1
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Xing X, Que X, Zheng S, Wang S, Song Q, Yao Y, Zhang P. Emerging roles of FOXK2 in cancers and metabolic disorders. Front Oncol 2024; 14:1376496. [PMID: 38741782 PMCID: PMC11089157 DOI: 10.3389/fonc.2024.1376496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
FOXK2, a member of the Forkhead box K (FOXK) transcription factor family, is widely expressed in various tissues and organs throughout the body. FOXK2 plays crucial roles in cell proliferation, differentiation, autophagy, de novo nucleotide biosynthesis, DNA damage response, and aerobic glycolysis. Although FOXK2 is recognized as an oncogene in colorectal cancer and hepatocellular carcinoma, it acts as a tumor suppressor in breast cancer, cervical cancer, and non-small cell lung cancer (NSCLC). This review provides an overview of the recent progress in understanding the regulatory mechanisms of FOXK2 and its downstream targets, highlights the significant impact of FOXK2 dysregulation on cancer etiology, and discusses the potential of targeting FOXK2 for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Riaz F, Huang Z, Pan F. Targeting post-translational modifications of Foxp3: a new paradigm for regulatory T cell-specific therapy. Front Immunol 2023; 14:1280741. [PMID: 37936703 PMCID: PMC10626496 DOI: 10.3389/fimmu.2023.1280741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
A healthy immune system is pivotal for the hosts to resist external pathogens and maintain homeostasis; however, the immunosuppressive tumor microenvironment (TME) damages the anti-tumor immunity and promotes tumor progression, invasion, and metastasis. Recently, many studies have found that Foxp3+ regulatory T (Treg) cells are the major immunosuppressive cells that facilitate the formation of TME by promoting the development of various tumor-associated cells and suppressing the activity of effector immune cells. Considering the role of Tregs in tumor progression, it is pivotal to identify new therapeutic drugs to target and deplete Tregs in tumors. Although several studies have developed strategies for targeted deletion of Treg to reduce the TME and support the accumulation of effector T cells in tumors, Treg-targeted therapy systematically affects the Treg population and may lead to the progression of autoimmune diseases. It has been understood that, nevertheless, in disease conditions, Foxp3 undergoes several definite post-translational modifications (PTMs), including acetylation, glycosylation, phosphorylation, ubiquitylation, and methylation. These PTMs not only elevate or mitigate the transcriptional activity of Foxp3 but also affect the stability and immunosuppressive function of Tregs. Various studies have shown that pharmacological targeting of enzymes involved in PTMs can significantly influence the PTMs of Foxp3; thus, it may influence the progression of cancers and/or autoimmune diseases. Overall, this review will help researchers to understand the advances in the immune-suppressive mechanisms of Tregs, the post-translational regulations of Foxp3, and the potential therapeutic targets and strategies to target the Tregs in TME to improve anti-tumor immunity.
Collapse
Affiliation(s)
| | | | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
4
|
Li C, Tian Y, Pei J, Zhang Y, Hao D, Han T, Wang X, Song S, Huang L, Wang Z. Sea cucumber chondroitin sulfate polysaccharides attenuate OVA-induced food allergy in BALB/c mice associated with gut microbiota metabolism and Treg cell differentiation. Food Funct 2023; 14:7375-7386. [PMID: 37477050 DOI: 10.1039/d3fo00146f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Previous research studies have shown that sulfated polysaccharides can inhibit food allergy, but the detailed mechanism remains largely unknown. In this study, RBL-2H3 cells were used to compare the anti-allergic activities of four sulfated polysaccharides, and an ovalbumin (OVA)-sensitized allergic mouse experiment was used to explore their desensitization effect, with regard to the alteration in gut microbiota and immune cell differentiation. Compared with the shark, bovine and porcine chondroitin sulfate, sea cucumber chondroitin sulfate (SCCS) significantly inhibited the degranulation of RBL-2H3 cells. SCCS reduced allergic symptoms and protected the jejunum from injury in mice. Furthermore, SCCS increased the relative abundance of Lachnospiraceae NK4A136, decreased the relative proportion of Prevotellaceae NK3B31, and up-regulated the secretion of short chain fatty acids such as butyric acid in the feces, resulting in an increase in the mucin 2 (MUC2) secretion by goblet cells HT-29. Meanwhile, SCCS induced the differentiation of regulatory T cells in the mesenteric lymph nodes of mice. This study provides a deeper understanding of the functioning mechanism of SCCS in alleviating food allergy and may guide the development and production of anti-allergy active ingredients.
Collapse
Affiliation(s)
- Cheng Li
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Yang Tian
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Jiahuan Pei
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Yuyang Zhang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Daokuan Hao
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianjiao Han
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Xiaoqin Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Linjuan Huang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
Tan D, Yin W, Guan F, Zeng W, Lee P, Candotti F, James LK, Saraiva Camara NO, Haeryfar SM, Chen Y, Benlagha K, Shi LZ, Lei J, Gong Q, Liu Z, Liu C. B cell-T cell interplay in immune regulation: A focus on follicular regulatory T and regulatory B cell functions. Front Cell Dev Biol 2022; 10:991840. [PMID: 36211467 PMCID: PMC9537379 DOI: 10.3389/fcell.2022.991840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
B cells are the core components of humoral immunity. A mature B cell can serve in multiple capacities, including antibody production, antigen presentation, and regulatory functions. Forkhead box P3 (FoxP3)-expressing regulatory T cells (Tregs) are key players in sustaining immune tolerance and keeping inflammation in check. Mounting evidence suggests complex communications between B cells and Tregs. In this review, we summarize the yin-yang regulatory relationships between B cells and Tregs mainly from the perspectives of T follicular regulatory (Tfr) cells and regulatory B cells (Bregs). We discuss the regulatory effects of Tfr cells on B cell proliferation and the germinal center response. Additionally, we review the indispensable role of B cells in ensuring homeostatic Treg survival and describe the function of Bregs in promoting Treg responses. Finally, we introduce a new subset of Tregs, termed Treg-of-B cells, which are induced by B cells, lake the expression of FoxP3 but still own immunomodulatory effects. In this article, we also enumerate a sequence of research from clinical patients and experimental models to clarify the role of Tfr cells in germinal centers and the role of convention B cells and Bregs to Tregs in the context of different diseases. This review offers an updated overview of immunoregulatory networks and unveils potential targets for therapeutic interventions against cancer, autoimmune diseases and allograft rejection.
