1
|
Zhao Y, Zhang Y, Feng J, He Z, Li T. Codon Usage Bias: A Potential Factor Affecting VGLUT Developmental Expression and Protein Evolution. Mol Neurobiol 2025; 62:3508-3522. [PMID: 39305444 DOI: 10.1007/s12035-024-04426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/05/2024] [Indexed: 02/04/2025]
Abstract
More and more attention has been paid to the role of synonymous substitution in evolution, in which codon usage preference can affect gene expression distribution and protein structure and function. Vesicular glutamate transporter (VGLUT) consists of three isoforms, among which VGLUT3 is significantly different from other VGLUTs in functional importance, expression level, and distribution range, whose reason is still unclear. This study sought to analyze the role of codon preference in VGLUT differentiation. To conduct an evolutionary analysis of the three VGLUTs, this paper uses bioinformatics research methods to analyze the coding sequences of the three VGLUTs in different species and compare the codon usage patterns. Furthermore, the differences among the three VGLUTs were analyzed by combining functional importance, expression level, distribution range, gene structure, protein relationship network, expression at specific developmental stages, and phylogenetic tree, and the influence of codon usage pattern was explored. The results showed that the VGLUT with greater codon preference had less functional importance, lower expression levels, more peripheral distribution away from the CNS, smaller exon density of gene, less conserved and farther away from the CDS region miRNA regulatory sites, simpler and less tight protein interaction networks, delayed developmental expression, and more distant evolutionary relationships. Codon usage preference is a potential factor affecting VGLUT developmental expression and protein evolution.
Collapse
Affiliation(s)
- Yiran Zhao
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Yu Zhang
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Jiaxing Feng
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Zixian He
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Ting Li
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China.
| |
Collapse
|
2
|
Wei K, Sharifova S, Zhao X, Sinha N, Nakayama H, Tellier A, Silva-Arias GA. Evolution of gene networks underlying adaptation to drought stress in the wild tomato Solanum chilense. Mol Ecol 2024; 33:e17536. [PMID: 39360493 DOI: 10.1111/mec.17536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Drought stress is a key limitation for plant growth and colonization of arid habitats. We study the evolution of gene expression response to drought stress in a wild tomato, Solanum chilense, naturally occurring in dry habitats in South America. We conduct a transcriptome analysis under standard and drought experimental conditions to identify drought-responsive gene networks and estimate the age of the involved genes. We identify two main regulatory networks corresponding to two typical drought-responsive strategies: cell cycle and fundamental metabolic processes. The metabolic network exhibits a more recent evolutionary origin and a more variable transcriptome response than the cell cycle network (with ancestral origin and higher conservation of the transcriptional response). We also integrate population genomics analyses to reveal positive selection signals acting at the genes of both networks, revealing that genes exhibiting selective sweeps of older age also exhibit greater connectivity in the networks. These findings suggest that adaptive changes first occur at core genes of drought response networks, driving significant network re-wiring, which likely underpins species divergence and further spread into drier habitats. Combining transcriptomics and population genomics approaches, we decipher the timing of gene network evolution for drought stress response in arid habitats.
Collapse
Affiliation(s)
- Kai Wei
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Saida Sharifova
- Department of Life Sciences, Graduate School of Science, Arts and Technology, Khazar University, Baku, Azerbaijan
| | - Xiaoyun Zhao
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Neelima Sinha
- Department of Plant Biology, University of California Davis, Davis, California, USA
| | - Hokuto Nakayama
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Aurélien Tellier
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gustavo A Silva-Arias
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
- Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
3
|
Lotharukpong JS, Zheng M, Luthringer R, Liesner D, Drost HG, Coelho SM. A transcriptomic hourglass in brown algae. Nature 2024; 635:129-135. [PMID: 39443791 PMCID: PMC11540847 DOI: 10.1038/s41586-024-08059-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Complex multicellularity has emerged independently across a few eukaryotic lineages and is often associated with the rise of elaborate, tightly coordinated developmental processes1,2. How multicellularity and development are interconnected in evolution is a major question in biology. The hourglass model of embryonic evolution depicts how developmental processes are conserved during evolution, and predicts morphological and molecular divergence in early and late embryogenesis, bridged by a conserved mid-embryonic (phylotypic) period linked to the formation of the basic body plan3,4. Initially found in animal embryos5-8, molecular hourglass patterns have recently been proposed for land plants and fungi9,10. However, whether the hourglass pattern is an intrinsic feature of all complex multicellular eukaryotes remains unknown. Here we tested the presence of a molecular hourglass in the brown algae, a eukaryotic lineage that has evolved multicellularity independently from animals, fungi and plants1,11,12. By exploring transcriptome evolution patterns of brown algae with distinct morphological complexities, we uncovered an hourglass pattern during embryogenesis in morphologically complex species. Filamentous algae without canonical embryogenesis display transcriptome conservation in multicellular stages of the life cycle, whereas unicellular stages are more rapidly evolving. Our findings suggest that transcriptome conservation in brown algae is associated with cell differentiation stages, but is not necessarily linked to embryogenesis. Together with previous work in animals, plants and fungi, we provide further evidence for the generality of a developmental hourglass pattern across complex multicellular eukaryotes.
Collapse
Affiliation(s)
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Rémy Luthringer
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Daniel Liesner
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Hajk-Georg Drost
- Computational Biology Group, Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Digital Biology Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Li C, Yang Z, Xu X, Meng L, Liu S, Yang D. Conserved and specific gene expression patterns in the embryonic development of tardigrades. Evol Dev 2024; 26:e12476. [PMID: 38654704 DOI: 10.1111/ede.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Tardigrades, commonly known as water bears, are enigmatic organisms characterized by their remarkable resilience to extreme environments despite their simple and compact body structure. To date, there is still much to understand about their evolutionary and developmental features contributing to their special body plan and abilities. This research provides preliminary insights on the conserved and specific gene expression patterns during embryonic development of water bears, focusing on the species Hypsibius exemplaris. The developmental dynamic expression analysis of the genes with various evolutionary age grades indicated that the mid-conserved stage of H. exemplaris corresponds to the period of ganglia and midgut development, with the late embryonic stage showing a transition from non-conserved to conserved state. Additionally, a comparison with Drosophila melanogaster highlighted the absence of certain pathway nodes in development-related pathways, such as Maml and Hairless, which are respectively the transcriptional co-activator and co-repressor of NOTCH regulated genes. We also employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the expression patterns of tardigrade-specific genes during embryo development. Our findings indicated that the module containing the highest proportion of tardigrade-specific genes (TSGs) exhibits high expression levels before the mid-conserved stage, potentially playing a role in glutathione and lipid metabolism. These functions may be associated to the ecdysone synthesis and storage cell formation, which is unique to tardigrades.
Collapse
Affiliation(s)
- Chaoran Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhixiang Yang
- School of Life Sciences, Hebei University, Baoding, China
| | - Xiaofang Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lingling Meng
- School of Life Sciences, Hebei University, Baoding, China
| | - Shihao Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Dong Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
5
|
Kyomen S, Murillo-Rincón AP, Kaucká M. Evolutionary mechanisms modulating the mammalian skull development. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220080. [PMID: 37183900 PMCID: PMC10184257 DOI: 10.1098/rstb.2022.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Mammals possess impressive craniofacial variation that mirrors their adaptation to diverse ecological niches, feeding behaviour, physiology and overall lifestyle. The spectrum of craniofacial geometries is established mainly during embryonic development. The formation of the head represents a sequence of events regulated on genomic, molecular, cellular and tissue level, with each step taking place under tight spatio-temporal control. Even minor variations in timing, position or concentration of the molecular drivers and the resulting events can affect the final shape, size and position of the skeletal elements and the geometry of the head. Our knowledge of craniofacial development increased substantially in the last decades, mainly due to research using conventional vertebrate model organisms. However, how developmental differences in head formation arise specifically within mammals remains largely unexplored. This review highlights three evolutionary mechanisms acknowledged to modify ontogenesis: heterochrony, heterotopy and heterometry. We present recent research that links changes in developmental timing, spatial organization or gene expression levels to the acquisition of species-specific skull morphologies. We highlight how these evolutionary modifications occur on the level of the genes, molecules and cellular processes, and alter conserved developmental programmes to generate a broad spectrum of skull shapes characteristic of the class Mammalia. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Stella Kyomen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Andrea P Murillo-Rincón
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| |
Collapse
|
6
|
Lanzetti A, Portela-Miguez R, Fernandez V, Goswami A. Testing heterochrony: Connecting skull shape ontogeny and evolution of feeding adaptations in baleen whales. Evol Dev 2023; 25:257-273. [PMID: 37259250 DOI: 10.1111/ede.12447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Ontogeny plays a key role in the evolution of organisms, as changes during the complex processes of development can allow for new traits to arise. Identifying changes in ontogenetic allometry-the relationship between skull shape and size during growth-can reveal the processes underlying major evolutionary transformations. Baleen whales (Mysticeti, Cetacea) underwent major morphological changes in transitioning from their ancestral raptorial feeding mode to the three specialized filter-feeding modes observed in extant taxa. Heterochronic processes have been implicated in the evolution of these feeding modes, and their associated specialized cranial morphologies, but their role has never been tested with quantitative data. Here, we quantified skull shapes ontogeny and reconstructed ancestral allometric trajectories using 3D geometric morphometrics and phylogenetic comparative methods on sample representing modern mysticetes diversity. Our results demonstrate that Mysticeti, while having a common developmental trajectory, present distinct cranial shapes from early in their ontogeny corresponding to their different feeding ecologies. Size is the main driver of shape disparity across mysticetes. Disparate heterochronic processes are evident in the evolution of the group: skim feeders present accelerated growth relative to the ancestral nodes, while Balaenopteridae have overall slower growth, or pedomorphosis. Gray whales are the only taxon with a relatively faster rate of growth in this group, which might be connected to its unique benthic feeding strategy. Reconstructed ancestral allometries and related skull shapes indicate that extinct taxa used less specialized filter-feeding modes, a finding broadly in line with the available fossil evidence.
