1
|
Vidal R, Leen E, Herold S, Müller M, Fleischhauer D, Schülein-Völk C, Papadopoulos D, Röschert I, Uhl L, Ade CP, Gallant P, Bayliss R, Eilers M, Büchel G. Association with TFIIIC limits MYCN localisation in hubs of active promoters and chromatin accumulation of non-phosphorylated RNA polymerase II. eLife 2024; 13:RP94407. [PMID: 39177021 PMCID: PMC11343564 DOI: 10.7554/elife.94407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
MYC family oncoproteins regulate the expression of a large number of genes and broadly stimulate elongation by RNA polymerase II (RNAPII). While the factors that control the chromatin association of MYC proteins are well understood, much less is known about how interacting proteins mediate MYC's effects on transcription. Here, we show that TFIIIC, an architectural protein complex that controls the three-dimensional chromatin organisation at its target sites, binds directly to the amino-terminal transcriptional regulatory domain of MYCN. Surprisingly, TFIIIC has no discernible role in MYCN-dependent gene expression and transcription elongation. Instead, MYCN and TFIIIC preferentially bind to promoters with paused RNAPII and globally limit the accumulation of non-phosphorylated RNAPII at promoters. Consistent with its ubiquitous role in transcription, MYCN broadly participates in hubs of active promoters. Depletion of TFIIIC further increases MYCN localisation to these hubs. This increase correlates with a failure of the nuclear exosome and BRCA1, both of which are involved in nascent RNA degradation, to localise to active promoters. Our data suggest that MYCN and TFIIIC exert an censoring function in early transcription that limits promoter accumulation of inactive RNAPII and facilitates promoter-proximal degradation of nascent RNA.
Collapse
Affiliation(s)
- Raphael Vidal
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mareike Müller
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of WürzburgWürzburgGermany
| | - Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Isabelle Röschert
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Carsten P Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| |
Collapse
|
2
|
Armour EM, Thomas CM, Greco G, Bhatnagar A, Elefant F. Experience-dependent Tip60 nucleocytoplasmic transport is regulated by its NLS/NES sequences for neuroplasticity gene control. Mol Cell Neurosci 2023; 127:103888. [PMID: 37598897 PMCID: PMC11337217 DOI: 10.1016/j.mcn.2023.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023] Open
Abstract
Nucleocytoplasmic transport (NCT) in neurons is critical for enabling proteins to enter the nucleus and regulate plasticity genes in response to environmental cues. Such experience-dependent (ED) neural plasticity is central for establishing memory formation and cognitive function and can influence the severity of neurodegenerative disorders like Alzheimer's disease (AD). ED neural plasticity is driven by histone acetylation (HA) mediated epigenetic mechanisms that regulate dynamic activity-dependent gene transcription profiles in response to neuronal stimulation. Yet, how histone acetyltransferases (HATs) respond to extracellular cues in the in vivo brain to drive HA-mediated activity-dependent gene control remains unclear. We previously demonstrated that extracellular stimulation of rat hippocampal neurons in vitro triggers Tip60 HAT nuclear import with concomitant synaptic gene induction. Here, we focus on investigating Tip60 HAT subcellular localization and NCT specifically in neuronal activity-dependent gene control by using the learning and memory mushroom body (MB) region of the Drosophila brain as a powerful in vivo cognitive model system. We used immunohistochemistry (IHC) to compare the subcellular localization of Tip60 HAT in the Drosophila brain under normal conditions and in response to stimulation of fly brain neurons in vivo either by genetically inducing potassium channels activation or by exposure to natural positive ED conditions. Furthermore, we found that both inducible and ED condition-mediated neural induction triggered Tip60 nuclear import with concomitant induction of previously identified Tip60 target genes and that Tip60 levels in both the nucleus and cytoplasm were significantly decreased in our well-characterized Drosophila AD model. Mutagenesis of a putative nuclear localization signal (NLS) sequence and nuclear export signal (NES) sequence that we identified in the Drosophila Tip60 protein revealed that both are functionally required for appropriate Tip60 subcellular localization. Our results support a model by which neuronal stimulation triggers Tip60 NCT via its NLS and NES sequences to promote induction of activity-dependent neuroplasticity gene transcription and that this process may be disrupted in AD.
Collapse
Affiliation(s)
- Ellen M Armour
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Christina M Thomas
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Gabrielle Greco
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Akanksha Bhatnagar
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, United States of America.
| |
Collapse
|
3
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Sachs P, Bergmaier P, Treutwein K, Mermoud JE. The Conserved Chromatin Remodeler SMARCAD1 Interacts with TFIIIC and Architectural Proteins in Human and Mouse. Genes (Basel) 2023; 14:1793. [PMID: 37761933 PMCID: PMC10530723 DOI: 10.3390/genes14091793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vertebrates, SMARCAD1 participates in transcriptional regulation, heterochromatin maintenance, DNA repair, and replication. The molecular basis underlying its involvement in these processes is not well understood. We identified the RNA polymerase III general transcription factor TFIIIC as an interaction partner of native SMARCAD1 in mouse and human models using endogenous co-immunoprecipitations. TFIIIC has dual functionality, acting as a general transcription factor and as a genome organizer separating chromatin domains. We found that its partnership with SMARCAD1 is conserved across different mammalian cell types, from somatic to pluripotent cells. Using purified proteins, we confirmed that their interaction is direct. A gene expression analysis suggested that SMARCAD1 is dispensable for TFIIIC function as an RNA polymerase III transcription factor in mouse ESCs. The distribution of TFIIIC and SMARCAD1 in the ESC genome is distinct, and unlike in yeast, SMARCAD1 is not enriched at active tRNA genes. Further analysis of SMARCAD1-binding partners in pluripotent and differentiated mammalian cells reveals that SMARCAD1 associates with several factors that have key regulatory roles in chromatin organization, such as cohesin, laminB, and DDX5. Together, our work suggests for the first time that the SMARCAD1 enzyme participates in genome organization in mammalian nuclei through interactions with architectural proteins.
Collapse
Affiliation(s)
- Parysatis Sachs
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- CMC Development, R&D, Sanofi, 65926 Frankfurt, Germany
| | - Philipp Bergmaier
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- Global Development Operations, R&D, Merck Healthcare, 64293 Darmstadt, Germany
| | - Katrin Treutwein
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| | - Jacqueline E. Mermoud
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
5
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
A novel intergenic enhancer that regulates Bdnf expression in developing cortical neurons. iScience 2022; 26:105695. [PMID: 36582820 PMCID: PMC9792897 DOI: 10.1016/j.isci.2022.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal differentiation and survival and is implicated in the pathogenesis of many neurological disorders. Here, we identified a novel intergenic enhancer located 170 kb from the Bdnf gene, which promotes the expression of Bdnf transcript variants during mouse neuronal differentiation and activity. Following Bdnf activation, enhancer-promoter contacts increase, and the region moves away from the repressive nuclear periphery. Bdnf enhancer activity is necessary for neuronal clustering and dendritogenesis in vitro, and for cortical development in vivo. Our findings provide the first evidence of a regulatory mechanism whereby the activation of a distal enhancer promotes Bdnf expression during brain development.
Collapse
|
7
|
Jiang Y, Huang J, Tian K, Yi X, Zheng H, Zhu Y, Guo T, Ji X. Cross-regulome profiling of RNA polymerases highlights the regulatory role of polymerase III on mRNA transcription by maintaining local chromatin architecture. Genome Biol 2022; 23:246. [PMID: 36443871 PMCID: PMC9703767 DOI: 10.1186/s13059-022-02812-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mammalian cells have three types of RNA polymerases (Pols), Pol I, II, and III. However, the extent to which these polymerases are cross-regulated and the underlying mechanisms remain unclear. RESULTS We employ genome-wide profiling after acute depletion of Pol I, Pol II, or Pol III to assess cross-regulatory effects between these Pols. We find that these enzymes mainly affect the transcription of their own target genes, while certain genes are transcribed by the other polymerases. Importantly, the most active type of crosstalk is exemplified by the fact that Pol III depletion affects Pol II transcription. Pol II genes with transcription changes upon Pol III depletion are enriched in diverse cellular functions, and Pol III binding sites are found near their promoters. However, these Pol III binding sites do not correspond to transfer RNAs. Moreover, we demonstrate that Pol III regulates Pol II transcription and chromatin binding of the facilitates chromatin transcription (FACT) complex to alter local chromatin structures, which in turn affects the Pol II transcription rate. CONCLUSIONS Our results support a model suggesting that RNA polymerases show cross-regulatory effects: Pol III affects local chromatin structures and the FACT-Pol II axis to regulate the Pol II transcription rate at certain gene loci. This study provides a new perspective for understanding the dysregulation of Pol III in various tissues affected by developmental diseases.
