1
|
Wang X, Ji D, Ma J, Chi W. Function of plastid translation in plant temperature acclimation: Retrograde signalling or extraribosomal 'moonlighting' functions? PLANT, CELL & ENVIRONMENT 2024; 47:4908-4916. [PMID: 39101459 DOI: 10.1111/pce.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Summary StatementSpecific components of the plastid ribosome could act as pivotal limiting factors in plant temperature acclimation. We endeavour to elucidate the molecular nexus between plastid translation and temperature acclimation by incorporating the concept of extraribosomal ‘moonlighting’ functions of plastid ribosome proteins.
Collapse
Affiliation(s)
- Xiushun Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Daili Ji
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Ma
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Chi
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Ding Y, Shi Y, Yang S. Regulatory Networks Underlying Plant Responses and Adaptation to Cold Stress. Annu Rev Genet 2024; 58:43-65. [PMID: 39018466 DOI: 10.1146/annurev-genet-111523-102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Cold is an important environmental factor limiting plant growth and development. Recent studies have revealed the complex regulatory networks associated with plant responses to cold and identified their interconnections with signaling pathways related to light, the circadian clock, plant hormones, and pathogen defense. In this article, we review recent advances in understanding the molecular basis of cold perception and signal transduction pathways. We also summarize recent developments in the study of cold-responsive growth and flowering. Finally, we propose future directions for the study of long-term cold sensing, RNA secondary structures in response to cold, and the development of cold-tolerant and high-yield crops.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| |
Collapse
|
3
|
Zeng Y, Dong J, Fu D, Shi M, Zheng Z, Zhong M, Wang HB, Duan SJ, Jin HL. The HPE1 RNA-binding protein modulates chloroplast RNA editing to promote photosynthesis under cold stress in Arabidopsis. FEBS Lett 2024; 598:1888-1898. [PMID: 38977940 DOI: 10.1002/1873-3468.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024]
Abstract
Cold stress has severe negative consequences for plant growth and crop yield. Here, we report that an Arabidopsis thaliana mutant that lacks the HPE1 gene, which encodes an RNA-binding protein, maintains higher photosynthetic activity under cold stress, together with higher accumulation of thylakoid proteins. We showed that HPE1 interacts with MORF2 and MORF9 and thereby mediates RNA editing in chloroplasts. Loss of HPE1 function increased the editing efficiency at four RNA editing sites, rpoC-488, ndhB-149, ndhB-746 and matK-706, under cold stress and altered the expression of nuclear photosynthesis-related genes and cold-responsive genes. We propose that HPE1-mediated RNA editing acts as a trigger for retrograde signaling that affects photosynthesis under cold stress.
Collapse
Affiliation(s)
- Yajun Zeng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Jie Dong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Danni Fu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Meihui Shi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Zhifeng Zheng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Mingxi Zhong
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, China
| | - Su-Juan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, China
| |
Collapse
|
4
|
Jiang X, Yu S, Huang Y, Huang J, Liu S, Yang D, Fu J, He H, Fu H. Identification of the RRM1 gene family in rice ( Oryza sativa) and its response to rice blast. PeerJ 2024; 12:e17668. [PMID: 39076776 PMCID: PMC11285362 DOI: 10.7717/peerj.17668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 07/31/2024] Open
Abstract
To better understand RNA-binding proteins in rice, a comprehensive investigation was conducted on the RRM1 gene family of rice. It encompassed genome-wide identification and exploration of its role in rice blast resistance. The physicochemical properties of the rice OsRRM1 gene family were analyzed. There genes were also analyzed for their conserved domains, motifs, location information, gene structure, phylogenetic trees, collinearity, and cis-acting elements. Furthermore, alterations in the expression patterns of selected OsRRM1 genes were assessed using quantitative real-time PCR (qRT-PCR). A total of 212 members of the OsRRM1 gene family were identified, which were dispersed across 12 chromosomes. These genes all exhibit multiple exons and introns, all of which encompass the conserved RRM1 domain and share analogous motifs. This observation suggests a high degree of conservation within the encoded sequence domain of these genes. Phylogenetic analysis revealed the existence of five subfamilies within the OsRRM1 gene family. Furthermore, investigation of the promoter region identified cis-regulatory elements that are involved in nucleic acid binding and interaction with multiple transcription factors. By employing GO and KEGG analyses, four RRM1 genes were tentatively identified as crucial contributors to plant immunity, while the RRM1 gene family was also found to have a significant involvement in the complex of alternative splicing. The qRT-PCR results revealed distinct temporal changes in the expression patterns of OsRRM1 genes following rice blast infection. Additionally, gene expression analysis indicates that the majority of OsRRM1 genes exhibited constitutive expressions. These findings enrich our understanding of the OsRRM1 gene family. They also provide a foundation for further research on immune mechanisms rice and the management of rice blast.
Collapse
Affiliation(s)
- Xinlei Jiang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Shangwei Yu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Yuhan Huang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Junying Huang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Shaochun Liu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Dewei Yang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, Fu Jian, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| |
Collapse
|
5
|
Schmid LM, Manavski N, Chi W, Meurer J. Chloroplast Ribosome Biogenesis Factors. PLANT & CELL PHYSIOLOGY 2024; 65:516-536. [PMID: 37498958 DOI: 10.1093/pcp/pcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The formation of chloroplasts can be traced back to an ancient event in which a eukaryotic host cell containing mitochondria ingested a cyanobacterium. Since then, chloroplasts have retained many characteristics of their bacterial ancestor, including their transcription and translation machinery. In this review, recent research on the maturation of rRNA and ribosome assembly in chloroplasts is explored, along with their crucial role in plant survival and their implications for plant acclimation to changing environments. A comparison is made between the ribosome composition and auxiliary factors of ancient and modern chloroplasts, providing insights into the evolution of ribosome assembly factors. Although the chloroplast contains ancient proteins with conserved functions in ribosome assembly, newly evolved factors have also emerged to help plants acclimate to changes in their environment and internal signals. Overall, this review offers a comprehensive analysis of the molecular mechanisms underlying chloroplast ribosome assembly and highlights the importance of this process in plant survival, acclimation and adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| |
Collapse
|
6
|
Ciesielska M, Adamiec M, Luciński R. S2P2-the chloroplast-located intramembrane protease and its impact on the stoichiometry and functioning of the photosynthetic apparatus of A. thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1372318. [PMID: 38559762 PMCID: PMC10978774 DOI: 10.3389/fpls.2024.1372318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
S2P2 is a nuclear-encoded protease, potentially located in chloroplasts, which belongs to the zinc-containing, intramembrane, site-2 protease (S2P) family. In A. thaliana cells, most of the S2P proteases are located within the chloroplasts, where they play an important role in the development of chloroplasts, maintaining proper stoichiometric relations between polypeptides building photosynthetic complexes and influencing the sensitivity of plants to photoinhibitory conditions. Among the known chloroplast S2P proteases, S2P2 protease is one of the least known. Its exact location within the chloroplast is not known, nor is anything known about its possible physiological functions. Therefore, we decided to investigate an intra-chloroplast localization and the possible physiological role of S2P2. To study the intra-chloroplast localization of S2P2, we used specific anti-S2P2 antibodies and highly purified chloroplast fractions containing envelope, stroma, and thylakoid proteins. To study the physiological role of the protease, we used two lines of insertion mutants lacking the S2P2 protease protein. Here, we present results demonstrating the thylakoid localization of S2P2. Moreover, we present experimental evidence indicating that the lack of S2P2 in A. thaliana chloroplasts leads to a significant decrease in the level of photosystem I and photosystem II core proteins: PsaB, PsbA, PsbD, and PsbC, as well as polypeptides building both the main light-harvesting antenna (LHC II), Lhcb1 and Lhcb2, as well as Lhcb4 and Lhcb5 polypeptides, constituting elements of the minor, peripheral antenna system. These changes are associated with a decrease in the number of PS II-LHC II supercomplexes. The consequence of these disorders is a greater sensitivity of s2p2 mutants to photoinhibition. The obtained results clearly indicate that the S2P2 protease is another thylakoid protein that plays an important role in the proper functioning of A. thaliana chloroplasts, especially in high-light-intensity conditions.
