1
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
2
|
Khemiri I, Tebbji F, Burgain A, Sellam A. Regulation of copper uptake by the SWI/SNF chromatin remodeling complex in Candida albicans affects susceptibility to antifungal and oxidative stresses under hypoxia. FEMS Yeast Res 2024; 24:foae018. [PMID: 38760885 PMCID: PMC11160329 DOI: 10.1093/femsyr/foae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
Candida albicans is a human colonizer and also an opportunistic yeast occupying different niches that are mostly hypoxic. While hypoxia is the prevalent condition within the host, the machinery that integrates oxygen status to tune the fitness of fungal pathogens remains poorly characterized. Here, we uncovered that Snf5, a subunit of the chromatin remodeling complex SWI/SNF, is required to tolerate antifungal stress particularly under hypoxia. RNA-seq profiling of snf5 mutant exposed to amphotericin B and fluconazole under hypoxic conditions uncovered a signature that is reminiscent of copper (Cu) starvation. We found that under hypoxic and Cu-starved environments, Snf5 is critical for preserving Cu homeostasis and the transcriptional modulation of the Cu regulon. Furthermore, snf5 exhibits elevated levels of reactive oxygen species and an increased sensitivity to oxidative stress principally under hypoxia. Supplementing growth medium with Cu or increasing gene dosage of the Cu transporter CTR1 alleviated snf5 growth defect and attenuated reactive oxygen species levels in response to antifungal challenge. Genetic interaction analysis suggests that Snf5 and the bona fide Cu homeostasis regulator Mac1 function in separate pathways. Together, our data underlined a unique role of SWI/SNF complex as a potent regulator of Cu metabolism and antifungal stress under hypoxia.
Collapse
Affiliation(s)
- Inès Khemiri
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada
| | - Faiza Tebbji
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada
| | - Anaïs Burgain
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Features of the rare pathogen Meyerozyma guilliermondii strain SO and comprehensive in silico analyses of its adherence-contributing virulence factor agglutinin-like sequences. J Biomol Struct Dyn 2024:1-21. [PMID: 38189364 DOI: 10.1080/07391102.2023.2300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
Meyerozyma guilliermondii is a rare yeast pathogen contributing to the deadly invasive candidiasis. M. guilliermondii strain SO, as a promising protein expression host, showed 99% proteome similarity with the clinically isolated ATCC 6260 (type strain) in a recent comparative genomic analysis. However, their in vitro virulence features and in vivo pathogenicity were uncharacterized. This study aimed to characterize the in vitro and in vivo pathogenicity of M. guilliermondii strain SO and analyze its Als proteins (MgAls) via comprehensive bioinformatics approaches. M. guilliermondii strain SO showed lower and higher sensitivity towards β-mercaptoethanol and lithium, respectively than the avirulent S. cerevisiae but exhibited the same tolerance towards cell wall-perturbing Congo Red with C. albicans. With 7.5× higher biofilm mass, M. guilliermondii strain SO also demonstrated 75% higher mortality rate in the zebrafish embryos with a thicker biofilm layer on the chorion compared to the avirulent S. cerevisiae. Being one of the most important Candida adhesins, sequence and structural analyses of four statistically identified MgAls showed that MgAls1056 was predicted to exhibit the most conserved amyloid-forming regions, tandem repeat domain and peptide binding cavity (PBC) compared to C. albicans Als3. Favoured from the predicted largest ligand binding site and druggable pockets, it showed the highest affinity towards hepta-threonine. Non-PBC druggable pockets in the most potent virulence contributing MgAls1056 provide new insights into developing antifungal drugs targeting non-albicans Candida spp. Virtual screening of available synthetic or natural bioactive compounds and MgAls1056 deletion from the fungal genome should be further performed and validated experimentally.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Puerner C, Vellanki S, Strauch JL, Cramer RA. Recent Advances in Understanding the Human Fungal Pathogen Hypoxia Response in Disease Progression. Annu Rev Microbiol 2023; 77:403-425. [PMID: 37713457 PMCID: PMC11034785 DOI: 10.1146/annurev-micro-032521-021745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.
Collapse
Affiliation(s)
- Charles Puerner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Sandeep Vellanki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Julianne L Strauch
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
- Department of Biology, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| |
Collapse
|
5
|
Sharma A, Mitchell AP. Strain variation in gene expression impact of hyphal cyclin Hgc1 in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkad151. [PMID: 37405402 PMCID: PMC10468301 DOI: 10.1093/g3journal/jkad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Formation of hyphae is a key virulence trait of the fungal pathogen Candida albicans. Hypha morphogenesis depends upon the cyclin Hgc1, which acts together with cyclin-dependent protein kinase Cdc28 to phosphorylate effectors that drive polarized growth. Hgc1 has also been implicated in gene regulation through its effects on 2 transcription factors, Efg1 and Ume6. Here, we report RNA-sequencing (RNA-seq) analysis of 2 pairs of hgc1Δ/Δ mutants and their respective wild-type strains, which lie in 2 different genetic backgrounds. We find that hgc1Δ/Δ mutations alter expression of 271 genes in both genetic backgrounds and 266 of those genes respond consistently with regard to up- or down-regulation. Consistency is similar to what has been observed with efg1Δ/Δ mutations and greater than observed with nrg1Δ/Δ mutations in these 2 backgrounds. The gene expression response includes genes under Efg1 control, as expected from prior studies. Hgc1-responsive genes also include ergosterol biosynthetic genes and bud neck-related genes, which may reflect interactions between Hgc1 and additional transcription factors as well as effects of Hgc1 on cellular length-to-width ratios.
Collapse
Affiliation(s)
- Anupam Sharma
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Aaron P Mitchell
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Wang F, Wang Z, Tang J. The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis. Gut Pathog 2023; 15:30. [PMID: 37370138 DOI: 10.1186/s13099-023-00559-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The gut microbiota plays an important role in human health, as it can affect host immunity and susceptibility to infectious diseases. Invasive intestinal candidiasis is strongly associated with gut microbiota homeostasis. However, the nature of the interaction between Candida albicans and gut bacteria remains unclear. OBJECTIVE This review aimed to determine the nature of interaction and the effects of gut bacteria on C. albicans so as to comprehend an approach to reducing intestinal invasive infection by C. albicans. METHODS This review examined 11 common gut bacteria's interactions with C. albicans, including Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Staphylococcus aureus, Salmonella spp., Helicobacter pylori, Lactobacillus spp., Bacteroides spp., Clostridium difficile, and Streptococcus spp. RESULTS Most of the studied bacteria demonstrated both synergistic and antagonistic effects with C. albicans, and just a few bacteria such as P. aeruginosa, Salmonella spp., and Lactobacillus spp. demonstrated only antagonism against C. albicans. CONCLUSIONS Based on the nature of interactions reported so far by the literature between gut bacteria and C. albicans, it is expected to provide new ideas for the prevention and treatment of invasive intestinal candidiasis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China
| | - Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Luther CH, Brandt P, Vylkova S, Dandekar T, Müller T, Dittrich M. Integrated analysis of SR-like protein kinases Sky1 and Sky2 links signaling networks with transcriptional regulation in Candida albicans. Front Cell Infect Microbiol 2023; 13:1108235. [PMID: 37082713 PMCID: PMC10111165 DOI: 10.3389/fcimb.2023.1108235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Fungal infections are a major global health burden where Candida albicans is among the most common fungal pathogen in humans and is a common cause of invasive candidiasis. Fungal phenotypes, such as those related to morphology, proliferation and virulence are mainly driven by gene expression, which is primarily regulated by kinase signaling cascades. Serine-arginine (SR) protein kinases are highly conserved among eukaryotes and are involved in major transcriptional processes in human and S. cerevisiae. Candida albicans harbors two SR protein kinases, while Sky2 is important for metabolic adaptation, Sky1 has similar functions as in S. cerevisiae. To investigate the role of these SR kinases for the regulation of transcriptional responses in C. albicans, we performed RNA sequencing of sky1Δ and sky2Δ and integrated a comprehensive phosphoproteome dataset of these mutants. Using a Systems Biology approach, we study transcriptional regulation in the context of kinase signaling networks. Transcriptomic enrichment analysis indicates that pathways involved in the regulation of gene expression are downregulated and mitochondrial processes are upregulated in sky1Δ. In sky2Δ, primarily metabolic processes are affected, especially for arginine, and we observed that arginine-induced hyphae formation is impaired in sky2Δ. In addition, our analysis identifies several transcription factors as potential drivers of the transcriptional response. Among these, a core set is shared between both kinase knockouts, but it appears to regulate different subsets of target genes. To elucidate these diverse regulatory patterns, we created network modules by integrating the data of site-specific protein phosphorylation and gene expression with kinase-substrate predictions and protein-protein interactions. These integrated signaling modules reveal shared parts but also highlight specific patterns characteristic for each kinase. Interestingly, the modules contain many proteins involved in fungal morphogenesis and stress response. Accordingly, experimental phenotyping shows a higher resistance to Hygromycin B for sky1Δ. Thus, our study demonstrates that a combination of computational approaches with integration of experimental data can offer a new systems biological perspective on the complex network of signaling and transcription. With that, the investigation of the interface between signaling and transcriptional regulation in C. albicans provides a deeper insight into how cellular mechanisms can shape the phenotype.
