1
|
Pareja F, Bhargava R, Borges VF, Brogi E, Canas Marques R, Cardoso F, Desmedt C, Harigopal M, Lakhani SR, Lee A, Leone JP, Linden H, Lord CJ, Marchio C, Merajver SD, Rakha E, Reis-Filho JS, Richardson A, Sawyer E, Schedin P, Schwartz CJ, Tutt A, Ueno NT, Vincent-Salomon A, Weigelt B, Wen YH, Schnitt SJ, Oesterreich S. Unraveling complexity and leveraging opportunities in uncommon breast cancer subtypes. NPJ Breast Cancer 2025; 11:6. [PMID: 39856067 PMCID: PMC11760369 DOI: 10.1038/s41523-025-00719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Special histologic subtypes of breast cancer (BC) exhibit unique phenotypes and molecular profiles with diagnostic and therapeutic implications, often differing in behavior and clinical trajectory from common BC forms. Novel methodologies, such as artificial intelligence may improve classification. Genetic predisposition plays roles in a subset of cases. Uncommon BC presentations like male, inflammatory and pregnancy-related BC pose challenges. Emerging therapeutic strategies targeting genetic alterations or immune microenvironment are being explored.
Collapse
Affiliation(s)
- Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Rohit Bhargava
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Virginia F Borges
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Malini Harigopal
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, and Pathology Queensland, Brisbane, QLD, Australia
| | - Adrian Lee
- Women's Cancer Research Center, Magee-Womens Research Institute, UPMC Hillmann Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jose Pablo Leone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hannah Linden
- Division of Hematology and Oncology, Fred Hutchinson Cancer Center/University of Washington, Seattle, WA, USA
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Caterina Marchio
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sofia D Merajver
- Breast and Ovarian Cancer Risk Evaluation Program, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Emad Rakha
- Department of Pathology, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- AstraZeneca, Cambridge, UK
| | | | - Elinor Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Pepper Schedin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Christopher J Schwartz
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Naoto T Ueno
- Breast Medical Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Anne Vincent-Salomon
- Department of Pathology, Curie Institute, Paris Sciences Lettres University, Paris, France
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Y Hannah Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stuart J Schnitt
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Steffi Oesterreich
- Women's Cancer Research Center, Magee-Womens Research Institute, UPMC Hillmann Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Corso G, Fusco N, Guerini-Rocco E, Leonardi MC, Criscitiello C, Zagami P, Nicolò E, Mazzarol G, La Vecchia C, Pesapane F, Zanzottera C, Tarantino P, Petitto S, Bianchi B, Massari G, Boato A, Sibilio A, Polizzi A, Curigliano G, De Scalzi AM, Lauria F, Bonanni B, Marabelli M, Rotili A, Nicosia L, Albini A, Calvello M, Mukhtar RA, Robson ME, Sacchini V, Rennert G, Galimberti V, Veronesi P, Magnoni F. Invasive lobular breast cancer: Focus on prevention, genetics, diagnosis, and treatment. Semin Oncol 2024; 51:106-122. [PMID: 38897820 DOI: 10.1053/j.seminoncol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
Invasive lobular cancer (ILC) is the most common of the breast cancer special types, accounting for up to 15% of all breast malignancies. The distinctive biological features of ILC include the loss of the cell adhesion molecule E-cadherin, which drives the tumor's peculiar discohesive growth pattern, with cells arranged in single file and dispersed throughout the stroma. Typically, such tumors originate in the lobules, are more commonly bilateral compared to invasive ductal cancer (IDC) and require a more accurate diagnostic examination through imaging. They are luminal in molecular subtype, and exhibit estrogen and progesterone receptor positivity and HER2 negativity, thus presenting a more unpredictable response to neoadjuvant therapies. There has been a significant increase in research focused on this distinctive breast cancer subtype, including studies on its pathology, its clinical and surgical management, and the high-resolution definition of its genomic profile, as well as the development of new therapeutic perspectives. This review will summarize the heterogeneous pattern of this unique disease, focusing on challenges in its comprehensive clinical management and on future insights and research objectives.
Collapse
Affiliation(s)
- Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy; Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Carmen Criscitiello
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Zagami
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Giovanni Mazzarol
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Cristina Zanzottera
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Tarantino
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA; Harvard Medical School, Boston, MA
| | - Salvatore Petitto
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Beatrice Bianchi
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Giulia Massari
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Anthony Boato
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Andrea Sibilio
- Division of Breast Surgery Forlì (Ravenna), AUSL Romagna, Ravenna, Italy
| | - Andrea Polizzi
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hematology, University of Milano, Milan, Italy; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Federica Lauria
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Monica Marabelli
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Adriana Albini
- Scientific Directorate, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, Italy; Division of Hematology, Clinica Moncucco, Lugano, Switzerland
| | - Rita A Mukhtar
- Department of Surgery, Division of Surgical Oncology, University of California San Francisco, San Francisco, CA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Virgilio Sacchini
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy; Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Gad Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - Viviana Galimberti
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Paolo Veronesi
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy; Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Francesca Magnoni
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| |
Collapse
|
3
|
Sokolova A, Johnstone KJ, McCart Reed AE, Simpson PT, Lakhani SR. Hereditary breast cancer: syndromes, tumour pathology and molecular testing. Histopathology 2023; 82:70-82. [PMID: 36468211 PMCID: PMC10953374 DOI: 10.1111/his.14808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/09/2022]
Abstract
Hereditary factors account for a significant proportion of breast cancer risk. Approximately 20% of hereditary breast cancers are attributable to pathogenic variants in the highly penetrant BRCA1 and BRCA2 genes. A proportion of the genetic risk is also explained by pathogenic variants in other breast cancer susceptibility genes, including ATM, CHEK2, PALB2, RAD51C, RAD51D and BARD1, as well as genes associated with breast cancer predisposition syndromes - TP53 (Li-Fraumeni syndrome), PTEN (Cowden syndrome), CDH1 (hereditary diffuse gastric cancer), STK11 (Peutz-Jeghers syndrome) and NF1 (neurofibromatosis type 1). Polygenic risk, the cumulative risk from carrying multiple low-penetrance breast cancer susceptibility alleles, is also a well-recognised contributor to risk. This review provides an overview of the established breast cancer susceptibility genes as well as breast cancer predisposition syndromes, highlights distinct genotype-phenotype correlations associated with germline mutation status and discusses molecular testing and therapeutic implications in the context of hereditary breast cancer.
Collapse
Affiliation(s)
- A Sokolova
- Sullivan and Nicolaides PathologyBrisbane
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - K J Johnstone
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - A E McCart Reed
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - P T Simpson
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - S R Lakhani
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| |
Collapse
|
4
|
Van Baelen K, Geukens T, Maetens M, Tjan-Heijnen V, Lord CJ, Linn S, Bidard FC, Richard F, Yang WW, Steele RE, Pettitt SJ, Van Ongeval C, De Schepper M, Isnaldi E, Nevelsteen I, Smeets A, Punie K, Voorwerk L, Wildiers H, Floris G, Vincent-Salomon A, Derksen PWB, Neven P, Senkus E, Sawyer E, Kok M, Desmedt C. Current and future diagnostic and treatment strategies for patients with invasive lobular breast cancer. Ann Oncol 2022; 33:769-785. [PMID: 35605746 DOI: 10.1016/j.annonc.2022.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Invasive lobular breast cancer (ILC) is the second most common type of breast cancer after invasive breast cancer of no special type (NST), representing up to 15% of all breast cancers. DESIGN Latest data on ILC are presented, focusing on diagnosis, molecular make-up according to the European Society for Medical Oncology Scale for Clinical Actionability of molecular Targets (ESCAT) guidelines, treatment in the early and metastatic setting and ILC-focused clinical trials. RESULTS At the imaging level, magnetic resonance imaging-based and novel positron emission tomography/computed tomography-based techniques can overcome the limitations of currently used imaging techniques for diagnosing ILC. At the pathology level, E-cadherin immunohistochemistry could help improving inter-pathologist agreement. The majority of patients with ILC do not seem to benefit as much from (neo-)adjuvant chemotherapy as patients with NST, although chemotherapy might be required in a subset of high-risk patients. No differences in treatment efficacy are seen for anti-human epidermal growth factor receptor 2 (HER2) therapies in the adjuvant setting and cyclin-dependent kinases 4 and 6 inhibitors in the metastatic setting. The clinical utility of the commercially available prognostic gene expression-based tests is unclear for patients with ILC. Several ESCAT alterations differ in frequency between ILC and NST. Germline BRCA1 and PALB2 alterations are less frequent in patients with ILC, while germline CDH1 (gene coding for E-cadherin) alterations are more frequent in patients with ILC. Somatic HER2 mutations are more frequent in ILC, especially in metastases (15% ILC versus 5% NST). A high tumour mutational burden, relevant for immune checkpoint inhibition, is more frequent in ILC metastases (16%) than in NST metastases (5%). Tumours with somatic inactivating CDH1 mutations may be vulnerable for treatment with ROS1 inhibitors, a concept currently investigated in early and metastatic ILC. CONCLUSION ILC is a unique malignancy based on its pathological and biological features leading to differences in diagnosis as well as in treatment response, resistance and targets as compared to NST.