Collapse
Affiliation(s)
| | | | - Robert Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
7
|
Wang S, Wang H, Xu Z, Jiang S, Shi Y, Xie H, Wang S, Hua J, Wu Y. m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis. PLANT PHYSIOLOGY 2023; 192:1466-1482. [PMID: 36810961 PMCID: PMC10231368 DOI: 10.1093/plphys/kiad112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 05/16/2023]
Abstract
N 6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotes, is an emerging player of gene regulation at transcriptional and translational levels. Here, we explored the role of m6A modification in response to low temperature in Arabidopsis (Arabidopsis thaliana). Knocking down mRNA adenosine methylase A (MTA), a key component of the modification complex, by RNA interference (RNAi) led to drastically reduced growth at low temperature, indicating a critical role of m6A modification in the chilling response. Cold treatment reduced the overall m6A modification level of mRNAs especially at the 3' untranslated region. Joint analysis of the m6A methylome, transcriptome and translatome of the wild type (WT) and the MTA RNAi line revealed that m6A-containing mRNAs generally had higher abundance and translation efficiency than non-m6A-containing mRNAs under normal and low temperatures. In addition, reduction of m6A modification by MTA RNAi only moderately altered the gene expression response to low temperature but led to dysregulation of translation efficiencies of one third of the genes of the genome in response to cold. We tested the function of the m6A-modified cold-responsive gene ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) whose translation efficiency but not transcript level was reduced in the chilling-susceptible MTA RNAi plant. The dgat1 loss-of-function mutant exhibited reduced growth under cold stress. These results reveal a critical role of m6A modification in regulating growth under low temperature and suggest an involvement of translational control in chilling responses in Arabidopsis.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Haiyan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Zhihui Xu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Shasha Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Yucheng Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Hairong Xie
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| | - Shu Wang
- Gene Sequencing Center, Jiangbei New Area Biopharmaceutical Public Service Platform Co., Ltd., Nanjing 210000, Jiangsu, China
| | - Jian Hua
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca 14850, NY, USA
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210000, Jiangsu, China
| |
Collapse
|
8
|
Zhuang WB, Li YH, Shu XC, Pu YT, Wang XJ, Wang T, Wang Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023; 28:molecules28083599. [PMID: 37110833 PMCID: PMC10147097 DOI: 10.3390/molecules28083599] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
With the climate constantly changing, plants suffer more frequently from various abiotic and biotic stresses. However, they have evolved biosynthetic machinery to survive in stressful environmental conditions. Flavonoids are involved in a variety of biological activities in plants, which can protect plants from different biotic (plant-parasitic nematodes, fungi and bacteria) and abiotic stresses (salt stress, drought stress, UV, higher and lower temperatures). Flavonoids contain several subgroups, including anthocyanidins, flavonols, flavones, flavanols, flavanones, chalcones, dihydrochalcones and dihydroflavonols, which are widely distributed in various plants. As the pathway of flavonoid biosynthesis has been well studied, many researchers have applied transgenic technologies in order to explore the molecular mechanism of genes associated with flavonoid biosynthesis; as such, many transgenic plants have shown a higher stress tolerance through the regulation of flavonoid content. In the present review, the classification, molecular structure and biological biosynthesis of flavonoids were summarized, and the roles of flavonoids under various forms of biotic and abiotic stress in plants were also included. In addition, the effect of applying genes associated with flavonoid biosynthesis on the enhancement of plant tolerance under various biotic and abiotic stresses was also discussed.
Collapse
Affiliation(s)
- Wei-Bing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Hang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiao-Chun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Ting Pu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
9
|
Boussardon C, Carrie C, Keech O. Comparing plastid proteomes points towards a higher plastidial redox turnover in vascular tissues than in mesophyll cells. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad133. [PMID: 37026385 PMCID: PMC10400147 DOI: 10.1093/jxb/erad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 06/19/2023]
Abstract
Plastids are complex organelles that vary in size and function depending on the cell type. Accordingly, they can be referred to as amyloplasts, chloroplasts, chromoplasts, etioplasts, proplasts to only cite a few denominations. Over the past decades, methods based on density gradients and differential centrifugations have been extensively used for the purification of plastids. However, these methods need large amounts of starting material, and hardly provide a tissue-specific resolution. Here, we applied our IPTACT (Isolation of Plastids TAgged in specific Cell Types) method, which involves the biotinylation of plastids in vivo using one-shot transgenic lines expressing the TOC64 gene coupled with a biotin ligase receptor particle and the BirA biotin ligase, to isolate plastids from mesophyll and companion cells of Arabidopsis thaliana using tissue specific pCAB3 and pSUC2 promoters, respectively. Subsequently, a proteome profiling was performed, and allowed the identification of 1672 proteins, among which 1342 were predicted plastidial, and 705 were fully confirmed according to SUBA5. Interestingly, although 92% of plastidial proteins were equally distributed between the two tissues, we observed an accumulation of proteins associated with jasmonic acid biosynthesis, plastoglobuli (e.g. NDC1, VTE1, PGL34, ABC1K1) and cyclic electron flow in plastids originating from vascular tissues. Besides demonstrating the technical feasibility of isolating plastids in a tissue-specific manner, our work provides strong evidence that plastids from vascular tissue have a higher redox turnover to ensure optimal functioning, notably under high solute strength as encountered in vascular cells.
Collapse
Affiliation(s)
- Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science, Umeå University, S-90187 Umeå, Sweden
| | - Chris Carrie
- School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland,1142, New Zealand
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
10
|
Wang Z, Sun J, Zu X, Gong J, Deng H, Hang R, Zhang X, Liu C, Deng X, Luo L, Wei X, Song X, Cao X. Pseudouridylation of chloroplast ribosomal RNA contributes to low temperature acclimation in rice. THE NEW PHYTOLOGIST 2022; 236:1708-1720. [PMID: 36093745 DOI: 10.1111/nph.18479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Ribosomal RNAs (rRNAs) undergo many modifications during transcription and maturation; homeostasis of rRNA modifications is essential for chloroplast biogenesis in plants. The chloroplast acts as a hub to sense environmental signals, such as cold temperature. However, how RNA modifications contribute to low temperature responses remains unknown. Here we reveal that pseudouridine (Ψ) modification of rice chloroplast rRNAs mediated by the pseudouridine synthase (OsPUS1) contributes to cold tolerance at seedling stage. Loss-function of OsPUS1 leads to abnormal chloroplast development and albino seedling phenotype at low temperature. We find that OsPUS1 is accumulated upon cold and binds to chloroplast precursor rRNAs (pre-rRNAs) to catalyse the pseudouridylation on rRNA. These modifications on chloroplast rRNAs could be required for their processing, as the reduction of mature chloroplast rRNAs and accumulation of pre-rRNAs are observed in ospus1-1 at low temperature. Therefore, the ribosome activity and translation in chloroplasts is disturbed in ospus1-1. Furthermore, transcriptome and translatome analysis reveals that OsPUS1 balances growth and stress-responsive state, preventing excess reactive oxygen species accumulation. Taken together, our findings unveil a crucial function of Ψ in chloroplast ribosome biogenesis and cold tolerance in rice, with potential applications in crop improvement.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Zu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Gong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hongjing Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
11
|
Jiang Y, Wang Z, Du H, Dong R, Yuan Y, Hua J. Assessment of functional relevance of genes associated with local temperature variables in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2022; 45:3290-3304. [PMID: 35943206 DOI: 10.1111/pce.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
How likely genetic variations associated with environment identified in silico from genome wide association study are functionally relevant to environmental adaptation has been largely unexplored experimentally. Here we analyzed top 29 genes containing polymorphisms associated with local temperature variation (minimum, mean, maximum) among 1129 natural accessions of Arabidopsis thaliana. Their loss-of-function mutants were assessed for growth and stress tolerance at five temperatures. Twenty genes were found to affect growth or tolerance at one or more of these temperatures. Significantly, genes associated with maximum temperature more likely have a detect a function at higher temperature, while genes associated with minimum temperature more likely have a function at lower temperature. In addition, gene variants are distributed more frequently at geographic locations where they apparently offer an enhanced growth or tolerance for five genes tested. Furthermore, variations in a large proportion of the in silico identified genes associated with minimum or mean-temperatures exhibited a significant association with growth phenotypes experimentally assessed at low temperature for a small set of natural accessions. This study shows a functional relevance of gene variants associated with environmental variables and supports the feasibility of the use of local temperature factors in investigating the genetic basis of temperature adaptation.