Collapse
Affiliation(s)
- Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xiao Yi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, 310024, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, 310024, China
| | - Tiannan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, 310024, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
9
|
Transcriptional Contribution of Transposable Elements in Relation to Salinity Conditions in Teleosts and Silencing Mechanisms Involved. Int J Mol Sci 2022; 23:ijms23095215. [PMID: 35563606 PMCID: PMC9101882 DOI: 10.3390/ijms23095215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
Fish are an interesting taxon comprising species adapted to a wide range of environments. In this work, we analyzed the transcriptional contribution of transposable elements (TEs) in the gill transcriptomes of three fish species exposed to different salinity conditions. We considered the giant marbled eel Anguilla marmorata and the chum salmon Oncorhynchus keta, both diadromous, and the marine medaka Oryzias melastigma, an euryhaline organism sensu stricto. Our analyses revealed an interesting activity of TEs in the case of juvenile eels, commonly adapted to salty water, when exposed to brackish and freshwater conditions. Moreover, the expression assessment of genes involved in TE silencing mechanisms (six in heterochromatin formation, fourteen known to be part of the nucleosome remodeling deacetylase (NuRD) complex, and four of the Argonaute subfamily) unveiled that they are active. Finally, our results evidenced for the first time a krüppel-associated box (KRAB)-like domain specific to actinopterygians that, together with TRIM33, might allow the functioning of NuRD complex also in fish species. The possible interaction between these two proteins was supported by structural prediction analyses.
Collapse
|
10
|
Saida K, Chong PF, Yamaguchi A, Saito N, Ikehara H, Koshimizu E, Miyata R, Ishiko A, Nakamura K, Ohnishi H, Fujioka K, Sakakibara T, Asada H, Ogawa K, Kudo K, Ohashi E, Kawai M, Abe Y, Tsuchida N, Uchiyama Y, Hamanaka K, Fujita A, Mizuguchi T, Miyatake S, Miyake N, Kato M, Kira R, Matsumoto N. Monogenic causes of pigmentary mosaicism. Hum Genet 2022; 141:1771-1784. [PMID: 35503477 DOI: 10.1007/s00439-022-02437-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Pigmentary mosaicism of the Ito type, also known as hypomelanosis of Ito, is a neurocutaneous syndrome considered to be predominantly caused by somatic chromosomal mosaicism. However, a few monogenic causes of pigmentary mosaicism have been recently reported. Eleven unrelated individuals with pigmentary mosaicism (mostly hypopigmented skin) were recruited for this study. Skin punch biopsies of the probands and trio-based blood samples (from probands and both biological parents) were collected, and genomic DNA was extracted and analyzed by exome sequencing. In all patients, plausible monogenic causes were detected with somatic and germline variants identified in five and six patients, respectively. Among the somatic variants, four patients had MTOR variant (36%) and another had an RHOA variant. De novo germline variants in USP9X, TFE3, and KCNQ5 were detected in two, one, and one patients, respectively. A maternally inherited PHF6 variant was detected in one patient with hyperpigmented skin. Compound heterozygous GTF3C5 variants were highlighted as strong candidates in the remaining patient. Exome sequencing, using patients' blood and skin samples is highly recommended as the first choice for detecting causative genetic variants of pigmentary mosaicism.
Collapse
Affiliation(s)
- Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Asuka Yamaguchi
- Department of Pediatrics, Tokyo-Kita Medical Center, Tokyo, Japan
| | - Naka Saito
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Yamagata, Japan
| | - Hajime Ikehara
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Rie Miyata
- Department of Pediatrics, Tokyo-Kita Medical Center, Tokyo, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kei Fujioka
- Center of General Internal Medicine and Rheumatology, Gifu Municipal Hospital, Gifu, Japan
| | - Takafumi Sakakibara
- Department of Pediatrics, Nara Medical University School of Medicine, Nara, Japan
| | - Hideo Asada
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan
| | - Kohei Ogawa
- Department of Dermatology, Nara Medical University School of Medicine, Nara, Japan
| | - Kyoko Kudo
- Department of Dermatology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Eri Ohashi
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Michiko Kawai
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Yuichi Abe
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
11
|
Shapiro JA. What we have learned about evolutionary genome change in the past 7 decades. Biosystems 2022; 215-216:104669. [DOI: 10.1016/j.biosystems.2022.104669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
|
12
|
Skupien-Jaroszek A, Walczak A, Czaban I, Pels KK, Szczepankiewicz AA, Krawczyk K, Ruszczycki B, Wilczynski GM, Dzwonek J, Magalska A. The interplay of seizures-induced axonal sprouting and transcription-dependent Bdnf repositioning in the model of temporal lobe epilepsy. PLoS One 2021; 16:e0239111. [PMID: 34086671 PMCID: PMC8177504 DOI: 10.1371/journal.pone.0239111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
The Brain-Derived Neurotrophic Factor is one of the most important trophic proteins in the brain. The role of this growth factor in neuronal plasticity, in health and disease, has been extensively studied. However, mechanisms of epigenetic regulation of Bdnf gene expression in epilepsy are still elusive. In our previous work, using a rat model of neuronal activation upon kainate-induced seizures, we observed a repositioning of Bdnf alleles from the nuclear periphery towards the nuclear center. This change of Bdnf intranuclear position was associated with transcriptional gene activity. In the present study, using the same neuronal activation model, we analyzed the relation between the percentage of the Bdnf allele at the nuclear periphery and clinical and morphological traits of epilepsy. We observed that the decrease of the percentage of the Bdnf allele at the nuclear periphery correlates with stronger mossy fiber sprouting-an aberrant form of excitatory circuits formation. Moreover, using in vitro hippocampal cultures we showed that Bdnf repositioning is a consequence of transcriptional activity. Inhibition of RNA polymerase II activity in primary cultured neurons with Actinomycin D completely blocked Bdnf gene transcription and repositioning occurring after neuronal excitation. Interestingly, we observed that histone deacetylases inhibition with Trichostatin A induced a slight increase of Bdnf gene transcription and its repositioning even in the absence of neuronal excitation. Presented results provide novel insight into the role of BDNF in epileptogenesis. Moreover, they strengthen the statement that this particular gene is a good candidate to search for a new generation of antiepileptic therapies.
Collapse
Affiliation(s)
- Anna Skupien-Jaroszek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Walczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Karolina Pels
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
13
|
Ferrari R, Grandi N, Tramontano E, Dieci G. Retrotransposons as Drivers of Mammalian Brain Evolution. Life (Basel) 2021; 11:life11050376. [PMID: 33922141 PMCID: PMC8143547 DOI: 10.3390/life11050376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Retrotransposons, a large and diverse class of transposable elements that are still active in humans, represent a remarkable force of genomic innovation underlying mammalian evolution. Among the features distinguishing mammals from all other vertebrates, the presence of a neocortex with a peculiar neuronal organization, composition and connectivity is perhaps the one that, by affecting the cognitive abilities of mammals, contributed mostly to their evolutionary success. Among mammals, hominids and especially humans display an extraordinarily expanded cortical volume, an enrichment of the repertoire of neural cell types and more elaborate patterns of neuronal connectivity. Retrotransposon-derived sequences have recently been implicated in multiple layers of gene regulation in the brain, from transcriptional and post-transcriptional control to both local and large-scale three-dimensional chromatin organization. Accordingly, an increasing variety of neurodevelopmental and neurodegenerative conditions are being recognized to be associated with retrotransposon dysregulation. We review here a large body of recent studies lending support to the idea that retrotransposon-dependent evolutionary novelties were crucial for the emergence of mammalian, primate and human peculiarities of brain morphology and function.