Collapse
Affiliation(s)
- K Van Baelen
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; Departments of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - T Geukens
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - M Maetens
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - V Tjan-Heijnen
- Medical Oncology Department, Maastricht University Medical Center (MUMC), School of GROW, Maastricht, The Netherlands
| | - C J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - S Linn
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Departments of Medical Oncology, Amsterdam, The Netherlands; Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - F-C Bidard
- Department of Medical Oncology, Institut Curie, UVSQ/Paris-Saclav University, Paris, France
| | - F Richard
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - W W Yang
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - R E Steele
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - S J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - C Van Ongeval
- Departments of Radiology, UZ Leuven, Leuven, Belgium
| | - M De Schepper
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; Pathology, UZ Leuven, Leuven, Belgium
| | - E Isnaldi
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - A Smeets
- Surgical Oncology, UZ Leuven, Leuven, Belgium
| | - K Punie
- General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - L Voorwerk
- Departments of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H Wildiers
- General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - G Floris
- Pathology, UZ Leuven, Leuven, Belgium
| | | | - P W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Neven
- Departments of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - E Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - E Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - M Kok
- Departments of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Desmedt
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Coignard J, Lush M, Beesley J, O'Mara TA, Dennis J, Tyrer JP, Barnes DR, McGuffog L, Leslie G, Bolla MK, Adank MA, Agata S, Ahearn T, Aittomäki K, Andrulis IL, Anton-Culver H, Arndt V, Arnold N, Aronson KJ, Arun BK, Augustinsson A, Azzollini J, Barrowdale D, Baynes C, Becher H, Bermisheva M, Bernstein L, Białkowska K, Blomqvist C, Bojesen SE, Bonanni B, Borg A, Brauch H, Brenner H, Burwinkel B, Buys SS, Caldés T, Caligo MA, Campa D, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chung WK, Claes KBM, Clarke CL, Collée JM, Conroy DM, Czene K, Daly MB, Devilee P, Diez O, Ding YC, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Eliassen AH, Engel C, Eriksson M, Evans DG, Fasching PA, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gago-Dominguez M, Gapstur SM, Garber J, Garcia-Barberan V, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Gehrig A, Georgoulias V, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hart SN, He W, Hogervorst FBL, Hollestelle A, Hopper JL, Horcasitas DJ, Hulick PJ, Hunter DJ, Imyanitov EN, Jager A, Jakubowska A, James PA, Jensen UB, John EM, Jones ME, Kaaks R, Kapoor PM, Karlan BY, Keeman R, Khusnutdinova E, Kiiski JI, Ko YD, Kosma VM, Kraft P, Kurian AW, Laitman Y, Lambrechts D, Le Marchand L, Lester J, Lesueur F, Lindstrom T, Lopez-Fernández A, Loud JT, Luccarini C, Mannermaa A, Manoukian S, Margolin S, Martens JWM, Mebirouk N, Meindl A, Miller A, Milne RL, Montagna M, Nathanson KL, Neuhausen SL, Nevanlinna H, Nielsen FC, O'Brien KM, Olopade OI, Olson JE, Olsson H, Osorio A, Ottini L, Park-Simon TW, Parsons MT, Pedersen IS, Peshkin B, Peterlongo P, Peto J, Pharoah PDP, Phillips KA, Polley EC, Poppe B, Presneau N, Pujana MA, Punie K, Radice P, Rantala J, Rashid MU, Rennert G, Rennert HS, Robson M, Romero A, Rossing M, Saloustros E, Sandler DP, Santella R, Scheuner MT, Schmidt MK, Schmidt G, Scott C, Sharma P, Soucy P, Southey MC, Spinelli JJ, Steinsnyder Z, Stone J, Stoppa-Lyonnet D, Swerdlow A, Tamimi RM, Tapper WJ, Taylor JA, Terry MB, Teulé A, Thull DL, Tischkowitz M, Toland AE, Torres D, Trainer AH, Truong T, Tung N, Vachon CM, Vega A, Vijai J, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wolk A, Yadav S, Yang XR, Yannoukakos D, Zheng W, Ziogas A, Zorn KK, Park SK, Thomassen M, Offit K, Schmutzler RK, Couch FJ, Simard J, Chenevix-Trench G, Easton DF, Andrieu N, Antoniou AC. A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nat Commun 2021; 12:1078. [PMID: 33597508 PMCID: PMC7890067 DOI: 10.1038/s41467-020-20496-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/19/2020] [Indexed: 02/02/2023] Open
Abstract
Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10-8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Juliette Coignard
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- PSL University Paris, Paris, France
- Paris Sud University, Orsay, France
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan Beesley
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Simona Agata
- Immunology and Molecular Oncology, Unit Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute Queen's University, Kingston, ON, Canada
| | - Banu K Arun
- Department of Breast Medical Oncology University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences Lund University, Lund, 22242, Sweden
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Heiko Becher
- Institute for Medical Biometrics and Epidemiology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Leslie Bernstein
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Katarzyna Białkowska
- Department of Genetics and Pathology Pomeranian Medical University Szczecin, Szczecin, Poland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital University of Helsinki, Helsinki, Finland
- Department of Oncology Örebro University Hospital, Örebro, Sweden
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ake Borg
- Department of Oncology Lund University and Skåne University Hospital, Lund, Sweden
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence University of Tübingen, Tübingen, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, C080 German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg University of Heidelberg, Heidelberg, Germany
| | - Saundra S Buys
- Department of Medicine Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Trinidad Caldés
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Maria A Caligo
- SOD Genetica Molecolare University Hospital, Pisa, Italy
| | - Daniele Campa
- Department of Biology University of Pisa, Pisa, Italy
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brian D Carter
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Jose E Castelao
- Oncology and Genetics Unit Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | | | - Christine L Clarke
- Westmead Institute for Medical Research University of Sydney, Sydney, NSW, Australia
| | - J Margriet Collée
- Department of Clinical Genetics Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Don M Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics Fox Chase Cancer Center Philadelphia, Philadelphia, PA, USA
| | - Peter Devilee
- Department of Pathology Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics Leiden University Medical Center, Leiden, The Netherlands
| | - Orland Diez
- Oncogenetics Group Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Clinical and Molecular Genetics Area University Hospital Vall d'Hebron, Barcelona, Spain
| | - Yuan Chun Ding
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences University of Westminster, London, UK
| | - Diana M Eccles
- Faculty of Medicine University of Southampton, Southampton, UK
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology University of Leipzig, Leipzig, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St Mary's Hospital, Manchester, UK
- Genomic Medicine, North West Genomics hub Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology University of California at Los Angeles, Los Angeles, CA, USA
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen, Germany
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES National Centre for Scientific Research íDemokritosí, Athens, Greece
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine Tel Aviv University, Ramat Aviv, Israel
| | - Lin Fritschi
- School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center University of California, San Diego La Jolla, CA, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Judy Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vanesa Garcia-Barberan
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Gehrig
- Department of Human Genetics University Würzburg, Würzburg, Germany
| | | | - Graham G Giles
- Cancer Epidemiology Division Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital McGill University Montréal, Montréal, QC, Canada
| | - David E Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna González-Neira
- Human Cancer Genetics Programme Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, MD, USA
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP) INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Eric Hahnen
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, CA, USA
| | | | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia A Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Steven N Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Frans B L Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darling J Horcasitas
- New Mexico Oncology Hematology Consultants, University of New Mexico, Albuquerque, NM, USA
| | - Peter J Hulick
- Center for Medical Genetics NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine Chicago, Chicago, IL, USA
| | - David J Hunter
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
- Nuffield Department of Population Health University of Oxford, Oxford, UK
| | | | - Agnes Jager
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology Pomeranian Medical University Szczecin, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics Pomeranian Medical University, Szczecin, Poland
| | - Paul A James
- Sir Peter MacCallum Department of Oncology The University of Melbourne, Melbourne, VIC, Australia
- Parkville Familial Cancer Centre Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Uffe Birk Jensen
- Department of Clinical Genetics Aarhus, University Hospital, Aarhus, Denmark
| | - Esther M John
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael E Jones
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Genetics and Epidemiology The Institute of Cancer Research, London, UK
| | - Beth Y Karlan
- Faculty of Medicine University of Heidelberg, Heidelberg, Germany
- David Geffen School of Medicine, Department of Obstetrics and Gynecology University of California at Los Angeles, Los Angeles, CA, USA
| | - Renske Keeman
- Womenís Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Division of Molecular Pathology The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Johanna I Kiiski
- Department of Genetics and Fundamental Medicine Bashkir State Medical University, Ufa, Russia
| | - Yon-Dschun Ko
- Department of Obstetrics and Gynecology, Helsinki University Hospital University of Helsinki, Helsinki, Finland
| | - Veli-Matti Kosma
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH Johanniter Krankenhaus, Bonn, Germany
- Translational Cancer Research Area University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine University of Eastern Finland, Kuopio, Finland
| | - Peter Kraft
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
| | - Allison W Kurian
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Jenny Lester
- Faculty of Medicine University of Heidelberg, Heidelberg, Germany
- David Geffen School of Medicine, Department of Obstetrics and Gynecology University of California at Los Angeles, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- PSL University Paris, Paris, France
| | - Tricia Lindstrom
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Adria Lopez-Fernández
- High Risk and Cancer Prevention Group Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, MD, USA
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Arto Mannermaa
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH Johanniter Krankenhaus, Bonn, Germany
- Translational Cancer Research Area University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine University of Eastern Finland, Kuopio, Finland
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset Karolinska Institutet, Stockholm, Sweden
| | - John W M Martens
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- PSL University Paris, Paris, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics University of Munich, Campus Grosshadern, Munich, Germany
| | - Austin Miller
- NRG Oncology, Statistics and Data Management Center Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roger L Milne
- Cancer Epidemiology Division Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
| | - Marco Montagna
- Immunology and Molecular Oncology, Unit Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Genetics and Fundamental Medicine Bashkir State Medical University, Ufa, Russia
| | - Finn C Nielsen
- Center for Genomic Medicine Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Katie M O'Brien
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | | | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences Lund University, Lund, 22242, Sweden
| | - Ana Osorio
- Human Cancer Genetics Programme Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura Ottini
- Department of Molecular Medicine University La Sapienza, Rome, Italy
| | | | - Michael T Parsons
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Inge Sokilde Pedersen
- Molecular Diagnostics Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine Aalborg University, Aalborg, Denmark
| | - Beth Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program IFOM - the FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology London School of Hygiene and Tropical Medicine, London, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Kelly-Anne Phillips
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology The University of Melbourne, Melbourne, VIC, Australia
| | - Eric C Polley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Bruce Poppe
- Centre for Medical Genetics Ghent University, Gent, Belgium
| | - Nadege Presneau
- School of Life Sciences University of Westminster, London, UK
| | - Miquel Angel Pujana
- Translational Research Laboratory IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Kevin Punie
- Leuven Multidisciplinary Breast Center, Department of Oncology Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | | | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Clalit National Cancer Control Center Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Hedy S Rennert
- Clalit National Cancer Control Center Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Mark Robson
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Atocha Romero
- Medical Oncology Department Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Maria Rossing
- Center for Genomic Medicine Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Dale P Sandler
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Regina Santella
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Maren T Scheuner
- Cancer Genetics and Prevention Program University of California San Francisco, San Francisco, CA, USA
| | - Marjanka K Schmidt
- Womenís Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Gunnar Schmidt
- Institute of Human Genetics Hannover Medical School, Hannover, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology University of Kansas Medical Center, Westwood, KS, USA
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology The University of Melbourne, Melbourne, VIC, Australia
| | - John J Spinelli
- Population Oncology BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health University of British Columbia, Vancouver, BC, Canada
| | - Zoe Steinsnyder
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- The Curtin UWA Centre for Genetic Origins of Health and Disease Curtin University and University of Western Australia, Perth, Western Australia, Australia
| | - Dominique Stoppa-Lyonnet
- Service de Génétique Institut Curie, Paris, France
- Department of Tumour Biology INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Anthony Swerdlow
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Division of Breast Cancer Research Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
| | | | - Jack A Taylor
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
- Epigenetic and Stem Cell Biology Laboratory National Institute of Environmental Health Sciences, NIH Research Triangle Park, Triangle Park, NC, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Alex Teulé
- Hereditary Cancer Program ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Darcy L Thull
- Department of Medicine Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology McGill University, Montréal, QC, Canada
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Center, University of Cambridge, Cambridge, UK
| | - Amanda E Toland
- Department of Cancer Biology and Genetics The Ohio State University, Columbus, OH, USA
| | - Diana Torres
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics Pontificia Universidad Javeriana, Bogota, Colombia
| | - Alison H Trainer
- Parkville Familial Cancer Centre Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- Department of medicine University Of Melbourne, Melbourne, VIC, Australia
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP) INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Nadine Tung
- Department of Medical Oncology Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology Mayo Clinic, Rochester, MN, USA
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica-SERGAS, Instituto de Investigación Sanitaria Santiago de Compostela (IDIS); CIBERER, Santiago de Compostela, Spain
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Triangle Park, NC, USA
| | | | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences Uppsala University, Uppsala, Sweden
| | | | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES National Centre for Scientific Research íDemokritosí, Athens, Greece
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Kristin K Zorn
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sue K Park
- Department of Preventive Medicine Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute Seoul National University, Seoul, Korea
| | - Mads Thomassen
- Department of Clinical Genetics Odense University Hospital, Odence C, Denmark
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Rita K Schmutzler
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology Mayo Clinic, Rochester, MN, USA
| | - Jacques Simard
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Nadine Andrieu
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France.
- Institut Curie Paris, Paris, France.
- Mines ParisTech Fontainebleau, Paris, France.
- PSL University Paris, Paris, France.
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Mejdahl MK, Wohlfahrt J, Holm M, Knoop AS, Tjønneland A, Melbye M, Kroman N, Balslev E. Synchronous bilateral breast cancer: a nationwide study on histopathology and etiology. Breast Cancer Res Treat 2020; 182:229-238. [PMID: 32441019 DOI: 10.1007/s10549-020-05689-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of the present study was to describe histopathologic characteristics of synchronous bilateral breast cancer (SBBC), and by comparing SBBC to unilateral breast cancer (UBC), identify possible etiological mechanisms of SBBC. METHODS Patients with primary SBBC (diagnosed within 4 months) and UBC diagnosed in Denmark between 1999 and 2015 were included. Detailed data on histopathology were retrieved from the Danish Breast Cancer Group database and the Danish Pathology Register. Associations between bilateral disease and the different histopathologic characteristics were evaluated by odds ratios and estimated by multinomial regression models. RESULTS 1214 patients with SBBC and 59,221 with UBC were included. Patients with SBBC more often had invasive lobular carcinomas (OR 1.29; 95% CI 1.13-1.47), a clinically distinct subtype of breast cancer, than UBC patients. Further, they were older than UBC patients, more often had multifocal cancer (OR 1.13; 95% CI 1.01-1.26), and a less aggressive subtype than UBC patients. Invasive lobular carcinoma was associated with having multiple tumors in breast tissue-both in the form of bilateral disease and multifocal disease, and this association was independent of laterality. No similar pattern was observed for other tumor characteristics. CONCLUSION We identified two etiological mechanisms that could explain some of the occurrence of SBBC. The high proportion of less aggressive carcinomas and higher age of SBBC compared to UBC patients suggests that many are diagnosed at a subclinical stage as slow-growing tumors have a higher probability of simultaneous diagnosis. The high proportion of invasive lobular carcinoma observed in bilateral and multifocal disease, being independent of laterality, suggests that these patients have an increased propensity to malignant tumor formation in breast tissue.