Collapse
Affiliation(s)
- Yuan Jiang
- Jilin Engineering Research Center of Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Zhixue Wang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Hui Du
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Runlong Dong
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yaping Yuan
- Jilin Engineering Research Center of Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Li JY, Yang C, Tian YY, Liu JX. Regulation of Chloroplast Development and Function at Adverse Temperatures in Plants. PLANT & CELL PHYSIOLOGY 2022; 63:580-591. [PMID: 35141744 DOI: 10.1093/pcp/pcac022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The chloroplast is essential for photosynthesis, plant growth and development. As semiautonomous organelles, the biogenesis and development of chloroplasts need to be well-regulated during plant growth and stress responses. Low or high ambient temperatures are adverse environmental stresses that affect crop growth and productivity. As sessile organisms, plants regulate the development and function of chloroplasts in a fluctuating temperature environment to maintain normal photosynthesis. This review focuses on the molecular mechanisms and regulatory factors required for chloroplast biogenesis and development under cold or heat stress conditions and highlights the importance of chloroplast gene transcription, RNA metabolism, ribosome function and protein homeostasis essential for chloroplast development under adverse temperature conditions.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Ying-Ying Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
13
|
Gao Y, Thiele W, Saleh O, Scossa F, Arabi F, Zhang H, Sampathkumar A, Kühn K, Fernie A, Bock R, Schöttler MA, Zoschke R. Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. THE PLANT CELL 2022; 34:2056-2079. [PMID: 35171295 PMCID: PMC9048916 DOI: 10.1093/plcell/koac056] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/12/2022] [Indexed: 05/04/2023]
Abstract
Plants evolved efficient multifaceted acclimation strategies to cope with low temperatures. Chloroplasts respond to temperature stimuli and participate in temperature sensing and acclimation. However, very little is known about the involvement of chloroplast genes and their expression in plant chilling tolerance. Here we systematically investigated cold acclimation in tobacco seedlings over 2 days of exposure to low temperatures by examining responses in chloroplast genome copy number, transcript accumulation and translation, photosynthesis, cell physiology, and metabolism. Our time-resolved genome-wide investigation of chloroplast gene expression revealed substantial cold-induced translational regulation at both the initiation and elongation levels, in the virtual absence of changes at the transcript level. These cold-triggered dynamics in chloroplast translation are widely distinct from previously described high light-induced effects. Analysis of the gene set responding significantly to the cold stimulus suggested nonessential plastid-encoded subunits of photosynthetic protein complexes as novel players in plant cold acclimation. Functional characterization of one of these cold-responsive chloroplast genes by reverse genetics demonstrated that the encoded protein, the small cytochrome b6f complex subunit PetL, crucially contributes to photosynthetic cold acclimation. Together, our results uncover an important, previously underappreciated role of chloroplast translational regulation in plant cold acclimation.
Collapse
Affiliation(s)
- Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wolfram Thiele
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Omar Saleh
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics (CREA-GB), Rome, 00178, Italy
| | - Fayezeh Arabi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Hongmou Zhang
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, 12489, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | | |
Collapse
|
14
|
Gao Y, Thiele W, Saleh O, Scossa F, Arabi F, Zhang H, Sampathkumar A, Kühn K, Fernie A, Bock R, Schöttler MA, Zoschke R. Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. THE PLANT CELL 2022; 34:2056-2079. [PMID: 35171295 DOI: 10.1093/plcell/koac056%jtheplantcell] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/12/2022] [Indexed: 05/28/2023]
Abstract
Plants evolved efficient multifaceted acclimation strategies to cope with low temperatures. Chloroplasts respond to temperature stimuli and participate in temperature sensing and acclimation. However, very little is known about the involvement of chloroplast genes and their expression in plant chilling tolerance. Here we systematically investigated cold acclimation in tobacco seedlings over 2 days of exposure to low temperatures by examining responses in chloroplast genome copy number, transcript accumulation and translation, photosynthesis, cell physiology, and metabolism. Our time-resolved genome-wide investigation of chloroplast gene expression revealed substantial cold-induced translational regulation at both the initiation and elongation levels, in the virtual absence of changes at the transcript level. These cold-triggered dynamics in chloroplast translation are widely distinct from previously described high light-induced effects. Analysis of the gene set responding significantly to the cold stimulus suggested nonessential plastid-encoded subunits of photosynthetic protein complexes as novel players in plant cold acclimation. Functional characterization of one of these cold-responsive chloroplast genes by reverse genetics demonstrated that the encoded protein, the small cytochrome b6f complex subunit PetL, crucially contributes to photosynthetic cold acclimation. Together, our results uncover an important, previously underappreciated role of chloroplast translational regulation in plant cold acclimation.
Collapse
Affiliation(s)
- Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wolfram Thiele
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Omar Saleh
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics (CREA-GB), Rome, 00178, Italy
| | - Fayezeh Arabi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Hongmou Zhang
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, 12489, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
15
|
Xu H, Wang C, Shao G, Wu S, Liu P, Cao P, Jiang P, Wang S, Zhu H, Lin X, Tauqeer A, Lin Y, Chen W, Huang W, Wen Q, Chang J, Zhong F, Wu S. The reference genome and full-length transcriptome of pakchoi provide insights into cuticle formation and heat adaption. HORTICULTURE RESEARCH 2022; 9:uhac123. [PMID: 35949690 PMCID: PMC9358696 DOI: 10.1093/hr/uhac123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
Brassica rapa includes various vegetables with high economic value. Among them, green petiole type pakchoi (B. rapa ssp. chinensis) is one of the major vegetables grown in southern China. Compared with other B. rapa varieties, green petiole type pakchoi shows a higher level of heat resistance, which is partially derived from the rich epicuticular wax. Here we sequence a high-quality genome of green petiole type pakchoi, which has been widely used as the parent in breeding. Our results reveal that long terminal repeat retrotransposon insertion plays critical roles in promoting the genome expansion and transcriptional diversity of pakchoi genes through preferential insertions, particularly in cuticle biosynthetic genes. After whole-genome triplication, over-retained pakchoi genes escape stringent selection pressure, and among them a set of cuticle-related genes are retained. Using bulked-segregant analysis of a heat-resistant pakchoi cultivar, we identify a frame-shift deletion across the third exon and the subsequent intron of BrcCER1 in candidate regions. Using Nanopore long-read sequencing, we analyze the full-length transcriptome of two pakchoi cultivars with opposite sensitivity to high temperature. We find that the heat-resistant pakchoi cultivar can mitigate heat-caused leaf damage by activating an unfolded protein response, as well as by inhibiting chloroplast development and energy metabolism, which are presumably mediated by both transcriptional regulation and splicing factors. Our study provides valuable resources for Brassica functional genomics and breeding research, and deepens our understanding of plant stress resistance.
Collapse
Affiliation(s)
| | | | | | - Shasha Wu
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Liu
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Cao
- Fujian Jinpin Agricultural Technology Co., Ltd, Fuzhou 350000, China
| | - Peng Jiang
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shubin Wang
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Zhu
- Fujian Seed Chief Station, Fuzhou 350003, China
| | - Xiao Lin
- Fujian Jinpin Agricultural Technology Co., Ltd, Fuzhou 350000, China
| | - Arfa Tauqeer
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yizhang Lin
- Fujian Jinpin Agricultural Technology Co., Ltd, Fuzhou 350000, China
| | - Wei Chen
- Fujian Seed Chief Station, Fuzhou 350003, China
| | | | - Qingfang Wen
- Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jiang Chang
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | |
Collapse
|
16
|
Song Y, Feng L, Alyafei MAM, Jaleel A, Ren M. Function of Chloroplasts in Plant Stress Responses. Int J Mol Sci 2021; 22:ijms222413464. [PMID: 34948261 PMCID: PMC8705820 DOI: 10.3390/ijms222413464] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant response to adverse conditions. Furthermore, chloroplasts communicate with the nucleus through retrograde signaling, for instance, reactive oxygen signaling. All of the above facilitate the chloroplast’s exquisite flexibility in responding to environmental stresses. In this review, we summarize recent findings on the involvement of chloroplasts in plant regulatory responses to various abiotic and biotic stresses including heat, chilling, salinity, drought, high light environmental stress conditions, and pathogen invasions. This review will enrich the better understanding of interactions between chloroplast and environmental stresses, and will lay the foundation for genetically enhancing plant-stress acclimatization.
Collapse
Affiliation(s)
- Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Mohammed Abdul Muhsen Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.A.M.A.); (A.J.)
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.A.M.A.); (A.J.)
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-(13)-527313471
| |
Collapse
|
17
|
Abstract
Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.