Collapse
Affiliation(s)
- Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (N.G.); (E.T.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (N.G.); (E.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042 Monserrato, Italy
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
- Correspondence:
| |
Collapse
|
14
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|
15
|
Feurle P, Abentung A, Cera I, Wahl N, Ablinger C, Bucher M, Stefan E, Sprenger S, Teis D, Fischer A, Laighneach A, Whitton L, Morris DW, Apostolova G, Dechant G. SATB2-LEMD2 interaction links nuclear shape plasticity to regulation of cognition-related genes. EMBO J 2021; 40:e103701. [PMID: 33319920 PMCID: PMC7849313 DOI: 10.15252/embj.2019103701] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023] Open
Abstract
SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.
Collapse
Affiliation(s)
- Patrick Feurle
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Andreas Abentung
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Isabella Cera
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Nico Wahl
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Cornelia Ablinger
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Michael Bucher
- Institute of Biochemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Simon Sprenger
- Institute for Cell BiologyMedical University of InnsbruckInnsbruckAustria
| | - David Teis
- Institute for Cell BiologyMedical University of InnsbruckInnsbruckAustria
| | - Andre Fischer
- Department of Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GoettingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical CenterGoettingenGermany
| | - Aodán Laighneach
- Neuroimaging, Cognition & Genomics (NICOG) CentreSchool of Psychology and Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Laura Whitton
- Neuroimaging, Cognition & Genomics (NICOG) CentreSchool of Psychology and Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Derek W Morris
- Neuroimaging, Cognition & Genomics (NICOG) CentreSchool of Psychology and Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Galina Apostolova
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Georg Dechant
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
16
|
Sharma M, Bhavani C, Suresh SB, Paul J, Yadav L, Ross C, Srivastava S. Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms. Oncol Lett 2021; 21:204. [PMID: 33574943 PMCID: PMC7816297 DOI: 10.3892/ol.2021.12465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023] Open
Abstract
Myeloproliferative neoplasms (MPN) are clonal disorders characterized by the increased proliferation of hematopoietic stem cell precursors and mature blood cells. Mutations of Janus kinase 2 (JAK2), Calreticulin (CALR) and MPL (myeloproliferative leukemia virus) are key driver mutations in MPN. However, the molecular profile of triple negative MPN has been a subject of ambiguity over the past few years. Mutations of, methylcytosine dioxygenase TET2, polycomb group protein ASXL1 and histone-lysine N-methyltransferase EZH2 genes have accounted for certain subsets of triple negative MPNs but the driving cause for majority of cases is still unexplored. The present study performed a microarray-based transcriptomic profile analysis of bone marrow-derived CD34(+) cells from seven MPN samples. A total of 21,448 gene signatures were obtained, which were further filtered into 472 upregulated and 202 downregulated genes. Gene ontology and protein-protein interaction (PPI) network analysis highlighted an upregulation of genes involved in cell cycle and chromatin modification in JAK2V617F negative vs. positive MPN samples. Out of the upregulated genes, seven were associated with the hematopoietic stem cell signature, while forty-seven were associated with the embryonic stem cell signature. The majority of the genes identified were under the control of NANOG and E2F4 transcription factors. The PPI network indicated a strong interaction between chromatin modifiers and cell cycle genes, such as histone-lysine N-methyltransferase SUV39H1, SWI/SNF complex subunit SMARCC2, SMARCE2, chromatin remodeling complex subunit SS18, tubulin β (TUBB) and cyclin dependent kinase CDK1. Among the upregulated epigenetic markers, there was a ~10-fold increase in MYB expression in JAK2V617F negative samples. A significant increase in total CD34 counts in JAK2V617F negative vs. positive samples (P<0.05) was also observed. Overall, the present data showed a distinct pattern of expression in JAK2V617F negative vs. positive samples with upregulated genes involved in epigenetic modification.
Collapse
Affiliation(s)
- Mugdha Sharma
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Chandra Bhavani
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka 560034, India
| | - Srinag Bangalore Suresh
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - John Paul
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Lokendra Yadav
- Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Cecil Ross
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Sweta Srivastava
- Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| |
Collapse
|
17
|
Transposable Elements and Teleost Migratory Behaviour. Int J Mol Sci 2021; 22:ijms22020602. [PMID: 33435333 PMCID: PMC7827017 DOI: 10.3390/ijms22020602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) represent a considerable fraction of eukaryotic genomes, thereby contributing to genome size, chromosomal rearrangements, and to the generation of new coding genes or regulatory elements. An increasing number of works have reported a link between the genomic abundance of TEs and the adaptation to specific environmental conditions. Diadromy represents a fascinating feature of fish, protagonists of migratory routes between marine and freshwater for reproduction. In this work, we investigated the genomes of 24 fish species, including 15 teleosts with a migratory behaviour. The expected higher relative abundance of DNA transposons in ray-finned fish compared with the other fish groups was not confirmed by the analysis of the dataset considered. The relative contribution of different TE types in migratory ray-finned species did not show clear differences between oceanodromous and potamodromous fish. On the contrary, a remarkable relationship between migratory behaviour and the quantitative difference reported for short interspersed nuclear (retro)elements (SINEs) emerged from the comparison between anadromous and catadromous species, independently from their phylogenetic position. This aspect is likely due to the substantial environmental changes faced by diadromous species during their migratory routes.
Collapse
|
18
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
19
|
Linker SB, Randolph-Moore L, Kottilil K, Qiu F, Jaeger BN, Barron J, Gage FH. Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus. Genome Res 2020; 30:1643-1654. [PMID: 33122305 PMCID: PMC7605253 DOI: 10.1101/gr.262196.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Currently, researchers rely on generalized methods to quantify transposable element (TE) RNA expression, such as RT-qPCR and RNA-seq, that do not distinguish between TEs expressed from their own promoter (bona fide) and TEs that are transcribed from a neighboring gene promoter such as within an intron or exon. This distinction is important owing to the differing functional roles of TEs depending on whether they are independently transcribed. Here we report a simple strategy to examine bona fide TE expression, termed BonaFide-TEseq. This approach can be used with any template-switch based library such as Smart-seq2 or the single-cell 5' gene expression kit from 10x, extending its utility to single-cell RNA-sequencing. This approach does not require TE-specific enrichment, enabling the simultaneous examination of TEs and protein-coding genes. We show that TEs identified through BonaFide-TEseq are expressed from their own promoter, rather than captured as internal products of genes. We reveal the utility of BonaFide-TEseq in the analysis of single-cell data and show that short-interspersed nuclear elements (SINEs) show cell type-specific expression profiles in the mouse hippocampus. We further show that, in response to a brief exposure of home-cage mice to a novel stimulus, SINEs are activated in dentate granule neurons in a time course that is similar to that of protein-coding immediate early genes. This work provides a simple alternative approach to assess bona fide TE transcription at single-cell resolution and provides a proof-of-concept using this method to identify SINE activation in a context that is relevant for normal learning and memory.