Collapse
Affiliation(s)
- Mathias Kvist Mejdahl
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark. .,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
| | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Marianne Holm
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ann Søegaard Knoop
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Niels Kroman
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark.,Danish Cancer Society, Copenhagen, Denmark
| | - Eva Balslev
- Department of Pathology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
7
|
Chen C, Chen S, Luo M, Yan H, Pang L, Zhu C, Tan W, Zhao Q, Lai J, Li H. The role of the CDCA gene family in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:190. [PMID: 32309337 PMCID: PMC7154490 DOI: 10.21037/atm.2020.01.99] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Ovarian cancer is a frequently-occurring reproductive system malignancy in females, which leads to an annual of over 100 thousand deaths worldwide. Methods The electronic databases, including GEPIA, ONCOMINE, Metascape, and Kaplan-Meier Plotter, were used to examine both survival and transcriptional data regarding the cell division cycle associated (CDCA) gene family among ovarian cancer patients. Results All CDCA genes expression levels were up-regulated in ovarian cancer tissues relative to those in non-carcinoma ovarian counterparts. Besides, CDCA5/7 expression levels were related to the late tumor stage. In addition, the Kaplan-Meier Plotter database was employed to carry out survival analysis, which suggested that ovarian cancer patients with increased CDCA2/3/5/7 expression levels had poor overall survival (OS) (P<0.05). Moreover, ovarian cancer patients that had up-regulated mRNA expression levels of CDCA2/5/8 had markedly reduced progression-free survival (PFS) (P<0.05); and up-regulated CDCA4 expression showed remarkable association with reduced post-progression survival (PPS) (P<0.05). Additionally, the following processes were affected by CDCA genes alterations, including R-HAS-2500257: resolution of sister chromatid cohesion; GO:0051301: cell division; CORUM: 1118: Chromosomal passenger complex (CPC, including CDCA8, INCENP, AURKB and BIRC5); CORUM: 127: NDC80 kinetochore complex; M129: PID PLK1 pathway; and GO: 0007080: mitotic metaphase plate congression, all of which were subjected to marked regulation since the alterations affected CDCA genes. Conclusions Up-regulated CDCA gene expression in ovarian cancer tissues probably played a crucial part in the occurrence of ovarian cancer. The up-regulated CDCA2/3/5/7 expression levels were used as the potential prognostic markers to improve the poor ovarian cancer survival and prognostic accuracy. Moreover, CDCA genes probably exerted their functions in tumorigenesis through the PLK1 pathway.
Collapse
Affiliation(s)
- Chongxiang Chen
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Siliang Chen
- Department of Hematology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ma Luo
- Department of Interventional Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Honghong Yan
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Lanlan Pang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaoyang Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiyan Tan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingyu Zhao
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jielan Lai
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Huan Li
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
8
|
Kapoor PM, Lindström S, Behrens S, Wang X, Michailidou K, Bolla MK, Wang Q, Dennis J, Dunning AM, Pharoah PDP, Schmidt MK, Kraft P, García-Closas M, Easton DF, Milne RL, Chang-Claude J. Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the Breast Cancer Association Consortium. Int J Epidemiol 2020; 49:216-232. [PMID: 31605532 PMCID: PMC7426027 DOI: 10.1093/ije/dyz193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous gene-environment interaction studies of breast cancer risk have provided sparse evidence of interactions. Using the largest available dataset to date, we performed a comprehensive assessment of potential effect modification of 205 common susceptibility variants by 13 established breast cancer risk factors, including replication of previously reported interactions. METHODS Analyses were performed using 28 176 cases and 32 209 controls genotyped with iCOGS array and 44 109 cases and 48 145 controls genotyped using OncoArray from the Breast Cancer Association Consortium (BCAC). Gene-environment interactions were assessed using unconditional logistic regression and likelihood ratio tests for breast cancer risk overall and by estrogen-receptor (ER) status. Bayesian false discovery probability was used to assess the noteworthiness of the meta-analysed array-specific interactions. RESULTS Noteworthy evidence of interaction at ≤1% prior probability was observed for three single nucleotide polymorphism (SNP)-risk factor pairs. SNP rs4442975 was associated with a greater reduction of risk of ER-positive breast cancer [odds ratio (OR)int = 0.85 (0.78-0.93), Pint = 2.8 x 10-4] and overall breast cancer [ORint = 0.85 (0.78-0.92), Pint = 7.4 x 10-5) in current users of estrogen-progesterone therapy compared with non-users. This finding was supported by replication using OncoArray data of the previously reported interaction between rs13387042 (r2 = 0.93 with rs4442975) and current estrogen-progesterone therapy for overall disease (Pint = 0.004). The two other interactions suggested stronger associations between SNP rs6596100 and ER-negative breast cancer with increasing parity and younger age at first birth. CONCLUSIONS Overall, our study does not suggest strong effect modification of common breast cancer susceptibility variants by established risk factors.
Collapse
Affiliation(s)
- Pooja Middha Kapoor
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Sara Lindström
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xiaoliang Wang
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology and Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, Monash University, Clayton, VIC, Australia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), Hamburg, Germany
| | | |
Collapse
|
9
|
Yadav S, Couch FJ. Germline Genetic Testing for Breast Cancer Risk: The Past, Present, and Future. Am Soc Clin Oncol Educ Book 2019; 39:61-74. [PMID: 31099663 DOI: 10.1200/edbk_238987] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of germline genetic testing for breast cancer (BC) risk has evolved substantially in the last decade. The introduction of multigene panel testing (MGPT) led to an urgent need to understand the cancer risk associated with several genes included in the panels. Although the research on understanding the cancer risk associated with mutations in several genes continues, there is also a need to understand the modifying effects of race and ethnicity, family history, and BC pathology on the prevalence of germline mutations and associated BC risk. Furthermore, polygenic risk scores (PRSs) to predict BC risk in patients with or without germline mutations in cancer-predisposition genes are now available for clinical use, although data on the clinical utility of PRSs are lacking. In patients with advanced BC associated with BRCA1/2 mutation, olaparib and talazoparib are now approved for treatment. In addition, molecular profiling studies are being used to clarify the BC tumor biology in mutation carriers to identify potential therapeutic options. In this article, we discuss these advances in the field of germline genetic testing and highlight current limitations and implications for clinical care.
Collapse
Affiliation(s)
| | - Fergus J Couch
- 2 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Feld SI, Woo KM, Alexandridis R, Wu Y, Liu J, Peissig P, Onitilo AA, Cox J, Page CD, Burnside ES. Improving breast cancer risk prediction by using demographic risk factors, abnormality features on mammograms and genetic variants. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2018; 2018:1253-1262. [PMID: 30815167 PMCID: PMC6371301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The predictive capability of combining demographic risk factors, germline genetic variants, and mammogram abnormality features for breast cancer risk prediction is poorly understood. We evaluated the predictive performance of combinations of demographic risk factors, high risk single nucleotide polymorphisms (SNPs), and mammography features for women recommended for breast biopsy in a retrospective case-control study (n = 768) with four logistic regression models. The AUC of the baseline demographic features model was 0.580. Both genetic variants and mammography abnormality features augmented the performance of the baseline model: demographics + SNP (AUC =0.668), demographics + mammography (AUC =0.702). Finally, we found that the demographics + SNP + mammography model (AUC = 0.753) had the greatest predictive power, with a significant performance improvement over the other models. The combination of demographic risk factors, genetic variants and imaging features improves breast cancer risk prediction over prior methods utilizing only a subset of these features.
Collapse
Affiliation(s)
- Shara I Feld
- University of Wisconsin Department of Radiology, Madison, WI
| | - Kaitlin M Woo
- University of Wisconsin Department of Biostatistics and Medical Informatics, Madison, WI
| | - Roxana Alexandridis
- University of Wisconsin Department of Biostatistics and Medical Informatics, Madison, WI
| | - Yirong Wu
- University of Wisconsin Department of Radiology, Madison, WI
| | - Jie Liu
- University of Washington Department of Genome Sciences, Seattle, WA
| | - Peggy Peissig
- Marshfield Clinic Research Institute, Marshfield, WI
| | - Adedayo A Onitilo
- Marshfield Clinic Research Institute, Marshfield, WI
- Marshfield Clinic Weston Center Department of Hematology/Oncology, Weston, WI
| | - Jennifer Cox
- University of Wisconsin Department of Radiology, Madison, WI
- University of Wisconsin Department of Biostatistics and Medical Informatics, Madison, WI
- University of Washington Department of Genome Sciences, Seattle, WA
- Marshfield Clinic Research Institute, Marshfield, WI
- Marshfield Clinic Weston Center Department of Hematology/Oncology, Weston, WI
| | - C David Page
- University of Wisconsin Department of Biostatistics and Medical Informatics, Madison, WI
| | | |
Collapse
|
11
|
Ditchi Y, Broudin C, El Dakdouki Y, Muller M, Lavaud P, Caron O, Lejri D, Baynes C, Mathieu MC, Salleron J, Benusiglio PR. Low risk of invasive lobular carcinoma of the breast in carriers of BRCA1 (hereditary breast and ovarian cancer) and TP53 (Li-Fraumeni syndrome) germline mutations. Breast J 2018; 25:16-19. [PMID: 30414230 DOI: 10.1111/tbj.13154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Invasive lobular carcinoma (ILC) of the breast has epidemiological, molecular and clinical specificities, and should likely be considered a unique entity. As for genetic susceptibility, CDH1 germline mutations predispose exclusively to ILC. Data are however scarce regarding ILC in women with BRCA1/2 (Hereditary Breast and Ovarian Cancer) and TP53 (Li-Fraumeni syndrome) germline mutations. METHODS We included all breast cancers from female patients tested at our institute between 1992 and 2016 (n = 3469) for which pathology data were available. ILC proportion comparison according to mutational status was performed by a chi-squared test. The impact of susceptibility genes on ILC proportion was investigated by univariate logistic regression with wild-type patients as reference. RESULTS AND DISCUSSION There were 265 (7.64%) ILC: 2/342 (0.58%) in BRCA1 patients, 24/238 (10%) in BRCA2 patients, 1/57 (1.75%) in TP53 patients and 238/2832 (8.4%) in non-carriers. The majority of breast cancers in all groups were invasive ductal and ductal in situ carcinomas. The difference in ILC proportion was highly significant (P < 0.001). Compared to wild-type patients, BRCA1 was associated with a lower ILC proportion (OR 0.064 [95% CI 0.016;0.259], P < 0.0001). BRCA2 OR was 1.222 [95%CI 0.785;1.902] (P = 0.374), TP53 OR was 0.195 [95%CI 0.027;1.412] (P = 0.105). ILC are therefore underrepresented in BRCA1 and TP53 mutation carriers. Formal significance (P = 0.05) was not reached for TP53, but statistical power was only 38%. Based on ILC incidence in the general population, we make the hypothesis that BRCA1 and TP53 do not predispose to ILC, as the few occurrences of ILC in mutation carriers could be attributed to chance and not to germline mutations. Our observations will be useful to clinical cancer geneticists managing patients with ILC, as a BRCA1 or TP53 mutation in these patients would be unlikely. Genetic counseling should be adapted accordingly.
