in these assembled transcriptomes, and their effect on downstream applications have not been fully investigated. Here, we assessed three assembly strategies for short-reads data, including the utility of haploid megagametophyte tissue during de novo assembly as single-allele guides, for six individuals and five different tissues in Pinus sylvestris. We then contrasted haploid and diploid tissue genotype calls obtained from the assembled transcriptomes to evaluate the extent of paralog mapping. The use of the haploid tissue during assembly increased its completeness without reducing the number of assembled transcripts. Our results suggest that current strategies that rely on available genomic resources as guidance to minimize allelic redundancy are less effective than the application of strategies that cluster redundant assembled transcripts. The strategy yielding the lowest levels of allelic redundancy among the assembled transcriptomes assessed here was the generation of SuperTranscripts with Lace followed by CD-HIT clustering. However, we still observed some levels of heterozygosity (multiple gene fragments per transcript reflecting allelic redundancy) in this assembled transcriptome on the haploid tissue, indicating that further filtering is required before using these assemblies for downstream applications. We discuss the influence of allelic redundancy when these reference transcriptomes are used to select regions for probe design of exome capture baits and for estimation of population genetic diversity.
Collapse
|
42
|
Gros‐Balthazard M, Besnard G, Sarah G, Holtz Y, Leclercq J, Santoni S, Wegmann D, Glémin S, Khadari B. Evolutionary transcriptomics reveals the origins of olives and the genomic changes associated with their domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:143-157. [PMID: 31192486 PMCID: PMC6851578 DOI: 10.1111/tpj.14435] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/11/2023]
Abstract
The olive (Olea europaea L. subsp. europaea) is one of the oldest and most socio-economically important cultivated perennial crop in the Mediterranean region. Yet, its origins are still under debate and the genetic bases of the phenotypic changes associated with its domestication are unknown. We generated RNA-sequencing data for 68 wild and cultivated olive trees to study the genetic diversity and structure both at the transcription and sequence levels. To localize putative genes or expression pathways targeted by artificial selection during domestication, we employed a two-step approach in which we identified differentially expressed genes and screened the transcriptome for signatures of selection. Our analyses support a major domestication event in the eastern part of the Mediterranean basin followed by dispersion towards the West and subsequent admixture with western wild olives. While we found large changes in gene expression when comparing cultivated and wild olives, we found no major signature of selection on coding variants and weak signals primarily affected transcription factors. Our results indicated that the domestication of olives resulted in only moderate genomic consequences and that the domestication syndrome is mainly related to changes in gene expression, consistent with its evolutionary history and life history traits.
Collapse
Affiliation(s)
- Muriel Gros‐Balthazard
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Present address:
New York University Abu Dhabi (NYUAD), Center for Genomics and Systems BiologySaadiyat IslandAbu DhabiUnited Arab Emirates
| | | | - Gautier Sarah
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Yan Holtz
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Julie Leclercq
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Sylvain Santoni
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Daniel Wegmann
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| | - Sylvain Glémin
- CNRSUniversité de RennesECOBIO (Ecosystèmes, biodiversité, évolution) − UMR 6553F‐35000RennesFrance
- Department of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Bouchaib Khadari
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Conservatoire Botanique National MéditerranéenUMR AGAPMontpellierFrance
| |
Collapse
|
43
|
Charrier NP, Hermouet A, Hervet C, Agoulon A, Barker SC, Heylen D, Toty C, McCoy KD, Plantard O, Rispe C. A transcriptome-based phylogenetic study of hard ticks (Ixodidae). Sci Rep 2019; 9:12923. [PMID: 31501478 PMCID: PMC6733903 DOI: 10.1038/s41598-019-49641-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/19/2019] [Indexed: 11/30/2022] Open
Abstract
Hard ticks are widely distributed across temperate regions, show strong variation in host associations, and are potential vectors of a diversity of medically important zoonoses, such as Lyme disease. To address unresolved issues with respect to the evolutionary relationships among certain species or genera, we produced novel RNA-Seq data sets for nine different Ixodes species. We combined this new data with 18 data sets obtained from public databases, both for Ixodes and non-Ixodes hard tick species, using soft ticks as an outgroup. We assembled transcriptomes (for 27 species in total), predicted coding sequences and identified single copy orthologues (SCO). Using Maximum-likelihood and Bayesian frameworks, we reconstructed a hard tick phylogeny for the nuclear genome. We also obtained a mitochondrial DNA-based phylogeny using published genome sequences and mitochondrial sequences derived from the new transcriptomes. Our results confirm previous studies showing that the Ixodes genus is monophyletic and clarify the relationships among Ixodes sub-genera. This work provides a baseline for studying the evolutionary history of ticks: we indeed found an unexpected acceleration of substitutions for mitochondrial sequences of Prostriata, and for nuclear and mitochondrial genes of two species of Rhipicephalus, which we relate with patterns of genome architecture and changes of life-cycle, respectively.