Collapse
Affiliation(s)
- Sara B Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lynne Randolph-Moore
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Kalyani Kottilil
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fan Qiu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Baptiste N Jaeger
- Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Jerika Barron
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California 94143, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
20
|
Herbert A. ALU non-B-DNA conformations, flipons, binary codes and evolution. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200222. [PMID: 32742689 PMCID: PMC7353975 DOI: 10.1098/rsos.200222] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
ALUs contribute to genetic diversity by altering DNA's linear sequence through retrotransposition, recombination and repair. ALUs also have the potential to form alternative non-B-DNA conformations such as Z-DNA, triplexes and quadruplexes that alter the read-out of information from the genome. I suggest here these structures enable the rapid reprogramming of cellular pathways to offset DNA damage and regulate inflammation. The experimental data supporting this form of genetic encoding is presented. ALU sequence motifs that form non-B-DNA conformations under physiological conditions are called flipons. Flipons are binary switches. They are dissipative structures that trade energy for information. By efficiently targeting cellular machines to active genes, flipons expand the repertoire of RNAs compiled from a gene. Their action greatly increases the informational capacity of linearly encoded genomes. Flipons are programmable by epigenetic modification, synchronizing cellular events by altering both chromatin state and nucleosome phasing. Different classes of flipon exist. Z-flipons are based on Z-DNA and modify the transcripts compiled from a gene. T-flipons are based on triplexes and localize non-coding RNAs that direct the assembly of cellular machines. G-flipons are based on G-quadruplexes and sense DNA damage, then trigger the appropriate protective responses. Flipon conformation is dynamic, changing with context. When frozen in one state, flipons often cause disease. The propagation of flipons throughout the genome by ALU elements represents a novel evolutionary innovation that allows for rapid change. Each ALU insertion creates variability by extracting a different set of information from the neighbourhood in which it lands. By elaborating on already successful adaptations, the newly compiled transcripts work with the old to enhance survival. Systems that optimize flipon settings through learning can adapt faster than with other forms of evolution. They avoid the risk of relying on random and irreversible codon rewrites.
Collapse
|
21
|
Ferrari R, de Llobet Cucalon LI, Di Vona C, Le Dilly F, Vidal E, Lioutas A, Oliete JQ, Jochem L, Cutts E, Dieci G, Vannini A, Teichmann M, de la Luna S, Beato M. TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation. Mol Cell 2020; 77:475-487.e11. [PMID: 31759822 PMCID: PMC7014570 DOI: 10.1016/j.molcel.2019.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/20/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.
Collapse
Affiliation(s)
- Roberto Ferrari
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Lara Isabel de Llobet Cucalon
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Chiara Di Vona
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - François Le Dilly
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Vidal
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Antonios Lioutas
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Javier Quilez Oliete
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Laura Jochem
- The Institute of Cancer Research (ICR), London, UK
| | - Erin Cutts
- The Institute of Cancer Research (ICR), London, UK
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alessandro Vannini
- The Institute of Cancer Research (ICR), London, UK; Human Technopole. Via Cristina Belgioioso, 171, 20157 Milano MI, Italy
| | - Martin Teichmann
- Université de Bordeaux, INSERM U1212 CNRS UMR 5320 146, Bordeaux, France
| | - Susana de la Luna
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
22
|
Karnay A, Karisetty BC, Beaver M, Elefant F. Hippocampal stimulation promotes intracellular Tip60 dynamics with concomitant genome reorganization and synaptic gene activation. Mol Cell Neurosci 2019; 101:103412. [PMID: 31682915 DOI: 10.1016/j.mcn.2019.103412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 11/17/2022] Open
Abstract
Genomic reorganizations mediating the engagement of target genes to transcription factories (TFs), characterized as specialized nuclear subcompartments enriched in hyperphosphorylated RNA polymerase II (RNAPII) and transcriptional regulators, act as an important layer of control in coordinating efficient gene transcription. However, their presence in hippocampal neurons and potential role in activity-dependent coregulation of genes within the brain remains unclear. Here, we investigate whether the well-characterized role for the histone acetyltransferase (HAT) Tip60 in mediating epigenetic control of inducible neuroplasticity genes involves TF associated chromatin reorganization in the hippocampus. We show that Tip60 shuttles into the nucleus following extracellular stimulation of rat hippocampal neurons with concomitant enhancement of Tip60 binding and activation of specific synaptic plasticity genes. Multicolor three-dimensional (3D) DNA fluorescent in situ hybridization (DNA-FISH) reveals that hippocampal stimulation mobilizes these same synaptic plasticity genes and Tip60 to RNAPII-rich TFs. Our data support a model by which external hippocampal stimulation promotes intracellular Tip60 HAT dynamics with concomitant TF associated genome reorganization to initiate Tip60mediated synaptic gene activation.
Collapse
Affiliation(s)
- Ashley Karnay
- Department of Biology, Drexel University, Philadelphia, PA, USA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Mariah Beaver
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Fernandez-Albert J, Lipinski M, Lopez-Cascales MT, Rowley MJ, Martin-Gonzalez AM, Del Blanco B, Corces VG, Barco A. Immediate and deferred epigenomic signatures of in vivo neuronal activation in mouse hippocampus. Nat Neurosci 2019; 22:1718-1730. [PMID: 31501571 PMCID: PMC6875776 DOI: 10.1038/s41593-019-0476-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/23/2019] [Indexed: 11/08/2022]
Abstract
Activity-driven transcription plays an important role in many brain processes, including those underlying memory and epilepsy. Here we combine genetic tagging of nuclei and ribosomes with RNA sequencing, chromatin immunoprecipitation with sequencing, assay for transposase-accessible chromatin using sequencing and Hi-C to investigate transcriptional and chromatin changes occurring in mouse hippocampal excitatory neurons at different time points after synchronous activation during seizure and sparse activation by novel context exploration. The transcriptional burst is associated with an increase in chromatin accessibility of activity-regulated genes and enhancers, de novo binding of activity-regulated transcription factors, augmented promoter-enhancer interactions and the formation of gene loops that bring together the transcription start site and transcription termination site of induced genes and may sustain the fast reloading of RNA polymerase complexes. Some chromatin occupancy changes and interactions, particularly those driven by AP1, remain long after neuronal activation and could underlie the changes in neuronal responsiveness and circuit connectivity observed in these neuroplasticity paradigms, perhaps thereby contributing to metaplasticity in the adult brain.
Collapse
Affiliation(s)
- Jordi Fernandez-Albert
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - Michal Lipinski
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - María T Lopez-Cascales
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - M Jordan Rowley
- Department of Biology, Emory University, Atlanta, GA, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ana M Martin-Gonzalez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | | | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
24
|
Gulmez Karaca K, Brito DV, Oliveira AM. MeCP2: A Critical Regulator of Chromatin in Neurodevelopment and Adult Brain Function. Int J Mol Sci 2019; 20:ijms20184577. [PMID: 31527487 PMCID: PMC6769791 DOI: 10.3390/ijms20184577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) was first identified as a nuclear protein with a transcriptional repressor role that recognizes DNA methylation marks. MeCP2 has a well-established function in neurodevelopment, as evidenced by the severe neurological impairments characteristic of the Rett syndrome (RTT) pathology and the MeCP2 duplication syndrome (MDS), caused by loss or gain of MeCP2 function, respectively. Research aimed at the underlying pathophysiological mechanisms of RTT and MDS has significantly advanced our understanding of MeCP2 functions in the nervous system. It has revealed, however, that MeCP2 has more varied and complex roles than previously thought. Here we review recent insights into the functions of MeCP2 in neurodevelopment and the less explored requirement for MeCP2 in adult brain function. We focus on the emerging view that MeCP2 is a global chromatin organizer. Finally, we discuss how the individual functions of MeCP2 in neurodevelopment and adulthood are linked to its role as a chromatin regulator.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands
| | - David V.C. Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
| | - Ana M.M. Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
- Correspondence: ; Tel.: +49-(0)6221-5416510
| |
Collapse
|
25
|
Ruszczycki B, Pels KK, Walczak A, Zamłyńska K, Such M, Szczepankiewicz AA, Hall MH, Magalska A, Magnowska M, Wolny A, Bokota G, Basu S, Pal A, Plewczynski D, Wilczyński GM. Three-Dimensional Segmentation and Reconstruction of Neuronal Nuclei in Confocal Microscopic Images. Front Neuroanat 2019; 13:81. [PMID: 31481881 PMCID: PMC6710455 DOI: 10.3389/fnana.2019.00081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022] Open
Abstract
The detailed architectural examination of the neuronal nuclei in any brain region, using confocal microscopy, requires quantification of fluorescent signals in three-dimensional stacks of confocal images. An essential prerequisite to any quantification is the segmentation of the nuclei which are typically tightly packed in the tissue, the extreme being the hippocampal dentate gyrus (DG), in which nuclei frequently appear to overlap due to limitations in microscope resolution. Segmentation in DG is a challenging task due to the presence of a significant amount of image artifacts and densely packed nuclei. Accordingly, we established an algorithm based on continuous boundary tracing criterion aiming to reconstruct the nucleus surface and to separate the adjacent nuclei. The presented algorithm neither uses a pre-built nucleus model, nor performs image thresholding, which makes it robust against variations in image intensity and poor contrast. Further, the reconstructed surface is used to study morphology and spatial arrangement of the nuclear interior. The presented method is generally dedicated to segmentation of crowded, overlapping objects in 3D space. In particular, it allows us to study quantitatively the architecture of the neuronal nucleus using confocal-microscopic approach.