Collapse
Affiliation(s)
- Christian H. Luther
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Philipp Brandt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Dandekar
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Tobias Müller
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Marcus Dittrich
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
- University of Würzburg, Institut of Human Genetics, Biocenter/Am Hubland 97074, Würzburg, Germany
- *Correspondence: Marcus Dittrich,
| |
Collapse
|
8
|
Wijnants S, Vreys J, Nysten J, Van Dijck P. The Cdc25 and Ras1 Proteins of Candida albicans Influence Epithelial Toxicity in a Niche-Specific Way. J Fungi (Basel) 2023; 9:jof9020201. [PMID: 36836315 PMCID: PMC9959987 DOI: 10.3390/jof9020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
The PKA pathway is a signaling pathway involved in virulence in Candida albicans. This mechanism can be activated via addition of glucose and activation involves at least two proteins, namely Cdc25 and Ras1. Both proteins are involved in specific virulence traits. However, it is not clear if Cdc25 and Ras1 also affect virulence independently of PKA. C. albicans holds a second, atypical, Ras protein, Ras2, but its function in PKA activation is still unclear. We investigated the role of Cdc25, Ras1, and Ras2 for different in vitro and ex vivo virulence characteristics. We show that deletion of CDC25 and RAS1 result in less toxicity towards oral epithelial cells, while deletion of RAS2 has no effect. However, toxicity towards cervical cells increases in both the ras2 and the cdc25 mutants while it decreases in a ras1 mutant compared to the WT. Toxicity assays using mutants of the transcription factors downstream of the PKA pathway (Efg1) or the MAPK pathway (Cph1) show that the ras1 mutant shows similar phenotypes as the efg1 mutant, whereas the ras2 mutant shows similar phenotypes as the cph1 mutant. These data show niche-specific roles for different upstream components in regulating virulence through both signal transduction pathways.
Collapse
|
9
|
Brenes LR, Johnson AD, Lohse MB. Farnesol and phosphorylation of the transcriptional regulator Efg1 affect Candida albicans white-opaque switching rates. PLoS One 2023; 18:e0280233. [PMID: 36662710 PMCID: PMC9858334 DOI: 10.1371/journal.pone.0280233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Candida albicans is a normal member of the human microbiome and an opportunistic fungal pathogen. This species undergoes several morphological transitions, and here we consider white-opaque switching. In this switching program, C. albicans reversibly alternates between two cell types, named "white" and "opaque," each of which is normally stable across thousands of cell divisions. Although switching under most conditions is stochastic and rare, certain environmental signals or genetic manipulations can dramatically increase the rate of switching. Here, we report the identification of two new inputs which affect white-to-opaque switching rates. The first, exposure to sub-micromolar concentrations of (E,E)-farnesol, reduces white-to-opaque switching by ten-fold or more. The second input, an inferred PKA phosphorylation of residue T208 on the transcriptional regulator Efg1, increases white-to-opaque switching ten-fold. Combining these and other environmental inputs results in a variety of different switching rates, indicating that a given rate represents the integration of multiple inputs.
Collapse
Affiliation(s)
- Lucas R. Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthew B. Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
10
|
Williams S, Cleary I, Thomas D. Anaerobic conditions are a major influence on Candida albicans chlamydospore formation. Folia Microbiol (Praha) 2022; 68:321-324. [PMID: 36418845 DOI: 10.1007/s12223-022-01018-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Candidiasis now represents the fourth most frequent nosocomial infection both in the USA and worldwide. Candida albicans is an increasingly common threat to human health as a consequence of AIDS, steroid therapy, organ and tissue transplantation, cancer therapy, broad-spectrum antibiotics, and other immune defects. Unfortunately, these infections carry unacceptably high morbidity, mortality rates and important economic repercussions (estimated total direct cost of approximately 2 billion dollars in 1998 in US hospitals alone). This pathogen can grow both in yeast and filamentous forms and the pathogenic potential of C. albicans is intimately related to certain key processes including filamentation. Chlamydospores are considered to be a dormant form of C. albicans that remain understudied. Chlamydospores have been widely used as a diagnostic tool to separate C. albicans and C. dubliniensis from other Candida species. More recently, media have been developed that use chlamydopsore formation to separate C. albicans and C. dubliniensis from each other. Chlamydospore formation can be stimulated by hypoxic conditions but only on limited specific media types. Here, we show that anaerobic conditions are enough to drive chlamydospore formation in C. albicans on the surface of nutrient-rich agar.
Collapse
Affiliation(s)
- Shannon Williams
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401-9401, USA
| | - Ian Cleary
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401-9401, USA
| | - Derek Thomas
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401-9401, USA.
| |
Collapse
|
11
|
Dysfunction of Ras-GAP protein AfgapA contributes to hypoxia fitness in Aspergillus fumigatus. Curr Genet 2022; 68:593-603. [PMID: 35941233 DOI: 10.1007/s00294-022-01249-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
The filamentous fungus Aspergillus fumigatus is the most important pathogenic fungus among Aspergillus species associated with aspergillosis. A. fumigatus must adapt to hypoxic microenvironments to survive and thrive in human lungs. To gain further insights into hypoxic adaptation, we generated a laboratory-evolved strain (Afs35-G20) harboring hypoxia fitness, and identified a nonsense mutation in AfgapA encoding a Ras-GAP protein, which could result in the deletion of 22 amino acids at the C-terminus. We investigated the role of AfgapA in hypoxia fitness by constructing Afs35-G20-AfgapAWT, and ∆AfgapA. Indeed, the hypoxia fitness of Afs35-G20 was reversed by introducing AfgapAWT. ∆AfgapA exhibited greater hypoxia fitness and hypervirulence in the silkworm infection model, indicating that AfgapA is responsible for hypoxia fitness, particularly in liquid cultures. Taken together, the AfgapA dysfunction may lead to the downregulation of its Ras substrate(s), reflecting several phenotypes such as increased hypoxia fitness, hypervirulence, poor conidiation, and conidial pigmentation. Here, we report the function of a Ras-GAP protein AfgapA in A. fumigatus for the first time.
Collapse
|
12
|
The Pathogenic Yeast Candida parapsilosis Forms Pseudohyphae through Different Signaling Pathways Depending on the Available Carbon Source. mSphere 2022; 7:e0002922. [PMID: 35766504 PMCID: PMC9241547 DOI: 10.1128/msphere.00029-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida parapsilosis is an emerging fungal pathogen that primarily affects immunocompromised patients in hospitals. A significant risk factor is the use of implanted medical devices, which support the growth of biofilms composed of a mixture of individual yeast cells and chains of elongated pseudohyphal cells. The morphological switch between these two forms is triggered by cues from the environment, including nutrient availability and temperature. We examined how different nutrient sources affect the balance between yeast and pseudohyphae and found that cells grown in the presence of five- or six-carbon sugars form more pseudohyphae at 30°C than at 37°C. Conversely, cells grown on glycerol, a three-carbon polyalcohol, form more pseudohyphae at 37°C. Furthermore, we found that different regulators influence pseudohyphal growth on glucose at 30°C compared with those on glycerol at 37°C. In particular, cAMP signaling and the sirtuin deacetylase Hst1 were required for pseudohyphal growth on glycerol at 37°C but not on glucose at 30°C. Finally, we found that the carbon source on which C. parapsilosis is grown can influence its ability to establish an infection in a wax moth model. Overall, this study reveals that environmental conditions affect not only the extent of pseudohyphal growth but also which pathways and regulators govern pseudohyphal formation. IMPORTANCECandida parapsilosis is one of the leading causes of hospital-acquired yeast infections and poses a significant risk to immunocompromised people. Two of its properties that contribute to infection are metabolic flexibility, to use a range of nutrients available in the host, and cellular dimorphism, to switch between round yeast cells and chains of elongated pseudohyphal cells. Uncovering the molecular mechanisms that regulate these processes could reveal new targets for antifungal drugs. We found that for C. parapsilosis, the balance between yeast and pseudohyphal cells depends on the nutrients available and the growth temperature. Moreover, these environmental changes can affect its ability to cause infections. Finally, we found that a potential sensor of the cell’s metabolic state, the sirtuin Hst1, contributes to pseudohyphal growth for cells grown on glycerol. These findings indicate that the shape and virulence of C. parapsilosis likely vary depending on its location in the host.
Collapse
|
13
|
Glazier VE. EFG1, Everyone’s Favorite Gene in Candida albicans: A Comprehensive Literature Review. Front Cell Infect Microbiol 2022; 12:855229. [PMID: 35392604 PMCID: PMC8980467 DOI: 10.3389/fcimb.2022.855229] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Candida sp. are among the most common fungal commensals found in the human microbiome. Although Candida can be found residing harmlessly on the surface of the skin and mucosal membranes, these opportunistic fungi have the potential to cause superficial skin, nail, and mucus membrane infections as well as life threatening systemic infections. Severity of infection is dependent on both fungal and host factors including the immune status of the host. Virulence factors associated with Candida sp. pathogenicity include adhesin proteins, degradative enzymes, phenotypic switching, and morphogenesis. A central transcriptional regulator of morphogenesis, the transcription factor Efg1 was first characterized in Candida albicans in 1997. Since then, EFG1 has been referenced in the Candida literature over three thousand times, with the number of citations growing daily. Arguably one of the most well studied genes in Candida albicans, EFG1 has been referenced in nearly all contexts of Candida biology from the development of novel therapeutics to white opaque switching, hyphae morphology to immunology. In the review that follows we will synthesize the research that has been performed on this extensively studied transcription factor and highlight several important unanswered questions.