Collapse
Affiliation(s)
- Diaoyi Tan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Louisa K James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Lewis Zhichang Shi
- Department of Radiation Oncology University of Alabama at Birmingham School of Medicine (UAB-SOM) UAB Comprehensive Cancer Center, Jinzhou, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Quan Gong
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jinzhou, China
- Department of Immunology, School of Medicine, Yangtze University, Jinzhou, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| |
Collapse
|
6
|
Liotti A, Ferrara AL, Loffredo S, Galdiero MR, Varricchi G, Di Rella F, Maniscalco GT, Belardo M, Vastano R, Prencipe R, Pignata L, Romano R, Spadaro G, de Candia P, Pezone A, De Rosa V. Epigenetics: an Opportunity to Shape Innate and Adaptive Immune Responses. Immunol Suppl 2022; 167:451-470. [PMID: 36043705 DOI: 10.1111/imm.13571] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post-translational modifications and the regulation of chromatin accessibility by non-coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental-driven nature, piloting myeloid and lymphoid cell fate decision with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage specific transcription factors and maintenance of cell type-specific epigenetic modifications, referred to as "epigenetic memory", dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as "trained immunity". Here we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Antonietta Liotti
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Anne Lise Ferrara
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Stefania Loffredo
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Maria Rosaria Galdiero
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Gilda Varricchi
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Francesca Di Rella
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Giorgia Teresa Maniscalco
- Neurological Clinic and Stroke Unit and Multiple Sclerosis Center "A. Cardarelli" Hospital, Naples, Italy
| | - Martina Belardo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Roberta Vastano
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Rosaria Prencipe
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Paola de Candia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Veronica De Rosa
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
7
|
Du J, Wang Q, Yang S, Chen S, Fu Y, Spath S, Domeier P, Hagin D, Anover-Sombke S, Haouili M, Liu S, Wan J, Han L, Liu J, Yang L, Sangani N, Li Y, Lu X, Janga SC, Kaplan MH, Torgerson TR, Ziegler SF, Zhou B. FOXP3 exon 2 controls T reg stability and autoimmunity. Sci Immunol 2022; 7:eabo5407. [PMID: 35749515 PMCID: PMC9333337 DOI: 10.1126/sciimmunol.abo5407] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Differing from the mouse Foxp3 gene that encodes only one protein product, human FOXP3 encodes two major isoforms through alternative splicing-a longer isoform (FOXP3 FL) containing all the coding exons and a shorter isoform lacking the amino acids encoded by exon 2 (FOXP3 ΔE2). The two isoforms are naturally expressed in humans, yet their differences in controlling regulatory T cell phenotype and functionality remain unclear. In this study, we show that patients expressing only the shorter isoform fail to maintain self-tolerance and develop immunodeficiency, polyendocrinopathy, and enteropathy X-linked (IPEX) syndrome. Mice with Foxp3 exon 2 deletion have excessive follicular helper T (TFH) and germinal center B (GC B) cell responses, and develop systemic autoimmune disease with anti-dsDNA and antinuclear autoantibody production, as well as immune complex glomerulonephritis. Despite having normal suppressive function in in vitro assays, regulatory T cells expressing FOXP3 ΔE2 are unstable and sufficient to induce autoimmunity when transferred into Tcrb-deficient mice. Mechanistically, the FOXP3 ΔE2 isoform allows increased expression of selected cytokines, but decreased expression of a set of positive regulators of Foxp3 without altered binding to these gene loci. These findings uncover indispensable functions of the FOXP3 exon 2 region, highlighting a role in regulating a transcriptional program that maintains Treg stability and immune homeostasis.
Collapse
Affiliation(s)
- Jianguang Du
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qun Wang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shuangshuang Yang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Si Chen
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sabine Spath
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Phillip Domeier
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - David Hagin
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Stephanie Anover-Sombke
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Maya Haouili
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Han
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juli Liu
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Yang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Neel Sangani
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University–Purdue University Indianapolis; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarath Chandra Janga
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University–Purdue University Indianapolis; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Troy R. Torgerson
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Steven F. Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Baohua Zhou
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Liu J, Yang M, Su M, Liu B, Zhou K, Sun C, Ba R, Yu B, Zhang B, Zhang Z, Fan W, Wang K, Zhong M, Han J, Zhao C. FOXG1 sequentially orchestrates subtype specification of postmitotic cortical projection neurons. SCIENCE ADVANCES 2022; 8:eabh3568. [PMID: 35613274 PMCID: PMC9132448 DOI: 10.1126/sciadv.abh3568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The mammalian neocortex is a highly organized six-layered structure with four major cortical neuron subtypes: corticothalamic projection neurons (CThPNs), subcerebral projection neurons (SCPNs), deep callosal projection neurons (CPNs), and superficial CPNs. Here, careful examination of multiple conditional knockout model mouse lines showed that the transcription factor FOXG1 functions as a master regulator of postmitotic cortical neuron specification and found that mice lacking functional FOXG1 exhibited projection deficits. Before embryonic day 14.5 (E14.5), FOXG1 enforces deep CPN identity in postmitotic neurons by activating Satb2 but repressing Bcl11b and Tbr1. After E14.5, FOXG1 exerts specification functions in distinct layers via differential regulation of Bcl11b and Tbr1, including specification of superficial versus deep CPNs and enforcement of CThPN identity. FOXG1 controls CThPN versus SCPN fate by fine-tuning Fezf2 levels through diverse interactions with multiple SOX family proteins. Thus, our study supports a developmental model to explain the postmitotic specification of four cortical projection neuron subtypes and sheds light on neuropathogenesis.