Collapse
Affiliation(s)
- Błażej Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Agnieszka Walczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | | | - Michał Such
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Center of New Technologies, University of Warsaw, Warsaw, Poland
| | | | - Małgorzata Hanna Hall
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Adriana Magalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Magnowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Wolny
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Bokota
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Ayan Pal
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Dariusz Plewczynski
- Center of New Technologies, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | |
Collapse
|
26
|
Eggeling R. Disentangling transcription factor binding site complexity. Nucleic Acids Res 2019; 46:e121. [PMID: 30085218 PMCID: PMC6237759 DOI: 10.1093/nar/gky683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
The binding motifs of many transcription factors (TFs) comprise a higher degree of complexity than a single position weight matrix model permits. Additional complexity is typically taken into account either as intra-motif dependencies via more sophisticated probabilistic models or as heterogeneities via multiple weight matrices. However, both orthogonal approaches have limitations when learning from in vivo data where binding sites of other factors in close proximity can interfere with motif discovery for the protein of interest. In this work, we demonstrate how intra-motif complexity can, purely by analyzing the statistical properties of a given set of TF-binding sites, be distinguished from complexity arising from an intermix with motifs of co-binding TFs or other artifacts. In addition, we study the related question whether intra-motif complexity is represented more effectively by dependencies, heterogeneities or variants in between. Benchmarks demonstrate the effectiveness of both methods for their respective tasks and applications on motif discovery output from recent tools detect and correct many undesirable artifacts. These results further suggest that the prevalence of intra-motif dependencies may have been overestimated in previous studies on in vivo data and should thus be reassessed.
Collapse
Affiliation(s)
- Ralf Eggeling
- Department of Computer Science, University of Helsinki, Gustaf-Hällströmin katu 2b, FIN-00140 Helsinki, Finland
| |
Collapse
|
27
|
Brookes E, Riccio A. Location, location, location: nuclear structure regulates gene expression in neurons. Curr Opin Neurobiol 2019; 59:16-25. [PMID: 31005709 DOI: 10.1016/j.conb.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 12/27/2022]
Abstract
Genome architecture plays a critical role in regulating the expression of genes that are essential for nervous system development. During neuronal differentiation, spatially and temporally regulated transcription allows neuronal migration, the growth of dendrites and axons, and at later stages, synaptic formation and the establishment of neuronal circuitry. Genome topology and relocation of gene loci within the nucleus are now regarded as key factors that contribute to transcriptional regulation. Here, we review recent work supporting the hypothesis that the dynamic organization of chromatin within the nucleus impacts gene activation in response to extrinsic signalling and during neuronal differentiation. The consequences of disruption of the genome architecture on neuronal health will be also discussed.
Collapse
Affiliation(s)
- Emily Brookes
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Antonella Riccio
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Policarpi C, Crepaldi L, Brookes E, Nitarska J, French SM, Coatti A, Riccio A. Enhancer SINEs Link Pol III to Pol II Transcription in Neurons. Cell Rep 2018; 21:2879-2894. [PMID: 29212033 PMCID: PMC5732322 DOI: 10.1016/j.celrep.2017.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 06/30/2017] [Accepted: 11/02/2017] [Indexed: 12/25/2022] Open
Abstract
Spatiotemporal regulation of gene expression depends on the cooperation of multiple mechanisms, including the functional interaction of promoters with distally located enhancers. Here, we show that, in cortical neurons, a subset of short interspersed nuclear elements (SINEs) located in the proximity of activity-regulated genes bears features of enhancers. Enhancer SINEs (eSINEs) recruit the Pol III cofactor complex TFIIIC in a stimulus-dependent manner and are transcribed by Pol III in response to neuronal depolarization. Characterization of an eSINE located in proximity to the Fos gene (FosRSINE1) indicated that the FosRSINE1-encoded transcript interacts with Pol II at the Fos promoter and mediates Fos relocation to Pol II factories, providing an unprecedented molecular link between Pol III and Pol II transcription. Strikingly, knockdown of the FosRSINE1 transcript induces defects of both cortical radial migration in vivo and activity-dependent dendritogenesis in vitro, demonstrating that FosRSINE1 acts as a strong enhancer of Fos expression in diverse physiological contexts.
Collapse
Affiliation(s)
- Cristina Policarpi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Luca Crepaldi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Emily Brookes
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Justyna Nitarska
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Sarah M French
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alessandro Coatti
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Sun Y, Zhang H, Kazemian M, Troy JM, Seward C, Lu X, Stubbs L. ZSCAN5B and primate-specific paralogs bind RNA polymerase III genes and extra-TFIIIC (ETC) sites to modulate mitotic progression. Oncotarget 2018; 7:72571-72592. [PMID: 27732952 PMCID: PMC5340127 DOI: 10.18632/oncotarget.12508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/20/2016] [Indexed: 11/25/2022] Open
Abstract
Mammalian genomes contain hundreds of genes transcribed by RNA Polymerase III (Pol III), encoding noncoding RNAs and especially the tRNAs specialized to carry specific amino acids to the ribosome for protein synthesis. In addition to this well-known function, tRNAs and their genes (tDNAs) serve a variety of other critical cellular functions. For example, tRNAs and other Pol III transcripts can be cleaved to yield small RNAs with potent regulatory activities. Furthermore, from yeast to mammals, active tDNAs and related “extra-TFIIIC” (ETC) loci provide the DNA scaffolds for the most ancient known mechanism of three-dimensional chromatin architecture. Here we identify the ZSCAN5 TF family - including mammalian ZSCAN5B and its primate-specific paralogs - as proteins that occupy mammalian Pol III promoters and ETC sites. We show that ZSCAN5B binds with high specificity to a conserved subset of Pol III genes in human and mouse. Furthermore, primate-specific ZSCAN5A and ZSCAN5D also bind Pol III genes, although ZSCAN5D preferentially localizes to MIR SINE- and LINE2-associated ETC sites. ZSCAN5 genes are expressed in proliferating cell populations and are cell-cycle regulated, and siRNA knockdown experiments suggested a cooperative role in regulation of mitotic progression. Consistent with this prediction, ZSCAN5A knockdown led to increasing numbers of cells in mitosis and the appearance of cells. Together, these data implicate the role of ZSCAN5 genes in regulation of Pol III genes and nearby Pol II loci, ultimately influencing cell cycle progression and differentiation in a variety of tissues.
Collapse
Affiliation(s)
- Younguk Sun
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huimin Zhang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Majid Kazemian
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joseph M Troy
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Illinois Informatics Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher Seward
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xiaochen Lu
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lisa Stubbs
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
30
|
Abstract
Neurons are dynamic cells that respond and adapt to stimuli throughout their long postmitotic lives. The structural and functional plasticity of neurons requires the regulated transcription of new gene products, and dysregulation of transcription in either the developing or adult brain impairs cognition. We discuss how mechanisms of chromatin regulation help to orchestrate the transcriptional programs that underlie the maturation of developing neurons and the plasticity of adult neurons. We review how chromatin regulation acts locally to modulate the expression of specific genes and more broadly to coordinate gene expression programs during transitions between cellular states. These data highlight the importance of epigenetic transcriptional mechanisms in postmitotic neurons. We suggest areas where emerging methods may advance understanding in the future.