Collapse
Affiliation(s)
- Yoan Ditchi
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Chloé Broudin
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yolla El Dakdouki
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie Muller
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Département de Médecine Oncologique, Institut de Cancérologie de Lorraine Alexis Vautrin, Vandœuvre-lès-Nancy, France
| | - Pernelle Lavaud
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Olivier Caron
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Donia Lejri
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Caroline Baynes
- Department of Oncology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Marie-Christine Mathieu
- Département de Biologie et Pathologie Médicales, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Julia Salleron
- Département de Biostatistiques, Institut de Cancérologie de Lorraine Alexis Vautrin, Vandœuvre-lès-Nancy, France
| | - Patrick R Benusiglio
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Consultation d'Oncogénétique, UF d'Oncogénétique, Groupe Hospitalier Pitié-Salpêtrière APHP, Paris, France
| |
Collapse
|
12
|
Thanh NTN, Lan NTT, Phat PT, Giang NDT, Hue NT. Two polymorphisms, rs2046210 and rs3803662, are associated with breast cancer risk in a Vietnamese case-control cohort. Genes Genet Syst 2018; 93:101-109. [DOI: 10.1266/ggs.17-00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Nguyen Thi Ngoc Thanh
- Department of Biology and Biotechnology, University of Science, Vietnam National University
| | - Nguyen Thi Tuyet Lan
- Department of Biotechnology, International University, Vietnam National University
| | - Phan Thanh Phat
- Department of Biology and Biotechnology, University of Science, Vietnam National University
| | | | - Nguyen Thi Hue
- Department of Biology and Biotechnology, University of Science, Vietnam National University
| |
Collapse
|
13
|
Horne HN, Oh H, Sherman ME, Palakal M, Hewitt SM, Schmidt MK, Milne RL, Hardisson D, Benitez J, Blomqvist C, Bolla MK, Brenner H, Chang-Claude J, Cora R, Couch FJ, Cuk K, Devilee P, Easton DF, Eccles DM, Eilber U, Hartikainen JM, Heikkilä P, Holleczek B, Hooning MJ, Jones M, Keeman R, Mannermaa A, Martens JWM, Muranen TA, Nevanlinna H, Olson JE, Orr N, Perez JIA, Pharoah PDP, Ruddy KJ, Saum KU, Schoemaker MJ, Seynaeve C, Sironen R, Smit VTHBM, Swerdlow AJ, Tengström M, Thomas AS, Timmermans AM, Tollenaar RAEM, Troester MA, van Asperen CJ, van Deurzen CHM, Van Leeuwen FF, Van't Veer LJ, García-Closas M, Figueroa JD. E-cadherin breast tumor expression, risk factors and survival: Pooled analysis of 5,933 cases from 12 studies in the Breast Cancer Association Consortium. Sci Rep 2018; 8:6574. [PMID: 29700408 PMCID: PMC5920115 DOI: 10.1038/s41598-018-23733-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/16/2018] [Indexed: 01/20/2023] Open
Abstract
E-cadherin (CDH1) is a putative tumor suppressor gene implicated in breast carcinogenesis. Yet, whether risk factors or survival differ by E-cadherin tumor expression is unclear. We evaluated E-cadherin tumor immunohistochemistry expression using tissue microarrays of 5,933 female invasive breast cancers from 12 studies from the Breast Cancer Consortium. H-scores were calculated and case-case odds ratios (OR) and 95% confidence intervals (CIs) were estimated using logistic regression. Survival analyses were performed using Cox regression models. All analyses were stratified by estrogen receptor (ER) status and histologic subtype. E-cadherin low cases (N = 1191, 20%) were more frequently of lobular histology, low grade, >2 cm, and HER2-negative. Loss of E-cadherin expression (score < 100) was associated with menopausal hormone use among ER-positive tumors (ever compared to never users, OR = 1.24, 95% CI = 0.97-1.59), which was stronger when we evaluated complete loss of E-cadherin (i.e. H-score = 0), OR = 1.57, 95% CI = 1.06-2.33. Breast cancer specific mortality was unrelated to E-cadherin expression in multivariable models. E-cadherin low expression is associated with lobular histology, tumor characteristics and menopausal hormone use, with no evidence of an association with breast cancer specific survival. These data support loss of E-cadherin expression as an important marker of tumor subtypes.
Collapse
Affiliation(s)
- Hisani N Horne
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Division of Molecular Genetics & Pathology, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hannah Oh
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Department of Health Policy and Management, College of Health Science, Korea University, Seoul, Korea
| | - Mark E Sherman
- Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Maya Palakal
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Stephen M Hewitt
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Roger L Milne
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Victoria, Australia
| | - David Hardisson
- Department of Pathology, Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz IdiPAZ, and Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Javier Benitez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Group Genetic Cancer Epidemiology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renata Cora
- Independent contractor, CT(ASCP), MB (ASCP), National Cancer Institute, Bethesda, MD, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Katarina Cuk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Diana M Eccles
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ursula Eilber
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jaana M Hartikainen
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Päivi Heikkilä
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Maartje J Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Michael Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - John W M Martens
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nick Orr
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Jose I A Perez
- Servicio de Cirugía General y Especialidades, Hospital Monte Naranco, Oviedo, Spain
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Kai-Uwe Saum
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Caroline Seynaeve
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reijo Sironen
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Maria Tengström
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
| | - Abigail S Thomas
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - A Mieke Timmermans
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Melissa A Troester
- Department of Pathology and Laboratory Medicin, Gillings School of Global Public Health, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Flora F Van Leeuwen
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Laura J Van't Veer
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK.
| |
Collapse
|
14
|
Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ. Common Genetic Variation and Breast Cancer Risk-Past, Present, and Future. Cancer Epidemiol Biomarkers Prev 2018; 27:380-394. [PMID: 29382703 PMCID: PMC5884707 DOI: 10.1158/1055-9965.epi-17-1144] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common cancer among women in the United States, with up to 30% of those diagnosed displaying a family history of breast cancer. To date, 18% of the familial risk of breast cancer can be explained by SNPs. This review summarizes the discovery of risk-associated SNPs using candidate gene and genome-wide association studies (GWAS), including discovery and replication in large collaborative efforts such as The Collaborative Oncologic Gene-environment Study and OncoArray. We discuss the evolution of GWAS studies, efforts to discover additional SNPs, and methods for identifying causal variants. We summarize findings associated with overall breast cancer, pathologic subtypes, and mutation carriers (BRCA1, BRCA2, and CHEK2). In addition, we summarize the development of polygenic risk scores (PRS) using the risk-associated SNPs and show how PRS can contribute to estimation of individual risks for developing breast cancer. Cancer Epidemiol Biomarkers Prev; 27(4); 380-94. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Jenna Lilyquist
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Celine M Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Fergus J Couch
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Barrdahl M, Canzian F, Gaudet MM, Gapstur SM, Trichopoulou A, Tsilidis K, van Gils CH, Borgquist S, Weiderpass E, Khaw KT, Giles GG, Milne RL, Le Marchand L, Haiman C, Lindström S, Kraft P, Hunter DJ, Ziegler R, Chanock SJ, Yang XR, Buring JE, Lee IM, Kaaks R, Campa D. A comprehensive analysis of polymorphic variants in steroid hormone and insulin-like growth factor-1 metabolism and risk of in situ breast cancer: Results from the Breast and Prostate Cancer Cohort Consortium. Int J Cancer 2018; 142:1182-1188. [PMID: 29114882 DOI: 10.1002/ijc.31145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 11/08/2022]
Abstract
We assessed the association between 1,414 single nucleotide polymorphisms (SNPs) in genes involved in synthesis and metabolism of steroid hormones and insulin-like growth factor 1, and risk of breast cancer in situ (BCIS), with the aim of determining whether any of these were disease specific. This was carried out using 1,062 BCIS cases and 10,126 controls as well as 6,113 invasive breast cancer cases from the Breast and Prostate Cancer Cohort Consortium (BPC3). Three SNPs showed at least one nominally significant association in homozygous minor versus homozygous major models. ACVR2A-rs2382112 (ORhom = 3.05, 95%CI = 1.72-5.44, Phom = 1.47 × 10-4 ), MAST2-rs12124649 (ORhom = 1.73, 95% CI =1.18-2.54, Phom = 5.24 × 10-3 ), and INSR-rs10500204 (ORhom = 1.96, 95% CI = 1.44-2.67, Phom =1.68 × 10-5 ) were associated with increased risk of BCIS; however, only the latter association was significant after correcting for multiple testing. Furthermore, INSR-rs10500204 was more strongly associated with the risk of BCIS than invasive disease in case-only analyses using the homozygous minor versus homozygous major model (ORhom = 1.78, 95% CI = 1.30-2.44, Phom = 3.23 × 10-4 ). The SNP INSR-rs10500204 is located in an intron of the INSR gene and is likely to affect binding of the promyelocytic leukemia (PML) protein. The PML gene is known as a tumor suppressor and growth regulator in cancer. However, it is not clear on what pathway the A-allele of rs10500204 could operate to influence the binding of the protein. Hence, functional studies are warranted to investigate this further.
Collapse
Affiliation(s)
- Myrto Barrdahl
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mia M Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | | | - Kostas Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Carla H van Gils
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Signe Borgquist
- Clinical Trial Unit, Skåne University Hospital, Lund, Sweden.,Division of Oncology and Pathology, Clinical Sciences, Lund, Lund University, Sweden
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway.,Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, VIC, Australia.,Faculty of Medicine, Monash University, Melbourne, VIC, Australia
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, VIC, Australia
| | - Loic Le Marchand
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu, HI
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Sara Lindström
- Department of Epidemiology, University of Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA
| | - Regina Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Pike Bethesda, MD
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Pike Bethesda, MD.,Core Genotyping Facility, Frederick National Laboratory for Cancer Research, Gaithersburg, MD
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Pike Bethesda, MD
| | - Julie E Buring
- Divisions of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - I-Min Lee
- Divisions of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Mathew A, Rajagopal PS, Villgran V, Sandhu GS, Jankowitz RC, Jacob M, Rosenzweig M, Oesterreich S, Brufsky A. Distinct Pattern of Metastases in Patients with Invasive Lobular Carcinoma of the Breast. Geburtshilfe Frauenheilkd 2017; 77:660-666. [PMID: 28757653 DOI: 10.1055/s-0043-109374] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Invasive lobular carcinoma (ILC) comprises around 10 - 15% of invasive breast cancers. Few prior studies have demonstrated a unique pattern of metastases between ILC and the more common invasive ductal carcinoma (IDC). To our knowledge, such data is limited to first sites of distant recurrence. We aimed to perform a comparison of the metastatic pattern of ILC and IDC at first distant recurrence as well as over the entire course of metastatic disease. METHODS We used a prospectively collated database of patients with metastatic breast cancer. Breast cancer recurrence or metastases were classified into various sites and a descriptive analysis was performed. RESULTS Among 761 patients, 88 (11.6%) were diagnosed with ILC and 673 (88.4%) with IDC. Patients with ILC showed more frequent metastases to the bone (56.8 vs. 37.7%, p = 0.001) and gastrointestinal (GI) tract (5.7 vs. 0.3%, p < 0.001) as first site of distant recurrence, and less to organs such as lung (5.7 vs. 24.2%, p < 0.001) and liver (4.6 vs. 11.4%, p = 0.049). Over the entire course of metastatic disease, more patients with ILC had ovarian (5.7 vs. 2.1%, p = 0.042) and GI tract metastases (8.0 vs. 0.6%, p < 0.001), also demonstrating reduced tendency to metastasize to the liver (20.5 vs. 49.0%, p < 0.001) and lung (23.9 vs. 51.9%, p < 0.001). All associations but bone held after sensitivity analysis on hormonal status. Although patients presenting with ILC were noted to have more advanced stage at presentation, recurrence-free survival in these patients was increased (4.8 years vs. 3.2 years, p = 0.017). However, overall survival was not (2.5 vs. 2.0 years, p = 0.75). CONCLUSION After accounting for hormone receptor status, patients with IDC had greater lung/pleura and liver involvement, while patients with ILC had a greater propensity to develop ovarian and GI metastases both at first site and overall. Clinicians can use this information to provide more directed screening for metastases; it also adds to the argument that these two variants of breast cancer should be managed as unique diseases.