Collapse
|
18
|
Liu H, Zhang Y, Lu S, Chen H, Wu J, Zhu X, Zou B, Hua J. HsfA1d promotes hypocotyl elongation under chilling via enhancing expression of ribosomal protein genes in Arabidopsis. THE NEW PHYTOLOGIST 2021; 231:646-660. [PMID: 33893646 DOI: 10.1111/nph.17413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
How plants maintain growth under nonfreezing low temperatures (chilling) is not well understood. Here we use hypocotyl elongation under dark to investigate the molecular mechanisms for chilling growth in Arabidopsis thaliana. The function of HsfA1d (Heat shock transcription factor A1d) in chilling growth is investigated by physiological and molecular characterization of its mutants. Subcellular localization of HsfA1d under chilling is analyzed. Potential target genes of HsfA1d were identified by transcriptome analysis, chromatin immunoprecipitation, transcriptional activation assay and mutant characterization. HsfA1d is a positive regulator of hypocotyl elongation under chilling. It promotes expression of a large number of ribosome biogenesis genes to a moderate but significant extent under chilling. HsfA1d could bind to the promoter regions of two ribosome protein genes tested and promote their expression. The loss-of-function of one ribosome gene also reduced hypocotyl elongation under chilling. In addition, HsfA1d did not have increased nuclear accumulation under chilling and its basal nuclear accumulation is promoted by a salicylic acid receptor under chilling. This study thus unveils a new HsfA1d-mediated pathway that promotes the expression of cytosolic and plastid cytosolic and plastid ribosomal protein genes which may maintain overall protein translation for plant growth in chilling.
Collapse
Affiliation(s)
- Huimin Liu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan Lu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Chen
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawen Wu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Zhu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baohong Zou
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Hua
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Kleine T, Nägele T, Neuhaus HE, Schmitz-Linneweber C, Fernie AR, Geigenberger P, Grimm B, Kaufmann K, Klipp E, Meurer J, Möhlmann T, Mühlhaus T, Naranjo B, Nickelsen J, Richter A, Ruwe H, Schroda M, Schwenkert S, Trentmann O, Willmund F, Zoschke R, Leister D. Acclimation in plants - the Green Hub consortium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:23-40. [PMID: 33368770 DOI: 10.1111/tpj.15144] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.
Collapse
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | | | - Alisdair R Fernie
- Central Metabolism, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Peter Geigenberger
- Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Bernhard Grimm
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Torsten Möhlmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Belen Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Andreas Richter
- Physiology of Plant Organelles, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Hannes Ruwe
- Molecular Genetics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Serena Schwenkert
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Oliver Trentmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Reimo Zoschke
- Translational Regulation in Plants, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
20
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
21
|
OsCRP1, a Ribonucleoprotein Gene, Regulates Chloroplast mRNA Stability That Confers Drought and Cold Tolerance. Int J Mol Sci 2021; 22:ijms22041673. [PMID: 33562320 PMCID: PMC7915912 DOI: 10.3390/ijms22041673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Chloroplast ribonucleoproteins (cpRNPs) are nuclear-encoded and highly abundant proteins that are proposed to function in chloroplast RNA metabolism. However, the molecular mechanisms underlying the regulation of chloroplast RNAs involved in stress tolerance are poorly understood. Here, we demonstrate that CHLOROPLAST RNA-BINDING PROTEIN 1 (OsCRP1), a rice (Oryza sativa) cpRNP gene, is essential for stabilization of RNAs from the NAD(P)H dehydrogenase (NDH) complex, which in turn enhances drought and cold stress tolerance. An RNA-immunoprecipitation assay revealed that OsCRP1 is associated with a set of chloroplast RNAs. Transcript profiling indicated that the mRNA levels of genes from the NDH complex significantly increased in the OsCRP1 overexpressing compared to non-transgenic plants, whereas the pattern in OsCRP1 RNAi plants were opposite. Importantly, the OsCRP1 overexpressing plants showed a higher cyclic electron transport (CET) activity, which is essential for elevated levels of ATP for photosynthesis. Additionally, overexpression of OsCRP1 resulted in significantly enhanced drought and cold stress tolerance with higher ATP levels compared to wild type. Thus, our findings suggest that overexpression of OsCRP1 stabilizes a set of mRNAs from genes of the NDH complex involved in increasing CET activity and production of ATP, which consequently confers enhanced drought and cold tolerance.
Collapse
|
22
|
Zhang J, Cui W, Abdul Haseeb H, Guo W. VdNop12, containing two tandem RNA recognition motif domains, is a crucial factor for pathogenicity and cold adaption in Verticillium dahliae. Environ Microbiol 2020; 22:5387-5401. [PMID: 33000558 DOI: 10.1111/1462-2920.15268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022]
Abstract
Previous studies have reported the ability of fungi to overwinter in soil or on crop debris under different environmental conditions, but how fungi adapt to chilling is still largely unknown. In this study, we have identified and characterized the RNA binding protein (RBP) (VdNop12) by screening an Agrobacterium tumefaciens-mediated transformation-mediated insertional mutational library of Verticillium dahliae. We determined that this protein was essential to the pathogen for virulence on cotton plants. VdNop12 contains two tandem RNA recognition motif domains, and its orthologs are widely distributed in filamentous fungi. Mutants produced by disruption of VdNop12 showed defects in vegetative growth, conidiation and cell wall integrity. The mutant also showed an increase in sensitivity to low temperature, as compared to the wildtype and complementation strains. Yeast complementation assay showed that VdNop12 could functionally restore the growth phenotype of ΔScNop12 mutant of Saccharomyces cerevisiae at 15°C. We demonstrated that the VdNop12 is localized in the nucleus, and its loss resulted in the downregulated expression of several genes related to cAMP-PKA and MAPK pathways in V. dahliae. Our results demonstrated a crucial role of RBPs in the regulation of morphology, cold adaption, and pathogenic development in V. dahliae.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiye Cui
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hafiz Abdul Haseeb
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Guo
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
The Role of Chloroplast Gene Expression in Plant Responses to Environmental Stress. Int J Mol Sci 2020; 21:ijms21176082. [PMID: 32846932 PMCID: PMC7503970 DOI: 10.3390/ijms21176082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts are plant organelles that carry out photosynthesis, produce various metabolites, and sense changes in the external environment. Given their endosymbiotic origin, chloroplasts have retained independent genomes and gene-expression machinery. Most genes from the prokaryotic ancestors of chloroplasts were transferred into the nucleus over the course of evolution. However, the importance of chloroplast gene expression in environmental stress responses have recently become more apparent. Here, we discuss the emerging roles of the distinct chloroplast gene expression processes in plant responses to environmental stresses. For example, the transcription and translation of psbA play an important role in high-light stress responses. A better understanding of the connection between chloroplast gene expression and environmental stress responses is crucial for breeding stress-tolerant crops better able to cope with the rapidly changing environment.
Collapse
|
24
|
Cruz MV, Mori GM, Signori-Müller C, da Silva CC, Oh DH, Dassanayake M, Zucchi MI, Oliveira RS, de Souza AP. Local adaptation of a dominant coastal tree to freshwater availability and solar radiation suggested by genomic and ecophysiological approaches. Sci Rep 2019; 9:19936. [PMID: 31882752 PMCID: PMC6934818 DOI: 10.1038/s41598-019-56469-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/07/2019] [Indexed: 12/21/2022] Open
Abstract
Local adaptation is often a product of environmental variations in geographical space and has implications for biodiversity conservation. We investigated the role of latitudinal heterogeneity in climate on the organization of genetic and phenotypic variation in the dominant coastal tree Avicennia schaueriana. In a common garden experiment, samples from an equatorial region, with pronounced seasonality in precipitation, accumulated less biomass, and showed lower stomatal conductance and transpiration, narrower xylem vessels, smaller leaves and higher reflectance of long wavelengths by the stem epidermis than samples from a subtropical region, with seasonality in temperature and no dry season. Transcriptomic differences identified between trees sampled under field conditions at equatorial and subtropical sites, were enriched in functional categories such as responses to temperature, solar radiation, water deficit, photosynthesis and cell wall biosynthesis. Remarkably, the diversity based on genome-wide SNPs revealed a north-south genetic structure and signatures of selection were identified for loci associated with photosynthesis, anthocyanin accumulation and the responses to osmotic and hypoxia stresses. Our results suggest the existence of divergence in key resource-use characteristics, likely driven by seasonality in water deficit and solar radiation. These findings provide a basis for conservation plans and for predicting coastal plants responses to climate change.