Collapse
Affiliation(s)
- David A Gallegos
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Urann Chan
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Liang-Fu Chen
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anne E West
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Büchel G, Carstensen A, Mak KY, Roeschert I, Leen E, Sumara O, Hofstetter J, Herold S, Kalb J, Baluapuri A, Poon E, Kwok C, Chesler L, Maric HM, Rickman DS, Wolf E, Bayliss R, Walz S, Eilers M. Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle. Cell Rep 2017; 21:3483-3497. [PMID: 29262328 PMCID: PMC5746598 DOI: 10.1016/j.celrep.2017.11.090] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle.
Collapse
Affiliation(s)
- Gabriele Büchel
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anne Carstensen
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ka-Yan Mak
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Isabelle Roeschert
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eoin Leen
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; University of Leicester, Leicester LE1 9HN, UK
| | - Olga Sumara
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Steffi Herold
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jacqueline Kalb
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Evon Poon
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd., Belmont, Sutton, Surrey SM2 5NG, UK
| | - Colin Kwok
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd., Belmont, Sutton, Surrey SM2 5NG, UK
| | - Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd., Belmont, Sutton, Surrey SM2 5NG, UK
| | - Hans Michael Maric
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - David S Rickman
- Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Elmar Wolf
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Richard Bayliss
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; University of Leicester, Leicester LE1 9HN, UK
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
32
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
33
|
Karijolich J, Zhao Y, Alla R, Glaunsinger B. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export. Nucleic Acids Res 2017; 45:6194-6208. [PMID: 28334904 PMCID: PMC5449642 DOI: 10.1093/nar/gkx180] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA–RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation.
Collapse
Affiliation(s)
- John Karijolich
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3370, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Ravi Alla
- California Institute for Quantitative Biology, University of California, Berkeley, CA 94720-3370, USA
| | - Britt Glaunsinger
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3370, USA.,California Institute for Quantitative Biology, University of California, Berkeley, CA 94720-3370, USA
| |
Collapse
|
34
|
Fujita Y, Yamashita T. Spatial organization of genome architecture in neuronal development and disease. Neurochem Int 2017; 119:49-56. [PMID: 28757389 DOI: 10.1016/j.neuint.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 01/19/2023]
Abstract
Although mammalian genomes encode genetic information in their linear sequences, their fundamental function with regard to gene expression depends on the higher-order structure of chromosomes. Current techniques for the evaluation of chromosomal structure have revealed that genomes are arranged at several hierarchical levels in three-dimensional space. The spatial organization of genomes involves the formation of chromatin loops that bypass a wide range of genomic distances, providing a connection between enhancers and chromosomal domains. Furthermore, they form chromatin domains that are arranged into chromosome territories in the three-dimensional space of the cell nucleus. Recent studies have shown that the spatial organization of the genome is essential for normal brain development and function. Activity-dependent alterations in the spatial organization of the genome can regulate transcriptional activity related to neuronal plasticity. Disruptions in the higher-order chromatin architecture have been implicated in neuropsychiatric disorders, such as cognitive dysfunction and anxiety. Here, we discuss the growing interest in the role of genome organization in brain development and neurological disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
35
|
Gigante CM, Dibattista M, Dong FN, Zheng X, Yue S, Young SG, Reisert J, Zheng Y, Zhao H. Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation. Nat Commun 2017; 8:15098. [PMID: 28425486 PMCID: PMC5411488 DOI: 10.1038/ncomms15098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/28/2017] [Indexed: 01/29/2023] Open
Abstract
B-type lamins are major constituents of the nuclear lamina in all metazoan cells, yet have specific roles in the development of certain cell types. Although they are speculated to regulate gene expression in developmental contexts, a direct link between B-type lamins and developmental gene expression in an in vivo system is currently lacking. Here, we identify lamin B1 as a key regulator of gene expression required for the formation of functional olfactory sensory neurons. By using targeted knockout in olfactory epithelial stem cells in adult mice, we show that lamin B1 deficient neurons exhibit attenuated response to odour stimulation. This deficit can be explained by decreased expression of genes involved in mature neuron function, along with increased expression of genes atypical of the olfactory lineage. These results support that the broadly expressed lamin B1 regulates expression of a subset of genes involved in the differentiation of a specific cell type.
Collapse
Affiliation(s)
- Crystal M. Gigante
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Michele Dibattista
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari ‘A. Moro', Bari 70121, Italy
| | - Frederick N. Dong
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Sibiao Yue
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Stephen G. Young
- Department of Medicine, Molecular Biology Institute and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Haiqing Zhao
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
36
|
Watson LA, Tsai LH. In the loop: how chromatin topology links genome structure to function in mechanisms underlying learning and memory. Curr Opin Neurobiol 2016; 43:48-55. [PMID: 28024185 DOI: 10.1016/j.conb.2016.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
Abstract
Different aspects of learning, memory, and cognition are regulated by epigenetic mechanisms such as covalent DNA modifications and histone post-translational modifications. More recently, the modulation of chromatin architecture and nuclear organization is emerging as a key factor in dynamic transcriptional regulation of the post-mitotic neuron. For instance, neuronal activity induces relocalization of gene loci to 'transcription factories', and specific enhancer-promoter looping contacts allow for precise transcriptional regulation. Moreover, neuronal activity-dependent DNA double-strand break formation in the promoter of immediate early genes appears to overcome topological constraints on transcription. Together, these findings point to a critical role for genome topology in integrating dynamic environmental signals to define precise spatiotemporal gene expression programs supporting cognitive processes.
Collapse
Affiliation(s)
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 2016; 18:71-86. [PMID: 27867194 DOI: 10.1038/nrg.2016.139] [Citation(s) in RCA: 777] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor-binding sites and non-coding RNAs. Many recent studies reinvigorate the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and the conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalysed the evolution of gene-regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic effect of regulatory activities encoded by TEs in health and disease.
Collapse
Affiliation(s)
- Edward B Chuong
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| |
Collapse
|
38
|
Ganai SA, Banday S, Farooq Z, Altaf M. Modulating epigenetic HAT activity for reinstating acetylation homeostasis: A promising therapeutic strategy for neurological disorders. Pharmacol Ther 2016; 166:106-22. [DOI: 10.1016/j.pharmthera.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/28/2016] [Indexed: 01/30/2023]
|
39
|
Medrano-Fernández A, Barco A. Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders. Mol Brain 2016; 9:83. [PMID: 27595843 PMCID: PMC5011999 DOI: 10.1186/s13041-016-0263-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/06/2016] [Indexed: 01/08/2023] Open
Abstract
The current view of neuroplasticity depicts the changes in the strength and number of synaptic connections as the main physical substrate for behavioral adaptation to new experiences in a changing environment. Although transcriptional regulation is known to play a role in these synaptic changes, the specific contribution of activity-induced changes to both the structure of the nucleus and the organization of the genome remains insufficiently characterized. Increasing evidence indicates that plasticity-related genes may work in coordination and share architectural and transcriptional machinery within discrete genomic foci. Here we review the molecular and cellular mechanisms through which neuronal nuclei structurally adapt to stimuli and discuss how the perturbation of these mechanisms can trigger behavioral malfunction.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
40
|
Tweedie D, Fukui K, Li Y, Yu QS, Barak S, Tamargo IA, Rubovitch V, Holloway HW, Lehrmann E, Wood WH, Zhang Y, Becker KG, Perez E, Van Praag H, Luo Y, Hoffer BJ, Becker RE, Pick CG, Greig NH. Cognitive Impairments Induced by Concussive Mild Traumatic Brain Injury in Mouse Are Ameliorated by Treatment with Phenserine via Multiple Non-Cholinergic and Cholinergic Mechanisms. PLoS One 2016; 11:e0156493. [PMID: 27254111 PMCID: PMC4890804 DOI: 10.1371/journal.pone.0156493] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI), often caused by a concussive impact to the head, affects an estimated 1.7 million Americans annually. With no approved drugs, its pharmacological treatment represents a significant and currently unmet medical need. In our prior development of the anti-cholinesterase compound phenserine for the treatment of neurodegenerative disorders, we recognized that it also possesses non-cholinergic actions with clinical potential. Here, we demonstrate neuroprotective actions of phenserine in neuronal cultures challenged with oxidative stress and glutamate excitotoxicity, two insults of relevance to TBI. These actions translated into amelioration of spatial and visual memory impairments in a mouse model of closed head mild TBI (mTBI) two days following cessation of clinically translatable dosing with phenserine (2.5 and 5.0 mg/kg BID x 5 days initiated post mTBI) in the absence of anti-cholinesterase activity. mTBI elevated levels of thiobarbituric acid reactive substances (TBARS), a marker of oxidative stress. Phenserine counteracted this by augmenting homeostatic mechanisms to mitigate oxidative stress, including superoxide dismutase [SOD] 1 and 2, and glutathione peroxidase [GPx], the activity and protein levels of which were measured by specific assays. Microarray analysis of hippocampal gene expression established that large numbers of genes were exclusively regulated by each individual treatment with a substantial number of them co-regulated between groups. Molecular pathways associated with lipid peroxidation were found to be regulated by mTBI, and treatment of mTBI animals with phenserine effectively reversed injury-induced regulations in the ‘Blalock Alzheimer’s Disease Up’ pathway. Together these data suggest that multiple phenserine-associated actions underpin this compound’s ability to ameliorate cognitive deficits caused by mTBI, and support the further evaluation of the compound as a therapeutic for TBI.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Koji Fukui
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
- Division of Bioscience and Engineering, Shibaura Institute of Technology, Saitama 3378570, Japan
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Qian-sheng Yu
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Shani Barak
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Ian A. Tamargo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Harold W. Holloway
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - William H. Wood
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Evelyn Perez
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Henriette Van Praag
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Yu Luo
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Robert E. Becker
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
- Independent Researcher, 7123 Pinebrook Road, Park City, UT 94098, United States of America
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle.