Collapse
Affiliation(s)
- Aju Mathew
- University of Kentucky Markey Cancer Center, Lexington, KY, USA
| | - Padma S Rajagopal
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Gurprataap S Sandhu
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Mini Jacob
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | | | | | - Adam Brufsky
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Xu T, Hu XX, Liu XX, Wang HJ, Lin K, Pan YQ, Sun HL, Peng HX, Chen XX, Wang SK, He BS. Association between SNPs in Long Non-coding RNAs and the Risk of Female Breast Cancer in a Chinese Population. J Cancer 2017; 8:1162-1169. [PMID: 28607590 PMCID: PMC5463430 DOI: 10.7150/jca.18055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) have been reported to be involved in tumorigenesis and tumor progression. Single nucleotide polymorphisms (SNPs) in the lncRNAs also play a vital role in carcinogenesis. The aim of this study was to assess the relationships between the four selected tagSNPs (rs944289, rs3787016, rs1456315, rs7463708) in the lncRNAs and the risk of female breast cancer in a Chinese population. A case-control study was carried out involving in a total of 439 breast cancer patients and 439 age-matched healthy controls. The genotyping was performed with Sequenom MassARRAY and the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) in tumor tissues was measured by the immunohistochemistry (IHC) assay. We found that rs3787016 TT genotype (adjusted odds ratio (OR) = 1.62, 95% confidence interval (CI) = 1.09-2.41, P = 0.018) was associated with an increased risk of female breast cancer, especially among the patients with premenopausal status (adjusted OR = 2.55, 95% CI = 1.30-4.97, P = 0.006). Moreover, a statistically significant increased risk of the rs3787016 TT genotype was observed among the patients with advanced tumor stage (Ⅲ and Ⅳ), poor histological grade (G3-G4), positive lymph node involvement, positive expression of ER and PR and negative expression of HER-2; rs7463708 GT and GT/GG genotype were associated with decreased risk of breast cancer in the subgroup of patients with postmenopausal status (GT versus (vs.) TT: adjusted OR = 0.67, 95% CI = 0.46-0.99, P = 0.043; GT/GG vs. TT: adjusted OR = 0.68, 95% CI = 0.47-0.98, P = 0.041) and tumor late-stage (GT vs. TT: adjusted OR = 0.65, 95% CI = 0.43-0.97, P = 0.037; GT/GG vs. TT: adjusted OR = 0.65, 95% CI = 0.44-0.96, P = 0.029). In short, rs3787016 TT genotype was associated with increased breast cancer risk and clinicopathologic features of the tumor, especially among premenopausal women.
Collapse
Affiliation(s)
- Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiu-Xiu Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Medical college, Southeast University, Nanjing, China
| | - Xiang-Xiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Han-Jin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kang Lin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Ling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong-Xin Peng
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Medical college, Southeast University, Nanjing, China
| | - Xiao-Xiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Medical college, Southeast University, Nanjing, China
| | - Shu-Kui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bang-Shun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Yuan Z, Liu E, Liu Z, Kijas JW, Zhu C, Hu S, Ma X, Zhang L, Du L, Wang H, Wei C. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim Genet 2016; 48:55-66. [PMID: 27807880 DOI: 10.1111/age.12477] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 01/19/2023]
Abstract
Fat-tailed sheep have commercial value because consumers prefer high-protein and low-fat food and producers care about feed conversion rate. However, fat-tailed sheep still have some scientific significance, as the fat tail is commonly regarded as a characteristic of environmental adaptability. Finding the candidate genes associated with fat tail formation is essential for breeding and conservation. To identify these candidate genes, we applied FST and hapFLK approaches in fat- and thin-tailed sheep with available 50K SNP genotype data. These two methods found 6.24 Mb of overlapped regions and 43 genes that may associated with fat tail development. Gene annotation showed that HOXA11, BMP2, PPP1CC, SP3, SP9, WDR92, PROKR1 and ETAA1 may play important roles in fat tail formation. These findings provide insight into tail fat development and a guide for molecular breeding and conservation.
Collapse
Affiliation(s)
- Z Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - E Liu
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Z Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - J W Kijas
- CSIRO Agriculture Flagship, Brisbane, Australia
| | - C Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - S Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - H Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - C Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Identification of novel susceptibility markers for the risk of overall breast cancer as well as subtypes defined by hormone receptor status in the Chinese population. J Hum Genet 2016; 61:1027-1034. [DOI: 10.1038/jhg.2016.97] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 02/03/2023]
|
20
|
Horne HN, Chung CC, Zhang H, Yu K, Prokunina-Olsson L, Michailidou K, Bolla MK, Wang Q, Dennis J, Hopper JL, Southey MC, Schmidt MK, Broeks A, Muir K, Lophatananon A, Fasching PA, Beckmann MW, Fletcher O, Johnson N, Sawyer EJ, Tomlinson I, Burwinkel B, Marme F, Guénel P, Truong T, Bojesen SE, Flyger H, Benitez J, González-Neira A, Anton-Culver H, Neuhausen SL, Brenner H, Arndt V, Meindl A, Schmutzler RK, Brauch H, Hamann U, Nevanlinna H, Khan S, Matsuo K, Iwata H, Dörk T, Bogdanova NV, Lindblom A, Margolin S, Mannermaa A, Kosma VM, Chenevix-Trench G, Wu AH, ven den Berg D, Smeets A, Zhao H, Chang-Claude J, Rudolph A, Radice P, Barile M, Couch FJ, Vachon C, Giles GG, Milne RL, Haiman CA, Marchand LL, Goldberg MS, Teo SH, Taib NAM, Kristensen V, Borresen-Dale AL, Zheng W, Shrubsole M, Winqvist R, Jukkola-Vuorinen A, Andrulis IL, Knight JA, Devilee P, Seynaeve C, García-Closas M, Czene K, Darabi H, Hollestelle A, Martens JWM, Li J, Lu W, Shu XO, Cox A, Cross SS, Blot W, Cai Q, Shah M, Luccarini C, Baynes C, Harrington P, Kang D, Choi JY, Hartman M, Chia KS, Kabisch M, Torres D, Jakubowska A, Lubinski J, Sangrajrang S, Brennan P, Slager S, Yannoukakos D, Shen CY, Hou MF, Swerdlow A, Orr N, Simard J, Hall P, Pharoah PDP, Easton DF, Chanock SJ, Dunning AM, Figueroa JD. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. PLoS One 2016; 11:e0160316. [PMID: 27556229 PMCID: PMC4996485 DOI: 10.1371/journal.pone.0160316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/18/2016] [Indexed: 02/02/2023] Open
Abstract
The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive.
Collapse
Affiliation(s)
- Hisani N. Horne
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
- Food and Drug Administration, Silver Spring, MD, United States of America
| | - Charles C. Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| | - Han Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK
- Institute of Population Health, University of Manchester, Manchester, UK
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK
| | - Peter A. Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, United States of America
| | - Matthias W. Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Elinor J. Sawyer
- Research Oncology, Guy’s Hospital, King's College London, London, UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Pascal Guénel
- Environmental Epidemiology of Cancer, Center for Research in Epidemiology and Population Health, INSERM, Villejuif, France
- University Paris-Sud, Villejuif, France
| | - Thérèse Truong
- Environmental Epidemiology of Cancer, Center for Research in Epidemiology and Population Health, INSERM, Villejuif, France
- University Paris-Sud, Villejuif, France
| | - Stig E. Bojesen
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Javier Benitez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras, Valencia, Spain
| | - Anna González-Neira
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, CA, United States of America
| | - Susan L. Neuhausen
- Beckman Research Institute of City of Hope, Duarte, CA, United States of America
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Rita K. Schmutzler
- Division of Molecular Gyneco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
- Center for Integrated Oncology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany
| | - Hiltrud Brauch
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - David ven den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Ann Smeets
- University Hospital Gashuisberg, Leuven, Belgium
| | - Hui Zhao
- Vesalius Research Center, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Celine Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Roger L. Milne
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Loic Le Marchand
- University of Hawaii Cancer Center, Honolulu, HI, United States of America
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montreal, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montreal, Canada
| | - Soo H. Teo
- Cancer Research Initiatives Foundation, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, KualaLumpur, Malaysia
| | - Nur A. M. Taib
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, KualaLumpur, Malaysia
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anne-Lise Borresen-Dale
- Department of Genetics, Institute for Cancer Research, Radiumhospitalet, Oslo University Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Martha Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | | | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julia A. Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline Seynaeve
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Wei Lu
- Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, UK
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- International Epidemiology Institute, Rockville, MD, United States of America
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Patricia Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Surgery, National University Health System, Singapore, Singapore
| | - Kee Seng Chia
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Susan Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, IRRP, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Chen-Yang Shen
- School of Public Health, China Medical University, Taichung, Taiwan
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Feng Hou
- Cancer Center and Department of Surgery, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Anthony Swerdlow
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Nick Orr
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Jacques Simard
- Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul D. P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jonine D. Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Christgen M, Steinemann D, Kühnle E, Länger F, Gluz O, Harbeck N, Kreipe H. Lobular breast cancer: Clinical, molecular and morphological characteristics. Pathol Res Pract 2016; 212:583-97. [DOI: 10.1016/j.prp.2016.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 01/20/2023]
|
22
|
Wu Y, Abbey CK, Liu J, Ong I, Peissig P, Onitilo AA, Fan J, Yuan M, Burnside ES. Discriminatory power of common genetic variants in personalized breast cancer diagnosis. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9787. [PMID: 27279675 DOI: 10.1117/12.2217030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Technology advances in genome-wide association studies (GWAS) has engendered optimism that we have entered a new age of precision medicine, in which the risk of breast cancer can be predicted on the basis of a person's genetic variants. The goal of this study is to evaluate the discriminatory power of common genetic variants in breast cancer risk estimation. We conducted a retrospective case-control study drawing from an existing personalized medicine data repository. We collected variables that predict breast cancer risk: 153 high-frequency/low-penetrance genetic variants, reflecting the state-of-the-art GWAS on breast cancer, mammography descriptors and BI-RADS assessment categories in the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We trained and tested naïve Bayes models by using these predictive variables. We generated ROC curves and used the area under the ROC curve (AUC) to quantify predictive performance. We found that genetic variants achieved comparable predictive performance to BI-RADS assessment categories in terms of AUC (0.650 vs. 0.659, p-value = 0.742), but significantly lower predictive performance than the combination of BI-RADS assessment categories and mammography descriptors (0.650 vs. 0.751, p-value < 0.001). A better understanding of relative predictive capability of genetic variants and mammography data may benefit clinicians and patients to make appropriate decisions about breast cancer screening, prevention, and treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Yirong Wu
- Dept. of Radiology, University of Wisconsin, Madison, WI, US
| | - Craig K Abbey
- Dept. of Psychological and Brain Sciences, University of California, Santa Barbara, CA, US
| | - Jie Liu
- Dept. of Genome Sciences, University of Washington, Seattle, WA, US
| | - Irene Ong
- Dept. of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, US
| | - Peggy Peissig
- Marshfield Clinic Research Foundation, Marshfield, WI, US
| | - Adedayo A Onitilo
- Marshfield Clinic Research Foundation, Marshfield, WI, US ; Department of Hematology/Oncology, Marshfield Clinic Weston Center, Weston, WI, US
| | - Jun Fan
- Dept. of Statistics, University of Wisconsin, Madison, WI
| | - Ming Yuan
- Dept. of Statistics, University of Wisconsin, Madison, WI
| | | |
Collapse
|
23
|
Petridis C, Brook MN, Shah V, Kohut K, Gorman P, Caneppele M, Levi D, Papouli E, Orr N, Cox A, Cross SS, Dos-Santos-Silva I, Peto J, Swerdlow A, Schoemaker MJ, Bolla MK, Wang Q, Dennis J, Michailidou K, Benitez J, González-Neira A, Tessier DC, Vincent D, Li J, Figueroa J, Kristensen V, Borresen-Dale AL, Soucy P, Simard J, Milne RL, Giles GG, Margolin S, Lindblom A, Brüning T, Brauch H, Southey MC, Hopper JL, Dörk T, Bogdanova NV, Kabisch M, Hamann U, Schmutzler RK, Meindl A, Brenner H, Arndt V, Winqvist R, Pylkäs K, Fasching PA, Beckmann MW, Lubinski J, Jakubowska A, Mulligan AM, Andrulis IL, Tollenaar RAEM, Devilee P, Le Marchand L, Haiman CA, Mannermaa A, Kosma VM, Radice P, Peterlongo P, Marme F, Burwinkel B, van Deurzen CHM, Hollestelle A, Miller N, Kerin MJ, Lambrechts D, Floris G, Wesseling J, Flyger H, Bojesen SE, Yao S, Ambrosone CB, Chenevix-Trench G, Truong T, Guénel P, Rudolph A, Chang-Claude J, Nevanlinna H, Blomqvist C, Czene K, Brand JS, Olson JE, Couch FJ, Dunning AM, Hall P, Easton DF, Pharoah PDP, Pinder SE, Schmidt MK, Tomlinson I, Roylance R, García-Closas M, Sawyer EJ. Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Res 2016; 18:22. [PMID: 26884359 PMCID: PMC4756509 DOI: 10.1186/s13058-016-0675-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/06/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer. It is often associated with invasive ductal carcinoma (IDC), and is considered to be a non-obligate precursor of IDC. It is not clear to what extent these two forms of cancer share low-risk susceptibility loci, or whether there are differences in the strength of association for shared loci. METHODS To identify genetic polymorphisms that predispose to DCIS, we pooled data from 38 studies comprising 5,067 cases of DCIS, 24,584 cases of IDC and 37,467 controls, all genotyped using the iCOGS chip. RESULTS Most (67 %) of the 76 known breast cancer predisposition loci showed an association with DCIS in the same direction as previously reported for invasive breast cancer. Case-only analysis showed no evidence for differences between associations for IDC and DCIS after considering multiple testing. Analysis by estrogen receptor (ER) status confirmed that loci associated with ER positive IDC were also associated with ER positive DCIS. Analysis of DCIS by grade suggested that two independent SNPs at 11q13.3 near CCND1 were specific to low/intermediate grade DCIS (rs75915166, rs554219). These associations with grade remained after adjusting for ER status and were also found in IDC. We found no novel DCIS-specific loci at a genome wide significance level of P < 5.0x10(-8). CONCLUSION In conclusion, this study provides the strongest evidence to date of a shared genetic susceptibility for IDC and DCIS. Studies with larger numbers of DCIS are needed to determine if IDC or DCIS specific loci exist.