Collapse
|
14
|
Chen M, Cheng T, Xu C, Pan M, Wu J, Wang T, Wu D, Yan G, Wang C, Shao J. Sodium houttuyfonate enhances the mono-therapy of fluconazole on oropharyngeal candidiasis (OPC) through HIF-1α/IL-17 axis by inhibiting cAMP mediated filamentation in Candida albicans-Candida glabrata dual biofilms. Virulence 2022; 13:428-443. [PMID: 35195502 PMCID: PMC8890385 DOI: 10.1080/21505594.2022.2035066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Candida albicans and Candida glabrata are two common opportunistic fungi that can be co-isolated in oropharyngeal candidiasis (OPC). Hypha is a hallmark of the biofilm formation of C. albicans, indispensable for the attachment of C. glabrata, which is seldom in mycelial morphology. Increasing evidence reveals a hypoxic microenvironment in interior fungal biofilms, reminding of a fact that inflammation is usually accompanied by oxygen deprivation. As a result, it is assumed that the disaggregation of hypha-mediated hypoxia of biofilms might be a solution to alleviate OPC. Based on this hypothesis, sodium houttuyfonate (SH), a well-identified traditional herbal compound with antifungal activity, is used in combination with fluconazole (FLU), a well-informed synthesized antimycotics, to investigate their impact on filamentation in C. albicans and C. glabrata dual biofilms and the underlying mechanism of their combined treatment on OPC. The results show that compared with the single therapy, SH plus FLU can inhibit the hyphal growth in the mixed biofilms in vitro, decrease the fungal burden of oral tissues and internal organs, restore mucosal epithelial integrity and function, and reduce hypoxic microenvironment and inflammation in a mice OPC model. The possible mechanism of the combined therapy of SH plus FLU can be attributed to the regulation of HIF-1α/IL-17A axis through direct abrogation of the dual Candida biofilm formation. This study highlights the role of HIF-1α/IL-17A axis and the promising application of SH as a sensitizer of conventional antifungals in the treatment of OPC.
Collapse
Affiliation(s)
- Mengli Chen
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China
| | - Ting Cheng
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China
| | - Chen Xu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China
| | - Min Pan
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China
| | - Jiadi Wu
- Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, P. R, China
| | - Tianming Wang
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, P. R, China
| | - Daqiang Wu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui P. R, China.,Cas Center for Excellence in Molecular Cell Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.r, China
| | - Guiming Yan
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui P. R, China
| | - Changzhong Wang
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui P. R, China
| | - Jing Shao
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui P. R, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui P. R, China
| |
Collapse
|
15
|
The battle for oxygen during bacterial and fungal infections. Trends Microbiol 2022; 30:643-653. [DOI: 10.1016/j.tim.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
|
16
|
Henry M, Burgain A, Tebbji F, Sellam A. Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen Candida albicans. Front Cell Infect Microbiol 2022; 11:770478. [PMID: 35127551 PMCID: PMC8807691 DOI: 10.3389/fcimb.2021.770478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
The ability of Candida albicans, an important human fungal pathogen, to develop filamentous forms is a crucial determinant for host invasion and virulence. While hypoxia is one of the predominant host cues that promote C. albicans filamentous growth, the regulatory circuits that link oxygen availability to filamentation remain poorly characterized. We have undertaken a genetic screen and identified the two transcription factors Ahr1 and Tye7 as central regulators of the hypoxic filamentation. Both ahr1 and tye7 mutants exhibited a hyperfilamentous phenotype specifically under an oxygen-depleted environment suggesting that these transcription factors act as negative regulators of hypoxic filamentation. By combining microarray and ChIP-chip analyses, we have characterized the set of genes that are directly modulated by Ahr1 and Tye7. We found that both Ahr1 and Tye7 modulate a distinct set of genes and biological processes. Our genetic epistasis analysis supports our genomic finding and suggests that Ahr1 and Tye7 act independently to modulate hyphal growth in response to hypoxia. Furthermore, our genetic interaction experiments uncovered that Ahr1 and Tye7 repress the hypoxic filamentation via the Efg1 and Ras1/Cyr1 pathways, respectively. This study yielded a new and an unprecedented insight into the oxygen-sensitive regulatory circuit that control morphogenesis in a fungal pathogen.
Collapse
Affiliation(s)
- Manon Henry
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Anaïs Burgain
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Faiza Tebbji
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Adnane Sellam,
| |
Collapse
|
17
|
Wagner AS, Hancock TJ, Lumsdaine SW, Kauffman SJ, Mangrum MM, Phillips EK, Sparer TE, Reynolds TB. Activation of Cph1 causes ß(1,3)-glucan unmasking in Candida albicans and attenuates virulence in mice in a neutrophil-dependent manner. PLoS Pathog 2021; 17:e1009839. [PMID: 34432857 PMCID: PMC8423308 DOI: 10.1371/journal.ppat.1009839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/07/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Masking the immunogenic cell wall epitope ß(1,3)-glucan under an outer layer of mannosylated glycoproteins is an important virulence factor deployed by Candida albicans during infection. Consequently, increased ß(1,3)-glucan exposure (unmasking) reveals C. albicans to the host's immune system and attenuates its virulence. We have previously shown that activation of the Cek1 MAPK pathway via expression of a hyperactive allele of an upstream kinase (STE11ΔN467) induced unmasking. It also increased survival of mice in a murine disseminated candidiasis model and attenuated kidney fungal burden by ≥33 fold. In this communication, we utilized cyclophosphamide-induced immunosuppression to test if the clearance of the unmasked STE11ΔN467 mutant was dependent on the host immune system. Suppression of the immune response by cyclophosphamide reduced the attenuation in fungal burden caused by the STE11ΔN467 allele. Moreover, specific depletion of neutrophils via 1A8 antibody treatment also reduced STE11ΔN467-dependent fungal burden attenuation, but to a lesser extent than cyclophosphamide, demonstrating an important role for neutrophils in mediating fungal clearance of unmasked STE11ΔN467 cells. In an effort to understand the mechanism by which Ste11ΔN467 causes unmasking, transcriptomics were used to reveal that several components in the Cek1 MAPK pathway were upregulated, including the transcription factor CPH1 and the cell wall sensor DFI1. In this report we show that a cph1ΔΔ mutation restored ß(1,3)-glucan exposure to wild-type levels in the STE11ΔN467 strain, confirming that Cph1 is the transcription factor mediating Ste11ΔN467-induced unmasking. Furthermore, Cph1 is shown to induce a positive feedback loop that increases Cek1 activation. In addition, full unmasking by STE11ΔN467 is dependent on the upstream cell wall sensor DFI1. However, while deletion of DFI1 significantly reduced Ste11ΔN467-induced unmasking, it did not impact activation of the downstream kinase Cek1. Thus, it appears that once stimulated by Ste11ΔN467, Dfi1 activates a parallel signaling pathway that is involved in Ste11ΔN467-induced unmasking.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Stephen W. Lumsdaine
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sarah J. Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
18
|
Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens 2021; 10:pathogens10070859. [PMID: 34358008 PMCID: PMC8308684 DOI: 10.3390/pathogens10070859] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of the human microbiome in healthy people. Under constant exposure to highly dynamic environmental cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a significant amount of research has been carried out to understand the underlying regulatory mechanisms, signaling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This review will summarize our current understanding of well-elucidated signal transduction pathways that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell cycle machinery involved in the subsequent regulation and maintenance of hyphal morphogenesis.
Collapse
Affiliation(s)
- Eve Wai Ling Chow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
| | - Li Mei Pang
- National Dental Centre Singapore, National Dental Research Institute Singapore (NDRIS), 5 Second Hospital Ave, Singapore 168938, Singapore;
| | - Yue Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
19
|
Wakade RS, Krysan DJ. The Cbk1-Ace2 axis guides Candida albicans from yeast to hyphae and back again. Curr Genet 2021; 67:461-469. [PMID: 33433733 PMCID: PMC8139900 DOI: 10.1007/s00294-020-01152-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022]
Abstract
Since its description in S. cerevisiae, the Regulation of Ace2 and Morphogenesis (RAM) pathway has been studied for nearly 20 years in multiple model and pathogenic fungi. In pathogenic fungi, the RAM pathway carries out many functions through mechanisms that remain to be defined in detail. Recently, we reported that Cbk1-mediated phosphorylation of the transcription factor Ace2 functions to repress the hyphae-to-yeast transition in Candida albicans. This transition is understudied relative to the yeast-to-hyphae transition. Subapical hyphal cell compartments are arrested in G1 until the point at which lateral yeast emerge. Here, we discuss this model and report new data indicating that a second G1 associated protein, the mitotic exit regulator Amn1. In S. cerevisiae diploid cells, Amn1 negatively regulates Ace2 at both the gene expression level through a negative feedback loop and at the protein level by targeting Ace2 for degradation. In C. albicans, Amn1 and Ace2 also form a feedback loop at the level of gene expression. Deletion of AMN1 decreases lateral yeast formation relative to wild type in maturing hyphae and is associated with decreased expression of PES1, a positive regulator of lateral yeast formation. These data indicate that the regulation of mitotic exit plays a role in determining the timing of lateral yeast emergence from hyphae in C. albicans. We also propose an integrated model for the interplay between the Cbk1-Ace2 axis and other hyphal stage regulators during the process of filamentation and transition back to yeast.