Collapse
Affiliation(s)
- Klara Weipoltshammer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
42
|
Xu C, Corces VG. Towards a predictive model of chromatin 3D organization. Semin Cell Dev Biol 2015; 57:24-30. [PMID: 26658098 DOI: 10.1016/j.semcdb.2015.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 01/19/2023]
Abstract
Architectural proteins mediate interactions between distant regions in the genome to bring together different regulatory elements while establishing a specific three-dimensional organization of the genetic material. Depletion of specific architectural proteins leads to miss regulation of gene expression and alterations in nuclear organization. The specificity of interactions mediated by architectural proteins depends on the nature, number, and orientation of their binding site at individual genomic locations. Knowledge of the mechanisms and rules governing interactions among architectural proteins may provide a code to predict the 3D organization of the genome.
Collapse
Affiliation(s)
- Chenhuan Xu
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
43
|
|
44
|
Lee YL, Li YC, Su CH, Chiao CH, Lin IH, Hsu MT. MAF1 represses CDKN1A through a Pol III-dependent mechanism. eLife 2015; 4:e06283. [PMID: 26067234 PMCID: PMC4480132 DOI: 10.7554/elife.06283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/09/2015] [Indexed: 11/24/2022] Open
Abstract
MAF1 represses Pol III-mediated transcription by interfering with TFIIIB and Pol III. Herein, we found that MAF1 knockdown induced CDKN1A transcription and chromatin looping concurrently with Pol III recruitment. Simultaneous knockdown of MAF1 with Pol III or BRF1 (subunit of TFIIIB) diminished the activation and looping effect, which indicates that recruiting Pol III was required for activation of Pol II-mediated transcription and chromatin looping. Chromatin-immunoprecipitation analysis after MAF1 knockdown indicated enhanced binding of Pol III and BRF1, as well as of CFP1, p300, and PCAF, which are factors that mediate active histone marks, along with the binding of TATA binding protein (TBP) and POLR2E to the CDKN1A promoter. Simultaneous knockdown with Pol III abolished these regulatory events. Similar results were obtained for GDF15. Our results reveal a novel mechanism by which MAF1 and Pol III regulate the activity of a protein-coding gene transcribed by Pol II. DOI:http://dx.doi.org/10.7554/eLife.06283.001 An organism's genetic material is made of segments of DNA called genes, which contain instructions to make proteins. First, copies of the DNA are made using another molecule called ribonucleic acid (RNA) in a process known as transcription. Then the RNA is used as a template to make a protein. During transcription, enzymes called RNA polymerases move along the DNA to produce the RNA copies. When a cell is actively growing it needs large quantities of new proteins to be made, and so the level of transcription is higher. However, if a cell experiences stress caused by adverse environmental conditions (e.g., high temperatures), it can conserve resources by shutting down transcription. For example, one RNA polymerase—called Pol III—makes RNA copies with the help of a protein called BRF1 and several other proteins. However, when a cell is under stress, another protein called MAF1 can interfere with transcription by binding to BRF1, which prevents it from interacting with Pol III. Previous work has suggested that MAF1 can also inhibit the activity of another RNA polymerase called Pol II, but it was not clear how this could work. Lee et al. studied the effect of MAF1 on transcription in human cells. The experiments show that MAF1 blocks the transcription of many genes that are transcribed by Pol II, including one called CDKN1A. CDKN1A is involved in regulating many important processes, including the growth of cells and cell death. Cells that produced lower amounts of MAF1 had higher levels of CDKN1A transcription, and several proteins—including Pol II, Pol III and BRF1—were more able to bind to this gene. However, this effect was not observed in cells that also produced lower levels of Pol III or BRF1, suggesting that Pol III is needed for Pol II to be able to transcribe CDKN1A. Taken together, Lee et al.'s findings suggest that MAF1 inhibits the transcription of CDKN1A, and possibly other genes transcribed by Pol II, by regulating the activity of Pol III. Further research is needed to understand the details of how this works. DOI:http://dx.doi.org/10.7554/eLife.06283.002
Collapse
Affiliation(s)
- Yu-Ling Lee
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Ching Li
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hsin Su
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Hui Chiao
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - I-Hsuan Lin
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Ta Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
45
|
Moreira-Filho CA, Bando SY, Bertonha FB, Iamashita P, Silva FN, Costa LDF, Silva AV, Castro LHM, Wen HT. Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures. PLoS One 2015; 10:e0128174. [PMID: 26011637 PMCID: PMC4444281 DOI: 10.1371/journal.pone.0128174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to generate adaptive mechanisms, what has implications for epilepsy management and drug discovery.
Collapse
Affiliation(s)
| | - Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | | | | | - Luiz Henrique Martins Castro
- Department of Neurology, FMUSP, São Paulo, SP, Brazil
- Clinical Neurology Division, Hospital das Clínicas, FMUSP, São Paulo, SP, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas, FMUSP, São Paulo, SP, Brazil
| |
Collapse
|
46
|
Vanderlinden LA, Saba LM, Bennett B, Hoffman PL, Tabakoff B. Influence of sex on genetic regulation of "drinking in the dark" alcohol consumption. Mamm Genome 2015; 26:43-56. [PMID: 25559016 DOI: 10.1007/s00335-014-9553-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
The ILSXISS (LXS) recombinant inbred (RI) panel of mice is a valuable resource for genetic mapping studies of complex traits, due to its genetic diversity and large number of strains. Male and female mice from this panel were used to investigate genetic influences on alcohol consumption in the "drinking in the dark" (DID) model. Male mice (38 strains) and female mice (36 strains) were given access to 20% ethanol during the early phase of their circadian dark cycle for four consecutive days. The first principal component of alcohol consumption measures on days 2, 3, and 4 was used as a phenotype (DID phenotype) to calculate QTLs, using a SNP marker set for the LXS RI panel. Five QTLs were identified, three of which included a significant genotype by sex interaction, i.e., a significant genotype effect in males and not females. To investigate candidate genes associated with the DID phenotype, data from brain microarray analysis (Affymetrix Mouse Exon 1.0 ST Arrays) of male LXS RI strains were combined with RNA-Seq data (mouse brain transcriptome reconstruction) from the parental ILS and ISS strains in order to identify expressed mouse brain transcripts. Candidate genes were determined based on common eQTL and DID phenotype QTL regions and correlation of transcript expression levels with the DID phenotype. The resulting candidate genes (in particular, Arntl/Bmal1) focused attention on the influence of circadian regulation on the variation in the DID phenotype in this population of mice.