Collapse
Affiliation(s)
- Junhua Liu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Mengjie Yang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Mingzhao Su
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Bin Liu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Kaixing Zhou
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Congli Sun
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Baocong Yu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Baoshen Zhang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Zhe Zhang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Wenxin Fan
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Life Science and Technology,
Southeast University, Nanjing 210009, China
| | - Kun Wang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Min Zhong
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Junhai Han
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Life Science and Technology,
Southeast University, Nanjing 210009, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| |
Collapse
|
9
|
Fueyo-González F, McGinty M, Ningoo M, Anderson L, Cantarelli C, Andrea Angeletti, Demir M, Llaudó I, Purroy C, Marjanovic N, Heja D, Sealfon SC, Heeger PS, Cravedi P, Fribourg M. Interferon-β acts directly on T cells to prolong allograft survival by enhancing regulatory T cell induction through Foxp3 acetylation. Immunity 2022; 55:459-474.e7. [PMID: 35148827 PMCID: PMC8917088 DOI: 10.1016/j.immuni.2022.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 06/18/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Type I interferons (IFNs) are pleiotropic cytokines with potent antiviral properties that also promote protective T cell and humoral immunity. Paradoxically, type I IFNs, including the widely expressed IFNβ, also have immunosuppressive properties, including promoting persistent viral infections and treating T-cell-driven, remitting-relapsing multiple sclerosis. Although associative evidence suggests that IFNβ mediates these immunosuppressive effects by impacting regulatory T (Treg) cells, mechanistic links remain elusive. Here, we found that IFNβ enhanced graft survival in a Treg-cell-dependent murine transplant model. Genetic conditional deletion models revealed that the extended allograft survival was Treg cell-mediated and required IFNβ signaling on T cells. Using an in silico computational model and analysis of human immune cells, we found that IFNβ directly promoted Treg cell induction via STAT1- and P300-dependent Foxp3 acetylation. These findings identify a mechanistic connection between the immunosuppressive effects of IFNβ and Treg cells, with therapeutic implications for transplantation, autoimmunity, and malignancy.
Collapse
Affiliation(s)
- Francisco Fueyo-González
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Mitchell McGinty
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Mehek Ningoo
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lisa Anderson
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Chiara Cantarelli
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Parma, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis, Transplantation, IRCCS Giannina Gaslini, Genoa, Italy
| | - Markus Demir
- Department of Anesthesiology, University of Cologne, Cologne, Germany
| | - Inés Llaudó
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Carolina Purroy
- Department of Nephrology, Complejo Hospitalario de Navarra, Navarra, Spain
| | - Nada Marjanovic
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Heja
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Stuart C Sealfon
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Peter S Heeger
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Paolo Cravedi
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Miguel Fribourg
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
10
|
Almeida L, Dhillon-LaBrooy A, Carriche G, Berod L, Sparwasser T. CD4 + T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol 2021; 148:16-32. [PMID: 33966898 DOI: 10.1016/j.jaci.2021.03.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
The progression through different steps of T-cell development, activation, and effector function is tightly bound to specific cellular metabolic processes. Previous studies established that T-effector cells have a metabolic bias toward aerobic glycolysis, whereas naive and regulatory T cells mainly rely on oxidative phosphorylation. More recently, the field of immunometabolism has drifted away from the notion that mitochondrial metabolism holds little importance in T-cell activation and function. Of note, T cells possess metabolic promiscuity, which allows them to adapt their nutritional requirements according to the tissue environment. Altogether, the integration of these metabolic pathways culminates in the generation of not only energy but also intermediates, which can regulate epigenetic programs, leading to changes in T-cell fate. In this review, we discuss the recent literature on how glycolysis, amino acid catabolism, and fatty acid oxidation work together with the tricarboxylic acid cycle in the mitochondrion. We also emphasize the importance of the electron transport chain for T-cell immunity. We also discuss novel findings highlighting the role of key enzymes, accessory pathways, and posttranslational protein modifications that distinctively regulate T-cell function and might represent prominent candidates for therapeutic purposes.
Collapse
Affiliation(s)
- Luís Almeida
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Ayesha Dhillon-LaBrooy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Guilhermina Carriche
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Luciana Berod
- Institute for Molecular Medicine Mainz, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
11
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Andersen L, Gülich AF, Alteneder M, Preglej T, Orola MJ, Dhele N, Stolz V, Schebesta A, Hamminger P, Hladik A, Floess S, Krausgruber T, Faux T, Andrabi SBA, Huehn J, Knapp S, Sparwasser T, Bock C, Laiho A, Elo LL, Rasool O, Lahesmaa R, Sakaguchi S, Ellmeier W. The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3 + Regulatory T Cells. Cell Rep 2020; 29:4447-4459.e6. [PMID: 31875552 DOI: 10.1016/j.celrep.2019.11.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 10/24/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023] Open
Abstract
Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.
Collapse
Affiliation(s)
- Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maria Jonah Orola
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Narendra Dhele
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Schebesta
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Faux
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Syed Bilal Ahmad Andrabi
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sylvia Knapp
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Asta Laiho
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Omid Rasool
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Delacher M, Barra MM, Herzig Y, Eichelbaum K, Rafiee MR, Richards DM, Träger U, Hofer AC, Kazakov A, Braband KL, Gonzalez M, Wöhrl L, Schambeck K, Imbusch CD, Abramson J, Krijgsveld J, Feuerer M. Quantitative Proteomics Identifies TCF1 as a Negative Regulator of Foxp3 Expression in Conventional T Cells. iScience 2020; 23:101127. [PMID: 32422593 PMCID: PMC7229326 DOI: 10.1016/j.isci.2020.101127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells are important regulators of the immune system and have versatile functions for the homeostasis and repair of tissues. They express the forkhead box transcription factor Foxp3 as a lineage-defining protein. Negative regulators of Foxp3 expression are not well understood. Here, we generated double-stranded DNA probes complementary to the Foxp3 promoter sequence and performed a pull-down with nuclear protein in vitro, followed by elution of bound proteins and quantitative mass spectrometry. Of the Foxp3-promoter-binding transcription factors identified with this approach, one was T cell factor 1 (TCF1). Using viral over-expression, we identified TCF1 as a repressor of Foxp3 expression. In TCF1-deficient animals, increased levels of Foxp3intermediateCD25negative T cells were identified. CRISPR-Cas9 knockout studies in primary human and mouse conventional CD4 T (Tconv) cells revealed that TCF1 protects Tconv cells from inadvertent Foxp3 expression. Our data implicate a role of TCF1 in suppressing Foxp3 expression in activated T cells.