Collapse
Affiliation(s)
- Agnese Lanzetti
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Department of Life Sciences, Natural History Museum, London, UK
| | | | | | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
7
|
Forti LR, Szabo JK, Japyassú HF. Host manipulation by parasites through the lens of Niche Construction Theory. Behav Processes 2023:104907. [PMID: 37352944 DOI: 10.1016/j.beproc.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
The effect of parasites on host behaviour is generally considered an example of the extended phenotype, implying that parasite genes alter host behaviour to benefit the parasite. While the extended phenotype is a valid perspective supported by empirical examples, this approach was proposed from an evolutionary perspective and it does not fully explain all processes that occur at ecological time scales. For instance, the roles of the ontogenetic environment, memory and learning in forming the host phenotype are not explicitly mentioned. Furthermore, the cumulative effect of diverse populations or communities of parasites on host phenotype cannot be attributed to a particular genotype, much less to a particular gene. Building on the idea that the behaviour of a host is the result of a complex process, which certainly goes beyond a specific parasite gene, we use Niche Construction Theory to describe certain systems that are not generally the main focus in the extended phenotype (EP) model. We introduce three niche construction models with corresponding empirical examples that capture the diversity and complexity of host-parasite interactions, providing predictions that simpler models cannot generate. We hope that this novel perspective will inspire further research on the topic, given the impact of ecological factors on both short-, and long-term effects of parasitism.
Collapse
Affiliation(s)
- Lucas Rodriguez Forti
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; Departamento de Biociências, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572 - Bairro Costa e Silva, 59625-900, Mossoró - Rio Grande do Norte, Brazil.
| | - Judit K Szabo
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; College of Engineering, IT and Environment, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
| | - Hilton F Japyassú
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; INCT-INTREE: Instituto Nacional de Ciência e Tecnologia para estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução, Universidade Federal da Bahia
| |
Collapse
|
8
|
Mongle CS, Nesbitt A, Machado FA, Smaers JB, Turner AH, Grine FE, Uyeda JC. A common mechanism drives the alignment between the micro- and macroevolution of primate molars. Evolution 2022; 76:2975-2985. [PMID: 36005286 DOI: 10.1111/evo.14600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023]
Abstract
A central challenge for biology is to reveal how different levels of biological variation interact and shape diversity. However, recent experimental studies have indicated that prevailing models of evolution cannot readily explain the link between micro- and macroevolution at deep timescales. Here, we suggest that this paradox could be the result of a common mechanism driving a correlated pattern of evolution. We examine the proportionality between genetic variance and patterns of trait evolution in a system whose developmental processes are well understood to gain insight into how such alignment between morphological divergence and genetic variation might be maintained over macroevolutionary time. Primate molars present a model system by which to link developmental processes to evolutionary dynamics because of the biased pattern of variation that results from the developmental architecture regulating their formation. We consider how this biased variation is expressed at the population level, and how it manifests through evolution across primates. There is a strong correspondence between the macroevolutionary rates of primate molar divergence and their genetic variation. This suggests a model of evolution in which selection is closely aligned with the direction of genetic variance, phenotypic variance, and the underlying developmental architecture of anatomical traits.
Collapse
Affiliation(s)
- Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Division of Anthropology, American Museum of Natural History, New York, New York, 10024.,Turkana Basin Institute, Stony Brook University, Stony Brook, New York, 11794
| | - Allison Nesbitt
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65212
| | - Fabio A Machado
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061
| |
Collapse
|
9
|
Abstract
AbstractEvolvability is best addressed from a multi-level, macroevolutionary perspective through a comparative approach that tests for among-clade differences in phenotypic diversification in response to an opportunity, such as encountered after a mass extinction, entering a new adaptive zone, or entering a new geographic area. Analyzing the dynamics of clades under similar environmental conditions can (partially) factor out shared external drivers to recognize intrinsic differences in evolvability, aiming for a macroevolutionary analog of a common-garden experiment. Analyses will be most powerful when integrating neontological and paleontological data: determining differences among extant populations that can be hypothesized to generate large-scale, long-term contrasts in evolvability among clades; or observing large-scale differences among clade histories that can by hypothesized to reflect contrasts in genetics and development observed directly in extant populations. However, many comparative analyses can be informative on their own, as explored in this overview. Differences in clade-level evolvability can be visualized in diversity-disparity plots, which can quantify positive and negative departures of phenotypic productivity from stochastic expectations scaled to taxonomic diversification. Factors that evidently can promote evolvability include modularity—when selection aligns with modular structure or with morphological integration patterns; pronounced ontogenetic changes in morphology, as in allometry or multiphase life cycles; genome size; and a variety of evolutionary novelties, which can also be evaluated using macroevolutionary lags between the acquisition of a trait and phenotypic diversification, and dead-clade-walking patterns that may signal a loss of evolvability when extrinsic factors can be excluded. High speciation rates may indirectly foster phenotypic evolvability, and vice versa. Mechanisms are controversial, but clade evolvability may be higher in the Cambrian, and possibly early in the history of clades at other times; in the tropics; and, for marine organisms, in shallow-water disturbed habitats.
Collapse
|
10
|
|
11
|
Merényi Z, Virágh M, Gluck-Thaler E, Slot JC, Kiss B, Varga T, Geösel A, Hegedüs B, Bálint B, Nagy LG. Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom forming fungi (Agaricomycetes). eLife 2022; 11:71348. [PMID: 35156613 PMCID: PMC8893723 DOI: 10.7554/elife.71348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here, we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans, a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts, and developmental gene expression, but not RNA editing or a ‘developmental hourglass,’ act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of nonadaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Emile Gluck-Thaler
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jason C Slot
- Department of Plant Pathology, Ohio State University, Columbus, United States
| | - Brigitta Kiss
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Torda Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - András Geösel
- Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - László G Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| |
Collapse
|
12
|
Kopania EEK, Larson EL, Callahan C, Keeble S, Good JM. Molecular Evolution across Mouse Spermatogenesis. Mol Biol Evol 2022; 39:6517785. [PMID: 35099536 PMCID: PMC8844503 DOI: 10.1093/molbev/msac023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of how protein sequences and patterns of gene expression evolve across this complex developmental process. We used fluorescence-activated cell sorting (FACS) to generate expression data for early (meiotic) and late (postmeiotic) cell types across 13 inbred strains of mice (Mus) spanning ∼7 My of evolution. We used these comparative developmental data to investigate the evolution of lineage-specific expression, protein-coding sequences, and expression levels. We found increased lineage specificity and more rapid protein-coding and expression divergence during late spermatogenesis, suggesting that signatures of rapid testis molecular evolution are punctuated across sperm development. Despite strong overall developmental parallels in these components of molecular evolution, protein and expression divergences were only weakly correlated across genes. We detected more rapid protein evolution on the X chromosome relative to the autosomes, whereas X-linked gene expression tended to be relatively more conserved likely reflecting chromosome-specific regulatory constraints. Using allele-specific FACS expression data from crosses between four strains, we found that the relative contributions of different regulatory mechanisms also differed between cell types. Genes showing cis-regulatory changes were more common late in spermatogenesis, and tended to be associated with larger differences in expression levels and greater expression divergence between species. In contrast, genes with trans-acting changes were more common early and tended to be more conserved across species. Our findings advance understanding of gene evolution across spermatogenesis and underscore the fundamental importance of developmental context in molecular evolutionary studies.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA
| | - Colin Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
13
|
Ko KY, Chen CY, Juan HF, Huang HC. Phylotranscriptomic patterns of network stochasticity and pathway dynamics during embryogenesis. Bioinformatics 2022; 38:763-769. [PMID: 34677580 DOI: 10.1093/bioinformatics/btab735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION The hourglass model is a popular evo-devo model depicting that the developmental constraints in the middle of a developmental process are higher, and hence the phenotypes are evolutionarily more conserved, than those that occur in early and late ontogeny stages. Although this model has been supported by studies analyzing developmental gene expression data, the evolutionary explanation and molecular mechanism behind this phenomenon are not fully understood yet. To approach this problem, Raff proposed a hypothesis and claimed that higher interconnectivity among elements in an organism during organogenesis resulted in the larger constraints at the mid-developmental stage. By employing stochastic network analysis and gene-set pathway analysis, we aim to demonstrate such changes of interconnectivity claimed in Raff's hypothesis. RESULTS We first compared the changes of network randomness among developmental processes in different species by measuring the stochasticity within the biological network in each developmental stage. By tracking the network entropy along each developmental process, we found that the network stochasticity follows an anti-hourglass trajectory, and such a pattern supports Raff's hypothesis in dynamic changes of interconnections among biological modules during development. To understand which biological functions change during the transition of network stochasticity, we sketched out the pathway dynamics along the developmental stages and found that species may activate similar groups of biological processes across different stages. Moreover, higher interspecies correlations are found at the mid-developmental stages. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kuei-Yueh Ko
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 106, Taiwan.,Computational Biology and Bioinformatics Program, Duke University, Durham, NC 27710, USA
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsueh-Fen Juan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 106, Taiwan.,Department of Life Science, Graduate Institute of Biomedical Electronics and Bioinformatics, Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
14
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
15
|
Chan ME, Bhamidipati PS, Goldsby HJ, Hintze A, Hofmann HA, Young RL. Comparative Transcriptomics Reveals Distinct Patterns of Gene Expression Conservation through Vertebrate Embryogenesis. Genome Biol Evol 2021; 13:6319027. [PMID: 34247223 PMCID: PMC8358226 DOI: 10.1093/gbe/evab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Despite life's diversity, studies of variation often remind us of our shared evolutionary past. Abundant genome sequencing and analyses of gene regulatory networks illustrate that genes and entire pathways are conserved, reused, and elaborated in the evolution of diversity. Predating these discoveries, 19th-century embryologists observed that though morphology at birth varies tremendously, certain stages of vertebrate embryogenesis appear remarkably similar across vertebrates. In the mid to late 20th century, anatomical variability of early and late-stage embryos and conservation of mid-stages embryos (the "phylotypic" stage) was named the hourglass model of diversification. This model has found mixed support in recent analyses comparing gene expression across species possibly owing to differences in species, embryonic stages, and gene sets compared. We compare 186 microarray and RNA-seq data sets covering embryogenesis in six vertebrate species. We use an unbiased clustering approach to group stages of embryogenesis by transcriptomic similarity and ask whether gene expression similarity of clustered embryonic stages deviates from a null expectation. We characterize expression conservation patterns of each gene at each evolutionary node after correcting for phylogenetic nonindependence. We find significant enrichment of genes exhibiting early conservation, hourglass, late conservation patterns in both microarray and RNA-seq data sets. Enrichment of genes showing patterned conservation through embryogenesis indicates diversification of embryogenesis may be temporally constrained. However, the circumstances under which each pattern emerges remain unknown and require both broad evolutionary sampling and systematic examination of embryogenesis across species.