Collapse
Affiliation(s)
- Mariana Vargas Cruz
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil
| | - Gustavo Maruyama Mori
- Institute of Biosciences, São Paulo State University (Unesp), São Vicente, SP, 11330-900, Brazil
| | - Caroline Signori-Müller
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
| | - Carla Cristina da Silva
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, 70803, United States
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, 70803, United States
| | | | - Rafael Silva Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
| | - Anete Pereira de Souza
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil.
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
25
|
Identification of Genes Differentially Expressed in Response to Cold in Pisum sativum Using RNA Sequencing Analyses. PLANTS 2019; 8:plants8080288. [PMID: 31443248 PMCID: PMC6724123 DOI: 10.3390/plants8080288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
Low temperature stress affects growth and development in pea (Pisum sativum L.) and decreases yield. In this study, RNA sequencing time series analyses performed on lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition, led us to identify 4981 differentially expressed genes. Thanks to our experimental design and statistical analyses, we were able to classify these genes into three sets. The first one was composed of 2487 genes that could be related to the constitutive differences between the two lines and were not regulated during cold treatment. The second gathered 1403 genes that could be related to the chilling response. The third set contained 1091 genes, including genes that could be related to freezing tolerance. The identification of differentially expressed genes related to cold, oxidative stress, and dehydration responses, including some transcription factors and kinases, confirmed the soundness of our analyses. In addition, we identified about one hundred genes, whose expression has not yet been linked to cold stress. Overall, our findings showed that both lines have different characteristics for their cold response (chilling response and/or freezing tolerance), as more than 90% of differentially expressed genes were specific to each of them.
Collapse
|
26
|
He P, Wu S, Jiang Y, Zhang L, Tang M, Xiao G, Yu J. GhYGL1d, a pentatricopeptide repeat protein, is required for chloroplast development in cotton. BMC PLANT BIOLOGY 2019; 19:350. [PMID: 31409298 PMCID: PMC6693126 DOI: 10.1186/s12870-019-1945-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND The pentatricopeptide repeat (PPR) gene family, which contains multiple 35-amino acid repeats, constitutes one of the largest gene families in plants. PPR proteins function in organelles to target specific transcripts and are involved in plant development and growth. However, the function of PPR proteins in cotton is still unknown. RESULTS In this study, we characterized a PPR gene YELLOW-GREEN LEAF (GhYGL1d) that is required for cotton plastid development. The GhYGL1d gene has a DYW domain in C-terminal and is highly express in leaves, localized to the chloroplast fractions. GhYGL1d share high amino acid-sequence homology with AtECB2. In atecb2 mutant, overexpression of GhYGL1d rescued the seedling lethal phenotype and restored the editing of accD and ndhF transcripts. Silencing of GhYGL1d led to the reduction of chlorophyll and phenotypically yellow-green leaves in cotton. Compared with wild type, GhYGL1d-silenced cotton showed significant deformations of thylakoid structures. Furthermore, the transcription levels of plastid-encoded polymerase (PEP) and nuclear-encoded polymerase (NEP) dependent genes were decreased in GhYGL1d-silenced cotton. CONCLUSIONS Our data indicate that GhYGL1d not only contributes to the editing of accD and ndhF genes, but also affects the expression of NEP- and PEP-dependent genes to regulate the development of thylakoids, and therefore regulates leaf variegation in cotton.
Collapse
Affiliation(s)
- Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Shuyin Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanli Jiang
- Shanxi Academy of Agricultural Sciences, Cotton Research Institute, Yucheng, 044000, China
| | - Lihua Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meiju Tang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guanghui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
27
|
Xu F, He L, Gao S, Su Y, Li F, Xu L. Comparative Analysis of two Sugarcane Ancestors Saccharum officinarum and S. spontaneum based on Complete Chloroplast Genome Sequences and Photosynthetic Ability in Cold Stress. Int J Mol Sci 2019; 20:E3828. [PMID: 31387284 PMCID: PMC6696253 DOI: 10.3390/ijms20153828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/11/2023] Open
Abstract
Polyploid Saccharum with complex genomes hindered the progress of sugarcane improvement, while their chloroplast genomes are much smaller and simpler. Chloroplast (cp), the vital organelle, is the site of plant photosynthesis, which also evolves other functions, such as tolerance to environmental stresses. In this study, the cp genome of two sugarcane ancestors Saccharum officinarum and S. spontaneum were sequenced, and genome comparative analysis between these two species was carried out, together with the photosynthetic ability. The length is 141,187 bp for S. officinarum and that is 7 bp longer than S. spontaneum, with the same GC content (38.44%) and annotated gene number (134), 13 with introns among them. There is a typical tetrad structure, including LSC, SSC, IRb and IRa. Of them, LSC and IRa/IRb are 18 bp longer and 6 bp shorter than those in S. spontaneum (83,047 bp and 22,795 bp), respectively, while the size of SSC is same (12,544 bp). Five genes exhibit contraction and expansion at the IR junctions, but only one gene ndhF with 29 bp expansion at the border of IRb/SSC. Nucleotide diversity (Pi) based on sliding window analysis showed that the single copy and noncoding regions were more divergent than IR- and coding regions, and the variant hotspots trnG-trnM, psbM-petN, trnR-rps14, ndhC-trnV and petA-psbJ in the LSC and trnL-ccsA in the SSC regions were detected, and petA-psbJ with the highest divergent value of 0.01500. Genetic distances of 65 protein genes vary from 0.00000 to 0.00288 between two species, and the selective pressure on them indicated that only petB was subjected to positive selection, while more genes including rpoC2, rps3, ccsA, ndhA, ndhA, psbI, atpH and psaC were subjected to purifying or very strong purifying selection. There are larger number of codons in S. spontaneum than that in S. officinarum, while both species have obvious codon preference and the codons with highest-(AUG) and lowest frequency (AUA) are same. Whilst, the most abundant amino acid is leucine in both S. officinarum and S. spontaneum, with number of 2175 (10.88% of total) and 2228 (10.90% of total) codons, respectively, and the lowest number is cysteine, with only 221 (1.105%) and 224 (1.096%), respectively. Protein collinearity analysis showed the high collinearity though several divergences were present in cp genomes, and identification of simple sequence repeats (SSRs) were included in this study. In addition, in order to compare cold tolerance and explore the expanding function of this environmental stress, the chlorophyll relative content (SPAD) and chlorophyll fluorescence Fv/Fm were measured. The significantly higher SPAD were observed in S. spontaneum than those in S. officinarum, no matter what the control conditions, exposure to low temperature or during recovery, and so was for Fv/Fm under exposure to low temperature, together with higher level of SPAD in S. spontaneum in each measurement. Aforementioned results suggest much stronger photosynthetic ability and cold tolerance in S. spontaneum. Our findings build a foundation to investigate the biological mechanism of two sugarcane ancestor chloroplasts and retrieve reliable molecular resources for phylogenetic and evolutionary studies, and will be conducive to genetic improvement of photosynthetic ability and cold resistance in modern sugarcane.
Collapse
Affiliation(s)
- Fu Xu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lilian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fusheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China.
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
28
|
Marino G, Naranjo B, Wang J, Penzler JF, Kleine T, Leister D. Relationship of GUN1 to FUG1 in chloroplast protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:521-535. [PMID: 31002470 DOI: 10.1111/tpj.14342] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
GUN1 integrates retrograde signals in chloroplasts but the underlying mechanism is elusive. FUG1, a chloroplast translation initiation factor, and GUN1 are co-expressed at the transcriptional level, and FUG1 co-immunoprecipitates with GUN1. We used mutants of GUN1 (gun1-103) and FUG1 (fug1-3) to analyse their functional relationship at the physiological and system-wide level, the latter including transcriptome and proteome analyses. Absence of GUN1 aggravates the effects of decreased FUG1 levels on chloroplast protein translation, resulting in transiently more pronounced phenotypes regarding photosynthesis, leaf colouration, growth and cold acclimation. The gun1-103 mutation also enhances variegation in the var2 mutant, increasing the fraction of white sectors, while fug1-3 suppresses the var2 phenotype. The transcriptomes of fug1-3 and gun1-103 plants are very similar, but absence of GUN1 alone has almost no effect on protein levels, whereas steady-state levels of chloroplast proteins are markedly decreased in fug1-3. In fug1 gun1 double mutants, effects on transcriptomes and particularly on proteomes are enhanced. Our results show that GUN1 function becomes critical when chloroplast proteostasis is perturbed by decreased rates of synthesis (fug1) or degradation (var2) of chloroplast proteins, or by low temperatures. The functions of FUG1 and GUN1 appear to be related, corroborating the view that GUN1 helps to maintain chloroplast protein homeostasis (proteostasis).