Collapse
Affiliation(s)
- Rohan S Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Departments of Pediatrics and Microbiology/Immunology, University of Iowa, ML 2040E, 25 South Grand Ave, Iowa City, IA, 52242, USA.
| |
Collapse
|
20
|
Growth and Antifungal Resistance of the Pathogenic Yeast, Candida Albicans, in the Microgravity Environment of the International Space Station: An Aggregate of Multiple Flight Experiences. Life (Basel) 2021; 11:life11040283. [PMID: 33801697 PMCID: PMC8067245 DOI: 10.3390/life11040283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
This report was designed to compare spaceflight-induced cellular and physiological adaptations of Candida albicans cultured in microgravity on the International Space Station across several payloads. C. albicans is a common opportunistic fungal pathogen responsible for a variety of superficial infections as well as systemic and more severe infections in humans. Cumulatively, the propensity of this organism to be widespread through the population, the ability to produce disease in immunocompromised individuals, and the tendency to respond to environmental stress with characteristics associated with increased virulence, require a better understanding of the yeast response to microgravity for spaceflight crew safety. As such, the responses of this yeast cultivated during several missions using two in-flight culture bioreactors were analyzed and compared herein. In general, C. albicans had a slightly shorter generation time and higher growth propensity in microgravity as compared to terrestrial controls. Rates of cell filamentation differed between bioreactors, but were low and not significantly different between flight and terrestrial controls. Viable cells were retrieved and cultured, resulting in a colony morphology that was similar between cells cultivated in flight and in terrestrial control conditions, and in contrast to that previously observed in a ground-based microgravity analog system. Of importance, yeast demonstrated an increased resistance when challenged during spaceflight with the antifungal agent, amphotericin B. Similar levels of resistance were not observed when challenged with the functionally disparate antifungal drug caspofungin. In aggregate, yeast cells cultivated in microgravity demonstrated a subset of characteristics associated with virulence. In addition, and beyond the value of the specific responses of C. albicans to microgravity, this report includes an analysis of biological reproducibility across flight opportunities, compares two spaceflight hardware systems, and includes a summary of general flight and payload timelines.
Collapse
|
21
|
Sun S, Wang K, Sun L, Cheng B, Qiao S, Dai H, Shi W, Ma J, Liu H. Therapeutic manipulation of gut microbiota by polysaccharides of Wolfiporia cocos reveals the contribution of the gut fungi-induced PGE 2 to alcoholic hepatic steatosis. Gut Microbes 2020; 12:1830693. [PMID: 33106075 PMCID: PMC7592601 DOI: 10.1080/19490976.2020.1830693] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcohol abuse and alcoholic liver diseases (ALD) have been worldwide spread. Chronic alcoholism-induced overgrowth of intestinal bacteria and fungi together with the enteric dysbiosis are important pathogenic mechanisms in ALD. We demonstrated that the water-insoluble polysaccharides (WIP) from Wolfporia cocos effectively ameliorated the hepatic inflammatory injury and fat accumulation through modulating gut microbiota in mice with alcoholic hepatic steatosis (AHS). Oral administration of WIP significantly enhanced the ratio of Firmictues to Proteobacteria, increased the abundance of Lachnospiraceae including Ruminoclostridum and unidentified_clostridials, and inhibited the ethanol-induced fungal overgrowth. Treatment with WIP activated the PPAR-γ signaling and reduced the inflammation in the colonic epithelia cell, facilitating a hypoxic state that suppresses the overgrowth of fungi and Proteobacteria in the gut. In addition, we found an overwhelming increase of the commensal fungus Meyerozyma guilliermondii in the feces of mice with AHS by culturing and ITS sequencing. Inoculation of M. guilliermondii into fungi-free mice aggravated the features of AHS. M. guilliermondii was found to generate PGE2 by biotransformation of arachidonic acid. Furthermore, the gut fungi (M. guilliermondii)-induced PGE2 production in the liver was confirmed as one of the mechanisms in the chronic AHS. The current study supports the manipulation of the gut microbiota (bacteria and fungi) as an effective and alternative strategy for alleviating ALD.
Collapse
Affiliation(s)
- Shanshan Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,School of Life Sciences, University of Science and Technology of China, Hefei, P. R. China
| | - Kai Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Baosong Cheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shanshan Qiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenyu Shi
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juncai Ma
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,School of Life Sciences, University of Science and Technology of China, Hefei, P. R. China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P. R. China,CONTACT Hongwei Liu State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing 100101, P. R. China
| |
Collapse
|
22
|
Candida intermedia CBS 141442: A Novel Glucose/Xylose Co-Fermenting Isolate for Lignocellulosic Bioethanol Production. ENERGIES 2020. [DOI: 10.3390/en13205363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study describes the isolation of the novel strain Candida intermedia CBS 141442 and investigates the potential of this microorganism for the conversion of lignocellulosic streams. Different C. intermedia clones were isolated during an adaptive laboratory evolution experiment under the selection pressure of lignocellulosic hydrolysate and in strong competition with industrial, xylose-fermenting Saccharomyces cerevisiae cells. Isolates showed different but stable colony and cell morphologies when growing in a solid agar medium (smooth, intermediate and complex morphology) and liquid medium (unicellular, aggregates and pseudohyphal morphology). Clones of the same morphology showed similar fermentation patterns, and the C. intermedia clone I5 (CBS 141442) was selected for further testing due to its superior capacity for xylose consumption (90% of the initial xylose concentration within 72 h) and the highest ethanol yields (0.25 ± 0.02 g ethanol/g sugars consumed). Compared to the well-known yeast Scheffersomyces stipitis, the selected strain showed slightly higher tolerance to the lignocellulosic-derived inhibitors when fermenting a wheat straw hydrolysate. Furthermore, its higher glucose consumption rates (compared to S. stipitis) and its capacity for glucose and xylose co-fermentation makes C. intermedia CBS 141442 an attractive microorganism for the conversion of lignocellulosic substrates, as demonstrated in simultaneous saccharification and fermentation processes.
Collapse
|
23
|
Dunn MJ, Fillinger RJ, Anderson LM, Anderson MZ. Automated quantification of Candida albicans biofilm-related phenotypes reveals additive contributions to biofilm production. NPJ Biofilms Microbiomes 2020; 6:36. [PMID: 33037223 PMCID: PMC7547077 DOI: 10.1038/s41522-020-00149-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Biofilms are organized communities of microbial cells that promote persistence among bacterial and fungal species. Biofilm formation by host-associated Candida species of fungi occurs on both tissue surfaces and implanted devices, contributing to host colonization and disease. In C. albicans, biofilms are built sequentially by adherence of yeast to a surface, invasion into the substrate, the formation of aerial hyphal projections, and the secretion of extracellular matrix. Measurement of these biofilm-related phenotypes remains highly qualitative and often subjective. Here, we designed an informatics pipeline for quantifying filamentation, adhesion, and invasion of Candida species on solid agar media and utilized this approach to determine the importance of these component phenotypes to C. albicans biofilm production. Characterization of 23 C. albicans clinical isolates across three media and two temperatures revealed a wide range of phenotypic responses among isolates in any single condition. Media profoundly altered all biofilm-related phenotypes among these isolates, whereas temperature minimally impacted these traits. Importantly, the extent of biofilm formation correlated significantly with the additive score for its component phenotypes under some conditions, experimentally linking the strength of each component to biofilm mass. In addition, the response of the genome reference strain, SC5314, across these conditions was an extreme outlier compared to all other strains, suggesting it may not be representative of the species. Taken together, development of a high-throughput, unbiased approach to quantifying Candida biofilm-related phenotypes linked variability in these phenotypes to biofilm production and can facilitate genetic dissection of these critical processes to pathogenesis in the host.
Collapse
Affiliation(s)
- Matthew J Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Robert J Fillinger
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Leah M Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Gutierrez D, Weinstock A, Antharam VC, Gu H, Jasbi P, Shi X, Dirks B, Krajmalnik-Brown R, Maldonado J, Guinan J, Thangamani S. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiol Ecol 2020; 96:5643884. [PMID: 31769789 PMCID: PMC6934136 DOI: 10.1093/femsec/fiz187] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-induced alterations in the gut ecosystem increases the susceptibility to Candida albicans, yet the mechanisms involved remains poorly understood. Here we show that mice treated with the broad-spectrum antibiotic cefoperazone promoted the growth, morphogenesis and gastrointestinal (GI) colonization of C. albicans. Using metabolomics, we revealed that the cecal metabolic environment of the mice treated with cefoperazone showed a significant alteration in intestinal metabolites. Levels of carbohydrates, sugar alcohols and primary bile acids increased, whereas carboxylic acids and secondary bile acids decreased in antibiotic treated mice susceptible to C. albicans. Furthermore, using in-vitro assays, we confirmed that carbohydrates, sugar alcohols and primary bile acids promote, whereas carboxylic acids and secondary bile acids inhibit the growth and morphogenesis of C. albicans. In addition, in this study we report changes in the levels of gut metabolites correlated with shifts in the gut microbiota. Taken together, our in-vivo and in-vitro results indicate that cefoperazone-induced metabolome and microbiome alterations favor the growth and morphogenesis of C. albicans, and potentially play an important role in the GI colonization of C. albicans.