Collapse
MESH Headings
- Adult
- Aged
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cyclin D1/genetics
- Female
- Genetic Association Studies
- Genotype
- Humans
- Ki-67 Antigen/genetics
- Middle Aged
- Neoplasm Proteins/genetics
- Polymorphism, Single Nucleotide
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/genetics
- Receptors, Progesterone/genetics
Collapse
Affiliation(s)
- Christos Petridis
- Research Oncology, Guy's Hospital, King's College London, London, UK.
- Medical and Molecular Genetics, Guy's Hospital, King's College London, London, UK.
| | - Mark N Brook
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| | - Vandna Shah
- Research Oncology, Guy's Hospital, King's College London, London, UK.
| | - Kelly Kohut
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Patricia Gorman
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Michele Caneppele
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Dina Levi
- Research Oncology, Guy's Hospital, King's College London, London, UK.
| | - Efterpi Papouli
- Biomedical Research Centre, King's College London, Guy's Hospital, London, UK.
| | - Nick Orr
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, UK.
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK.
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Javier Benitez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain.
- Centro de Investigación en Red de Enfermedades Raras, Valencia, Spain.
| | - Anna González-Neira
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain.
| | - Daniel C Tessier
- Centre d'innovation Génome Québec et Université McGill, Montréal, Canada.
| | - Daniel Vincent
- Centre d'innovation Génome Québec et Université McGill, Montréal, Canada.
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
- K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Clinical Molecular Biology, Oslo University Hospital, University of Oslo, Oslo, Norway.
| | - Anne-Lise Borresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
- K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada.
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada.
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia.
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia.
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum, Germany.
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tübingen, Tübingen, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Melissa C Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia.
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany.
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany.
- Center for Integrated Oncology (CIO), Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany.
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany.
| | - Hermann Brenner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland.
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland.
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Laboratory Medicine Program, University Health Network, Toronto, Canada.
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Arto Mannermaa
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
| | - Veli-Matti Kosma
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Milan, Italy.
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC (Italian Foundation of Cancer Research) di Oncologia Molecolare, Milan, Italy.
| | - Frederik Marme
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany.
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Nicola Miller
- School of Medicine, National University of Ireland, Galway, Ireland.
| | - Michael J Kerin
- School of Medicine, National University of Ireland, Galway, Ireland.
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium.
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium.
| | | | - Jelle Wesseling
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands.
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | | | | | - Thérèse Truong
- Environmental Epidemiology of Cancer, Center for Research in Epidemiology and Population Health, INSERM, Villejuif, France.
- University Paris-Sud, Villejuif, France.
| | - Pascal Guénel
- Environmental Epidemiology of Cancer, Center for Research in Epidemiology and Population Health, INSERM, Villejuif, France.
- University Paris-Sud, Villejuif, France.
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Judith S Brand
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
| | - Sarah E Pinder
- Research Oncology, Guy's Hospital, King's College London, London, UK.
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands.
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Rebecca Roylance
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Elinor J Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, UK.
| |
Collapse
|
24
|
Variants of FGFR2 and their associations with breast cancer risk: a HUGE systematic review and meta-analysis. Breast Cancer Res Treat 2016; 155:313-35. [PMID: 26728143 DOI: 10.1007/s10549-015-3670-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/25/2015] [Indexed: 10/22/2022]
Abstract
Extensive epidemiological studies have demonstrated that there are associations between variants in intron 2 of FGFR2 and the breast cancer risk in various populations; however, the relationships are not yet conclusively established. To comprehensively review the epidemiological studies showing associations between the variants of FGFR2 and the breast cancer risk, and to establish correlations via a meta-analysis. The PubMed and MEDLINE databases were searched for eligible studies. The associations between the variants and breast cancer risk were evaluated using a random-effects model. The heterogeneity among the studies and the potential publication bias were also evaluated. Fifty-three studies with a total of 121,740 cases and 198,549 controls have examined the associations between 23 variants in intron 2 of FGFR2 and the breast cancer risk. The relationships for the 10 most frequently evaluated variants-rs1078806, rs11200014, rs1219648, rs2420946, rs2981578, rs2981579, rs2981582, rs3135718, rs10736303, and rs3750817-were synthesized based on a meta-analysis. Interestingly, we found that all 10 variants were significantly associated with the risk of breast cancer. In studies stratified by ethnicity, we found that the associations were more notable in Caucasians and Asians compared to Africans. Similar pooled results were found in population-based and hospital-based case-control studies and in studies with small and large sample sizes. FGFR2 is a breast cancer susceptibility gene, and various variants of FGFR2 are significantly associated with the breast cancer risk. However, the biological mechanisms underlying the associations need to be elucidated in future studies.
Collapse
|
25
|
Ward EM, DeSantis CE, Lin CC, Kramer JL, Jemal A, Kohler B, Brawley OW, Gansler T. Cancer statistics: Breast cancer in situ. CA Cancer J Clin 2015; 65:481-95. [PMID: 26431342 DOI: 10.3322/caac.21321] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 09/02/2015] [Indexed: 01/11/2023] Open
Abstract
An estimated 60,290 new cases of breast carcinoma in situ are expected to be diagnosed in 2015, and approximately 1 in 33 women is likely to receive an in situ breast cancer diagnosis in her lifetime. Although in situ breast cancers are relatively common, their clinical significance and optimal treatment are topics of uncertainty and concern for both patients and clinicians. In this article, the American Cancer Society provides information about occurrence and treatment patterns for the 2 major subtypes of in situ breast cancer in the United States-ductal carcinoma in situ and lobular carcinoma in situ-using data from the North American Association of Central Cancer Registries and the 13 oldest Surveillance, Epidemiology, and End Results registries. The authors also present an overview of in situ breast cancer detection, treatment, risk factors, and prevention and discuss research needs and initiatives.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/epidemiology
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Carcinoma in Situ/epidemiology
- Carcinoma in Situ/pathology
- Carcinoma in Situ/surgery
- Carcinoma, Intraductal, Noninfiltrating/epidemiology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/surgery
- Carcinoma, Lobular/epidemiology
- Carcinoma, Lobular/pathology
- Carcinoma, Lobular/surgery
- Female
- Humans
- Incidence
- Middle Aged
- Registries
- Risk Factors
- United States/epidemiology
- Young Adult
Collapse
Affiliation(s)
- Elizabeth M Ward
- National Vice President, Intramural Research, American Cancer Society, Atlanta, GA
| | - Carol E DeSantis
- Senior Epidemiologist, Surveillance and Health Services Research, American Cancer Society, Atlanta, GA
| | - Chun Chieh Lin
- Senior Epidemiologist, Surveillance and Health Services Research, American Cancer Society, Atlanta, GA
| | - Joan L Kramer
- Assistant Professor of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Ahmedin Jemal
- Vice President, Surveillance and Health Services Research, American Cancer Society, Atlanta, GA
| | - Betsy Kohler
- Executive Director, North American Association of Central Cancer Registries, Springfield, IL
| | - Otis W Brawley
- Chief Medical Officer, American Cancer Society, Atlanta, GA
| | - Ted Gansler
- Director of Medical Content, American Cancer Society, Atlanta, GA
| |
Collapse
|
26
|
Nakshatri H, Anjanappa M, Bhat-Nakshatri P. Ethnicity-Dependent and -Independent Heterogeneity in Healthy Normal Breast Hierarchy Impacts Tumor Characterization. Sci Rep 2015; 5:13526. [PMID: 26311223 PMCID: PMC4550930 DOI: 10.1038/srep13526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/29/2015] [Indexed: 01/16/2023] Open
Abstract
Recent reports of widespread genetic variation affecting regulation of gene expression raise the possibility of significant inter-individual differences in stem-progenitor-mature cell hierarchy in adult organs. This has not been explored because of paucity of methods to quantitatively assess subpopulation of normal epithelial cells on individual basis. We report the remarkable inter-individual differences in differentiation capabilities as documented by phenotypic heterogeneity in stem-progenitor-mature cell hierarchy of the normal breast. Ethnicity and genetic predisposition are partly responsible for this heterogeneity, evidenced by the finding that CD44+/CD24- and PROCR+/EpCAM- multi-potent stem cells were elevated significantly in African American women compared with Caucasians. ALDEFLUOR+ luminal stem/progenitor cells were lower in BRCA1-mutation carriers compared with cells from healthy donors (p = 0.0014). Moreover, tumor and adjoining-normal breast cells of the same patients showed distinct CD49f+/EpCAM+ progenitor, CD271+/EpCAM- basal, and ALDEFLUOR+ cell profiles. These inter-individual differences in the rate of differentiation in the normal breast may contribute to a substantial proportion of transcriptome, epigenome, and signaling pathway alterations and consequently has the potential to spuriously magnify the extent of documented tumor-specific gene expression. Therefore, comparative analysis of phenotypically defined subpopulations of normal and tumor cells on an individual basis may be required to identify cancer-specific aberrations.