Collapse
Affiliation(s)
- Giada Marino
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Belen Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jing Wang
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jan-Ferdinand Penzler
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
29
|
Li X, Yang W, Liu S, Li XQ, Jia J, Zhao P, Cheng L, Qi D, Chen S, Liu G. LcFIN2, a novel chloroplast protein gene from sheepgrass, enhances tolerance to low temperature in Arabidopsis and rice. PHYSIOLOGIA PLANTARUM 2019; 166:628-645. [PMID: 30051480 DOI: 10.1111/ppl.12811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 05/25/2023]
Abstract
Adverse environmental stresses affect plant growth and crop yields. Sheepgrass (Leymus chinensis (Trin.) Tzvel), an important forage grass that is widely distributed in the east of Eurasia steppe, has high tolerance to extreme low temperature. Many genes that respond to cold stress were identified in sheepgrass by RNA-sequencing, but more detailed studies are needed to dissect the function of those genes. Here, we found that LcFIN2, a sheepgrass freezing-induced protein 2, encoded a chloroplast-targeted protein. Expression of LcFIN2 was upregulated by freezing, chilling, NaCl and abscisic acid (ABA) treatments. Overexpression of LcFIN2 enhanced the survival rate of transgenic Arabidopsis after freezing stress. Importantly, heterologous expression of LcFIN2 in rice exhibited not only higher survival rate but also accumulated various soluble substances and reduced membrane damage in rice under chilling stress. Furthermore, the chlorophyll content, the quantum photochemistry efficiency of photosystem II (ΦPSII), the non-photochemical quenching (NPQ), the net photosynthesis rate (Pn) and the expression of some chloroplast ribosomal-related and photosynthesis-related genes were higher in the transgenic rice under chilling stress. These findings suggested that the LcFIN2 gene could potentially be used to improve low-temperature tolerance in crops.
Collapse
Affiliation(s)
- Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Weiguang Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
| | - Junting Jia
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pincang Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
30
|
Pedroza-García JA, Nájera-Martínez M, Mazubert C, Aguilera-Alvarado P, Drouin-Wahbi J, Sánchez-Nieto S, Gualberto JM, Raynaud C, Plasencia J. Role of pyrimidine salvage pathway in the maintenance of organellar and nuclear genome integrity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:430-446. [PMID: 30317699 DOI: 10.1111/tpj.14128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Nucleotide biosynthesis proceeds through a de novo pathway and a salvage route. In the salvage route, free bases and/or nucleosides are recycled to generate the corresponding nucleotides. Thymidine kinase (TK) is the first enzyme in the salvage pathway to recycle thymidine nucleosides as it phosphorylates thymidine to yield thymidine monophosphate. The Arabidopsis genome contains two TK genes -TK1a and TK1b- that show similar expression patterns during development. In this work, we studied the respective roles of the two genes during early development and in response to genotoxic agents targeting the organellar or the nuclear genome. We found that the pyrimidine salvage pathway is crucial for chloroplast development and genome replication, as well as for the maintenance of its integrity, and is thus likely to play a crucial role during the transition from heterotrophy to autotrophy after germination. Interestingly, defects in TK activity could be partially compensated by supplementation of the medium with sugar, and this effect resulted from both the availability of a carbon source and the activation of the nucleotide de novo synthesis pathway, providing evidence for a compensation mechanism between two routes of nucleotide biosynthesis that depend on nutrient availability. Finally, we found differential roles of the TK1a and TK1b genes during the plant response to genotoxic stress, suggesting that different pools of nucleotides exist within the cells and are required to respond to different types of DNA damage. Altogether, our results highlight the importance of the pyrimidine salvage pathway, both during plant development and in response to genotoxic stress.
Collapse
Affiliation(s)
- José-Antonio Pedroza-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Manuela Nájera-Martínez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Paulina Aguilera-Alvarado
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| | - Jeannine Drouin-Wahbi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université de Strasbourg, 67084, Strasbourg, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| |
Collapse
|
31
|
Yang R, Hong Y, Ren Z, Tang K, Zhang H, Zhu JK, Zhao C. A Role for PICKLE in the Regulation of Cold and Salt Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:900. [PMID: 31354770 PMCID: PMC6633207 DOI: 10.3389/fpls.2019.00900] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/26/2019] [Indexed: 05/10/2023]
Abstract
Arabidopsis PICKLE (PKL) is a putative CHD3-type chromatin remodeling factor with important roles in regulating plant growth and development as well as RNA-directed DNA methylation (RdDM). The role of PKL protein in plant abiotic stress response is still poorly understood. Here, we report that PKL is important for cold stress response in Arabidopsis. Loss-of-function mutations in the PKL gene lead to a chlorotic phenotype in seedlings under cold stress, which is caused by the alterations in the transcript levels of some chlorophyll metabolism-related genes. The pkl mutant also exhibits increased electrolyte leakage after freezing treatment. These results suggest that PKL is required for proper chilling and freezing tolerance in plants. Gene expression analysis shows that CBF3, encoding a key transcription factor involved in the regulation of cold-responsive genes, exhibits an altered transcript level in the pkl mutant under cold stress. Transcriptome data also show that PKL regulates the expression of a number of cold-responsive genes, including RD29A, COR15A, and COR15B, possibly through its effect on the expression of CBF3 gene. Mutation in PKL gene also results in decreased cotyledon greening rate and reduced primary root elongation under high salinity. Together, our results suggest that PKL regulates plant responses to cold and salt stress.
Collapse
Affiliation(s)
- Rong Yang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Rong Yang,
| | - Yechun Hong
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhizhong Ren
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Kai Tang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Heng Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Chunzhao Zhao
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
- Chunzhao Zhao,
| |
Collapse
|
32
|
Cui X, Wang Y, Wu J, Han X, Gu X, Lu T, Zhang Z. The RNA editing factor DUA1 is crucial to chloroplast development at low temperature in rice. THE NEW PHYTOLOGIST 2019; 221:834-849. [PMID: 30295937 DOI: 10.1111/nph.15448] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Low temperature stress hinders plant growth and chloroplast development and can limit the geographic range of cultivars. In rice, japonica cultivars have greater chilling tolerance than indica cultivars, but the molecular mechanism underlying chilling tolerance is unclear. Here, we report an RNA-binding protein, DUA1, cloned from the indica cultivar Dular, which exhibits a deficiency in chloroplast development at an early stage of development under low-temperature conditions. DUA1 shares high sequence homology with the pentatricopeptide repeat family and functions in plastid RNA editing under low-temperature conditions. Our data suggest that DUA1 can bind to the plastid-encoded rps8-182 transcript and disruption of DUA1 activity impairs editing. The RNA editing cofactor WSP1, a partner of DUA1, also participates in chloroplast development at low temperature. Western blot analysis indicates that WSP1 enhances DUA1 stability under low temperatures. DUA1 sequence analyses of rice core germplasm revealed that three major haplotypes of DUA1 and one haplotype showed substantial differences in chlorophyll content under low-temperature conditions. Variation at DUA1 may play an important role in the adaptation of rice to different growing regions.
Collapse
Affiliation(s)
- Xuean Cui
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanwei Wang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
33
|
Pulido P, Zagari N, Manavski N, Gawronski P, Matthes A, Scharff LB, Meurer J, Leister D. CHLOROPLAST RIBOSOME ASSOCIATED Supports Translation under Stress and Interacts with the Ribosomal 30S Subunit. PLANT PHYSIOLOGY 2018; 177:1539-1554. [PMID: 29914890 PMCID: PMC6084680 DOI: 10.1104/pp.18.00602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 05/07/2023]
Abstract
Chloroplast ribosomes, which originated from cyanobacteria, comprise a large subunit (50S) and a small subunit (30S) containing ribosomal RNAs (rRNAs) and various ribosomal proteins. Genes for many chloroplast ribosomal proteins, as well as proteins with auxiliary roles in ribosome biogenesis or functioning, reside in the nucleus. Here, we identified Arabidopsis (Arabidopsis thaliana) CHLOROPLAST RIBOSOME ASSOCIATED (CRASS), a member of the latter class of proteins, based on the tight coexpression of its mRNA with transcripts for nucleus-encoded chloroplast ribosomal proteins. CRASS was acquired during the evolution of embryophytes and is localized to the chloroplast stroma. Loss of CRASS results in minor defects in development, photosynthetic efficiency, and chloroplast translation activity under controlled growth conditions, but these phenotypes are greatly exacerbated under stress conditions induced by the translational inhibitors lincomycin and chloramphenicol or by cold treatment. The CRASS protein comigrates with chloroplast ribosomal particles and coimmunoprecipitates with the 16S rRNA and several chloroplast ribosomal proteins, particularly the plastid ribosomal proteins of the 30S subunit (PRPS1 and PRPS5). The association of CRASS with PRPS1 and PRPS5 is independent of rRNA and is not detectable in yeast two-hybrid experiments, implying that either CRASS interacts indirectly with PRPS1 and PRPS5 via another component of the small ribosomal subunit or that it recognizes structural features of the multiprotein/rRNA particle. CRASS plays a role in the biogenesis and/or stability of the chloroplast ribosome that becomes critical under certain stressful conditions when ribosomal activity is compromised.