Collapse
Affiliation(s)
| | | | | | | | - Stephen C Barker
- Department of Parasitology, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Céline Toty
- Laboratoire MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution & Contrôle), Université de Montpellier, Centre National de la Recherche Scientifique (UMR5290), Institut de Recherche pour le Développement (UR224), Montpellier, France
| | - Karen D McCoy
- Laboratoire MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution & Contrôle), Université de Montpellier, Centre National de la Recherche Scientifique (UMR5290), Institut de Recherche pour le Développement (UR224), Montpellier, France
| | | | | |
Collapse
|
44
|
De Jode A, David R, Haguenauer A, Cahill AE, Erga Z, Guillemain D, Sartoretto S, Rocher C, Selva M, Le Gall L, Féral JP, Chenuil A. From seascape ecology to population genomics and back. Spatial and ecological differentiation among cryptic species of the red algae Lithophyllum stictiforme/L. cabiochiae, main bioconstructors of coralligenous habitats. Mol Phylogenet Evol 2019; 137:104-113. [DOI: 10.1016/j.ympev.2019.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/25/2023]
|
45
|
Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glémin S, Bierne N, Duret L. Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion. Mol Biol Evol 2019; 35:1092-1103. [PMID: 29390090 DOI: 10.1093/molbev/msy015] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selection on codon usage bias is well documented in a number of microorganisms. Whether codon usage is also generally shaped by natural selection in large organisms, despite their relatively small effective population size (Ne), is unclear. In animals, the population genetics of codon usage bias has only been studied in a handful of model organisms so far, and can be affected by confounding, nonadaptive processes such as GC-biased gene conversion and experimental artefacts. Using population transcriptomics data, we analyzed the relationship between codon usage, gene expression, allele frequency distribution, and recombination rate in 30 nonmodel species of animals, each from a different family, covering a wide range of effective population sizes. We disentangled the effects of translational selection and GC-biased gene conversion on codon usage by separately analyzing GC-conservative and GC-changing mutations. We report evidence for effective translational selection on codon usage in large-Ne species of animals, but not in small-Ne ones, in agreement with the nearly neutral theory of molecular evolution. C- and T-ending codons tend to be preferred over synonymous G- and A-ending ones, for reasons that remain to be determined. In contrast, we uncovered a conspicuous effect of GC-biased gene conversion, which is widespread in animals and the main force determining the fate of AT↔GC mutations. Intriguingly, the strength of its effect was uncorrelated with Ne.
Collapse
Affiliation(s)
- Nicolas Galtier
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Camille Roux
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,UMR 8198 - Evo-Eco-Paleo, CNRS, Université de Lille-Sciences et Technologies, Villeneuve d'Ascq, France
| | - Marjolaine Rousselle
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jonathan Romiguier
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emeric Figuet
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Glémin
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Nicolas Bierne
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
46
|
Riquet F, Liautard-Haag C, Woodall L, Bouza C, Louisy P, Hamer B, Otero-Ferrer F, Aublanc P, Béduneau V, Briard O, El Ayari T, Hochscheid S, Belkhir K, Arnaud-Haond S, Gagnaire PA, Bierne N. Parallel pattern of differentiation at a genomic island shared between clinal and mosaic hybrid zones in a complex of cryptic seahorse lineages. Evolution 2019; 73:817-835. [PMID: 30854632 DOI: 10.1111/evo.13696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Abstract
Diverging semi-isolated lineages either meet in narrow clinal hybrid zones, or have a mosaic distribution associated with environmental variation. Intrinsic reproductive isolation is often emphasized in the former and local adaptation in the latter, although both reduce gene flow between groups. Rarely are these two patterns of spatial distribution reported in the same study system. Here, we report that the long-snouted seahorse Hippocampus guttulatus is subdivided into discrete panmictic entities by both types of hybrid zones. Along the European Atlantic coasts, a northern and a southern lineage meet in the southwest of France where they coexist in sympatry-i.e., in the same geographical zone-with little hybridization. In the Mediterranean Sea, two lineages have a mosaic distribution, associated with lagoon-like and marine habitats. A fifth lineage was identified in the Black Sea. Genetic homogeneity over large spatial scales contrasts with isolation maintained in sympatry or close parapatry at a fine scale. A high variation in locus-specific introgression rates provides additional evidence that partial reproductive isolation must be maintaining the divergence. We find that fixed differences between lagoon and marine populations in the Mediterranean Sea belong to the most differentiated SNPs between the two Atlantic lineages, against the genome-wide pattern of structure that mostly follow geography. These parallel outlier SNPs cluster on a single chromosome-wide island of differentiation. Since Atlantic lineages do not map to lagoon-sea habitat variation, genetic parallelism at the genomic island suggests a shared genetic barrier contributes to reproductive isolation in contrasting contexts-i.e., spatial versus ecological. We discuss how a genomic hotspot of parallel differentiation could have evolved and become associated both with space and with a patchy environment in a single study system.