Collapse
Affiliation(s)
- Daniel Gutierrez
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Vijay C Antharam
- Department of Chemistry, School of Science and Human Development, Methodist University, 5400 Ramsey St, Fayetteville, NC 28311, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Blake Dirks
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85280, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85280, USA.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA.,Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Juan Maldonado
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jack Guinan
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
25
|
The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans. mBio 2020; 11:mBio.01900-20. [PMID: 32817109 PMCID: PMC7439482 DOI: 10.1128/mbio.01900-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The regulation of Ace2 and morphogenesis (RAM) pathway is a key regulatory network that plays a role in many aspects of C. albicans pathobiology. In addition to characterizing the transcriptional effects of this pathway, we discovered that Cbk1 and Ace2, a key RAM pathway regulator-effector pair, mediate a specific set of the overall functions of the RAM pathway. We have also discovered a new function for the Cbk1-Ace2 axis: suppression of the hypha-to-yeast transition. Very few regulators of this transition have been described, and our data indicate that maintenance of hyphal morphogenesis requires suppression of yeast phase growth by Cbk1-regulated Ace2. The regulation of Ace2 and morphogenesis (RAM) pathway is an important regulatory network in the human fungal pathogen Candida albicans. The RAM pathway’s two most well-studied components, the NDR/Lats kinase Cbk1 and its putative substrate, the transcription factor Ace2, have a wide range of phenotypes and functions. It is not clear, however, which of these functions are specifically due to the phosphorylation of Ace2 by Cbk1. To address this question, we first compared the transcriptional profiles of CBK1 and ACE2 deletion mutants. This analysis indicates that, of the large number of genes whose expression is affected by deletion of CBK1 and ACE2, only 5.5% of those genes are concordantly regulated. Our data also suggest that Ace2 directly or indirectly represses a large set of genes during hyphal morphogenesis. Second, we generated strains containing ACE2 alleles with alanine mutations at the Cbk1 phosphorylation sites. Phenotypic and transcriptional analysis of these ace2 mutants indicates that, as in Saccharomyces cerevisiae, Cbk1 regulation is important for daughter cell localization of Ace2 and cell separation during yeast-phase growth. In contrast, Cbk1 phosphorylation of Ace2 plays a minor role in C. albicans yeast-to-hypha transition. We have, however, discovered a new function for the Cbk1-Ace2 axis. Specifically, Cbk1 phosphorylation of Ace2 prevents the hypha-to-yeast transition. To our knowledge, this is one of the first regulators of the C. albicans hypha-to-yeast transition to be described. Finally, we present an integrated model for the role of Cbk1 in the regulation of hyphal morphogenesis in C. albicans.
Collapse
|
26
|
Kumamoto CA, Gresnigt MS, Hube B. The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Curr Opin Microbiol 2020; 56:7-15. [PMID: 32604030 PMCID: PMC7744392 DOI: 10.1016/j.mib.2020.05.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022]
Abstract
Candida albicans is a regular member of the intestinal microbiota in the majority of the human population. This underscores C. albicans' adaptation to life in the intestine without inducing competitive interactions with other microbes, or immune responses detrimental to its survival. However, specific conditions such as a dysbalanced microbiome, a suppression of the immune system, and an impaired intestinal barrier can predispose for invasive, mostly nosocomial, C. albicans infections. Colonization of the intestine and translocation through the intestinal barrier are fundamental aspects of the processes preceding life-threatening systemic candidiasis. Insights into C. albicans' commensal lifestyle and translocation can thus help us to understand how patients develop candidiasis, and may provide leads for therapeutic strategies aimed at preventing infection. In this review, we discuss the commensal lifestyle of C. albicans in the intestine, the role of morphology for commensalism, the influence of diet, and the interactions with bacteria of the microbiota.
Collapse
Affiliation(s)
- Carol A Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Mark S Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany; Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
27
|
Wijnants S, Riedelberger M, Penninger P, Kuchler K, Van Dijck P. Sugar Phosphorylation Controls Carbon Source Utilization and Virulence of Candida albicans. Front Microbiol 2020; 11:1274. [PMID: 32612591 PMCID: PMC7308821 DOI: 10.3389/fmicb.2020.01274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen that relies upon different virulence traits, including morphogenesis, invasion, biofilm formation, and nutrient acquisition from host sources as well as metabolic adaptations during host invasion. In this study, we show how sugar kinases at the start of glycolysis modulate virulence of C. albicans. Sequence comparison with Saccharomyces cerevisiae identified four enzymes (Hxk1, Hxk2, Glk1, and Glk4) in C. albicans with putative roles in sugar phosphorylation. Hxk2, Glk1, and Glk4 demonstrate a critical role in glucose metabolism, while Hxk2 is the only kinase important for fructose metabolism. Additionally, we show that Hxk1 controls HXK2, GLK1, and GLK4 expression in the presence of fermentable as well as non-fermentable carbon sources, thereby indirectly controlling glycolysis. Moreover, these sugar kinases are important during virulence. Disabling the glycolytic pathway reduces adhesion capacity, while deletion of HXK1 decreases biofilm formation. Finally, we demonstrate that hxk2Δ/Δ glk1Δ/Δ glk4Δ/Δ and hxk1Δ/Δ hxk2Δ/Δ glk1Δ/Δ glk4Δ/Δ have attenuated virulence upon systemic infections in mice. These results indicate a regulatory role for Hxk1 during sugar phosphorylation. Furthermore, these kinases are essential during growth on glucose or fructose, and C. albicans relies on a functional glycolytic pathway for maximal virulence.
Collapse
Affiliation(s)
- Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Michael Riedelberger
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Philipp Penninger
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
28
|
Rastogi SK, van Wijlick L, Ror S, Lee KK, Román E, Agarwal P, Manzoor N, Gow NAR, Pla J, Ernst JF, Panwar SL. Ifu5, a WW domain-containing protein interacts with Efg1 to achieve coordination of normoxic and hypoxic functions to influence pathogenicity traits in Candida albicans. Cell Microbiol 2020; 22:e13140. [PMID: 31736226 PMCID: PMC7614792 DOI: 10.1111/cmi.13140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022]
Abstract
Hypoxic adaptation pathways, essential for Candida albicans pathogenesis, are tied to its transition from a commensal to a pathogen. Herein, we identify a WW domain-containing protein, Ifu5, as a determinant of hypoxic adaptation that also impacts normoxic responses in this fungus. Ifu5 activity supports glycosylation homeostasis via the Cek1 mitogen-activated protein kinase-dependent up-regulation of PMT1, under normoxia. Transcriptome analysis of ifu5Δ/Δ under normoxia shows a significant up-regulation of the hypoxic regulator EFG1 and EFG1-dependent genes. We demonstrate physical interaction between Ifu5 by virtue of its WW domain and Efg1 that represses EFG1 expression under normoxia. This interaction is lost under hypoxic growth conditions, relieving EFG1 repression. Hypoxic adaptation processes such as filamentation and biofilm formation are affected in ifu5Δ/Δ cells revealing the role of Ifu5 in hypoxic signalling and modulating pathogenicity traits of C. albicans under varied oxygen conditions. Additionally, the WW domain of Ifu5 facilitates its role in hypoxic adaptation, revealing the importance of this domain in providing a platform to integrate various cellular processes. These data forge a relationship between Efg1 and Ifu5 that fosters the role of Ifu5 in hypoxic adaptation thus illuminating novel strategies to undermine the growth of C. albicans.
Collapse
Affiliation(s)
- Sumit K Rastogi
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Lasse van Wijlick
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Shivani Ror
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Keunsook K Lee
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Pranjali Agarwal
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhat Manzoor
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Neil A R Gow
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Joachim F Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Sneh L Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
29
|
Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLoS Pathog 2019; 15:e1007823. [PMID: 31809527 PMCID: PMC6919631 DOI: 10.1371/journal.ppat.1007823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/18/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Inside the human host, the pathogenic yeast Candida albicans colonizes predominantly oxygen-poor niches such as the gastrointestinal and vaginal tracts, but also oxygen-rich environments such as cutaneous epithelial cells and oral mucosa. This suppleness requires an effective mechanism to reversibly reprogram the primary metabolism in response to oxygen variation. Here, we have uncovered that Snf5, a subunit of SWI/SNF chromatin remodeling complex, is a major transcriptional regulator that links oxygen status to the metabolic capacity of C. albicans. Snf5 and other subunits of SWI/SNF complex were required to activate genes of carbon utilization and other carbohydrates related process specifically under hypoxia. snf5 mutant exhibited an altered metabolome reflecting that SWI/SNF plays an essential role in maintaining metabolic homeostasis and carbon flux in C. albicans under hypoxia. Snf5 was necessary to activate the transcriptional program linked to both commensal and invasive growth. Accordingly, snf5 was unable to maintain its growth in the stomach, the cecum and the colon of mice. snf5 was also avirulent as it was unable to invade Galleria larvae or to cause damage to human enterocytes and murine macrophages. Among candidates of signaling pathways in which Snf5 might operate, phenotypic analysis revealed that mutants of Ras1-cAMP-PKA pathway, as well as mutants of Yak1 and Yck2 kinases exhibited a similar carbon flexibility phenotype as did snf5 under hypoxia. Genetic interaction analysis indicated that the adenylate cyclase Cyr1, a key component of the Ras1-cAMP pathway interacted genetically with Snf5. Our study yielded new insight into the oxygen-sensitive regulatory circuit that control metabolic flexibility, stress, commensalism and virulence in C. albicans. A critical aspect of eukaryotic cell fitness is the ability to sense and adapt to variations in oxygen level in their local environment. Hypoxia leads to a substantial remodeling of cell metabolism and energy homeostasis, and thus, organisms must develop an effective regulatory mechanism to cope with oxygen depletion. Candida albicans is an opportunistic yeast that is the most prevalent human fungal pathogens. This yeast colonizes diverse niches inside the human host with contrasting carbon sources and oxygen concentrations. While hypoxia is the predominant condition that C. albicans encounters inside most of the niches, the impact of this condition on metabolic flexibility, a major determinant of fungal virulence, was completely unexplored. Here, we uncovered that the chromatin remodelling complex SWI/SNF is a master regulator of the circuit that links oxygen status to a broad spectrum of carbon utilization routes. Snf5 was essential for the maintenance of C. albicans as a commensal and also for the expression of its virulence. The oxygen-sensitive regulators identified in this work provide a framework to comprehensively understand the virulence of human fungal pathogens and represent a therapeutic value to fight fungal infections.