Collapse
Affiliation(s)
- Megan E Chan
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| | - Pranav S Bhamidipati
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| | - Heather J Goldsby
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Arend Hintze
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA.,Institute for Cellular and Molecular Biology, Institute for Neuroscience, The University of Texas at Austin, Texas, USA
| | - Rebecca L Young
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| |
Collapse
|
16
|
Levit GS, Hoßfeld U, Naumann B, Lukas P, Olsson L. The biogenetic law and the Gastraea theory: From Ernst Haeckel's discoveries to contemporary views. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:13-27. [PMID: 33724681 DOI: 10.1002/jez.b.23039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/28/2022]
Abstract
More than 150 years ago, in 1866, Ernst Haeckel published a book in two volumes called Generelle Morphologie der Organismen (General Morphology of Organisms) in the first volume of which he formulated his biogenetic law, famously stating that ontogeny recapitulates phylogeny. Here, we describe Haeckel's original idea as first formulated in the Generelle Morphologie der Organismen and later further developed in other publications until the present situation in which molecular data are used to test the "hourglass model," which can be seen as a modern version of the biogenetic law. We also tell the story about his discovery, while traveling in Norway, of an unknown organism, Magosphaera planula, that was important in that it helped to precipitate his ideas into what was to become the Gastraea theory. We also follow further development and reformulations of the Gastraea theory by other scientists, notably the Russian school. Elias Metchnikoff developed the Phagocytella hypothesis for the origin of metazoans based on studies of a colonial flagellate. Alexey Zakhvatin focused on deducing the ancestral life cycle and the cell types of the last common ancestor of all metazoans, and Kirill V. Mikhailov recently pursued this line of research further.
Collapse
Affiliation(s)
- Georgy S Levit
- AG Biologiedidaktik, Friedrich-Schiller-Universität Bienenhaus, Jena, Germany
| | - Uwe Hoßfeld
- AG Biologiedidaktik, Friedrich-Schiller-Universität Bienenhaus, Jena, Germany
| | - Benjamin Naumann
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität, Jena, Germany
| | - Paul Lukas
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität, Jena, Germany
| | - Lennart Olsson
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität, Jena, Germany
| |
Collapse
|
17
|
Onimaru K, Tatsumi K, Tanegashima C, Kadota M, Nishimura O, Kuraku S. Developmental hourglass and heterochronic shifts in fin and limb development. eLife 2021; 10:62865. [PMID: 33560225 PMCID: PMC7932699 DOI: 10.7554/elife.62865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
How genetic changes are linked to morphological novelties and developmental constraints remains elusive. Here, we investigate genetic apparatuses that distinguish fish fins from tetrapod limbs by analyzing transcriptomes and open-chromatin regions (OCRs). Specifically, we compared mouse forelimb buds with the pectoral fin buds of an elasmobranch, the brown-banded bamboo shark (Chiloscyllium punctatum). A transcriptomic comparison with an accurate orthology map revealed both a mass heterochrony and hourglass-shaped conservation of gene expression between fins and limbs. Furthermore, open-chromatin analysis suggested that access to conserved regulatory sequences is transiently increased during mid-stage limb development. During this stage, stage-specific and tissue-specific OCRs were also enriched. Together, early and late stages of fin/limb development are more permissive to mutations than middle stages, which may have contributed to major morphological changes during the fin-to-limb evolution. We hypothesize that the middle stages are constrained by regulatory complexity that results from dynamic and tissue-specific transcriptional controls. Animals come in all shapes and sizes. This diversity arose through genetic mutations during evolution, but it is unclear exactly how these variations led to the formation of new shapes. There is increasing evidence to suggest that not all shapes are possible and that variability between animals is limited by a phenomenon known as “developmental constraint”. These limitations direct parts of the body towards a specific shape as they develop in the embryo. Therefore, understanding the mechanisms underlying these developmental constraints could help explain how different body shapes evolved. The limbs of humans and other mammals evolved from the fins of fish, and this transition is often used to study the role developmental constraints play in evolution. This is an ideal model as there is already a detailed fossil record mapping this evolutionary event, and data pinpointing some of the genes involved in the development of limbs and fins. But this data is incomplete, and a full comparison between the genes activated in the fin and the limb during embryonic development had not been achieved. This is because most fish used for research have undergone recent genetic changes, making it hard to spot which genetic differences are linked to the evolution of the limb. To overcome this barrier, Onimaru et al. compared genetic data from the developing limbs of mice to the developing fins of the brown-banded bamboo shark, which evolves much slower than other fish. This revealed that although many genes commonly played a role in the development of the fin and the limb in the embryo, the activity of these shared genes was not the same. For example, genes that switched on in the late stages of limb development, switched off in the late stages of fin development. But in the middle of development, those differences were relatively small and both species activated very similar sets of genes. Many of these genes were pleiotropic, which means they have important roles in other tissues and therefore mutate less often. This suggests that the mid-stage of limb development is under the strongest level of constraint. Darwin’s theory of natural selection explains that mutations drive evolution. But the theory cannot predict what kinds of new body shapes new mutations will produce. Understanding how the activity levels of different genes affect development could help to fill this knowledge gap. This has potential medical applications, for example, understanding why some genetic changes cause more serious problems than others. This work suggests that mutations in genes that are active during the mid-stage of limb development may have the most serious impact.
Collapse
Affiliation(s)
- Koh Onimaru
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Laboratory for Bioinformatics Research, RIKEN BDR, Wako City, Japan.,Molecular Oncology Laboratory, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaori Tatsumi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
18
|
The new chimeric chiron genes evolved essential roles in zebrafish embryonic development by regulating NAD + levels. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1929-1948. [PMID: 33521859 DOI: 10.1007/s11427-020-1851-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
The origination of new genes is important for generating genetic novelties for adaptive evolution and biological diversity. However, their potential roles in embryonic development, evolutionary processes into ancient networks, and contributions to adaptive evolution remain poorly investigated. Here, we identified a novel chimeric gene family, the chiron family, and explored its genetic basis and functional evolution underlying the adaptive evolution of Danioninae fishes. The ancestral chiron gene originated through retroposition of nampt in Danioninae 48-54 million years ago (Mya) and expanded into five duplicates (chiron1-5) in zebrafish 1-4 Mya. The chiron genes (chirons) likely originated in embryonic development and gradually extended their expression in the testis. Functional experiments showed that chirons were essential for zebrafish embryo development. By integrating into the NAD+ synthesis pathway, chirons could directly catalyze the NAD+ rate-limiting reaction and probably impact two energy metabolism genes (nmnat1 and naprt) to be under positive selection in Danioninae fishes. Together, these results mainly demonstrated that the origin of new chimeric chiron genes may be involved in adaptive evolution by integrating and impacting the NAD+ biosynthetic pathway. This coevolution may contribute to the physiological adaptation of Danioninae fishes to widespread and varied biomes in Southeast Asian.