Collapse
Affiliation(s)
- Florentine Riquet
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Cathy Liautard-Haag
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Lucy Woodall
- Department of Zoology, University of Oxford, Wytham, OX2 8QJ, United Kingdom.,Natural History Museum, London, SW7 5BD, United Kingdom
| | - Carmen Bouza
- Department of Genetics, Faculty of Veterinary Science, Universidade de Santiago de Compostela, Lugo, Spain
| | - Patrick Louisy
- ECOMERS Laboratory, University of Nice Sophia Antipolis, Faculty of Sciences, Parc Valrose, Nice, France.,Association Peau-Bleue, 46 rue des Escais, Agde, France
| | - Bojan Hamer
- Center for Marine Research, Ruder Boskovic Institute, Giordano Paliaga 5, 52210, Rovinj, Croatia
| | - Francisco Otero-Ferrer
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214, Telde, Spain
| | - Philippe Aublanc
- Institut océanographique Paul Ricard, Ile des Embiez, Six-Fours-les-Plages, France
| | - Vickie Béduneau
- Océarium du Croisic, Avenue de Saint Goustan, Le Croisic, France
| | - Olivier Briard
- Aquarium de Biarritz, Biarritz Océan, Plateau de l'Atalaye, Biarritz, France
| | - Tahani El Ayari
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Sandra Hochscheid
- Stazione Zoologica Anton Dohrn, Department Research Infrastructures for Marine Biological Resources, Aquarium Unit, Napoli, Italy
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Sophie Arnaud-Haond
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,Ifremer-MARine Biodiversity, Exploitation and Conservation, UMR 9190 IRD-IFREMER-UM-CNRS, Sète, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| |
Collapse
|
47
|
Martin H, Carpentier F, Gallina S, Godé C, Schmitt E, Muyle A, Marais GAB, Touzet P. Evolution of Young Sex Chromosomes in Two Dioecious Sister Plant Species with Distinct Sex Determination Systems. Genome Biol Evol 2019; 11:350-361. [PMID: 30649306 PMCID: PMC6364797 DOI: 10.1093/gbe/evz001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the last decade, progress has been made in methods to identify the sex determination system in plants. This gives the opportunity to study sex chromosomes that arose independently at different phylogenetic scales, and thus allows the discovery and the understanding of early stages of sex chromosome evolution. In the genus Silene, sex chromosomes have evolved independently in at least two clades from a nondioecious ancestor, the Melandrium and Otites sections. In the latter, sex chromosomes could be younger than in the section Melandrium, based on phylogenetic studies and as no heteromorphic sex chromosomes have been detected. This section might also exhibit lability in sex determination, because male heterogamy and female heterogamy have been suggested to occur. In this study, we investigated the sex determination system of two dioecious species in the section Otites (Silene otites and its close relative Silene pseudotites). Applying the new probabilistic method SEX-DETector on RNA-seq data from cross-controlled progenies, we inferred their most likely sex determination system and a list of putative autosomal and sex-linked contigs. We showed that the two phylogenetically close species differed in their sex determination system (XY versus ZW) with sex chromosomes that derived from two different pairs of autosomes. We built a genetic map of the sex chromosomes and showed that both pairs exhibited a large region with lack of recombination. However, the sex-limited chromosomes exhibited no strong degeneration. Finally, using the “ancestral” autosomal expression of sex-linked orthologs of nondioecious S. nutans, we found a slight signature of dosage compensation in the heterogametic females of S. otites.
Collapse
Affiliation(s)
- Hélène Martin
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Fantin Carpentier
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Ecologie Systématique Evolution, Université Paris Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | | | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Eric Schmitt
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | | |
Collapse
|
48
|
Zenger KR, Khatkar MS, Jones DB, Khalilisamani N, Jerry DR, Raadsma HW. Genomic Selection in Aquaculture: Application, Limitations and Opportunities With Special Reference to Marine Shrimp and Pearl Oysters. Front Genet 2019; 9:693. [PMID: 30728827 PMCID: PMC6351666 DOI: 10.3389/fgene.2018.00693] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
Within aquaculture industries, selection based on genomic information (genomic selection) has the profound potential to change genetic improvement programs and production systems. Genomic selection exploits the use of realized genomic relationships among individuals and information from genome-wide markers in close linkage disequilibrium with genes of biological and economic importance. We discuss the technical advances, practical requirements, and commercial applications that have made genomic selection feasible in a range of aquaculture industries, with a particular focus on molluscs (pearl oysters, Pinctada maxima) and marine shrimp (Litopenaeus vannamei and Penaeus monodon). The use of low-cost genome sequencing has enabled cost-effective genotyping on a large scale and is of particular value for species without a reference genome or access to commercial genotyping arrays. We highlight the pitfalls and offer the solutions to the genotyping by sequencing approach and the building of appropriate genetic resources to undertake genomic selection from first-hand experience. We describe the potential to capture large-scale commercial phenotypes based on image analysis and artificial intelligence through machine learning, as inputs for calculation of genomic breeding values. The application of genomic selection over traditional aquatic breeding programs offers significant advantages through being able to accurately predict complex polygenic traits including disease resistance; increasing rates of genetic gain; minimizing inbreeding; and negating potential limiting effects of genotype by environment interactions. Further practical advantages of genomic selection through the use of large-scale communal mating and rearing systems are highlighted, as well as presenting rate-limiting steps that impact on attaining maximum benefits from adopting genomic selection. Genomic selection is now at the tipping point where commercial applications can be readily adopted and offer significant short- and long-term solutions to sustainable and profitable aquaculture industries.