Collapse
Affiliation(s)
- Lauren A Vanderlinden
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Campus Box: C238, Aurora, CO, 80045, USA,
| | | | | | | | | |
Collapse
|
47
|
Korbolina EE, Ershov NI, Bryzgalov LO, Kolosova NG. Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats. BMC Genomics 2014; 15 Suppl 12:S3. [PMID: 25563673 PMCID: PMC4303943 DOI: 10.1186/1471-2164-15-s12-s3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Etiology of complex disorders, such as cataract and neurodegenerative diseases including age-related macular degeneration (AMD), remains poorly understood due to the paucity of animal models, fully replicating the human disease. Previously, two quantitative trait loci (QTLs) associated with early cataract, AMD-like retinopathy, and some behavioral aberrations in senescence-accelerated OXYS rats were uncovered on chromosome 1 in a cross between OXYS and WAG rats. To confirm the findings, we generated interval-specific congenic strains, WAG/OXYS-1.1 and WAG/OXYS-1.2, carrying OXYS-derived loci of chromosome 1 in the WAG strain. Both congenic strains displayed early cataract and retinopathy but differed clinically from OXYS rats. Here we applied a high-throughput RNA sequencing (RNA-Seq) strategy to facilitate nomination of the candidate genes and functional pathways that may be responsible for these differences and can contribute to the development of the senescence-accelerated phenotype of OXYS rats. Results First, the size and map position of QTL-derived congenic segments were determined by comparative analysis of coding single-nucleotide polymorphisms (SNPs), which were identified for OXYS, WAG, and congenic retinal RNAs after sequencing. The transferred locus was not what we expected in WAG/OXYS-1.1 rats. In rat retina, 15442 genes were expressed. Coherent sets of differentially expressed genes were identified when we compared RNA-Seq retinal profiles of 20-day-old WAG/OXYS-1.1, WAG/OXYS-1.2, and OXYS rats. The genes most different in the average expression level between the congenic strains included those generally associated with the Wnt, integrin, and TGF-β signaling pathways, widely involved in neurodegenerative processes. Several candidate genes (including Arhgap33, Cebpg, Gtf3c1, Snurf, Tnfaip3, Yme1l1, Cbs, Car9 and Fn1) were found to be either polymorphic in the congenic loci or differentially expressed between the strains. These genes may contribute to the development of cataract and retinopathy. Conclusions This study is the first RNA-Seq analysis of the rat retinal transcriptome generated with 40 mln sequencing read depth. The integration of QTL and transcriptomic analyses in our study forms the basis of future research into the relationship between the candidate genes within the congenic regions and specific changes in the retinal transcriptome as possible causal mechanisms that underlie age-associated disorders.
Collapse
|
48
|
Bharadwaj R, Peter CJ, Jiang Y, Roussos P, Vogel-Ciernia A, Shen EY, Mitchell AC, Mao W, Whittle C, Dincer A, Jakovcevski M, Pothula V, Rasmussen TP, Giakoumaki SG, Bitsios P, Sherif A, Gardner PD, Ernst P, Ghose S, Sklar P, Haroutunian V, Tamminga C, Myers RH, Futai K, Wood MA, Akbarian S. Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron 2014; 84:997-1008. [PMID: 25467983 PMCID: PMC4258154 DOI: 10.1016/j.neuron.2014.10.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/17/2022]
Abstract
Three-dimensional chromosomal conformations regulate transcription by moving enhancers and regulatory elements into spatial proximity with target genes. Here we describe activity-regulated long-range loopings bypassing up to 0.5 Mb of linear genome to modulate NMDA glutamate receptor GRIN2B expression in human and mouse prefrontal cortex. Distal intronic and 3' intergenic loop formations competed with repressor elements to access promoter-proximal sequences, and facilitated expression via a "cargo" of AP-1 and NRF-1 transcription factors and TALE-based transcriptional activators. Neuronal deletion or overexpression of Kmt2a/Mll1 H3K4- and Kmt1e/Setdb1 H3K9-methyltransferase was associated with higher-order chromatin changes at distal regulatory Grin2b sequences and impairments in working memory. Genetic polymorphisms and isogenic deletions of loop-bound sequences conferred liability for cognitive performance and decreased GRIN2B expression. Dynamic regulation of chromosomal conformations emerges as a novel layer for transcriptional mechanisms impacting neuronal signaling and cognition.
Collapse
Affiliation(s)
- Rahul Bharadwaj
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cyril J Peter
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Jiang
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
| | - Annie Vogel-Ciernia
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA 92697, USA
| | - Erica Y Shen
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amanda C Mitchell
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenjie Mao
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Catheryne Whittle
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Aslihan Dincer
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Venu Pothula
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences and U.Conn Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA
| | - Stella G Giakoumaki
- Department of Psychiatry, University of Crete, 71003 Iraklion, Greece; Department of Psychology, University of Crete, 71003 Iraklion, Greece
| | - Panos Bitsios
- Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology Hellas, 71003 Iraklion, Greece; Department of Psychiatry, University of Crete, 71003 Iraklion, Greece
| | - Ajfar Sherif
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul D Gardner
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Patricia Ernst
- Department of Genetics and Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Subroto Ghose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pamela Sklar
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vahram Haroutunian
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
| | - Carol Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard H Myers
- Department of Neurology, Boston University, Boston, MA 02118, USA
| | - Kensuke Futai
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA 92697, USA
| | - Schahram Akbarian
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
49
|
Schoborg T, Labrador M. Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function. Cell Mol Life Sci 2014; 71:4089-113. [PMID: 25012699 PMCID: PMC11113341 DOI: 10.1007/s00018-014-1672-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/31/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Abstract
Of the numerous classes of elements involved in modulating eukaryotic chromosome structure and function, chromatin insulators arguably remain the most poorly understood in their contribution to these processes in vivo. Indeed, our view of chromatin insulators has evolved dramatically since their chromatin boundary and enhancer blocking properties were elucidated roughly a quarter of a century ago as a result of recent genome-wide, high-throughput methods better suited to probing the role of these elements in their native genomic contexts. The overall theme that has emerged from these studies is that chromatin insulators function as general facilitators of higher-order chromatin loop structures that exert both physical and functional constraints on the genome. In this review, we summarize the result of recent work that supports this idea as well as a number of other studies linking these elements to a diverse array of nuclear processes, suggesting that chromatin insulators exert master control over genome organization and behavior.
Collapse
Affiliation(s)
- Todd Schoborg
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
- Present Address: Laboratory of Molecular Machines and Tissue Architecture, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Dr Rm 2122, Bethesda, MD 20892 USA
| | - Mariano Labrador
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
| |
Collapse
|
50
|
Lopez-Atalaya JP, Barco A. Can changes in histone acetylation contribute to memory formation? Trends Genet 2014; 30:529-39. [PMID: 25269450 DOI: 10.1016/j.tig.2014.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/31/2023]
Abstract
Neuronal histone acetylation has been postulated to be a mnemonic substrate and a target for memory enhancers and neuropsychiatric drugs. Here we critically evaluate this view and examine the apparent conflict between the proposed instructive role for histone acetylation in memory-related transcription and the insights derived from genomic and genetic studies in other systems. We next discuss the suitability of activity-dependent neuronal histone acetylation as a mnemonic substrate and debate alternative interpretations of current evidence. We believe that further progress in our understanding of the role of histone acetylation and other epigenetic modifications in neuronal plasticity, memory, and neuropsychiatric disorders requires a clear discrimination between cause and effect so that novel epigenetics-related processes can be distinguished from classical transcriptional mechanisms.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|