Collapse
|
19
|
Liu J, Frochaux M, Gardeux V, Deplancke B, Robinson-Rechavi M. Inter-embryo gene expression variability recapitulates the hourglass pattern of evo-devo. BMC Biol 2020; 18:129. [PMID: 32950053 PMCID: PMC7502200 DOI: 10.1186/s12915-020-00842-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The evolution of embryological development has long been characterized by deep conservation. In animal development, the phylotypic stage in mid-embryogenesis is more conserved than either early or late stages among species within the same phylum. Hypotheses to explain this hourglass pattern have focused on purifying the selection of gene regulation. Here, we propose an alternative-genes are regulated in different ways at different stages and have different intrinsic capacities to respond to perturbations on gene expression. RESULTS To eliminate the influence of natural selection, we quantified the expression variability of isogenetic single embryo transcriptomes throughout fly Drosophila melanogaster embryogenesis. We found that the expression variability is lower at the phylotypic stage, supporting that the underlying regulatory architecture in this stage is more robust to stochastic variation on gene expression. We present evidence that the phylotypic stage is also robust to genetic variations on gene expression. Moreover, chromatin regulation appears to play a key role in the variation and evolution of gene expression. CONCLUSIONS We suggest that a phylum-level pattern of embryonic conservation can be explained by the intrinsic difference of gene regulatory mechanisms in different stages.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Michael Frochaux
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vincent Gardeux
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bart Deplancke
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
20
|
Gildor T, Cary GA, Lalzar M, Hinman VF, Ben-Tabou de-Leon S. Developmental transcriptomes of the sea star, Patiria miniata, illuminate how gene expression changes with evolutionary distance. Sci Rep 2019; 9:16201. [PMID: 31700051 PMCID: PMC6838185 DOI: 10.1038/s41598-019-52577-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding how changes in developmental gene expression alter morphogenesis is a fundamental problem in development and evolution. A promising approach to address this problem is to compare the developmental transcriptomes between related species. The echinoderm phylum consists of several model species that have significantly contributed to the understanding of gene regulation and evolution. Particularly, the regulatory networks of the sea star, Patiria miniata (P. miniata), have been extensively studied, however developmental transcriptomes for this species were lacking. Here we generated developmental transcriptomes of P. miniata and compared these with those of two sea urchins species. We demonstrate that the conservation of gene expression depends on gene function, cell type and evolutionary distance. With increasing evolutionary distance the interspecies correlations in gene expression decreases. The reduction is more severe in the correlations between morphologically equivalent stages (diagonal elements) than in the correlation between morphologically distinct stages (off-diagonal elements). This could reflect a decrease in the morphological constraints compared to other constraints that shape gene expression at large evolutionary divergence. Within this trend, the interspecies correlations of developmental control genes maintain their diagonality at large evolutionary distance, and peak at the onset of gastrulation, supporting the hourglass model of phylotypic stage conservation.
Collapse
Affiliation(s)
- Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel
| | - Gregory A Cary
- Departments of Biological Sciences and Computational Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Maya Lalzar
- Bionformatics Core Unit, University of Haifa, Haifa, 31905, Israel
| | - Veronica F Hinman
- Departments of Biological Sciences and Computational Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|
21
|
Coronado-Zamora M, Salvador-Martínez I, Castellano D, Barbadilla A, Salazar-Ciudad I. Adaptation and Conservation throughout the Drosophila melanogaster Life-Cycle. Genome Biol Evol 2019; 11:1463-1482. [PMID: 31028390 PMCID: PMC6535812 DOI: 10.1093/gbe/evz086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 01/09/2023] Open
Abstract
Previous studies of the evolution of genes expressed at different life-cycle stages of Drosophila melanogaster have not been able to disentangle adaptive from nonadaptive substitutions when using nonsynonymous sites. Here, we overcome this limitation by combining whole-genome polymorphism data from D. melanogaster and divergence data between D. melanogaster and Drosophila yakuba. For the set of genes expressed at different life-cycle stages of D. melanogaster, as reported in modENCODE, we estimate the ratio of substitutions relative to polymorphism between nonsynonymous and synonymous sites (α) and then α is discomposed into the ratio of adaptive (ωa) and nonadaptive (ωna) substitutions to synonymous substitutions. We find that the genes expressed in mid- and late-embryonic development are the most conserved, whereas those expressed in early development and postembryonic stages are the least conserved. Importantly, we found that low conservation in early development is due to high rates of nonadaptive substitutions (high ωna), whereas in postembryonic stages it is due, instead, to high rates of adaptive substitutions (high ωa). By using estimates of different genomic features (codon bias, average intron length, exon number, recombination rate, among others), we also find that genes expressed in mid- and late-embryonic development show the most complex architecture: they are larger, have more exons, more transcripts, and longer introns. In addition, these genes are broadly expressed among all stages. We suggest that all these genomic features are related to the conservation of mid- and late-embryonic development. Globally, our study supports the hourglass pattern of conservation and adaptation over the life-cycle.
Collapse
Affiliation(s)
- Marta Coronado-Zamora
- Genomics, Bioinformatics and Evolution, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Irepan Salvador-Martínez
- Evo-Devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland.,Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | | | - Antonio Barbadilla
- Genomics, Bioinformatics and Evolution, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Evo-Devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland.,Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain
| |
Collapse
|
22
|
Cutter AD, Garrett RH, Mark S, Wang W, Sun L. Molecular evolution across developmental time reveals rapid divergence in early embryogenesis. Evol Lett 2019; 3:359-373. [PMID: 31388446 PMCID: PMC6675142 DOI: 10.1002/evl3.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
Ontogenetic development hinges on the changes in gene expression in time and space within an organism, suggesting that the demands of ontogenetic growth can impose or reveal predictable pattern in the molecular evolution of genes expressed dynamically across development. Here, we characterize coexpression modules of the Caenorhabditis elegans transcriptome, using a time series of 30 points from early embryo to adult. By capturing the functional form of expression profiles with quantitative metrics, we find fastest evolution in the distinctive set of genes with transcript abundance that declines through development from a peak in young embryos. These genes are highly enriched for oogenic function and transient early zygotic expression, are nonrandomly distributed in the genome, and correspond to a life stage especially prone to inviability in interspecies hybrids. These observations conflict with the "early conservation model" for the evolution of development, although expression-weighted sequence divergence analysis provides some support for the "hourglass model." Genes in coexpression modules that peak toward adulthood also evolve fast, being hyper-enriched for roles in spermatogenesis, implicating a history of sexual selection and relaxation of selection on sperm as key factors driving rapid change to ontogenetically distinguishable coexpression modules of genes. We propose that these predictable trends of molecular evolution for dynamically expressed genes across ontogeny predispose particular life stages, early embryogenesis in particular, to hybrid dysfunction in the speciation process.
Collapse
Affiliation(s)
- Asher D. Cutter
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM6G1W3Canada
| | - Rose H. Garrett
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM6G1W3Canada
- Division of Biostatistics, Dalla Lana School of Public HealthUniversity of TorontoTorontoONM6G1W3Canada
- Department of Statistical SciencesUniversity of TorontoTorontoONM6G1W3Canada
| | - Stephanie Mark
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM6G1W3Canada
| | - Wei Wang
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM6G1W3Canada
| | - Lei Sun
- Division of Biostatistics, Dalla Lana School of Public HealthUniversity of TorontoTorontoONM6G1W3Canada
- Department of Statistical SciencesUniversity of TorontoTorontoONM6G1W3Canada
| |
Collapse
|
23
|
Liu J, Robinson-Rechavi M. Adaptive Evolution of Animal Proteins over Development: Support for the Darwin Selection Opportunity Hypothesis of Evo-Devo. Mol Biol Evol 2019; 35:2862-2872. [PMID: 30184095 PMCID: PMC6278863 DOI: 10.1093/molbev/msy175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A driving hypothesis of evolutionary developmental biology is that animal morphological diversity is shaped both by adaptation and by developmental constraints. Here, we have tested Darwin’s “selection opportunity” hypothesis, according to which high evolutionary divergence in late development is due to strong positive selection. We contrasted it to a “developmental constraint” hypothesis, according to which late development is under relaxed negative selection. Indeed, the highest divergence between species, both at the morphological and molecular levels, is observed late in embryogenesis and postembryonically. To distinguish between adaptation and relaxation hypotheses, we investigated the evidence of positive selection on protein-coding genes in relation to their expression over development, in fly Drosophila melanogaster, zebrafish Danio rerio, and mouse Mus musculus. First, we found that genes specifically expressed in late development have stronger signals of positive selection. Second, over the full transcriptome, genes with evidence for positive selection trend to be expressed in late development. Finally, genes involved in pathways with cumulative evidence of positive selection have higher expression in late development. Overall, there is a consistent signal that positive selection mainly affects genes and pathways expressed in late embryonic development and in adult. Our results imply that the evolution of embryogenesis is mostly conservative, with most adaptive evolution affecting some stages of postembryonic gene expression, and thus postembryonic phenotypes. This is consistent with the diversity of environmental challenges to which juveniles and adults are exposed.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
24
|
Wu L, Ferger KE, Lambert JD. Gene Expression Does Not Support the Developmental Hourglass Model in Three Animals with Spiralian Development. Mol Biol Evol 2019; 36:1373-1383. [DOI: 10.1093/molbev/msz065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
It has been proposed that animals have a pattern of developmental evolution resembling an hourglass because the most conserved development stage—often called the phylotypic stage—is always in midembryonic development. Although the topic has been debated for decades, recent studies using molecular data such as RNA-seq gene expression data sets have largely supported the existence of periods of relative evolutionary conservation in middevelopment, consistent with the phylotypic stage and the hourglass concepts. However, so far this approach has only been applied to a limited number of taxa across the tree of life. Here, using established phylotranscriptomic approaches, we found a surprising reverse hourglass pattern in two molluscs and a polychaete annelid, representatives of the Spiralia, an understudied group that contains a large fraction of metazoan body plan diversity. These results suggest that spiralians have a divergent midembryonic stage, with more conserved early and late development, which is the inverse of the pattern seen in almost all other organisms where these phylotranscriptomic approaches have been reported. We discuss our findings in light of proposed reasons for the phylotypic stage and hourglass model in other systems.