Collapse
Affiliation(s)
- Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
| | - Mehar S Khatkar
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - David B Jones
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Nima Khalilisamani
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Dean R Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
| | - Herman W Raadsma
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
49
|
Passow CN, Kono TJY, Stahl BA, Jaggard JB, Keene AC, McGaugh SE. Nonrandom RNAseq gene expression associated with RNAlater and flash freezing storage methods. Mol Ecol Resour 2018; 19:456-464. [PMID: 30447171 DOI: 10.1111/1755-0998.12965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/19/2018] [Accepted: 11/08/2018] [Indexed: 01/30/2023]
Abstract
RNA sequencing is a popular next-generation sequencing technique for assaying genome-wide gene expression profiles. Nonetheless, it is susceptible to biases that are introduced by sample handling prior gene expression measurements. Two of the most common methods for preserving samples in both field-based and laboratory conditions are submersion in RNAlater and flash freezing in liquid nitrogen. Flash freezing in liquid nitrogen can be impractical, particularly for field collections. RNAlater is a solution for stabilizing tissue for longer-term storage as it rapidly permeates tissue to protect cellular RNA. In this study, we assessed genome-wide expression patterns in 30-day-old fry collected from the same brood at the same time point that were flash-frozen in liquid nitrogen and stored at -80°C or submerged and stored in RNAlater at room temperature, simulating conditions of fieldwork. We show that sample storage is a significant factor influencing observed differential gene expression. In particular, genes with elevated GC content exhibit higher observed expression levels in liquid nitrogen flash-freezing relative to RNAlater storage. Further, genes with higher expression in RNAlater relative to liquid nitrogen experience disproportionate enrichment for functional categories, many of which are involved in RNA processing. This suggests that RNAlater may elicit a physiological response that has the potential to bias biological interpretations of expression studies. The biases introduced to observed gene expression arising from mimicking many field-based studies are substantial and should not be ignored.
Collapse
Affiliation(s)
- Courtney N Passow
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Thomas J Y Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - James B Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| |
Collapse
|
50
|
Corcoran P, Gossmann TI, Barton HJ, Slate J, Zeng K. Determinants of the Efficacy of Natural Selection on Coding and Noncoding Variability in Two Passerine Species. Genome Biol Evol 2018; 9:2987-3007. [PMID: 29045655 PMCID: PMC5714183 DOI: 10.1093/gbe/evx213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Population genetic theory predicts that selection should be more effective when the effective population size (Ne) is larger, and that the efficacy of selection should correlate positively with recombination rate. Here, we analyzed the genomes of ten great tits and ten zebra finches. Nucleotide diversity at 4-fold degenerate sites indicates that zebra finches have a 2.83-fold larger Ne. We obtained clear evidence that purifying selection is more effective in zebra finches. The proportion of substitutions at 0-fold degenerate sites fixed by positive selection (α) is high in both species (great tit 48%; zebra finch 64%) and is significantly higher in zebra finches. When α was estimated on GC-conservative changes (i.e., between A and T and between G and C), the estimates reduced in both species (great tit 22%; zebra finch 53%). A theoretical model presented herein suggests that failing to control for the effects of GC-biased gene conversion (gBGC) is potentially a contributor to the overestimation of α, and that this effect cannot be alleviated by first fitting a demographic model to neutral variants. We present the first estimates in birds for α in the untranslated regions, and found evidence for substantial adaptive changes. Finally, although purifying selection is stronger in high-recombination regions, we obtained mixed evidence for α increasing with recombination rate, especially after accounting for gBGC. These results highlight that it is important to consider the potential confounding effects of gBGC when quantifying selection and that our understanding of what determines the efficacy of selection is incomplete.
Collapse
Affiliation(s)
- Pádraic Corcoran
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | | | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| |
Collapse
|