Collapse
Affiliation(s)
- Michael Delacher
- Chair for Immunology, Regensburg University, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Melanie M Barra
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yonatan Herzig
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100 Rehovot, Israel
| | - Katrin Eichelbaum
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Mahmoud-Reza Rafiee
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - David M Richards
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Träger
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ann-Cathrin Hofer
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alexander Kazakov
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kathrin L Braband
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marina Gonzalez
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lukas Wöhrl
- Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Kathrin Schambeck
- Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Charles D Imbusch
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100 Rehovot, Israel
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Markus Feuerer
- Chair for Immunology, Regensburg University, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Ren J, Liu Y, Wang S, Wang Y, Li W, Chen S, Cui D, Yang S, Li MY, Feng B, Lai PBS, Chen GG. The FKH domain in FOXP3 mRNA frequently contains mutations in hepatocellular carcinoma that influence the subcellular localization and functions of FOXP3. J Biol Chem 2020; 295:5484-5495. [PMID: 32198183 PMCID: PMC7170510 DOI: 10.1074/jbc.ra120.012518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/12/2020] [Indexed: 01/16/2023] Open
Abstract
The transcription factor forkhead box P3 (FOXP3) is a biomarker for regulatory T cells and can also be expressed in cancer cells, but its function in cancer appears to be divergent. The role of hepatocyte-expressed FOXP3 in hepatocellular carcinoma (HCC) is unknown. Here, we collected tumor samples and clinical information from 115 HCC patients and used five human cancer cell lines. We examined FOXP3 mRNA sequences for mutations, used a luciferase assay to assess promoter activities of FOXP3's target genes, and employed mouse tumor models to confirm in vitro results. We detected mutations in the FKH domain of FOXP3 mRNAs in 33% of the HCC tumor tissues, but in none of the adjacent nontumor tissues. None of the mutations occurred at high frequency, indicating that they occurred randomly. Notably, the mutations were not detected in the corresponding regions of FOXP3 genomic DNA, and many of them resulted in amino acid substitutions in the FKH region, altering FOXP3's subcellular localization. FOXP3 delocalization from the nucleus to the cytoplasm caused loss of transcriptional regulation of its target genes, inactivated its tumor-inhibitory capability, and changed cellular responses to histone deacetylase (HDAC) inhibitors. More complex FKH mutations appeared to be associated with worse prognosis in HCC patients. We conclude that mutations in the FKH domain of FOXP3 mRNA frequently occur in HCC and that these mutations are caused by errors in transcription and are not derived from genomic DNA mutations. Our results suggest that transcriptional mutagenesis of FOXP3 plays a role in HCC.
Collapse
Affiliation(s)
- Jianwei Ren
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute (SZRI), Chinese University of Hong Kong, Shenzhen 518057, China
| | - Yi Liu
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Wang
- Division of Cellular & Molecular Research, National Cancer Centre, Singapore 169610
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Dexuan Cui
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Shengli Yang
- Union Hospital Tumour Center, Wuhan 430022, China
| | - Ming-Yue Li
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China
| | - Bo Feng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Paul B S Lai
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China.
| | - George G Chen
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute (SZRI), Chinese University of Hong Kong, Shenzhen 518057, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Beauford SS, Kumari A, Garnett-Benson C. Ionizing radiation modulates the phenotype and function of human CD4+ induced regulatory T cells. BMC Immunol 2020; 21:18. [PMID: 32299365 PMCID: PMC7164225 DOI: 10.1186/s12865-020-00349-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The use of immunotherapy strategies for the treatment of advanced cancer is rapidly increasing. Most immunotherapies rely on induction of CD8+ tumor-specific cytotoxic T cells that are capable of directly killing cancer cells. Tumors, however, utilize a variety of mechanisms that can suppress anti-tumor immunity. CD4+ regulatory T cells can directly inhibit cytotoxic T cell activity and these cells can be recruited, or induced, by cancer cells allowing escape from immune attack. The use of ionizing radiation as a treatment for cancer has been shown to enhance anti-tumor immunity by several mechanisms including immunogenic tumor cell death and phenotypic modulation of tumor cells. Less is known about the impact of radiation directly on suppressive regulatory T cells. In this study we investigate the direct effect of radiation on human TREG viability, phenotype, and suppressive activity. RESULTS Both natural and TGF-β1-induced CD4+ TREG cells exhibited increased resistance to radiation (10 Gy) as compared to CD4+ conventional T cells. Treatment, however, decreased Foxp3 expression in natural and induced TREG cells and the reduction was more robust in induced TREGS. Radiation also modulated the expression of signature iTREG molecules, inducing increased expression of LAG-3 and decreased expression of CD25 and CTLA-4. Despite the disconcordant modulation of suppressive molecules, irradiated iTREGS exhibited a reduced capacity to suppress the proliferation of CD8+ T cells. CONCLUSIONS Our findings demonstrate that while human TREG cells are more resistant to radiation-induced death, treatment causes downregulation of Foxp3 expression, as well as modulation in the expression of TREG signature molecules associated with suppressive activity. Functionally, irradiated TGF-β1-induced TREGS were less effective at inhibiting CD8+ T cell proliferation. These data suggest that doses of radiotherapy in the hypofractionated range could be utilized to effectively target and reduce TREG activity, particularly when used in combination with cancer immunotherapies.
Collapse
Affiliation(s)
- Samantha S Beauford
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Anita Kumari
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Charlie Garnett-Benson
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| |
Collapse
|
16
|
Rezaei N, Sardarzadeh T, Sisakhtnezhad S. Thymoquinone promotes mouse mesenchymal stem cells migration in vitro and induces their immunogenicity in vivo. Toxicol Appl Pharmacol 2019; 387:114851. [PMID: 31812774 DOI: 10.1016/j.taap.2019.114851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSCs) have unique potentials, including migration and immunomodulation. Identification of the factors that enhance these activities can improve clinical applications of MSCs. This study aimed to investigate total antioxidant capacity (TAC) and migration potential of mouse MSCs exposed to thymoquinone (TQ) in vitro, and to examine the effect of TQ-treated MSCs on the expression of mouse immune cell markers. The results of total antioxidant capacity and wound healing assays showed that TQ increased the rate of MSCs TAC and migration in a dose- and time-dependent manner. The maximum TAC and migration were detected at 600 and 250 ng/ml of TQ, respectively. Functionally, the real-time PCR data analysis indicated that TQ induced c-Met and Cxcr4 expression and therefore, there may be a correlation between upregulation of these genes and increased MSCs migration. TQ also enhanced the up and down regulating impact of MSCs on Rorγt and Plzf expression and the expression of Tcf4 in mouse immune cells, respectively. Overall, this study declares that TQ increases the TAC of MSCs. It also proposes that TQ may, through activation of c-MET and CXCR4 signalling pathways, promote MSCs migration. TQ may also augment MSCs immunogenicity through its influence on the expression of genes involved in commitment of mouse immune system cells in vivo.