Collapse
Affiliation(s)
- Pablo Pulido
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Nicola Zagari
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, I-38010 San Michele all'Adige, Italy
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Piotr Gawronski
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Annemarie Matthes
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lars B Scharff
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
34
|
Paieri F, Tadini L, Manavski N, Kleine T, Ferrari R, Morandini P, Pesaresi P, Meurer J, Leister D. The DEAD-box RNA Helicase RH50 Is a 23S-4.5S rRNA Maturation Factor that Functionally Overlaps with the Plastid Signaling Factor GUN1. PLANT PHYSIOLOGY 2018; 176:634-648. [PMID: 29138350 PMCID: PMC5761802 DOI: 10.1104/pp.17.01545] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/11/2017] [Indexed: 05/04/2023]
Abstract
DEAD-box RNA helicases (DBRHs) modulate RNA secondary structure, allowing RNA molecules to adopt the conformations required for interaction with their target proteins. RH50 is a chloroplast-located DBRH that colocalizes and is coexpressed with GUN1, a central factor in chloroplast-to-nucleus signaling. When combined with mutations that impair plastid gene expression (prors1-1, prpl11-1, prps1-1, prps21-1, prps17-1, and prpl24-1), rh50 and gun1 mutations evoke similar patterns of epistatic effects. These observations, together with the synergistic growth phenotype of the double mutant rh50-1 gun1-102, suggest that RH50 and GUN1 are functionally related and that this function is associated with plastid gene expression, in particular ribosome functioning. However, rh50-1 itself is not a gun mutant, although-like gun1-102-the rh50-1 mutation suppresses the down-regulation of nuclear genes for photosynthesis induced by the prors1-1 mutation. The RH50 protein comigrates with ribosomal particles, and is required for efficient translation of plastid proteins. RH50 binds to transcripts of the 23S-4.5S intergenic region and, in its absence, levels of the corresponding rRNA processing intermediate are strongly increased, implying that RH50 is required for the maturation of the 23S and 4.5S rRNAs. This inference is supported by the finding that loss of RH50 renders chloroplast protein synthesis sensitive to erythromycin and exposure to cold. Based on these results, we conclude that RH50 is a plastid rRNA maturation factor.
Collapse
Affiliation(s)
- Francesca Paieri
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, I-38010, San Michele all'Adige, Italy
| | - Luca Tadini
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | | | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Roberto Ferrari
- Department of Biosciences, I-20133 Milano, Università degli studi di Milano, Italy
| | - Piero Morandini
- Department of Biosciences, I-20133 Milano, Università degli studi di Milano, Italy
| | - Paolo Pesaresi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, I-20133 Milano, Università degli studi di Milano, Italy
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
35
|
Liu X, Zhou Y, Xiao J, Bao F. Effects of Chilling on the Structure, Function and Development of Chloroplasts. FRONTIERS IN PLANT SCIENCE 2018; 9:1715. [PMID: 30524465 PMCID: PMC6262076 DOI: 10.3389/fpls.2018.01715] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/05/2018] [Indexed: 05/18/2023]
Abstract
Chloroplasts are the organelles that perform energy transformation in plants. The normal physiological functions of chloroplasts are essential for plant growth and development. Chilling is a common environmental stress in nature that can directly affect the physiological functions of chloroplasts. First, chilling can change the lipid membrane state and enzyme activities in chloroplasts. Then, the efficiency of photosynthesis declines, and excess reactive oxygen species (ROS) are produced. On one hand, excess ROS can damage the chloroplast lipid membrane; on the other hand, ROS also represent a stress signal that can alter gene expression in both the chloroplast and nucleus to help regenerate damaged proteins, regulate lipid homeostasis, and promote plant adaptation to low temperatures. Furthermore, plants assume abnormal morphology, including chlorosis and growth retardation, with some even exhibiting severe necrosis under chilling stress. Here, we review the response of chloroplasts to low temperatures and focus on photosynthesis, redox regulation, lipid homeostasis, and chloroplast development to elucidate the processes involved in plant responses and adaptation to chilling stress.
Collapse
Affiliation(s)
- Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yunlin Zhou
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fei Bao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- *Correspondence: Fei Bao,
| |
Collapse
|
36
|
Gao J, Wallis JG, Jewell JB, Browse J. Trimethylguanosine Synthase1 (TGS1) Is Essential for Chilling Tolerance. PLANT PHYSIOLOGY 2017; 174:1713-1727. [PMID: 28495891 PMCID: PMC5490903 DOI: 10.1104/pp.17.00340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/09/2017] [Indexed: 05/20/2023]
Abstract
Chilling stress is a major factor limiting plant development and crop productivity. Because the plant response to chilling is so complex, we are far from understanding the genes important in the response to chilling. To identify new genes important in chilling tolerance, we conducted a novel mutant screen, combining a confirmed SALK T-DNA insertion collection with traditional forward genetics. We screened a pool of more than 3700 confirmed homozygous SALK T-DNA insertion lines for visible defects under prolonged growth at 5°C. Of the chilling-sensitive mutants we observed, mutations at one locus were characterized in detail. This gene, At1g45231, encodes an Arabidopsis (Arabidopsis thaliana) trimethylguanosine synthase (TGS1), previously uncharacterized in the plant kingdom. We confirmed that Arabidopsis TGS1 is a functional ortholog of other trimethylguanosine synthases based both on its in vitro methyltransferase activity and on its ability to rescue the cold-growth inhibition of a Saccharomyces cerevisiae tgs1Δ mutant in vivo. While tgs1 mutant plants grew normally at 22°C, their vegetative and reproductive growth was severely compromised under chilling conditions. When we transgenically expressed TGS1 in the mutant plants, the chilling-sensitive phenotype was relieved, demonstrating that TGS1 is required for chilling tolerance.