Collapse
Affiliation(s)
- Anaïs Burgain
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Émilie Pic
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Laura Markey
- Program in Molecular Microbiology, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Faiza Tebbji
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Adnane Sellam
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Big Data Research Centre (BDRC-UL), Université Laval, Faculty of Sciences and Engineering, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
30
|
Zhang C, Wang W, Kong Q, Liu F, Chen J, Sang H. Characterization of a Candida albicans isolate from a recurrent cervical lymphadenitis patient. Mycologia 2019; 111:942-952. [PMID: 31622176 DOI: 10.1080/00275514.2019.1666598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Candida albicans is the most frequently isolated opportunistic fungal pathogen in humans. However, patients with cervical lymphadenitis caused by Candida infection are rarely reported, and few studies have focused on the mechanisms underlying chronic Candida infection. In this study, we isolated a C. albicans strain (JL01) from a recurrent cervical lymphadenitis patient. The clinical isolate was identified by morphological observation and confirmed by DNA sequencing of the internal transcribed spacer (ITS) regions. Strain JL01 is resistant to azole antifungal drugs, but sensitive to amphotericin B. The strain is able to adapt to oxidative and osmotic stresses but is defective in filamentous and invasive growth. The strain displays attenuated virulence in a murine systemic infection model. RNA-sequencing analysis revealed that JL01 has a distinct gene expression profile compared with C. albicans reference strain SC5314; hundreds of transcripts were significantly dysregulated, including those related to morphogenesis and pathogenesis. Taken together, our clinical, virulence, morphological, and biological analyses suggest that the azole resistance, oxidative and osmotic stress tolerance, invasive defect, hypovirulence, and impaired interaction with the host immune system of strain JL01 may correlate with its ability to cause cervical lymphadenitis in the patient. Our research may contribute to elucidating the mechanism(s) underlying the drug resistance and immune escape of C. albicans in chronic fungal infection.
Collapse
Affiliation(s)
- Chengzhen Zhang
- Department of Dermatology, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Wenjuan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Qingtao Kong
- Department of Dermatology, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Fang Liu
- Department of Dermatology, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Hong Sang
- Department of Dermatology, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| |
Collapse
|
31
|
Bartnicka D, Karkowska-Kuleta J, Zawrotniak M, Satała D, Michalik K, Zielinska G, Bochenska O, Kozik A, Ciaston I, Koziel J, Dutton LC, Nobbs AH, Potempa B, Baster Z, Rajfur Z, Potempa J, Rapala-Kozik M. Adhesive protein-mediated cross-talk between Candida albicans and Porphyromonas gingivalis in dual species biofilm protects the anaerobic bacterium in unfavorable oxic environment. Sci Rep 2019; 9:4376. [PMID: 30867500 PMCID: PMC6416349 DOI: 10.1038/s41598-019-40771-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
The oral cavity contains different types of microbial species that colonize human host via extensive cell-to-cell interactions and biofilm formation. Candida albicans-a yeast-like fungus that inhabits mucosal surfaces-is also a significant colonizer of subgingival sites in patients with chronic periodontitis. It is notable however that one of the main infectious agents that causes periodontal disease is an anaerobic bacterium-Porphyromonas gingivalis. In our study, we evaluated the different strategies of both pathogens in the mutual colonization of an artificial surface and confirmed that a protective environment existed for P. gingivalis within developed fungal biofilm formed under oxic conditions where fungal cells grow mainly in their filamentous form i.e. hyphae. A direct physical contact between fungi and P. gingivalis was initiated via a modulation of gene expression for the major fungal cell surface adhesin Als3 and the aspartic proteases Sap6 and Sap9. Proteomic identification of the fungal surfaceome suggested also an involvement of the Mp65 adhesin and a "moonlighting" protein, enolase, as partners for the interaction with P. gingivalis. Using mutant strains of these bacteria that are defective in the production of the gingipains-the proteolytic enzymes that also harbor hemagglutinin domains-significant roles of these proteins in the formation of bacteria-protecting biofilm were clearly demonstrated.
Collapse
Affiliation(s)
- Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kinga Michalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Zielinska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Lindsay C Dutton
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Barbara Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Zbigniew Baster
- Institute of Physics; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
32
|
Znaidi S, van Wijlick L, Hernández‐Cervantes A, Sertour N, Desseyn J, Vincent F, Atanassova R, Gouyer V, Munro CA, Bachellier‐Bassi S, Dalle F, Jouault T, Bougnoux M, d'Enfert C. Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut. Cell Microbiol 2018; 20:e12890. [PMID: 29998470 PMCID: PMC6220992 DOI: 10.1111/cmi.12890] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Candida albicans is part of the human gastrointestinal (GI) microbiota. To better understand how C. albicans efficiently establishes GI colonisation, we competitively challenged growth of 572 signature-tagged strains (~10% genome coverage), each conditionally overexpressing a single gene, in the murine gut. We identified CRZ2, a transcription factor whose overexpression and deletion respectively increased and decreased early GI colonisation. Using clues from genome-wide expression and gene-set enrichment analyses, we found that the optimal activity of Crz2p occurs under hypoxia at 37°C, as evidenced by both phenotypic and transcriptomic analyses following CRZ2 genetic perturbation. Consistent with early colonisation of the GI tract, we show that CRZ2 overexpression confers resistance to acidic pH and bile salts, suggesting an adaptation to the upper sections of the gut. Genome-wide location analyses revealed that Crz2p directly modulates the expression of many mannosyltransferase- and cell-wall protein-encoding genes, suggesting a link with cell-wall function. We show that CRZ2 overexpression alters cell-wall phosphomannan abundance and increases sensitivity to tunicamycin, suggesting a role in protein glycosylation. Our study reflects the powerful use of gene overexpression as a complementary approach to gene deletion to identify relevant biological pathways involved in C. albicans interaction with the host environment.
Collapse
Affiliation(s)
- Sadri Znaidi
- Institut Pasteur, INRAUnité Biologie et Pathogénicité FongiquesParisFrance
- Institut Pasteur de Tunis, University of Tunis El ManarLaboratoire de Microbiologie Moléculaire, Vaccinologie et Développement BiotechnologiqueTunisTunisia
| | - Lasse van Wijlick
- Institut Pasteur, INRAUnité Biologie et Pathogénicité FongiquesParisFrance
| | | | - Natacha Sertour
- Institut Pasteur, INRAUnité Biologie et Pathogénicité FongiquesParisFrance
| | - Jean‐Luc Desseyn
- Lille Inflammation Research International Center, UMR 995 InsermUniversité Lille 2, Faculté de MédecineLilleFrance
| | | | | | - Valérie Gouyer
- Lille Inflammation Research International Center, UMR 995 InsermUniversité Lille 2, Faculté de MédecineLilleFrance
| | - Carol A. Munro
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | | | - Frédéric Dalle
- UMR 1347Université de BourgogneDijonFrance
- Centre Hospitalier UniversitaireService de Parasitologie MycologieDijonFrance
| | - Thierry Jouault
- Lille Inflammation Research International Center, UMR 995 InsermUniversité Lille 2, Faculté de MédecineLilleFrance
| | - Marie‐Elisabeth Bougnoux
- Institut Pasteur, INRAUnité Biologie et Pathogénicité FongiquesParisFrance
- Laboratoire de Parasitologie‐Mycologie, Service de Microbiologie, Hôpital Necker‐Enfants MaladesUniversité Paris Descartes, Faculté de MédecineParisFrance
| | | |
Collapse
|
33
|
Nair R, Khandelwal NK, Shariq M, Redhu AK, Gaur NA, Shaikh S, Prasad R. Identification of genome-wide binding sites of heat shock factor 1, Hsf1, under basal conditions in the human pathogenic yeast, Candida albicans. AMB Express 2018; 8:116. [PMID: 30014253 PMCID: PMC6047955 DOI: 10.1186/s13568-018-0647-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
The master regulator of thermal stress response, Hsf1, is also an essential determinant for viability and virulence in Candida albicans. Our recent studies highlighted that apart from ubiquitous roles of Hsf1 at higher temperatures, it also has myriad non-heat shock responsive roles essential under iron deprivation and drug defense. Here, we further explored its implications in the normal cellular functioning, by profiling its genome-wide occupancy using chromatin immuno-precipitation coupled to high-density tiling arrays under basal and iron deprived conditions. Hsf1 recruitment profiles revealed that it binds to promoters of 660 genes of varied functions, under both the conditions, however, elicited variability in intensity of binding. For instance, Hsf1 binding was observed on several genes of oxidative and osmotic stress response, cell wall integrity, iron homeostasis, mitochondrial, hyphal and multidrug transporters. Additionally, the present study divulged a novel motif under basal conditions comprising, -GTGn3GTGn3GTG- where, Hsf1 displays strong occupancy at significant number of sites on several promoters distinct from the heat induced motif. Hence, by binding to and regulating major chaperones, stress responsive genes and drug resistance regulators, Hsf1 is imperative in regulating various cellular machineries. The current study provides a framework for understanding novel aspects of how Hsf1 coordinates diverse cellular functions.