Collapse
Affiliation(s)
- Niloufar Rezaei
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Tayebeh Sardarzadeh
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | | |
Collapse
|
17
|
Arginine methylation of FOXP3 is crucial for the suppressive function of regulatory T cells. J Autoimmun 2019; 97:10-21. [DOI: 10.1016/j.jaut.2018.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 11/18/2022]
|
18
|
|
19
|
Du J, Wang Q, Ziegler SF, Zhou B. FOXP3 interacts with hnRNPF to modulate pre-mRNA alternative splicing. J Biol Chem 2018; 293:10235-10244. [PMID: 29773655 DOI: 10.1074/jbc.ra117.001349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
FOXP3 promotes the development and function of regulatory T cells mainly through regulating the transcription of target genes. RNA alternative splicing has been implicated in a wide range of physiological and pathophysiological processes. We report here that FOXP3 associates with heterogeneous nuclear ribonucleoprotein (hnRNP) F through the exon 2-encoded region of FOXP3 and the second quasi-RNA recognition motif (qRRM) of hnRNPF. FOXP3 represses the ability of hnRNPF to bind to its target pre-mRNA and thus modulates RNA alternative splicing. Furthermore, overexpression of mouse hnRNPF in in vitro-differentiated regulatory T cells (Tregs) reduced their suppressive function. Thus, our studies identify a novel mechanism by which FOXP3 regulates mRNA alternative splicing to modulate the function of regulatory T cells.
Collapse
Affiliation(s)
- Jianguang Du
- From the Wells Center for Pediatric Research and Department of Pediatrics and
| | - Qun Wang
- From the Wells Center for Pediatric Research and Department of Pediatrics and
| | - Steven F Ziegler
- Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101
| | - Baohua Zhou
- From the Wells Center for Pediatric Research and Department of Pediatrics and .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| |
Collapse
|
20
|
In Mitochondria ?-Actin Regulates mtDNA Transcription and Is Required for Mitochondrial Quality Control. iScience 2018; 3:226-237. [PMID: 30428323 PMCID: PMC6137402 DOI: 10.1016/j.isci.2018.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
In eukaryotic cells, actin regulates both cytoplasmic and nuclear functions. However, whether actin-based structures are present in the mitochondria and are involved in mitochondrial functions has not been investigated. Here, using wild-type ?-actin +/+ and knockout (KO) ?-actin ?/? mouse embryonic fibroblasts we show evidence for the defect in maintaining mitochondrial membrane potential (MMP) in ?-actin-null cells. MMP defects were associated with impaired mitochondrial DNA (mtDNA) transcription and nuclear oxidative phosphorylation (OXPHOS) gene expression. Using super-resolution microscopy we provided direct evidence on the presence of ?-actin-containing structures inside mitochondria. Large aggregates of TFAM-stained nucleoids were observed in bulb-shaped mitochondria in KO cells, suggesting defects in mitochondrial nucleoid segregation without ?-actin. The observation that mitochondria-targeted ?-actin rescued mtDNA transcription and MMP suggests an indispensable functional role of a mitochondrial ?-actin pool necessary for mitochondrial quality control.
Collapse
|
21
|
Xie X, Deliorman M, Qasaimeh MA, Percipalle P. The relative composition of actin isoforms regulates cell surface biophysical features and cellular behaviors. Biochim Biophys Acta Gen Subj 2018; 1862:1079-1090. [PMID: 29410074 DOI: 10.1016/j.bbagen.2018.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell surface mechanics is able to physically and biomechanically affect cell shape and motility, vesicle trafficking and actin dynamics. The biophysical properties of cell surface are strongly influenced by cytoskeletal elements. In mammals, tissue-specific expression of six actin isoforms is thought to confer differential biomechanical properties. However, the relative contribution of actin isoforms to cell surface properties is not well understood. Here, we sought to investigate whether and how the composition of endogenous actin isoforms directly affects the biomechanical features of cell surface and cellular behavior. METHODS We used fibroblasts isolated from wild type (WT), heterozygous (HET) and from knockout (KO) mouse embryos where both β-actin alleles are not functional. We applied a combination of genome-wide analysis and biophysical methods such as RNA-seq and atomic force microscopy. RESULTS We found that endogenous β-actin levels are essential in controlling cell surface stiffness and pull-off force, which was not compensated by the up-regulation of other actin isoforms. The variations of surface biophysical features and actin contents were associated with distinct cell behaviors in 2D and 3D WT, HET and KO cell cultures. Since β-actin in WT cells and smooth muscle α-actin up-regulated in KO cells showed different organization patterns, our data support the differential localization and organization as a mechanism to regulate the biophysical properties of cell surface by actin isoforms. CONCLUSIONS We propose that variations in actin isoforms composition impact on the biophysical features of cell surface and cause the changes in cell behavior.