Collapse
Affiliation(s)
- Longjun Wu
- Department of Biology, University of Rochester, Rochester, NY
| | - Kailey E Ferger
- Department of Biology, University of Rochester, Rochester, NY
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY
| |
Collapse
|
25
|
Salvador-Martínez I, Coronado-Zamora M, Castellano D, Barbadilla A, Salazar-Ciudad I. Mapping Selection within Drosophila melanogaster Embryo's Anatomy. Mol Biol Evol 2019; 35:66-79. [PMID: 29040697 DOI: 10.1093/molbev/msx266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We present a survey of selection across Drosophila melanogaster embryonic anatomy. Our approach integrates genomic variation, spatial gene expression patterns, and development with the aim of mapping adaptation over the entire embryo's anatomy. Our adaptation map is based on analyzing spatial gene expression information for 5,969 genes (from text-based annotations of in situ hybridization data directly from the BDGP database, Tomancak et al. 2007) and the polymorphism and divergence in these genes (from the project DGRP, Mackay et al. 2012).The proportion of nonsynonymous substitutions that are adaptive, neutral, or slightly deleterious are estimated for the set of genes expressed in each embryonic anatomical structure using the distribution of fitness effects-alpha method (Eyre-Walker and Keightley 2009). This method is a robust derivative of the McDonald and Kreitman test (McDonald and Kreitman 1991). We also explore whether different anatomical structures differ in the phylogenetic age, codon usage, or expression bias of the genes they express and whether genes expressed in many anatomical structures show more adaptive substitutions than other genes.We found that: 1) most of the digestive system and ectoderm-derived structures are under selective constraint, 2) the germ line and some specific mesoderm-derived structures show high rates of adaptive substitution, and 3) the genes that are expressed in a small number of anatomical structures show higher expression bias, lower phylogenetic ages, and less constraint.
Collapse
Affiliation(s)
- Irepan Salvador-Martínez
- Evo-devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marta Coronado-Zamora
- Departament de Genètica i de Microbiologia, Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Castellano
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Antonio Barbadilla
- Departament de Genètica i de Microbiologia, Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Isaac Salazar-Ciudad
- Evo-devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Departament de Genètica i de Microbiologia, Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
26
|
Feltes BC, Grisci BI, Poloni JDF, Dorn M. Perspectives and applications of machine learning for evolutionary developmental biology. Mol Omics 2018; 14:289-306. [PMID: 30168572 DOI: 10.1039/c8mo00111a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evolutionary Developmental Biology (Evo-Devo) is an ever-expanding field that aims to understand how development was modulated by the evolutionary process. In this sense, "omic" studies emerged as a powerful ally to unravel the molecular mechanisms underlying development. In this scenario, bioinformatics tools become necessary to analyze the growing amount of information. Among computational approaches, machine learning stands out as a promising field to generate knowledge and trace new research perspectives for bioinformatics. In this review, we aim to expose the current advances of machine learning applied to evolution and development. We draw clear perspectives and argue how evolution impacted machine learning techniques.
Collapse
Affiliation(s)
- Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
27
|
Yang D, Xu A, Shen P, Gao C, Zang J, Qiu C, Ouyang H, Jiang Y, He F. A two-level model for the role of complex and young genes in the formation of organism complexity and new insights into the relationship between evolution and development. EvoDevo 2018; 9:22. [PMID: 30455862 PMCID: PMC6231269 DOI: 10.1186/s13227-018-0111-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/25/2018] [Indexed: 11/14/2022] Open
Abstract
Background How genome complexity affects organismal phenotypic complexity is a fundamental question in evolutionary developmental biology. Previous studies proposed various contributing factors of genome complexity and tried to find the connection between genomic complexity and organism complexity. However, a general model to answer this question is lacking. Here, we introduce a ‘two-level’ model for the realization of genome complexity at phenotypic level. Results Five representative species across Protostomia and Deuterostomia were involved in this study. The intrinsic gene properties contributing to genome complexity were classified into two generalized groups: the complexity and age degree of both protein-coding and noncoding genes. We found that young genes tend to be simpler; however, the mid-age genes, rather than the oldest genes, show the highest proportion of high complexity. Complex genes tend to be utilized preferentially in each stage of embryonic development, with maximum representation during the late stage of organogenesis. This trend is mainly attributed to mid-age complex genes. In contrast, young genes tend to be expressed in specific spatiotemporal states. An obvious correlation between the time point of the change in over- and under-representation and the order of gene age was observed, which supports the funnel-like model of the conservation pattern of development. In addition, we found some probable causes for the seemingly contradictory ‘funnel-like’ or ‘hourglass’ model. Conclusions These results indicate that complex and young genes contribute to organismal complexity at two different levels: Complex genes contribute to the complexity of individual proteomes in certain states, whereas young genes contribute to the diversity of proteomes in different spatiotemporal states. This conclusion is valid across the five species investigated, indicating it is a conserved model across Protostomia and Deuterostomia. The results in this study also support ‘funnel-like model’ from a new viewpoint and explain why there are different evo–devo relation models. Electronic supplementary material The online version of this article (10.1186/s13227-018-0111-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Aishi Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Pan Shen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Chao Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Jiayin Zang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Chen Qiu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Hongsheng Ouyang
- 2Animal Sciences College of Jilin University, Changchun, 130062 The People's Republic of China
| | - Ying Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| |
Collapse
|
28
|
Galis F, Metz JA, van Alphen JJ. Development and Evolutionary Constraints in Animals. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the evolutionary importance of developmental mechanisms in constraining evolutionary changes in animals—in other words, developmental constraints. We focus on hard constraints that can act on macroevolutionary timescales. In particular, we discuss the causes and evolutionary consequences of the ancient metazoan constraint that differentiated cells cannot divide and constraints against changes of phylotypic stages in vertebrates and other higher taxa. We conclude that in all cases these constraints are caused by complex and highly controlled global interactivity of development, the disturbance of which has grave consequences. Mutations that affect such global interactivity almost unavoidably have many deleterious pleiotropic effects, which will be strongly selected against and will lead to long-term evolutionary stasis. The discussed developmental constraints have pervasive consequences for evolution and critically restrict regeneration capacity and body plan evolution.
Collapse
Affiliation(s)
- Frietson Galis
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Johan A.J. Metz
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
- Mathematical Institute, University of Leiden; 2333 CA Leiden, The Netherlands
| | - Jacques J.M. van Alphen
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
29
|
Liu J, Robinson-Rechavi M. Developmental Constraints on Genome Evolution in Four Bilaterian Model Species. Genome Biol Evol 2018; 10:2266-2277. [PMID: 30137380 PMCID: PMC6130771 DOI: 10.1093/gbe/evy177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Developmental constraints on genome evolution have been suggested to follow either an early conservation model or an "hourglass" model. Both models agree that late development strongly diverges between species, but debate on which developmental period is the most conserved. Here, based on a modified "Transcriptome Age Index" approach, that is, weighting trait measures by expression level, we analyzed the constraints acting on three evolutionary traits of protein coding genes (strength of purifying selection on protein sequences, phyletic age, and duplicability) in four species: Nematode worm Caenorhabditis elegans, fly Drosophila melanogaster, zebrafish Danio rerio, and mouse Mus musculus. In general, we found that both models can be supported by different genomic properties. Sequence evolution follows an hourglass model, but the evolution of phyletic age and of duplicability follow an early conservation model. Further analyses indicate that stronger purifying selection on sequences in the middle development are driven by temporal pleiotropy of these genes. In addition, we report evidence that expression in late development is enriched with retrogenes, which usually lack efficient regulatory elements. This implies that expression in late development could facilitate transcription of new genes, and provide opportunities for acquisition of function. Finally, in C. elegans, we suggest that dosage imbalance could be one of the main factors that cause depleted expression of high duplicability genes in early development.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Ecology and Evolution, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
30
|
Constrained vertebrate evolution by pleiotropic genes. Nat Ecol Evol 2017; 1:1722-1730. [PMID: 28963548 DOI: 10.1038/s41559-017-0318-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.