Collapse
Affiliation(s)
- Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
27
|
Prater J, Valeri F, Korol D, Rohrmann S, Dehler S. Incidence of metachronous contralateral breast cancer in the Canton of Zurich: a population-based study of the cancer registry. J Cancer Res Clin Oncol 2015; 142:365-71. [DOI: 10.1007/s00432-015-2031-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/15/2015] [Indexed: 10/23/2022]
|
28
|
Campa D, Barrdahl M, Gaudet MM, Black A, Chanock SJ, Diver WR, Gapstur SM, Haiman C, Hankinson S, Hazra A, Henderson B, Hoover RN, Hunter DJ, Joshi AD, Kraft P, Le Marchand L, Lindström S, Willett W, Travis RC, Amiano P, Siddiq A, Trichopoulos D, Sund M, Tjønneland A, Weiderpass E, Peeters PH, Panico S, Dossus L, Ziegler RG, Canzian F, Kaaks R. Genetic risk variants associated with in situ breast cancer. Breast Cancer Res 2015; 17:82. [PMID: 26070784 PMCID: PMC4487950 DOI: 10.1186/s13058-015-0596-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/04/2015] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Breast cancer in situ (BCIS) diagnoses, a precursor lesion for invasive breast cancer, comprise about 20 % of all breast cancers (BC) in countries with screening programs. Family history of BC is considered one of the strongest risk factors for BCIS. METHODS To evaluate the association of BC susceptibility loci with BCIS risk, we genotyped 39 single nucleotide polymorphisms (SNPs), associated with risk of invasive BC, in 1317 BCIS cases, 10,645 invasive BC cases, and 14,006 healthy controls in the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium (BPC3). Using unconditional logistic regression models adjusted for age and study, we estimated the association of SNPs with BCIS using two different comparison groups: healthy controls and invasive BC subjects to investigate whether BCIS and BC share a common genetic profile. RESULTS We found that five SNPs (CDKN2BAS-rs1011970, FGFR2-rs3750817, FGFR2-rs2981582, TNRC9-rs3803662, 5p12-rs10941679) were significantly associated with BCIS risk (P value adjusted for multiple comparisons <0.0016). Comparing invasive BC and BCIS, the largest difference was for CDKN2BAS-rs1011970, which showed a positive association with BCIS (OR = 1.24, 95 % CI: 1.11-1.38, P = 1.27 x 10(-4)) and no association with invasive BC (OR = 1.03, 95 % CI: 0.99-1.07, P = 0.06), with a P value for case-case comparison of 0.006. Subgroup analyses investigating associations with ductal carcinoma in situ (DCIS) found similar associations, albeit less significant (OR = 1.25, 95 % CI: 1.09-1.42, P = 1.07 x 10(-3)). Additional risk analyses showed significant associations with invasive disease at the 0.05 level for 28 of the alleles and the OR estimates were consistent with those reported by other studies. CONCLUSIONS Our study adds to the knowledge that several of the known BC susceptibility loci are risk factors for both BCIS and invasive BC, with the possible exception of rs1011970, a putatively functional SNP situated in the CDKN2BAS gene that may be a specific BCIS susceptibility locus.
Collapse
Affiliation(s)
- Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| | - Myrto Barrdahl
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| | - Mia M Gaudet
- Epidemiology Research Program, American Cancer Society, 250 Williams Street NW, Atlanta, GA, 30303, USA.
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
- Core Genotyping Facility, Frederick National Laboratory for Cancer Research, 8717 Grovemont Circle, Gaithersburg, MD, 20877, USA.
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, 250 Williams Street NW, Atlanta, GA, 30303, USA.
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, 250 Williams Street NW, Atlanta, GA, 30303, USA.
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA.
| | - Susan Hankinson
- Department of Epidemiology, University of Massachusetts-Amherst School of Public Health and Health Sciences, 715 North Pleasant Street, Amherst, MA, 01003, USA.
- Cancer Research Center, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
| | - Aditi Hazra
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Medicine, Harvard Medical School, 641 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | - Brian Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA.
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - David J Hunter
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
| | - Amit D Joshi
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
| | - Loic Le Marchand
- Cancer Research Center of Hawaii, University of Hawaii, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Sara Lindström
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
| | - Walter Willett
- Department of Nutrition, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA.
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Roosevelt Drive, Oxford, OX3 7LF, UK.
| | - Pilar Amiano
- Public Health Division of Gipuzkoa, BIODonostia Research Institute, Basque Health Department, Avenida Navarra 4, 20013, San Sebastian, Spain.
- CIBER of Epidemiology and Public Health (CIBERESP), Calle del Arzobispo Morcillo 2, 28029, Madrid, Spain.
| | - Afshan Siddiq
- School of Public Health, Imperial College, Norfolk Place, London, W2 1PG, UK.
| | - Dimitrios Trichopoulos
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
- Bureau of Epidemiologic Research, Academy of Athens, 23 Alexandroupoleos Street, 115 27, Athens, Greece.
- Hellenic Health Foundation, 13 Kaisareias and Alexandroupoleos Street, 11527, Athens, Greece.
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, 901 87, Umeå, Sweden.
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Hansine Hansens veg 18, 9037, Tromsø, Norway.
- Cancer Registry of Norway, Fridtjof Nansens vei 19, 0304, Oslo, Norway.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solnavägen 1, 171 77, Stockholm, Sweden.
- Department of Genetic Epidemiology, Folkhälsan Research Center, Haarmaninkatu 8, 00014, Helsinki, Finland.
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia Federico II University, via Sergio Pansini 5, Naples, 80131, Italy.
| | - Laure Dossus
- Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, 16 avenue Paul Vaillant Couturier, 94805, Villejuif, France.
- University Paris Sud, UMRS 1018, 16 avenue Paul Vaillant Couturier, 94805, Villejuif, France.
- IGR, 114 rue Edouard Vaillant, 94805, Villejuif, France.
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
29
|
Logan GJ, Dabbs DJ, Lucas PC, Jankowitz RC, Brown DD, Clark BZ, Oesterreich S, McAuliffe PF. Molecular drivers of lobular carcinoma in situ. Breast Cancer Res 2015; 17:76. [PMID: 26041550 PMCID: PMC4453073 DOI: 10.1186/s13058-015-0580-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lobular carcinoma in situ (LCIS) is considered to be a risk factor for the development of invasive breast carcinoma, but it may also be a non-obligate precursor to invasive lobular carcinoma (ILC). Many LCIS lesions do not progress to ILC, and the molecular changes that are necessary for progression from LCIS to ILC are poorly understood. Disruption in the E-cadherin complex is the hallmark of lobular lesions, but other signaling molecules, such as PIK3CA and c-src, are consistently altered in LCIS. This review focuses on the molecular drivers of lobular carcinoma, a more complete understanding of which may give perspective on which LCIS lesions progress, and which will not, thus having immense clinical implications.
Collapse
Affiliation(s)
- Greg J Logan
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - David J Dabbs
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pathology, Magee-Womens Hospital, Pittsburgh, PA, 15213, USA.
| | - Peter C Lucas
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pathology, Magee-Womens Hospital, Pittsburgh, PA, 15213, USA.
| | - Rachel C Jankowitz
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Division of Medical Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Daniel D Brown
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Beth Z Clark
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pathology, Magee-Womens Hospital, Pittsburgh, PA, 15213, USA.
| | - Steffi Oesterreich
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Priscilla F McAuliffe
- Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
30
|
Orr N, Dudbridge F, Dryden N, Maguire S, Novo D, Perrakis E, Johnson N, Ghoussaini M, Hopper JL, Southey MC, Apicella C, Stone J, Schmidt MK, Broeks A, Van't Veer LJ, Hogervorst FB, Fasching PA, Haeberle L, Ekici AB, Beckmann MW, Gibson L, Aitken Z, Warren H, Sawyer E, Tomlinson I, Kerin MJ, Miller N, Burwinkel B, Marme F, Schneeweiss A, Sohn C, Guénel P, Truong T, Cordina-Duverger E, Sanchez M, Bojesen SE, Nordestgaard BG, Nielsen SF, Flyger H, Benitez J, Zamora MP, Arias Perez JI, Menéndez P, Anton-Culver H, Neuhausen SL, Brenner H, Dieffenbach AK, Arndt V, Stegmaier C, Hamann U, Brauch H, Justenhoven C, Brüning T, Ko YD, Nevanlinna H, Aittomäki K, Blomqvist C, Khan S, Bogdanova N, Dörk T, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Chenevix-Trench G, Beesley J, Lambrechts D, Moisse M, Floris G, Beuselinck B, Chang-Claude J, Rudolph A, Seibold P, Flesch-Janys D, Radice P, Peterlongo P, Peissel B, Pensotti V, Couch FJ, Olson JE, Slettedahl S, Vachon C, Giles GG, Milne RL, McLean C, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Simard J, Goldberg MS, Labrèche F, Dumont M, Kristensen V, Alnæs GG, Nord S, Borresen-Dale AL, Zheng W, Deming-Halverson S, Shrubsole M, Long J, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Grip M, Andrulis IL, Knight JA, Glendon G, Tchatchou S, Devilee P, Tollenaar RAEM, Seynaeve CM, Van Asperen CJ, Garcia-Closas M, Figueroa J, Chanock SJ, Lissowska J, Czene K, Darabi H, Eriksson M, Klevebring D, Hooning MJ, Hollestelle A, van Deurzen CHM, Kriege M, Hall P, Li J, Liu J, Humphreys K, Cox A, Cross SS, Reed MWR, Pharoah PDP, Dunning AM, Shah M, Perkins BJ, Jakubowska A, Lubinski J, Jaworska-Bieniek K, Durda K, Ashworth A, Swerdlow A, Jones M, Schoemaker MJ, Meindl A, Schmutzler RK, Olswold C, Slager S, Toland AE, Yannoukakos D, Muir K, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Matsuo K, Ito H, Iwata H, Ishiguro J, Wu AH, Tseng CC, Van Den Berg D, Stram DO, Teo SH, Yip CH, Kang P, Ikram MK, Shu XO, Lu W, Gao YT, Cai H, Kang D, Choi JY, Park SK, Noh DY, Hartman M, Miao H, Lim WY, Lee SC, Sangrajrang S, Gaborieau V, Brennan P, Mckay J, Wu PE, Hou MF, Yu JC, Shen CY, Blot W, Cai Q, Signorello LB, Luccarini C, Bayes C, Ahmed S, Maranian M, Healey CS, González-Neira A, Pita G, Alonso MR, Álvarez N, Herrero D, Tessier DC, Vincent D, Bacot F, Hunter DJ, Lindstrom S, Dennis J, Michailidou K, Bolla MK, Easton DF, dos Santos Silva I, Fletcher O, Peto J. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Hum Mol Genet 2015; 24:2966-84. [PMID: 25652398 PMCID: PMC4406292 DOI: 10.1093/hmg/ddv035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/30/2015] [Indexed: 11/13/2022] Open
Abstract
We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.