Collapse
Affiliation(s)
- Xin Xie
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Muhammedin Deliorman
- Engineering Division, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Mohammad A Qasaimeh
- Engineering Division, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates; Department of Mechanical and Aerospace Engineering, New York University, USA
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
22
|
FoxP3 scanning mutagenesis reveals functional variegation and mild mutations with atypical autoimmune phenotypes. Proc Natl Acad Sci U S A 2017; 115:E253-E262. [PMID: 29269391 DOI: 10.1073/pnas.1718599115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FoxP3+ regulatory T cells (Tregs) are a central element of immunological tolerance. FoxP3 is the key determining transcription factor of the Treg lineage, interacting with numerous cofactors and transcriptional targets to determine the many facets of Treg function. Its absence leads to devastating lymphoproliferation and autoimmunity in scurfy mutant mice and immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) patients. To finely map transcriptionally active regions of the protein, with respect to disease-causing variation, we performed a systematic alanine-scan mutagenesis of FoxP3, assessing mutational impacts on DNA binding and transcriptional activation or repression. The mutations affected transcriptional activation and repression in a variegated manner involving multiple regions of the protein and varying between different transcriptional targets of FoxP3. There appeared to be different modalities for target genes related to classic immunosuppressive function vs. those related to atypical or tissue-Treg functions. Relevance to in vivo Treg biology was established by introducing some of the subtle Foxp3 mutations into the mouse germline by CRISPR-based genome editing. The resulting mice showed Treg populations in normal numbers and exhibited no overt autoimmune manifestations. However, Treg functional defects were revealed upon competition or by system stress, manifest as a strikingly heightened susceptibility to provoked colitis, and conversely by greater resistance to tumors. These observations suggest that some of the missense mutations that segregate in human populations, but do not induce IPEX manifestations, may have unappreciated consequences in other diseases.
Collapse
|
23
|
Wang B, Kang W, Zuo J, Kang W, Sun Y. The Significance of Type-I Interferons in the Pathogenesis and Therapy of Human Immunodeficiency Virus 1 Infection. Front Immunol 2017; 8:1431. [PMID: 29163506 PMCID: PMC5671973 DOI: 10.3389/fimmu.2017.01431] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/13/2017] [Indexed: 01/25/2023] Open
Abstract
Type-I interferons (IFN-I) are a widely expressed family that could promote antivirus immunity in the process of pathogens invasion. In a human immunodeficiency virus 1 (HIV-1)-infected individual, the production of IFN-I can be detected as early as the acute phase and will persist throughout the course of infection. However, sustained stimulation of immune system by IFN-I also contributes greatly to host-mediated immunopathology and diseases progression. Although the protective effects of IFN-I in the acute phase of HIV-1 infection have been observed, more studies recently focus on their detrimental role in the chronic stage. Inhibition of IFN-I signaling may reverse HIV-1-induced immune hyperactivation and furthermore reduce HIV-1 reservoirs, which suggest this strategy may provide a potential way to enhance the therapeutic effect of antiretroviral therapy. Therefore, we review the role of IFN-I in HIV-1 progression, their effects on different immunocytes, and therapeutic prospects targeting the IFN-I system.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiahui Zuo
- Clinical Laboratory, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenzhen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Abstract
The proper restraint of the destructive potential of the immune system is essential for maintaining health. Regulatory T (Treg) cells ensure immune homeostasis through their defining ability to suppress the activation and function of other leukocytes. The expression of the transcription factor forkhead box protein P3 (FOXP3) is a well-recognized characteristic of Treg cells, and FOXP3 is centrally involved in the establishment and maintenance of the Treg cell phenotype. In this Review, we summarize how the expression and activity of FOXP3 are regulated across multiple layers by diverse factors. The therapeutic implications of these topics for cancer and autoimmunity are also discussed.
Collapse
|
25
|
Moreno Ayala MA, Gottardo MF, Imsen M, Asad AS, Bal de Kier Joffé E, Casares N, Lasarte JJ, Seilicovich A, Candolfi M. Therapeutic blockade of Foxp3 in experimental breast cancer models. Breast Cancer Res Treat 2017; 166:393-405. [PMID: 28756536 DOI: 10.1007/s10549-017-4414-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/22/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Regulatory T cells (Tregs) impair the clinical benefit of cancer immunotherapy. To optimize the antitumor efficacy of therapeutic dendritic cell (DC) vaccines, we aimed to inhibit Foxp3, a transcription factor required for Treg function. METHODS Mice bearing established syngeneic LM3 and 4T1 breast tumors were treated with antitumor DC vaccines and a synthetic peptide (P60) that has been shown to inhibit Foxp3. RESULTS Treatment with P60 improved the therapeutic efficacy of DC vaccines in these experimental models. In addition, monotherapy with P60 inhibited tumor growth in immunocompetent as well as in immuno-compromised animals bearing established tumors. We found expression of Foxp3 in human and murine breast tumor cells. P60 inhibited IL-10 secretion in breast cancer cells that expressed Foxp3. CONCLUSIONS Our results suggest that Foxp3 blockade improves the therapeutic efficacy of DC vaccines by inhibition of Tregs and through a direct antitumor effect. This strategy could prove useful to neutralize the immunosuppressive microenvironment and to boost antitumor immunity in breast cancer.
Collapse
Affiliation(s)
- Mariela A Moreno Ayala
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina
| | - María Florencia Gottardo
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Imsen
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina
| | - Antonela S Asad
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina
| | - Elisa Bal de Kier Joffé
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Área Investigación, Instituto de Oncología Angel H. Roffo, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Noelia Casares
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Avenida Pio XII 55, 31008, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Irunlarrea 3, 31008, Pamplona, Spain
| | - Juan José Lasarte
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Avenida Pio XII 55, 31008, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Irunlarrea 3, 31008, Pamplona, Spain
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, CONICET, Universidad de Buenos Aires, Paraguay 2155, piso 10, Buenos Aires, C1121ABG, Argentina.
| |
Collapse
|
26
|
Müller V, de Boer RJ, Bonhoeffer S, Szathmáry E. An evolutionary perspective on the systems of adaptive immunity. Biol Rev Camb Philos Soc 2017; 93:505-528. [PMID: 28745003 DOI: 10.1111/brv.12355] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022]
Abstract
We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function-based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to 'learn' by cumulative trial-and-error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher-level units entail the suppression of selection at lower levels, Darwinian immunity re-opens cell-level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell-level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re-invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system - the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the 'Big Bang' of vertebrate immunity, arguing that its origin involved a 'difficult' (i.e. low-probability) evolutionary transition that might have occurred only once, in a common ancestor of all vertebrates. In contrast to the original concept, we argue that the limiting innovation was not the generation of somatic diversity, but the regulatory circuitry needed for the safe operation of amplifiable immune responses with somatically acquired targeting. Regulatory complexity increased abruptly by genomic duplications at the root of the vertebrate lineage, creating a rare opportunity to establish such circuitry. We discuss the selection forces that might have acted at the origin of the transition, and in the subsequent stepwise evolution leading to the modern immune systems of extant vertebrates.