Collapse
|
31
|
Malik A, Gildor T, Sher N, Layous M, Ben-Tabou de-Leon S. Parallel embryonic transcriptional programs evolve under distinct constraints and may enable morphological conservation amidst adaptation. Dev Biol 2017; 430:202-213. [PMID: 28780048 DOI: 10.1016/j.ydbio.2017.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022]
Abstract
Embryonic development evolves by balancing stringent morphological constraints with genetic and environmental variation. The design principle that allows developmental transcriptional programs to conserve embryonic morphology while adapting to environmental changes is still not fully understood. To address this fundamental challenge, we compare developmental transcriptomes of two sea urchin species, Paracentrotus lividus and Strongylocentrotus purpuratus, that shared a common ancestor about 40 million years ago and are geographically distant yet show similar morphology. We find that both developmental and housekeeping genes show highly dynamic and strongly conserved temporal expression patterns. The expression of other gene sets, including homeostasis and response genes, show divergent expression which could result from either evolutionary drift or adaptation to local environmental conditions. The interspecies correlations of developmental gene expressions are highest between morphologically similar developmental time points whereas the interspecies correlations of housekeeping gene expression are high between all the late zygotic time points. Relatedly, the position of the phylotypic stage varies between these two groups of genes: developmental gene expression shows highest conservation at mid-developmental stage, in agreement with the hourglass model while the conservation of housekeeping genes keeps increasing with developmental time. When all genes are combined, the relationship between conservation of gene expression and morphological similarity is partially masked by housekeeping genes and genes with diverged expression. Our study illustrates various transcriptional programs that coexist in the developing embryo and evolve under different constraints. Apparently, morphological constraints underlie the conservation of developmental gene expression while embryonic fitness requires the conservation of housekeeping gene expression and the species-specific adjustments of homeostasis gene expression. The distinct evolutionary forces acting on these transcriptional programs enable the conservation of similar body plans while allowing adaption.
Collapse
Affiliation(s)
- Assaf Malik
- Bionformatics Core Unit, University of Haifa, Haifa 31905, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Noa Sher
- Bionformatics Core Unit, University of Haifa, Haifa 31905, Israel
| | - Majed Layous
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| |
Collapse
|
32
|
Drost HG, Janitza P, Grosse I, Quint M. Cross-kingdom comparison of the developmental hourglass. Curr Opin Genet Dev 2017; 45:69-75. [PMID: 28347942 DOI: 10.1016/j.gde.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/02/2017] [Indexed: 01/01/2023]
Abstract
The developmental hourglass model has its foundations in classic anatomical studies by von Baer and Haeckel. In this context, even the conservation of animal body plans has been explained by evolutionary constraints acting on mid-embryogenic development. Recent studies have shown that developmental hourglass patterns also exist on the transcriptomic level, mirroring the corresponding morphological patterns. The identification of similar patterns in embryonic, post-embryonic, and life cycle spanning transcriptomes in plant and fungus development, however, contradict the notion of a direct coupling between morphological and molecular patterns. To explain the existence of hourglass patterns across kingdoms and developmental processes, we propose the organizational checkpoint model that integrates the developmental hourglass model into a framework of transcriptome switches.
Collapse
Affiliation(s)
- Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Philipp Janitza
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
| | - Ivo Grosse
- Martin Luther University Halle-Wittenberg, Institute of Computer Science, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany; German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Marcel Quint
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany.
| |
Collapse
|
33
|
Pantalacci S, Guéguen L, Petit C, Lambert A, Peterkovà R, Sémon M. Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology. Genome Biol 2017; 18:29. [PMID: 28202034 PMCID: PMC5312534 DOI: 10.1186/s13059-017-1157-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background Comparative transcriptomics can answer many questions in developmental and evolutionary developmental biology. Most transcriptomic studies start by showing global patterns of variation in transcriptomes that differ between species or organs through developmental time. However, little is known about the kinds of expression differences that shape these patterns. Results We compared transcriptomes during the development of two morphologically distinct serial organs, the upper and lower first molars of the mouse. We found that these two types of teeth largely share the same gene expression dynamics but that three major transcriptomic signatures distinguish them, all of which are shaped by differences in the relative abundance of different cell types. First, lower/upper molar differences are maintained throughout morphogenesis and stem from differences in the relative abundance of mesenchyme and from constant differences in gene expression within tissues. Second, there are clear time-shift differences in the transcriptomes of the two molars related to cusp tissue abundance. Third, the transcriptomes differ most during early-mid crown morphogenesis, corresponding to exaggerated morphogenetic processes in the upper molar involving fewer mitotic cells but more migrating cells. From these findings, we formulate hypotheses about the mechanisms enabling the two molars to reach different phenotypes. We also successfully applied our approach to forelimb and hindlimb development. Conclusions Gene expression in a complex tissue reflects not only transcriptional regulation but also abundance of different cell types. This knowledge provides valuable insights into the cellular processes underpinning differences in organ development. Our approach should be applicable to most comparative developmental contexts. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1157-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Pantalacci
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France.
| | - Laurent Guéguen
- Laboratoire de Biométrie et Biologie Évolutive (LBBE), Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Coraline Petit
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France
| | - Anne Lambert
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France
| | - Renata Peterkovà
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences AS CR, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marie Sémon
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France.
| |
Collapse
|
34
|
Onichtchouk DV, Voronina AS. Regulation of Zygotic Genome and Cellular Pluripotency. BIOCHEMISTRY (MOSCOW) 2016; 80:1723-33. [PMID: 26878577 DOI: 10.1134/s0006297915130088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Events, manifesting transition from maternal to zygotic period of development are studied for more than 100 years, but underlying mechanisms are not yet clear. We provide a brief historical overview of development of concepts and explain the specific terminology used in the field. We further discuss differences and similarities between the zygotic genome activation and in vitro reprogramming process. Finally, we envision the future research directions within the field, where biochemical methods will play increasingly important role.
Collapse
Affiliation(s)
- D V Onichtchouk
- University of Freiburg, Developmental Biology Unit, Biologie 1, Freiburg, 79194, Germany.
| | | |
Collapse
|
35
|
Chesmore KN, Bartlett J, Cheng C, Williams SM. Complex Patterns of Association between Pleiotropy and Transcription Factor Evolution. Genome Biol Evol 2016; 8:3159-3170. [PMID: 27635052 PMCID: PMC5174740 DOI: 10.1093/gbe/evw228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pleiotropy has been claimed to constrain gene evolution but specific mechanisms and extent of these constraints have been difficult to demonstrate. The expansion of molecular data makes it possible to investigate these pleiotropic effects. Few classes of genes have been characterized as intensely as human transcription factors (TFs). We therefore analyzed the evolutionary rates of full TF proteins, along with their DNA binding domains and protein-protein interacting domains (PID) in light of the degree of pleiotropy, measured by the number of TF-TF interactions, or the number of DNA-binding targets. Data were extracted from the ENCODE Chip-Seq dataset, the String v 9.2 database, and the NHGRI GWAS catalog. Evolutionary rates of proteins and domains were calculated using the PAML CodeML package. Our analysis shows that the numbers of TF-TF interactions and DNA binding targets associated with constrained gene evolution; however, the constraint caused by the number of DNA binding targets was restricted to the DNA binding domains, whereas the number of TF-TF interactions constrained the full protein and did so more strongly. Additionally, we found a positive correlation between the number of protein-PIDs and the evolutionary rates of the protein-PIDs. These findings show that not only does pleiotropy associate with constrained protein evolution but the constraint differs by domain function. Finally, we show that GWAS associated TF genes are more highly pleiotropic : The GWAS data illustrates that mutations in highly pleiotropic genes are more likely to be associated with disease phenotypes.
Collapse
Affiliation(s)
- Kevin N Chesmore
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Jacquelaine Bartlett
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Chao Cheng
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Scott M Williams
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH
| |
Collapse
|
36
|
Gossmann TI, Saleh D, Schmid MW, Spence MA, Schmid KJ. Transcriptomes of Plant Gametophytes Have a Higher Proportion of Rapidly Evolving and Young Genes than Sporophytes. Mol Biol Evol 2016; 33:1669-78. [PMID: 26956888 PMCID: PMC4915351 DOI: 10.1093/molbev/msw044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reproductive traits in plants tend to evolve rapidly due to various causes that include plant-pollinator coevolution and pollen competition, but the genomic basis of reproductive trait evolution is still largely unknown. To characterize evolutionary patterns of genome wide gene expression in reproductive tissues in the gametophyte and to compare them to developmental stages of the sporophyte, we analyzed evolutionary conservation and genetic diversity of protein-coding genes using microarray-based transcriptome data from three plant species, Arabidopsis thaliana, rice (Oryza sativa), and soybean (Glycine max). In all three species a significant shift in gene expression occurs during gametogenesis in which genes of younger evolutionary age and higher genetic diversity contribute significantly more to the transcriptome than in other stages. We refer to this phenomenon as "evolutionary bulge" during plant reproductive development because it differentiates the gametophyte from the sporophyte. We show that multiple, not mutually exclusive, causes may explain the bulge pattern, most prominently reduced tissue complexity of the gametophyte, a varying extent of selection on reproductive traits during gametogenesis as well as differences between male and female tissues. This highlights the importance of plant reproduction for understanding evolutionary forces determining the relationship of genomic and phenotypic variation in plants.