Collapse
Affiliation(s)
- Nick Orr
- The Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research and
| | - Frank Dudbridge
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Nicola Dryden
- The Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research and
| | - Sarah Maguire
- The Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research and
| | - Daniela Novo
- The Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research and
| | - Eleni Perrakis
- The Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research and
| | - Nichola Johnson
- The Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research and
| | - Maya Ghoussaini
- Centre for Cancer Genetic Epidemiology, Department of Oncology and
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health and
| | - Melissa C Southey
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Carmel Apicella
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health and
| | - Jennifer Stone
- Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, WA, Australia
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Laura J Van't Veer
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Frans B Hogervorst
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Peter A Fasching
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen and David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Lothar Haeberle
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen and
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Matthias W Beckmann
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen and
| | - Lorna Gibson
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Zoe Aitken
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Helen Warren
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Elinor Sawyer
- Division of Cancer Studies, Kings College London, Guy's Hospital, London, UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, UK
| | - Michael J Kerin
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Nicola Miller
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology and Molecular Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frederik Marme
- Department of Obstetrics and Gynecology and National Center for Tumor Diseases, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andreas Schneeweiss
- Department of Obstetrics and Gynecology and National Center for Tumor Diseases, University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Thérèse Truong
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Emilie Cordina-Duverger
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Marie Sanchez
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Stig E Bojesen
- Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Børge G Nordestgaard
- Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Sune F Nielsen
- Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Javier Benitez
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain, Centro de Investigación en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Maria Pilar Zamora
- Servicio de Oncología Médica, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | | - Primitiva Menéndez
- Servicio de Anatomía Patológica, Hospital Monte Naranco, 33012 Oviedo, Spain
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK)
| | | | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research
| | | | | | - Hiltrud Brauch
- German Cancer Consortium (DKTK), Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, University of Tübingen, Tübingen, Germany
| | - Christina Justenhoven
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, University of Tübingen, Tübingen, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | | | | | | | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Natalia Bogdanova
- Department of Radiation Oncology and Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | | | - Sara Margolin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine and Imaging Center, Department of Clinical Pathology and
| | - Vesa Kataja
- School of Medicine, Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland, Biocenter Kuopio, Cancer Center of Eastern Finland, Kuopio University Hospital, Kuopio, Finland, Central Finland Health Care District, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine and Imaging Center, Department of Clinical Pathology and
| | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine and Imaging Center, Department of Clinical Pathology and
| | | | | | - Diether Lambrechts
- Vesalius Research Center (VRC), VIB, Leuven, Belgium, Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Matthieu Moisse
- Vesalius Research Center (VRC), VIB, Leuven, Belgium, Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | | | | | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine and
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Valeria Pensotti
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy, Cogentech Cancer Genetic Test Laboratory, Milan, Italy
| | | | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Seth Slettedahl
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Celine Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health and Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health and Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Catriona McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, HI, USA
| | - Jacques Simard
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, QC, Canada
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montreal, QC, Canada, Division of Clinical Epidemiology, McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | - France Labrèche
- Département de Médecine Sociale et Préventive, Département de Santé Environnementale et Santé au travail, Université de Montréal, Montreal, QC, Canada
| | - Martine Dumont
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, QC, Canada
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, N-0310 Oslo, Norway, Institute of Clinical Medicine, University of Oslo (UiO), 0450 Oslo, Norway
| | - Grethe Grenaker Alnæs
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, N-0310 Oslo, Norway
| | - Silje Nord
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, N-0310 Oslo, Norway
| | - Anne-Lise Borresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, N-0310 Oslo, Norway, Institute of Clinical Medicine, University of Oslo (UiO), 0450 Oslo, Norway
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sandra Deming-Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Martha Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Genetics and Biocenter Oulu
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Genetics and Biocenter Oulu
| | | | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Irene L Andrulis
- Ontario Cancer Genetics Network and Department of Molecular Genetics and
| | - Julia A Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada, Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Sandrine Tchatchou
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
| | - Peter Devilee
- Department of Human Genetics and Department of Pathology and
| | - Robertus A E M Tollenaar
- Department of Surgical Oncology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Caroline M Seynaeve
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Christi J Van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Montserrat Garcia-Closas
- The Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research and Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Daniel Klevebring
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland
| | - Maartje J Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Mieke Kriege
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Malcolm W R Reed
- Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology and
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology and
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology and
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | | | - Katarzyna Durda
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research and
| | - Anthony Swerdlow
- Division of Breast Cancer Research and Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Michael Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Minouk J Schoemaker
- Division of Breast Cancer Research and Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, 81675 Munich, Germany
| | - Rita K Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany
| | | | - Susan Slager
- Department of Laboratory Medicine and Pathology and
| | - Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, IRRP, National Centre for Scientific Research 'Demokritos', Aghia Paraskevi Attikis, Athens, Greece
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK, Institute of Population Health, University of Manchester, Manchester, UK
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK
| | - Sarah Stewart-Brown
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK
| | | | - Keitaro Matsuo
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Hidema Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Junko Ishiguro
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chiu-Chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Soo Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia, Breast Cancer Research Unit, University Malaya Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Cheng Har Yip
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Peter Kang
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Mohammad Kamran Ikram
- Singapore Eye Research Institute, National University of Singapore, 168751 Singapore, Singapore
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wei Lu
- Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daehee Kang
- Department of Preventive Medicine and Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea, Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea, Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Sue K Park
- Department of Preventive Medicine and Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea, Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Mikael Hartman
- Saw Swee Hock School of Public Health and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, National University Health System, Singapore, Singapore
| | - Hui Miao
- Saw Swee Hock School of Public Health and National University Health System, Singapore, Singapore
| | - Wei Yen Lim
- Saw Swee Hock School of Public Health and National University Health System, Singapore, Singapore
| | - Soo Chin Lee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore, Cancer Science Institute of Singapore, National University Singapore, Singapore, Singapore
| | | | | | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - James Mckay
- International Agency for Research on Cancer, Lyon, France
| | - Pei-Ei Wu
- Taiwan Biobank and Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Feng Hou
- Cancer Center and Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 804, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan
| | - Chen-Yang Shen
- Cancer Center and Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 804, Taiwan, School of Public Health, China Medical University, Taichung 404, Taiwan
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA, International Epidemiology Institute, Rockville, MD, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lisa B Signorello
- Dana-Farber/Harvard Cancer Center, Boston, MA, USA, Department of Epidemiology and
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology and
| | - Caroline Bayes
- Centre for Cancer Genetic Epidemiology, Department of Oncology and
| | - Shahana Ahmed
- Centre for Cancer Genetic Epidemiology, Department of Oncology and
| | - Mel Maranian
- Centre for Cancer Genetic Epidemiology, Department of Oncology and
| | | | - Anna González-Neira
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain and
| | - Guillermo Pita
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain and
| | - M Rosario Alonso
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain and
| | - Nuria Álvarez
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain and
| | - Daniel Herrero
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain and
| | - Daniel C Tessier
- Centre d'innovation Génome Québec et Université McGill, Montréal, QC, Canada
| | - Daniel Vincent
- Centre d'innovation Génome Québec et Université McGill, Montréal, QC, Canada
| | - Francois Bacot
- Centre d'innovation Génome Québec et Université McGill, Montréal, QC, Canada
| | - David J Hunter
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Sara Lindstrom
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology and Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Isabel dos Santos Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Olivia Fletcher
- The Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research and
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
31
|
Cheng CL, Thike AA, Tan SYJ, Chua PJ, Bay BH, Tan PH. Expression of FGFR1 is an independent prognostic factor in triple-negative breast cancer. Breast Cancer Res Treat 2015; 151:99-111. [DOI: 10.1007/s10549-015-3371-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022]
|
32
|
Dossus L, Benusiglio PR. Lobular breast cancer: incidence and genetic and non-genetic risk factors. Breast Cancer Res 2015; 17:37. [PMID: 25848941 PMCID: PMC4357148 DOI: 10.1186/s13058-015-0546-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022] Open
Abstract
While most invasive breast cancers consist of carcinomas of the ductal type, about 10% are invasive lobular carcinomas. Invasive lobular and ductal carcinomas differ with respect to risk factors. Invasive lobular carcinoma is more strongly associated with exposure to female hormones, and therefore its incidence is more subject to variation. This is illustrated by US figures during the 1987 to 2004 period: after 12 years of increases, breast cancer incidence declined steadily from 1999 to 2004, reflecting among other causes the decreasing use of menopausal hormone therapy, and these variations were stronger for invasive lobular than for invasive ductal carcinoma. Similarly, invasive lobular carcinoma is more strongly associated with early menarche, late menopause and late age at first birth. As for genetic risk factors, four high-penetrance genes are tested in clinical practice when genetic susceptibility to breast cancer is suspected, BRCA1, BRCA2, TP53 and CDH1. Germline mutations in BRCA1 and TP53 are predominantly associated with invasive ductal carcinoma, while BRCA2 mutations are associated with both ductal and lobular cancers. CDH1, the gene coding for the E-cadherin adhesion protein, is of special interest as mutations are associated with invasive lobular carcinoma, but never with ductal carcinoma. It was initially known as the main susceptibility gene for gastric cancer of the diffuse type, but the excess of breast cancers of the lobular type in CDH1 families led researchers to identify it also as a susceptibility gene for invasive lobular carcinoma. The risk of invasive lobular carcinoma is high in female mutation carriers, as about 50% are expected to develop the disease. Carriers must therefore undergo intensive breast cancer screening, with, for example, yearly magnetic resonance imaging and mammogram starting at age 30 years.
Collapse
|
33
|
Christgen M, Derksen PWB. Lobular breast cancer: molecular basis, mouse and cellular models. Breast Cancer Res 2015; 17:16. [PMID: 25757734 PMCID: PMC4320436 DOI: 10.1186/s13058-015-0517-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022] Open
Abstract
Infiltrating lobular breast cancer (ILC) is the most common special breast cancer subtype. With mutational or epigenetic inactivation of the cell adhesion molecule E-cadherin (CDH1) being confined almost exclusively to ILC, this tumor entity stands out from all other types of breast cancers. The molecular basis of ILC is linked to loss of E-cadherin, as evidenced by human CDH1 germline mutations and conditional knockout mouse models. A better understanding of ILC beyond the level of descriptive studies depends on physiologically relevant and functional tools. This review provides a detailed overview on ILC models, including well-characterized cell lines, xenograft tumors and genetically engineered mouse models. We consider advantages and limitations of these models and evaluate their representativeness for human ILC. The still incompletely defined mechanisms by which loss of E-cadherin drives malignant transformation are discussed based on recent findings in these models. Moreover, candidate genes and signaling pathways potentially involved in ILC development and progression as well as anticancer drug and endocrine resistance are highlighted.
Collapse
Affiliation(s)
- Matthias Christgen
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Patrick W B Derksen
- Department of Pathology, Utrecht University Medical Center, Heidelberglaan 100, 3584, Utrecht, The Netherlands.
| |
Collapse
|
34
|
Al-Alem U, Rauscher G, Shah E, Batai K, Mahmoud A, Beisner E, Silva A, Peterson C, Kittles R. Association of genetic ancestry with breast cancer in ethnically diverse women from Chicago. PLoS One 2014; 9:e112916. [PMID: 25423363 PMCID: PMC4244099 DOI: 10.1371/journal.pone.0112916] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022] Open
Abstract
Introduction Non-Hispanic (nH) Black and Hispanic women are disproportionately affected by early onset disease, later stage, and with more aggressive, higher grade and ER/PR negative breast cancers. The purpose of this analysis was to examine whether genetic ancestry could account for these variation in breast cancer characteristics, once data were stratified by self-reported race/ethnicity and adjusted for potential confounding by social and behavioral factors. Methods We used a panel of 100 ancestry informative markers (AIMs) to estimate individual genetic ancestry in 656 women from the “Breast Cancer Care in Chicago” study, a multi-ethnic cohort of breast cancer patients to examine the association between individual genetic ancestry and breast cancer characteristics. In addition we examined the association of individual AIMs and breast cancer to identify genes/regions that may potentially play a role in breast cancer disease disparities. Results As expected, nH Black and Hispanic patients were more likely than nH White patients to be diagnosed at later stages, with higher grade, and with ER/PR negative tumors. Higher European genetic ancestry was protective against later stage at diagnosis (OR 0.7 95%CI: 0.54–0.92) among Hispanic patients, and higher grade (OR 0.73, 95%CI: 0.56–0.95) among nH Black patients. After adjustment for multiple social and behavioral risk factors, the association with later stage remained, while the association with grade was not significant. We also found that the AIM SNP rs10954631 on chromosome 7 was associated with later stage (p = 0.02) and higher grade (p = 0.012) in nH Whites and later stage (p = 0.03) in nH Blacks. Conclusion Non-European genetic ancestry was associated with later stage at diagnosis in ethnic minorities. The relation between genetic ancestry and stage at diagnosis may be due to genetic factors and/or unmeasured environmental factors that are overrepresented within certain racial/ethnic groups.
Collapse
Affiliation(s)
- Umaima Al-Alem
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Garth Rauscher
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ebony Shah
- Department of Surgery, Division of Urology, University of Arizona, Tucson, Arizona, United States of America
| | - Ken Batai
- Department of Surgery, Division of Urology, University of Arizona, Tucson, Arizona, United States of America
| | - Abeer Mahmoud
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Erin Beisner
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Abigail Silva
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Edward Hines, Jr. VA Hospital, Hines, Illinois, United States of America
| | - Caryn Peterson
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rick Kittles
- Department of Surgery, Division of Urology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
35
|
|
36
|
New Therapeutic Approaches for Invasive Lobular Carcinoma. CURRENT BREAST CANCER REPORTS 2014. [DOI: 10.1007/s12609-014-0158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|