Collapse
Affiliation(s)
- Viktor Müller
- Parmenides Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany.,Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, 8237 Tihany, Hungary
| | - Rob J de Boer
- Theoretical Biology, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany.,Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, 8237 Tihany, Hungary
| |
Collapse
|
27
|
Aitoro R, Paparo L, Amoroso A, Di Costanzo M, Cosenza L, Granata V, Di Scala C, Nocerino R, Trinchese G, Montella M, Ercolini D, Berni Canani R. Gut Microbiota as a Target for Preventive and Therapeutic Intervention against Food Allergy. Nutrients 2017; 9:nu9070672. [PMID: 28657607 PMCID: PMC5537787 DOI: 10.3390/nu9070672] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/15/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
The gut microbiota plays a pivotal role in immune system development and function. Modification in the gut microbiota composition (dysbiosis) early in life is a critical factor affecting the development of food allergy. Many environmental factors including caesarean delivery, lack of breast milk, drugs, antiseptic agents, and a low-fiber/high-fat diet can induce gut microbiota dysbiosis, and have been associated with the occurrence of food allergy. New technologies and experimental tools have provided information regarding the importance of select bacteria on immune tolerance mechanisms. Short-chain fatty acids are crucial metabolic products of gut microbiota responsible for many protective effects against food allergy. These compounds are involved in epigenetic regulation of the immune system. These evidences provide a foundation for developing innovative strategies to prevent and treat food allergy. Here, we present an overview on the potential role of gut microbiota as the target of intervention against food allergy.
Collapse
Affiliation(s)
- Rosita Aitoro
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Lorella Paparo
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Antonio Amoroso
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Margherita Di Costanzo
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Linda Cosenza
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Viviana Granata
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Carmen Di Scala
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Rita Nocerino
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Giovanna Trinchese
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Mariangela Montella
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples "Federico II", 80055 Portici, Italy.
- Task Force on Microbiome Studies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Roberto Berni Canani
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
- Task Force on Microbiome Studies, University of Naples "Federico II", 80131 Naples, Italy.
- European Laboratory for the Investigation of Food Induced Diseases, University of Naples "Federico II", 80131 Naples, Italy.
- CEINGE Advanced Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
28
|
Sehrawat S, Rouse BT. Interplay of Regulatory T Cell and Th17 Cells during Infectious Diseases in Humans and Animals. Front Immunol 2017; 8:341. [PMID: 28421070 PMCID: PMC5377923 DOI: 10.3389/fimmu.2017.00341] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
It is now clear that the outcome of an inflammatory process caused by infections depends on the balance of responses by several components of the immune system. Of particular relevance is the interplay between regulatory T cells (Tregs) and CD4+ T cells that produce IL-17 (Th17 cells) during immunoinflammatory events. In addition to discussing studies done in mice to highlight some unresolved issues in the biology of these cells, we emphasize the need to include outbred animals and humans in analyses. Achieving a balance between Treg and Th17 cells responses represents a powerful approach to control events during immunity and immunopathology.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
29
|
Howie D, Cobbold SP, Adams E, Ten Bokum A, Necula AS, Zhang W, Huang H, Roberts DJ, Thomas B, Hester SS, Vaux DJ, Betz AG, Waldmann H. Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight 2017; 2:e89160. [PMID: 28194435 DOI: 10.1172/jci.insight.89160] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tregs can adopt a catabolic metabolic program with increased capacity for fatty acid oxidation-fueled oxidative phosphorylation (OXPHOS). It is unclear why this form of metabolism is favored in Tregs and, more specifically, whether this program represents an adaptation to the environment and developmental cues or is "hardwired" by Foxp3. Here we show, using metabolic analysis and an unbiased mass spectroscopy-based proteomics approach, that Foxp3 is both necessary and sufficient to program Treg-increased respiratory capacity and Tregs' increased ability to utilize fatty acids to fuel oxidative phosphorylation. Foxp3 drives upregulation of components of all the electron transport complexes, increasing their activity and ATP generation by oxidative phosphorylation. Increased fatty acid β-oxidation also results in selective protection of Foxp3+ cells from fatty acid-induced cell death. This observation may provide novel targets for modulating Treg function or selection therapeutically.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhang
- Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital
| | - Honglei Huang
- Radcliffe Department of Medicine, John Radcliffe Hospital
| | - David J Roberts
- Radcliffe Department of Medicine, John Radcliffe Hospital.,National Health Service Blood and Transplant, John Radcliffe Hospital, University of Oxford, Oxford, England, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Howie D, Cobbold SP, Adams E, Ten Bokum A, Necula AS, Zhang W, Huang H, Roberts DJ, Thomas B, Hester SS, Vaux DJ, Betz AG, Waldmann H. Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight 2017. [PMID: 28194435 DOI: 10.1172/jci.insight.89160.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tregs can adopt a catabolic metabolic program with increased capacity for fatty acid oxidation-fueled oxidative phosphorylation (OXPHOS). It is unclear why this form of metabolism is favored in Tregs and, more specifically, whether this program represents an adaptation to the environment and developmental cues or is "hardwired" by Foxp3. Here we show, using metabolic analysis and an unbiased mass spectroscopy-based proteomics approach, that Foxp3 is both necessary and sufficient to program Treg-increased respiratory capacity and Tregs' increased ability to utilize fatty acids to fuel oxidative phosphorylation. Foxp3 drives upregulation of components of all the electron transport complexes, increasing their activity and ATP generation by oxidative phosphorylation. Increased fatty acid β-oxidation also results in selective protection of Foxp3+ cells from fatty acid-induced cell death. This observation may provide novel targets for modulating Treg function or selection therapeutically.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhang
- Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital
| | - Honglei Huang
- Radcliffe Department of Medicine, John Radcliffe Hospital