Collapse
|
34
|
The 5' Untranslated Region of the EFG1 Transcript Promotes Its Translation To Regulate Hyphal Morphogenesis in Candida albicans. mSphere 2018; 3:3/4/e00280-18. [PMID: 29976646 PMCID: PMC6034079 DOI: 10.1128/msphere.00280-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Extensive 5' untranslated regions (UTR) are a hallmark of transcripts determining hyphal morphogenesis in Candida albicans The major transcripts of the EFG1 gene, which are responsible for cellular morphogenesis and metabolism, contain a 5' UTR of up to 1,170 nucleotides (nt). Deletion analyses of the 5' UTR revealed a 218-nt sequence that is required for production of the Efg1 protein and its functions in filamentation, without lowering the level and integrity of the EFG1 transcript. Polysomal analyses revealed that the 218-nt 5' UTR sequence is required for efficient translation of the Efg1 protein. Replacement of the EFG1 open reading frame (ORF) by the heterologous reporter gene CaCBGluc confirmed the positive regulatory importance of the identified 5' UTR sequence. In contrast to other reported transcripts containing extensive 5' UTR sequences, these results indicate the positive translational function of the 5' UTR sequence in the EFG1 transcript, which is observed in the context of the native EFG1 promoter. It is proposed that the 5' UTR recruits regulatory factors, possibly during emergence of the native transcript, which aid in translation of the EFG1 transcript.IMPORTANCE Many of the virulence traits that make Candida albicans an important human fungal pathogen are regulated on a transcriptional level. Here, we report an important regulatory contribution of translation, which is exerted by the extensive 5' untranslated regulatory sequence (5' UTR) of the transcript for the protein Efg1, which determines growth, metabolism, and filamentation in the fungus. The presence of the 5' UTR is required for efficient translation of Efg1, to promote filamentation. Because transcripts for many relevant regulators contain extensive 5' UTR sequences, it appears that the virulence of C. albicans depends on the combination of transcriptional and translational regulatory mechanisms.
Collapse
|
35
|
Basso V, d'Enfert C, Znaidi S, Bachellier-Bassi S. From Genes to Networks: The Regulatory Circuitry Controlling Candida albicans Morphogenesis. Curr Top Microbiol Immunol 2018; 422:61-99. [PMID: 30368597 DOI: 10.1007/82_2018_144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Candida albicans is a commensal yeast of most healthy individuals, but also one of the most prevalent human fungal pathogens. During adaptation to the mammalian host, C. albicans encounters different niches where it is exposed to several types of stress, including oxidative, nitrosative (e.g., immune system), osmotic (e.g., kidney and oral cavity) stresses and pH variation (e.g., gastrointestinal (GI) tract and vagina). C. albicans has developed the capacity to respond to the environmental changes by modifying its morphology, which comprises the yeast-to-hypha transition, white-opaque switching, and chlamydospore formation. The yeast-to-hypha transition has been very well characterized and was shown to be modulated by several external stimuli that mimic the host environment. For instance, temperature above 37 ℃, serum, alkaline pH, and CO2 concentration are all reported to enhance filamentation. The transition is characterized by the activation of an intricate regulatory network of signaling pathways, involving many transcription factors. The regulatory pathways that control either the stress response or morphogenesis are required for full virulence and promote survival of C. albicans in the host. Many of these transcriptional circuitries have been characterized, highlighting the complexity and the interconnections between the different pathways. Here, we present the major signaling pathways and the main transcription factors involved in the yeast-to-hypha transition. Furthermore, we describe the role of heat shock transcription factors in the morphogenetic transition, providing an edifying example of the complex cross talk between pathways involved in morphogenesis and stress response.
Collapse
Affiliation(s)
- Virginia Basso
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 25 Rue Du Docteur Roux, Paris, France.,Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France. .,Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, 1002, Tunis-Belvédère, Tunisia.
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
36
|
Tao L, Zhang Y, Fan S, Nobile CJ, Guan G, Huang G. Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans. PLoS Genet 2017; 13:e1006949. [PMID: 28787458 PMCID: PMC5567665 DOI: 10.1371/journal.pgen.1006949] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/22/2017] [Accepted: 07/28/2017] [Indexed: 11/23/2022] Open
Abstract
Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways. Energy metabolism through the TCA cycle and mitochondrial electron transport are critical for the human fungal pathogen Candida albicans to survive and propagate in the host. This is, in part, due to the fact that C. albicans is a Crabtree-negative species, and thus exclusively uses respiration when oxygen is available. Here, we investigate the roles of the TCA cycle in hyphal development and CO2 sensing in C. albicans. Through the use of ATP and the cellular signaling molecule CO2, the TCA cycle integrates with the Ras1-cAMP signaling pathway, which is a central regulator of hyphal growth, to govern basic cellular biological processes. Together with Efg1, a downstream transcription factor of the cAMP signaling pathway, the heat shock factor-type transcription regulator Sfl2 controls CO2-induced hyphal growth in C. albicans. Deletion of SFL2 results in the loss of global transcriptional responses under elevated CO2 levels. Our study indicates that the TCA cycle not only occupies the central position of cellular metabolism but also regulates other biological processes such as CO2 sensing and hyphal development through integration with the Ras1-cAMP signaling pathway in C. albicans.
Collapse
Affiliation(s)
- Li Tao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yulong Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuru Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, United States of America
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
37
|
Huang X, Chen X, He Y, Yu X, Li S, Gao N, Niu L, Mao Y, Wang Y, Wu X, Wu W, Wu J, Zhou D, Zhan X, Chen C. Mitochondrial complex I bridges a connection between regulation of carbon flexibility and gastrointestinal commensalism in the human fungal pathogen Candida albicans. PLoS Pathog 2017; 13:e1006414. [PMID: 28570675 PMCID: PMC5469625 DOI: 10.1371/journal.ppat.1006414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 06/13/2017] [Accepted: 05/16/2017] [Indexed: 12/26/2022] Open
Abstract
Efficient assimilation of alternative carbon sources in glucose-limited host niches is critical for colonization of Candida albicans, a commensal yeast that frequently causes opportunistic infection in human. C. albicans evolved mechanistically to regulate alternative carbon assimilation for the promotion of fungal growth and commensalism in mammalian hosts. However, this highly adaptive mechanism that C. albicans employs to cope with alternative carbon assimilation has yet to be clearly understood. Here we identified a novel role of C. albicans mitochondrial complex I (CI) in regulating assimilation of alternative carbon sources such as mannitol. Our data demonstrate that CI dysfunction by deleting the subunit Nuo2 decreases the level of NAD+, downregulates the NAD+-dependent mannitol dehydrogenase activity, and consequently inhibits hyphal growth and biofilm formation in conditions when the carbon source is mannitol, but not fermentative sugars like glucose. Mannitol-dependent morphogenesis is controlled by a ROS-induced signaling pathway involving Hog1 activation and Brg1 repression. In vivo studies show that nuo2Δ/Δ mutant cells are severely compromised in gastrointestinal colonization and the defect can be rescued by a glucose-rich diet. Thus, our findings unravel a mechanism by which C. albicans regulates carbon flexibility and commensalism. Alternative carbon assimilation might represent a fitness advantage for commensal fungi in successful colonization of host niches. Most fermentative sugars like glucose, although routinely used in laboratory cell culture medium, are in fact only present at very low levels and even absent in many host niches. Therefore, assimilation of alternative nutrients is essential for the survival, proliferation and infection of most clinically important microbial pathogens like C. albicans in their hosts. In this study, we show that mitochondrial complex I (CI) is indispensable for proper hyphal growth and biofilm formation of C. albicans cells when mannitol, but not fermentative sugars like glucose or mannose, is used as the sole carbon source. We also find that a specific signaling pathway that senses and responds to the alternative carbon source incorporates input from mitochondrially-derived molecules like reactive oxygen species (ROS) to influence activation of the Hog1 MAPK and expression of the biofilm-regulator Brg1. Our findings further demonstrate that CI dysfunction confers a severe defect of C. albicans in gastrointestinal colonization and changing the diet with glucose is able to significantly rescue the commensal defect. Our study suggests that C. albicans has a unique regulatory system to sense and utilize the alternative carbon sources abundant in the GI tract and to promote commensalism. Significantly, CI activity appears to play a vital role in this highly adaptive system to regulate commensalism, in addition to its well-characterized role in virulence.
Collapse
Affiliation(s)
- Xinhua Huang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Chen
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Life Science, Shanghai University, Shanghai, China
| | - Yongmin He
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of medicine, Shanghai, China
| | - Shanshan Li
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Ning Gao
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lida Niu
- Department of Dermatology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yinhe Mao
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Wang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xianwei Wu
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of medicine, Shanghai, China
| | - Jianhua Wu
- Department of Dermatology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Changbin Chen
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
38
|
Affiliation(s)
- Ilse D. Jacobsen
- Research Group Microbial Immunology, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
39
|
Ballou ER, Avelar GM, Childers DS, Mackie J, Bain JM, Wagener J, Kastora SL, Panea MD, Hardison SE, Walker LA, Erwig LP, Munro CA, Gow NAR, Brown GD, MacCallum DM, Brown AJP. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat Microbiol 2016; 2:16238. [PMID: 27941860 DOI: 10.1038/nmicrobiol.2016.238] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023]
Abstract
As they proliferate, fungi expose antigens at their cell surface that are potent stimulators of the innate immune response, and yet the commensal fungus Candida albicans is able to colonize immuno competent individuals. We show that C. albicans may evade immune detection by presenting a moving immunological target. We report that the exposure of β-glucan, a key pathogen-associated molecular pattern (PAMP) located at the cell surface of C. albicans and other pathogenic Candida species, is modulated in response to changes in the carbon source. Exposure to lactate induces β-glucan masking in C. albicans via a signalling pathway that has recruited an evolutionarily conserved receptor (Gpr1) and transcriptional factor (Crz1) from other well-characterized pathways. In response to lactate, these regulators control the expression of cell-wall-related genes that contribute to β-glucan masking. This represents the first description of active PAMP masking by a Candida species, a process that reduces the visibility of the fungus to the immune system.