Collapse
Affiliation(s)
- Toni I Gossmann
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Dounia Saleh
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Marc W Schmid
- Institute for Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Michael A Spence
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
37
|
Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet 2016; 48:417-26. [PMID: 26928226 DOI: 10.1038/ng.3522] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage. However, the mechanisms that guide the epigenome through this transition and their evolutionary conservation remain elusive. Here we report widespread DNA demethylation of enhancers during the phylotypic period in zebrafish, Xenopus tropicalis and mouse. These enhancers are linked to developmental genes that display coordinated transcriptional and epigenomic changes in the diverse vertebrates during embryogenesis. Binding of Tet proteins to (hydroxy)methylated DNA and enrichment of 5-hydroxymethylcytosine in these regions implicated active DNA demethylation in this process. Furthermore, loss of function of Tet1, Tet2 and Tet3 in zebrafish reduced chromatin accessibility and increased methylation levels specifically at these enhancers, indicative of DNA methylation being an upstream regulator of phylotypic enhancer function. Overall, our study highlights a regulatory module associated with the most conserved phase of vertebrate embryogenesis and suggests an ancient developmental role for Tet dioxygenases.
Collapse
|
38
|
Martynov A, Ishida Y, Irimura S, Tajiri R, O’Hara T, Fujita T. When Ontogeny Matters: A New Japanese Species of Brittle Star Illustrates the Importance of Considering both Adult and Juvenile Characters in Taxonomic Practice. PLoS One 2015; 10:e0139463. [PMID: 26509273 PMCID: PMC4625035 DOI: 10.1371/journal.pone.0139463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022] Open
Abstract
Current taxonomy offers numerous approaches and methods for species delimitation and description. However, most of them are based on the adult characters and rarely suggest a dynamic representation of developmental transformations of taxonomically important features. Here we show how the underestimation of ontogenetic changes may result in long term lack of recognition of a new species of one of the most common ophiacanthid brittle stars (Echinodermata: Ophiuroidea) from the North Pacific. Based on vast material collected predominantly by various Japanese expeditions in the course of more than 50 years, and thorough study of appropriate type material, we revise the complex of three common species of the ophiuroid genus Ophiacantha which have been persistently confused with each other. The present study thus reveals the previously unrecognized new species Ophiacantha kokusai sp.nov. which is commonly distributed off the Pacific coast of Japan. The new species shows developmental differentiation from the closely related species Ophiacantha rhachophora H. L. Clark, 1911 and retains clearly expressed early juvenile features in the adult morphology. Another species, Ophiacantha clypeata Kyte, 1977, which had been separated from O. rhachophora, is in turn shown to be just a juvenile stage of another North Pacific species, Ophiacantha trachybactra H.L. Clark, 1911. For every species, detailed morphological data from both adult and juvenile specimens based on scanning electron microscopy are presented. A special grinding method showing complex internal features has been utilized for the first time. For all three species in this complex, a clear bathymetric differentiation is revealed: O. rhachophora predominantly inhabits shallow waters, 0-250 m, the new species O. kokusai lives deeper, at 250-600 m, and the third species, O. trachybactra, is found at 500-2,000 m. The present case clearly highlights the importance of considering developmental transformations, not only for a limited number of model organisms, but as part of the taxonomic process.
Collapse
Affiliation(s)
| | | | | | - Rie Tajiri
- Department of Earth Science, Waseda University, Tokyo, Japan
| | | | | |
Collapse
|
39
|
Kratochwil CF, Geissler L, Irisarri I, Meyer A. Molecular Evolution of the Neural Crest Regulatory Network in Ray-Finned Fish. Genome Biol Evol 2015; 7:3033-46. [PMID: 26475317 PMCID: PMC5635593 DOI: 10.1093/gbe/evv200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gene regulatory networks (GRN) are central to developmental processes. They are composed of transcription factors and signaling molecules orchestrating gene expression modules that tightly regulate the development of organisms. The neural crest (NC) is a multipotent cell population that is considered a key innovation of vertebrates. Its derivatives contribute to shaping the astounding morphological diversity of jaws, teeth, head skeleton, or pigmentation. Here, we study the molecular evolution of the NC GRN by analyzing patterns of molecular divergence for a total of 36 genes in 16 species of bony fishes. Analyses of nonsynonymous to synonymous substitution rate ratios (dN/dS) support patterns of variable selective pressures among genes deployed at different stages of NC development, consistent with the developmental hourglass model. Model-based clustering techniques of sequence features support the notion of extreme conservation of NC-genes across the entire network. Our data show that most genes are under strong purifying selection that is maintained throughout ray-finned fish evolution. Late NC development genes reveal a pattern of increased constraints in more recent lineages. Additionally, seven of the NC-genes showed signs of relaxation of purifying selection in the famously species-rich lineage of cichlid fishes. This suggests that NC genes might have played a role in the adaptive radiation of cichlids by granting flexibility in the development of NC-derived traits-suggesting an important role for NC network architecture during the diversification in vertebrates.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Department of Biology, University of Konstanz, Germany Zukunftskolleg, University of Konstanz, Germany
| | | | - Iker Irisarri
- Department of Biology, University of Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Germany
| |
Collapse
|
40
|
Comparative Transcriptomes and EVO-DEVO Studies Depending on Next Generation Sequencing. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:896176. [PMID: 26543497 PMCID: PMC4620428 DOI: 10.1155/2015/896176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022]
Abstract
High throughput technology has prompted the progressive omics studies, including genomics and transcriptomics. We have reviewed the improvement of comparative omic studies, which are attributed to the high throughput measurement of next generation sequencing technology. Comparative genomics have been successfully applied to evolution analysis while comparative transcriptomics are adopted in comparison of expression profile from two subjects by differential expression or differential coexpression, which enables their application in evolutionary developmental biology (EVO-DEVO) studies. EVO-DEVO studies focus on the evolutionary pressure affecting the morphogenesis of development and previous works have been conducted to illustrate the most conserved stages during embryonic development. Old measurements of these studies are based on the morphological similarity from macro view and new technology enables the micro detection of similarity in molecular mechanism. Evolutionary model of embryo development, which includes the "funnel-like" model and the "hourglass" model, has been evaluated by combination of these new comparative transcriptomic methods with prior comparative genomic information. Although the technology has promoted the EVO-DEVO studies into a new era, technological and material limitation still exist and further investigations require more subtle study design and procedure.
Collapse
|
41
|
Gene Coexpression and Evolutionary Conservation Analysis of the Human Preimplantation Embryos. BIOMED RESEARCH INTERNATIONAL 2015; 2015:316735. [PMID: 26273607 PMCID: PMC4530217 DOI: 10.1155/2015/316735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022]
Abstract
Evolutionary developmental biology (EVO-DEVO) tries to decode evolutionary constraints on the stages of embryonic development. Two models--the "funnel-like" model and the "hourglass" model--have been proposed by investigators to illustrate the fluctuation of selective pressure on these stages. However, selective indices of stages corresponding to mammalian preimplantation embryonic development (PED) were undetected in previous studies. Based on single cell RNA sequencing of stages during human PED, we used coexpression method to identify gene modules activated in each of these stages. Through measuring the evolutionary indices of gene modules belonging to each stage, we observed change pattern of selective constraints on PED for the first time. The selective pressure decreases from the zygote stage to the 4-cell stage and increases at the 8-cell stage and then decreases again from 8-cell stage to the late blastocyst stages. Previous EVO-DEVO studies concerning the whole embryo development neglected the fluctuation of selective pressure in these earlier stages, and the fluctuation was potentially correlated with events of earlier stages, such as zygote genome activation (ZGA). Such oscillation in an earlier stage would further affect models of the evolutionary constraints on whole embryo development. Therefore, these earlier stages should be measured intensively in future EVO-DEVO studies.
Collapse
|
42
|
Abstract
The rate and mechanism of protein sequence evolution have been central questions in evolutionary biology since the 1960s. Although the rate of protein sequence evolution depends primarily on the level of functional constraint, exactly what determines functional constraint has remained unclear. The increasing availability of genomic data has enabled much needed empirical examinations on the nature of functional constraint. These studies found that the evolutionary rate of a protein is predominantly influenced by its expression level rather than functional importance. A combination of theoretical and empirical analyses has identified multiple mechanisms behind these observations and demonstrated a prominent role in protein evolution of selection against errors in molecular and cellular processes.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Jian-Rong Yang
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
43
|
Grice J, Noyvert B, Doglio L, Elgar G. A Simple Predictive Enhancer Syntax for Hindbrain Patterning Is Conserved in Vertebrate Genomes. PLoS One 2015; 10:e0130413. [PMID: 26131856 PMCID: PMC4489388 DOI: 10.1371/journal.pone.0130413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/19/2015] [Indexed: 12/17/2022] Open
Abstract
Background Determining the function of regulatory elements is fundamental for our understanding of development, disease and evolution. However, the sequence features that mediate these functions are often unclear and the prediction of tissue-specific expression patterns from sequence alone is non-trivial. Previous functional studies have demonstrated a link between PBX-HOX and MEIS/PREP binding interactions and hindbrain enhancer activity, but the defining grammar of these sites, if any exists, has remained elusive. Results Here, we identify a shared sequence signature (syntax) within a heterogeneous set of conserved vertebrate hindbrain enhancers composed of spatially co-occurring PBX-HOX and MEIS/PREP transcription factor binding motifs. We use this syntax to accurately predict hindbrain enhancers in 89% of cases (67/75 predicted elements) from a set of conserved non-coding elements (CNEs). Furthermore, mutagenesis of the sites abolishes activity or generates ectopic expression, demonstrating their requirement for segmentally restricted enhancer activity in the hindbrain. We refine and use our syntax to predict over 3,000 hindbrain enhancers across the human genome. These sequences tend to be located near developmental transcription factors and are enriched in known hindbrain activating elements, demonstrating the predictive power of this simple model. Conclusion Our findings support the theory that hundreds of CNEs, and perhaps thousands of regions across the human genome, function to coordinate gene expression in the developing hindbrain. We speculate that deeply conserved sequences of this kind contributed to the co-option of new genes into the hindbrain gene regulatory network during early vertebrate evolution by linking patterns of hox expression to downstream genes involved in segmentation and patterning, and evolutionarily newer instances may have continued to contribute to lineage-specific elaboration of the hindbrain.