| | - David J Roberts
- Radcliffe Department of Medicine, John Radcliffe Hospital.,National Health Service Blood and Transplant, John Radcliffe Hospital, University of Oxford, Oxford, England, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Forkhead box (Fox) transcription factors are evolutionarily conserved in organisms ranging from yeast to humans. They regulate diverse biological processes both during development and throughout adult life. Mutations in many Fox genes are associated with human disease and, as such, various animal models have been generated to study the function of these transcription factors in mechanistic detail. In many cases, the absence of even a single Fox transcription factor is lethal. In this Primer, we provide an overview of the Fox family, highlighting several key Fox transcription factor families that are important for mammalian development.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Novel Foxp3(-) IL-10(-) Regulatory T-cells Induced by B-Cells Alleviate Intestinal Inflammation in Vivo. Sci Rep 2016; 6:32415. [PMID: 27581189 PMCID: PMC5007537 DOI: 10.1038/srep32415] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/03/2016] [Indexed: 02/05/2023] Open
Abstract
Recent studies have revealed various Foxp3(-) regulatory T (Treg) cell subsets effectively protect mice from colitis. In the present study, we demonstrated that B cells induced a particular subset of regulatory T (Treg-of-B) cells, expressing programmed cell death 1 (PD-1), inducible costimulator (ICOS), lymphocyte-activation gene 3 (LAG3), glucocorticoid-induced tumor necrosis factor receptor (GITR), and OX-40, did not express Foxp3. Treg-of-B cells produced abundant levels of IL-10 and low levels of IL-4 and TGF-β. Adoptive transfer of Treg-of-B cells protected mice from CD4(+)CD45RB(hi) T-cell-induced colitis, including infiltration of leukocytes, depletion of goblet cells, epithelial hyperplasia, and inhibition of Th1 and Th17 cytokines. These features were similar to IL-10-producing type 1 regulatory T (Tr1) cells; however, IL-10-deficient Treg-of-B cells maintained their suppressive function in vitro as well as in vivo, while the regulation of Tr1 cells depended on IL-10. In conclusion, Treg-of-B cells protected against experimental colitis through an IL-10-independent mechanism. We reported a novel subpopulation of regulatory T cells was different from conventional Foxp3(+) Treg and IL-10-producing Tr1 cells.
Collapse
|
33
|
Majewska A, Gajewska M, Dembele K, Maciejewski H, Prostek A, Jank M. Lymphocytic, cytokine and transcriptomic profiles in peripheral blood of dogs with atopic dermatitis. BMC Vet Res 2016; 12:174. [PMID: 27553600 PMCID: PMC4995625 DOI: 10.1186/s12917-016-0805-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
Background Canine atopic dermatitis (cAD) is a common chronic and pruritic skin disease in dogs. The development of cAD involves complex interactions between environmental antigens, genetic predisposition and a number of disparate cell types. The aim of the present study was to perform comprehensive analyses of peripheral blood of AD dogs in relation to healthy subjects in order to determine the changes which would be characteristic for cAD. Results The number of cells in specific subpopulations of lymphocytes was analyzed by flow cytometry, concentration of chosen pro- and anti-inflammatory cytokines (IL-4, IL-10, IL-13, TNF-α, TGF-β1) was determined by ELISA; and microarray analysis was performed on RNA samples isolated from peripheral blood nuclear cells of AD and healthy dogs. The number of Th cells (CD3+CD4+) in AD and healthy dogs was similar, whereas the percentage of Tc (CD3+CD8+) and Treg (CD4+CD25+ Foxp3+) cells increased significantly in AD dogs. Increased concentrations of IL-13 and TNF-α, and decreased levels of IL-10 and TGF-β1 was observed in AD dogs. The level of IL-4 was similar in both groups of animals. Results of the microarray experiment revealed differentially expressed genes involved in transcriptional regulation (e.g., transcription factors: SMAD2, RORA) or signal transduction pathways (e.g., VEGF, SHB21, PROC) taking part in T lymphocytes lineages differentiation and cytokines synthesis. Conclusions Results obtained indicate that CD8+ T cells, beside CD4+ T lymphocytes, contribute to the development of the allergic response. Increased IL-13 concentration in AD dogs suggests that this cytokine may play more important role than IL-4 in mediating changes induced by allergic inflammation. Furthermore, observed increase in Treg cells in parallel with high concentrations of TNF-α and low levels of IL-10 and TGF-β1 in the peripheral blood of AD dogs point at the functional insufficiency of Treg cells in patients with AD. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0805-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland.
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Kourou Dembele
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Henryk Maciejewski
- Department of Computer Engineering, Wroclaw University of Technology, Wrocław, Poland
| | - Adam Prostek
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Michał Jank
- Veterinary Institute, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
34
|
López-Abente J, Correa-Rocha R, Pion M. Functional Mechanisms of Treg in the Context of HIV Infection and the Janus Face of Immune Suppression. Front Immunol 2016; 7:192. [PMID: 27242797 PMCID: PMC4871867 DOI: 10.3389/fimmu.2016.00192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in infections, by modulating host immune responses and avoiding the overreactive immunity that in the case of human immunodeficiency virus (HIV) infection leads to a marked erosion and deregulation of the entire immune system. Therefore, the suppressive function of Treg in HIV-infected patients is critical because of their implication on preventing the immune hyperactivation, even though it could also have a detrimental effect by suppressing HIV-specific immune responses. In recent years, several studies have shown that HIV-1 can directly infect Treg, disturbing their phenotype and suppressive capacity via different mechanisms. These effects include Foxp3 and CD25 downregulation, and the impairment of suppressive capacity. This review describes the functional mechanisms of Treg to modulate immune activation during HIV infection, and how such control is no longer fine-tune orchestrated once Treg itself get infected. We will review the current knowledge about the HIV effects on the Treg cytokine expression, on pathways implying the participation of different ectoenzymes (i.e., CD39/CD73 axis), transcription factors (ICER), and lastly on cyclic adenosine monophosphate (cAMP), one of the keystones in Treg-suppressive function. To define which are the HIV effects upon these regulatory mechanisms is crucial not only for the comprehension of immune deregulation in HIV-infected patients but also for the correct understanding of the role of Tregs in HIV infection.
Collapse
Affiliation(s)
- Jacobo López-Abente
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| | - Rafael Correa-Rocha
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| | - Marjorie Pion
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| |
Collapse
|