Collapse
Affiliation(s)
- Elizabeth R Ballou
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gabriela M Avelar
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Delma S Childers
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Joanna Mackie
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Judith M Bain
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Jeanette Wagener
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Stavroula L Kastora
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mirela D Panea
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sarah E Hardison
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Louise A Walker
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lars P Erwig
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Carol A Munro
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil A R Gow
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gordon D Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Donna M MacCallum
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
40
|
Woolford CA, Lagree K, Xu W, Aleynikov T, Adhikari H, Sanchez H, Cullen PJ, Lanni F, Andes DR, Mitchell AP. Bypass of Candida albicans Filamentation/Biofilm Regulators through Diminished Expression of Protein Kinase Cak1. PLoS Genet 2016; 12:e1006487. [PMID: 27935965 PMCID: PMC5147786 DOI: 10.1371/journal.pgen.1006487] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Biofilm formation on implanted medical devices is a major source of lethal invasive infection by Candida albicans. Filamentous growth of this fungus is tied to biofilm formation because many filamentation-associated genes are required for surface adherence. Cell cycle or cell growth defects can induce filamentation, but we have limited information about the coupling between filamentation and filamentation-associated gene expression after cell cycle/cell growth inhibition. Here we identified the CDK activating protein kinase Cak1 as a determinant of filamentation and filamentation-associated gene expression through a screen of mutations that diminish expression of protein kinase-related genes implicated in cell cycle/cell growth control. A cak1diminished expression (DX) strain displays filamentous growth and expresses filamentation-associated genes in the absence of typical inducing signals. In a wild-type background, expression of filamentation-associated genes depends upon the transcription factors Bcr1, Brg1, Efg1, Tec1, and Ume6. In the cak1 DX background, the dependence of filamentation-associated gene expression on each transcription factor is substantially relieved. The unexpected bypass of filamentation-associated gene expression activators has the functional consequence of enabling biofilm formation in the absence of Bcr1, Brg1, Tec1, Ume6, or in the absence of both Brg1 and Ume6. It also enables filamentous cell morphogenesis, though not biofilm formation, in the absence of Efg1. Because these transcription factors are known to have shared target genes, we suggest that cell cycle/cell growth limitation leads to activation of several transcription factors, thus relieving dependence on any one. The ability of the pathogen Candida albicans to grow on surfaces as biofilms is a determinant of infection ability, because biofilms on implanted medical devices seed infections. Biofilm formation by this organism requires growth in the form of filamentous cells and the expression of filamentation-associated genes. Inhibition of cell proliferation can induce filamentous cell formation, as we find here for strains that express greatly reduced levels of the cell cycle regulator Cak1. Surprisingly, biofilm formation occurs independently of many central biofilm regulatory genes when Cak1 levels are reduced. This response to proliferation inhibition may reflect the activation of numerous biofilm regulators, thus relieving the dependence on any one regulator. The stimulation of biofilm formation by proliferation inhibition, a property of many bacterial pathogens as well, may contribute to the limited effectiveness of antimicrobials against biofilms.
Collapse
Affiliation(s)
- Carol A. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Katherine Lagree
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Wenjie Xu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Tatyana Aleynikov
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Hema Adhikari
- Department of Biological Sciences at the University at Buffalo, Buffalo, New York, United States of America
| | - Hiram Sanchez
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences at the University at Buffalo, Buffalo, New York, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - David R. Andes
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Liu X, Wang D, Yu C, Li T, Liu J, Sun S. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade-A Review. Front Microbiol 2016; 7:1925. [PMID: 27999568 PMCID: PMC5138225 DOI: 10.3389/fmicb.2016.01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 11/21/2022] Open
Abstract
Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Decai Wang
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University Jinan, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| | - Jianqiao Liu
- General Practice, Shandong Provincial Hospital Jinnan, China
| | - Shujuan Sun
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| |
Collapse
|
42
|
Nigg M, Bernier L. From yeast to hypha: defining transcriptomic signatures of the morphological switch in the dimorphic fungal pathogen Ophiostoma novo-ulmi. BMC Genomics 2016; 17:920. [PMID: 27846799 PMCID: PMC5111228 DOI: 10.1186/s12864-016-3251-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022] Open
Abstract
Background Yeast-to-hypha transition is a major morphological change in fungi. Molecular regulators and pathways that are involved in this process have been extensively studied in model species, including Saccharomyces cerevisiae. The Mitogen-Actived Protein Kinase (MAPK) cascade, for example, is known to be involved in the yeast-to-pseudohypha switch. Yet the conservation of mechanisms regulating such morphological changes in non-model fungi is still poorly understood. Here, we investigate cell remodeling and transcriptomic modifications that occur during this morphological switch in the highly aggressive ascomycete fungus Ophiostoma novo-ulmi, the causal agent of Dutch elm disease. Results Using a combination of light microscopy, scanning electron microscopy and flow cytometry, we demonstrate that the morphological switch occurs in less than 27 h, with phenotypic cell modifications being detected within the first 4 h. Using RNAseq, we found that over 22% of the genome of O. novo-ulmi is differentially expressed during the transition. By performing clustering analyses of time series gene expression data, we identified several sets of genes that are differentially expressed according to distinct and representative temporal profiles. Further, we found that several genes that are homologous to S. cerevisiae MAPK genes are regulated during the yeast-to-hypha transition in O. novo-ulmi and mostly over-expressed, suggesting convergence in gene expression regulation. Conclusions Our results are the first report of a time-course experiment monitoring the morphological transition in a non-model Sordariomycota species and reveal many genes of interest for further functional investigations of fungal dimorphism. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3251-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Nigg
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Room 2255, Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada. .,Département des sciences du bois et de la forêt, Centre d'Étude de la Forêt (CEF), Université Laval, Québec, G1V 0A6, Canada.
| | - L Bernier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Room 2255, Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.,Département des sciences du bois et de la forêt, Centre d'Étude de la Forêt (CEF), Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
43
|
Friedrich D, Fecher RA, Rupp J, Deepe GS. Impact of HIF-1α and hypoxia on fungal growth characteristics and fungal immunity. Microbes Infect 2016; 19:204-209. [PMID: 27810563 DOI: 10.1016/j.micinf.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022]
Abstract
Human pathogenic fungi are highly adaptable to a changing environment. The ability to adjust to low oxygen conditions is crucial for colonization and infection of the host. Recently, the impact of mammalian hypoxia-inducible factor-1α (HIF-1α) on fungal immunity has emerged. In this review, the role of hypoxia and HIF-1α in fungal infections is discussed regarding the innate immune response.
Collapse
Affiliation(s)
- Dirk Friedrich
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany.
| | - Roger A Fecher
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45220, USA
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany
| | - George S Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Medical Service, Veterans Affairs Hospital, Cincinnati, OH 45220, USA
| |
Collapse
|
44
|
van Wijlick L, Swidergall M, Brandt P, Ernst JF. Candida albicansresponds to glycostructure damage by Ace2-mediated feedback regulation of Cek1 signaling. Mol Microbiol 2016; 102:827-849. [DOI: 10.1111/mmi.13494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Lasse van Wijlick
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Marc Swidergall
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Philipp Brandt
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Joachim F. Ernst
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| |
Collapse
|
45
|
Braunsdorf C, Mailänder-Sánchez D, Schaller M. Fungal sensing of host environment. Cell Microbiol 2016; 18:1188-200. [DOI: 10.1111/cmi.12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- C. Braunsdorf
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| | - D. Mailänder-Sánchez
- Department of Internal Medicine I; University Hospital Tübingen; Otfried-Müller-Straße 10 72076 Tübingen
| | - M. Schaller
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| |
Collapse
|
46
|
Eichhof I, Ernst JF. Oxygen-independent FbFP: Fluorescent sentinel and oxygen sensor component in Saccharomyces cerevisiae and Candida albicans. Fungal Genet Biol 2016; 92:14-25. [PMID: 27126475 DOI: 10.1016/j.fgb.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 02/06/2023]
Abstract
FMN-binding fluorescent proteins (FbFPs) outperform GFP and its derivatives because of their oxygen-independence, small size and rapid maturation. FbFPs have been used successfully as reliable reporters of gene expression in the cytoplasm of pro- and eukaryotes. Here we extend previous findings on the codon-adapted CaFbFP variant, which functions in the apathogenic yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans. In both fungal species, CaFbFP could be targeted to the nucleus and the cell wall by endogenous signals (H2B-/Aga2-fusions) demonstrating its use as a fluorescent beacon in these relevant cellular locations. Transformants of both fungal species producing a CaFbFP-YFP fusion (YFOS) showed variable energy transfer from CaFbFP to YFP (FRET) that depended in its extent on external O2 concentrations. Applications as fluorescent sentinel and oxygen biosensor expand the FbFP toolbox to study oxygen-independent cellular processes under hypoxia.
Collapse
Affiliation(s)
- Isabel Eichhof
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Joachim F Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.
| |
Collapse
|