Collapse
Affiliation(s)
- Joseph Grice
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Boris Noyvert
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Laura Doglio
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Greg Elgar
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charrSalvelinus alpinuspopulations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr.The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, includinglysozymeandnatterin-likewhich was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr.The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
|
45
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr ( Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charr
Salvelinus alpinus populations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr. The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, including
lysozyme and
natterin-like which was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr. The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
Affiliation(s)
- Johannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Ehsan P Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigridur R Franzdottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Kalina H Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | | | - S Sophie Steinhaeuser
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Isak M Johannesson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Zophonias O Jonsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Arnar Palsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| |
Collapse
|
46
|
Drost HG, Gabel A, Grosse I, Quint M. Evidence for active maintenance of phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Mol Biol Evol 2015; 32:1221-31. [PMID: 25631928 PMCID: PMC4408408 DOI: 10.1093/molbev/msv012] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The developmental hourglass model has been used to describe the morphological transitions of related species throughout embryogenesis. Recently, quantifiable approaches combining transcriptomic and evolutionary information provided novel evidence for the presence of a phylotranscriptomic hourglass pattern across kingdoms. As its biological function is unknown it remains speculative whether this pattern is functional or merely represents a nonfunctional evolutionary relic. The latter would seriously hamper future experimental approaches designed to test hypotheses regarding its function. Here, we address this question by generating transcriptome divergence index (TDI) profiles across embryogenesis of Danio rerio, Drosophila melanogaster, and Arabidopsis thaliana. To enable meaningful evaluation of the resulting patterns, we develop a statistical test that specifically assesses potential hourglass patterns. Based on this objective measure we find that two of these profiles follow a statistically significant hourglass pattern with the most conserved transcriptomes in the phylotypic periods. As the TDI considers only recent evolutionary signals, this indicates that the phylotranscriptomic hourglass pattern is not a rudiment but possibly actively maintained, implicating the existence of some linked biological function associated with embryogenesis in extant species.
Collapse
Affiliation(s)
- Hajk-Georg Drost
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Gabel
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Marcel Quint
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| |
Collapse
|
47
|
Cheng X, Hui JHL, Lee YY, Wan Law PT, Kwan HS. A "developmental hourglass" in fungi. Mol Biol Evol 2015; 32:1556-66. [PMID: 25725429 DOI: 10.1093/molbev/msv047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The "developmental hourglass" concept suggests that intermediate developmental stages are most resistant to evolutionary changes and that differences between species arise through divergence later in development. This high conservation during middevelopment is illustrated by the "waist" of the hourglass and it represents a low probability of evolutionary change. Earlier molecular surveys both on animals and on plants have shown that the genes expressed at the waist stage are more ancient and more conserved in their expression. The existence of such a developmental hourglass has not been explored in fungi, another eukaryotic kingdom. In this study, we generated a series of transcriptomic data covering the entire lifecycle of a model mushroom-forming fungus, Coprinopsis cinerea, and we observed a molecular hourglass over its development. The "young fruiting body" is the stage that expresses the evolutionarily oldest (lowest transcriptome age index) transcriptome and gives the strongest signal of purifying selection (lowest transcriptome divergence index). We also demonstrated that all three kingdoms-animals, plants, and fungi-display high expression levels of genes in "information storage and processing" at the waist stages, whereas the genes in "metabolism" become more highly expressed later. Besides, the three kingdoms all show underrepresented "signal transduction mechanisms" at the waist stages. The synchronic existence of a molecular "hourglass" across the three kingdoms reveals a mutual strategy for eukaryotes to incorporate evolutionary innovations.
Collapse
Affiliation(s)
- Xuanjin Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Jerome Ho Lam Hui
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center of Soybean of State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yung Yung Lee
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Patrick Tik Wan Law
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
48
|
Mikheyev AS, Linksvayer TA. Genes associated with ant social behavior show distinct transcriptional and evolutionary patterns. eLife 2015; 4:e04775. [PMID: 25621766 PMCID: PMC4383337 DOI: 10.7554/elife.04775] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/23/2015] [Indexed: 11/24/2022] Open
Abstract
Studies of the genetic basis and evolution of complex social behavior emphasize
either conserved or novel genes. To begin to reconcile these perspectives, we studied
how the evolutionary conservation of genes associated with social behavior depends on
regulatory context, and whether genes associated with social behavior exist in
distinct regulatory and evolutionary contexts. We identified modules of co-expressed
genes associated with age-based division of labor between nurses and foragers in the
ant Monomorium pharaonis, and we studied the relationship between
molecular evolution, connectivity, and expression. Highly connected and expressed
genes were more evolutionarily conserved, as expected. However, compared to the rest
of the genome, forager-upregulated genes were much more highly connected and
conserved, while nurse-upregulated genes were less connected and more evolutionarily
labile. Our results indicate that the genetic architecture of social behavior
includes both highly connected and conserved components as well as loosely connected
and evolutionarily labile components. DOI:http://dx.doi.org/10.7554/eLife.04775.001 Animal species vary widely in their degree of social behavior. Some species live
solitarily, and others, such as ants and humans, form large societies. Many
researchers have tried to understand the genetic changes underlying the evolution of
social behavior. Some researchers suggest that it involves recycling existing genes
that also have other conserved functions. Others propose that the evolution of social
behavior involves completely new genes that are not found in related but solitary
species. Ants are one of the best-studied social animals. An established colony can contain
many 1000s of individuals that live and work together and perform different roles.
The queen's job is to lay eggs, while the worker ants do everything else,
including collecting food, caring for the young, and protecting the colony. In some
species of ant—including the pharaoh ant—a worker's role changes
as it ages. Younger workers tend to stay in the nest and nurse the brood, while older
workers tend to leave the nest and forage for food. Mikheyev and Linksvayer asked: which genes are responsible for this age-based
division of labor? And how did this aspect of social behavior evolve? First, after
observing pharaoh ants from two colonies set up in the laboratory, they confirmed
that workers nursing the brood were on average almost a week younger than those seen
collecting food. Next Mikheyev and Linksvayer identified which genes were expressed
in ants of different ages, or ants engaged in different tasks. Specific sets of genes
were expressed more (or ‘up-regulated’) in nurse workers, while others
were up-regulated in foraging workers. Mikheyev and Linksvayer then investigated how rapidly these genes had evolved by
comparing them to related genes found in other social insects (fire ants and honey
bees). They also determined the ‘connectivity’ of these genes by asking
how many other genes showed similar expression patterns. In many organisms, how
rapidly a gene evolves depends on how tightly connected its expression is to the
expression of other genes; highly connected genes evolve more slowly. The genes that were expressed more in the older foraging workers were both more
highly connected and more evolutionarily conserved in the other social insects. Genes
that were up-regulated in the younger nurse workers were more loosely connected and
rapidly evolving. Mikheyev and Linksvayer's findings show that the evolution of social behavior
in animals involves both new genes, which tend to be loosely connected, and conserved
genes, which tend to be more highly connected. DOI:http://dx.doi.org/10.7554/eLife.04775.002
Collapse
Affiliation(s)
- Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | | |
Collapse
|
49
|
Fossil and Transcriptomic Perspectives on the Origins and Success of Metazoan Multicellularity. EVOLUTIONARY TRANSITIONS TO MULTICELLULAR LIFE 2015. [DOI: 10.1007/978-94-017-9642-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Pantalacci S, Sémon M. Transcriptomics of developing embryos and organs: A raising tool for evo-devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:363-71. [PMID: 25387424 DOI: 10.1002/jez.b.22595] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/19/2014] [Indexed: 12/12/2022]
Abstract
Comparative transcriptomics has become an important tool for revisiting many evo-devo questions and exploring new ones, and its importance is likely to increase in the near future, partly because RNA-seq data open many new possibilities. The aim of this opinion piece is twofold. In the first section, we discuss the particularities of transcriptomic studies in evo-devo, focusing mainly on RNA-seq data. The preliminary processing steps (getting coding sequences as well as expression levels) are challenging, because many studied species do not have a sequenced genome. The next step (interpreting expression differences) is also challenging, due to several issues with interpreting expression levels in complex tissues, managing developmental stages and species heterochronies, and the problem of conceptualizing expression differences. In the second section, we discuss some past and possible future applications of transcriptomic approaches (using microarray or RNA-seq) to three major themes in evo-devo: the evolution of the developmental toolkit, the genetic and developmental basis for phenotypic changes, and the general rules of the evolution of development. We believe that conceptual and technical tools are necessary in order to fully exploit the richness of multispecies transcriptomic time-series data.
Collapse
Affiliation(s)
- Sophie Pantalacci
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Université Lyon 1, CNRS, École Normale Supérieure de Lyon, Lyon, France
| | - Marie Sémon
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Université Lyon 1, CNRS, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|