Collapse
Affiliation(s)
- Jinpeng Gao
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| | - James G Wallis
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| | - Jeremy B Jewell
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| | - John Browse
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
37
|
Shi X, Castandet B, Germain A, Hanson MR, Bentolila S. ORRM5, an RNA recognition motif-containing protein, has a unique effect on mitochondrial RNA editing. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2833-2847. [PMID: 28549172 PMCID: PMC5853588 DOI: 10.1093/jxb/erx139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/30/2017] [Indexed: 05/02/2023]
Abstract
Plants have an RNA editing mechanism that prevents deleterious organelle mutations from resulting in impaired proteins. A typical flowering plant modifies about 40 cytidines in chloroplast transcripts and many hundreds of cytidines in mitochondrial transcripts. The plant editosome, the molecular machinery responsible for this process, contains members of several protein families, including the organelle RNA recognition motif (ORRM)-containing family. ORRM1 and ORRM6 are chloroplast editing factors, while ORRM2, ORRM3, and ORRM4 are mitochondrial editing factors. Here we report the identification of organelle RRM protein 5 (ORRM5) as a mitochondrial editing factor with a unique mode of action. Unlike other ORRM editing factors, the absence of ORRM5 in orrm5 mutant plants results in an increase of the editing extent in 14% of the mitochondrial sites surveyed. The orrm5 mutant also exhibits a reduced splicing efficiency of the first nad5 intron and slower growth and delayed flowering time. ORRM5 contains an RNA recognition motif (RRM) and a glycine-rich domain at the C terminus. The RRM provides the editing activity of ORRM5 and is able to complement the splicing but not the morphological defects.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | - Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Correspondence:
| |
Collapse
|
38
|
Hackett JB, Shi X, Kobylarz AT, Lucas MK, Wessendorf RL, Hines KM, Bentolila S, Hanson MR, Lu Y. An Organelle RNA Recognition Motif Protein Is Required for Photosystem II Subunit psbF Transcript Editing. PLANT PHYSIOLOGY 2017; 173:2278-2293. [PMID: 28213559 PMCID: PMC5373051 DOI: 10.1104/pp.16.01623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/13/2017] [Indexed: 05/02/2023]
Abstract
Loss-of-function mutations in ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 (ORRM6) result in the near absence of RNA editing of psbF-C77 and the reduction in accD-C794 editing in Arabidopsis (Arabidopsis thaliana). The orrm6 mutants have decreased levels of photosystem II (PSII) proteins, especially PsbF, lower PSII activity, pale green pigmentation, smaller leaf and plant sizes, and retarded growth. Stable expression of ORRM6 rescues the orrm6 editing defects and mutant phenotype. Unlike ORRM1, the other known ORRM plastid editing factor, ORRM6, does not contain RNA editing interacting protein/multiple organellar RNA editing factor (RIP/MORF) boxes, which are required for ORRM1 to interact with site-specific pentatricopeptide repeat protein editing factors. ORRM6 interacts with RIP1/MORF8, RIP2/MORF2, and RIP9/MORF9, known components of RNA editosomes. While some plastid RRM proteins are involved in other forms of RNA processing and translation, the primary function of ORRM6 is evidently to mediate psbF-C77 editing, like the essential site-specific pentatricopeptide repeat protein LOW PSII ACCUMULATION66. Stable expression in the orrm6 mutants of a nucleus-encoded, plastid-targeted PsbF protein from a psbF gene carrying a T at nucleotide 77 significantly increases leaf and plant sizes, chlorophyll content, and PSII activity. These transformants demonstrate that plastid RNA editing can be bypassed through the expression of nucleus-encoded, edited forms of plastid genes.
Collapse
Affiliation(s)
- Justin B Hackett
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Xiaowen Shi
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Amy T Kobylarz
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Meriah K Lucas
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Ryan L Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Kevin M Hines
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Stephane Bentolila
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Maureen R Hanson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| |
Collapse
|
39
|
Yang Y, Ye Q, Li K, Li Z, Bo X, Li Z, Xu Y, Wang S, Wang P, Chen H, Wang J. Genomics and Comparative Genomic Analyses Provide Insight into the Taxonomy and Pathogenic Potential of Novel Emmonsia Pathogens. Front Cell Infect Microbiol 2017; 7:105. [PMID: 28409126 PMCID: PMC5374152 DOI: 10.3389/fcimb.2017.00105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
Over the last 50 years, newly described species of Emmonsia-like fungi have been implicated globally as sources of systemic human mycosis (emmonsiosis). Their ability to convert into yeast-like cells capable of replication and extra-pulmonary dissemination during the course of infection differentiates them from classical Emmonsia species. Immunocompromised patients are at highest risk of emmonsiosis and exhibit high mortality rates. In order to investigate the molecular basis for pathogenicity of the newly described Emmonsia species, genomic sequencing and comparative genomic analyses of Emmonsia sp. 5z489, which was isolated from a non-deliberately immunosuppressed diabetic patient in China and represents a novel seventh isolate of Emmonsia-like fungi, was performed. The genome size of 5z489 was 35.5 Mbp in length, which is ~5 Mbp larger than other Emmonsia strains. Further, 9,188 protein genes were predicted in the 5z489 genome and 16% of the assembly was identified as repetitive elements, which is the largest abundance in Emmonsia species. Phylogenetic analyses based on whole genome data classified 5z489 and CAC-2015a, another novel isolate, as members of the genus Emmonsia. Our analyses showed that divergences among Emmonsia occurred much earlier than other genera within the family Ajellomycetaceae, suggesting relatively distant evolutionary relationships among the genus. Through comparisons of Emmonsia species, we discovered significant pathogenicity characteristics within the genus as well as putative virulence factors that may play a role in the infection and pathogenicity of the novel Emmonsia strains. Moreover, our analyses revealed a novel distribution mode of DNA methylation patterns across the genome of 5z489, with >50% of methylated bases located in intergenic regions. These methylation patterns differ considerably from other reported fungi, where most methylation occurs in repetitive loci. It is unclear if this difference is related to physiological adaptations of new Emmonsia, but this question warrants further investigation. Overall, our analyses provide a framework from which to further study the evolutionary dynamics of Emmonsia strains and identity the underlying molecular mechanisms that determine the infectious and pathogenic potency of these fungal pathogens, and also provide insight into potential targets for therapeutic intervention of emmonsiosis and further research.
Collapse
Affiliation(s)
- Ying Yang
- Academy of Military Medical SciencesBeijing, China.,Department of Biotechnology, Beijing Institute of Radiation MedicineBeijing, China.,Department of Biological Product Control, National Institutes for Food and Drug ControlBeijing, China
| | - Qiang Ye
- Department of Biological Product Control, National Institutes for Food and Drug ControlBeijing, China.,Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech ProductsBeijing, China
| | - Kang Li
- Department of Biological Product Control, National Institutes for Food and Drug ControlBeijing, China.,Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech ProductsBeijing, China
| | - Zongwei Li
- Center for Hospital Infection Control, Chinese PLA Institute for Disease Control and PreventionBeijing, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation MedicineBeijing, China
| | - Zhen Li
- Department of Biotechnology, Beijing Institute of Radiation MedicineBeijing, China
| | - Yingchun Xu
- Division of Medical Microbiology, Peking Union Medical College HospitalBeijing, China
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation MedicineBeijing, China
| | - Peng Wang
- Division of Medical Microbiology, Peking Union Medical College HospitalBeijing, China
| | - Huipeng Chen
- Academy of Military Medical SciencesBeijing, China
| | - Junzhi Wang
- Department of Biological Product Control, National Institutes for Food and Drug ControlBeijing, China
| |
Collapse
|
40
|
Shi X, Hanson MR, Bentolila S. Functional diversity of Arabidopsis organelle-localized RNA-recognition motif-containing proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28371504 DOI: 10.1002/wrna.1420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022]
Abstract
RNA-Binding Proteins (RBPs) play key roles in plant gene expression and regulation. RBPs contain a variety of RNA-binding motifs, the most abundant and most widespread one in eukaryotes is the RNA recognition motif (RRM). Many nucleus-encoded RRM-containing proteins are transported into chloroplasts and/or mitochondria, and participate in various RNA-related processes in plant organelles. Loss of these proteins can have a detrimental effect on some critical processes such as photosynthesis and respiration, sometimes leading to lethality. Progress has been made in the last few years in understanding the function of particular organelle-localized RRM-containing proteins. Members of the Organelle RRM protein (ORRM, some also characterized as Glycine-Rich RNA-Binding Proteins) family and the Chloroplast RiboNucleoProtein (cpRNP) family, are involved in various types of RNA metabolism, including RNA editing, RNA stability and RNA processing. Organelle-localized RRM proteins also function in plant development and stress responses, in some conditions acting as protein or RNA chaperones. There has been recent progress in characterizing the function of organelle-localized RRM proteins in RNA-related processes and how RRM proteins contribute to the normal growth and development of plants. WIREs RNA 2017, 8:e1420. doi: 10.1002/wrna.1420 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Stephane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
Leister D, Wang L, Kleine T. Organellar Gene Expression and Acclimation of Plants to Environmental Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:387. [PMID: 28377785 PMCID: PMC5359298 DOI: 10.3389/fpls.2017.00387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/07/2017] [Indexed: 05/03/2023]
Abstract
Organelles produce ATP and a variety of vital metabolites, and are indispensable for plant development. While most of their original gene complements have been transferred to the nucleus in the course of evolution, they retain their own genomes and gene-expression machineries. Hence, organellar function requires tight coordination between organellar gene expression (OGE) and nuclear gene expression (NGE). OGE requires various nucleus-encoded proteins that regulate transcription, splicing, trimming, editing, and translation of organellar RNAs, which necessitates nucleus-to-organelle (anterograde) communication. Conversely, changes in OGE trigger retrograde signaling that modulates NGE in accordance with the current status of the organelle. Changes in OGE occur naturally in response to developmental and environmental changes, and can be artificially induced by inhibitors such as lincomycin or mutations that perturb OGE. Focusing on the model plant Arabidopsis thaliana and its plastids, we review here recent findings which suggest that perturbations of OGE homeostasis regularly result in the activation of acclimation and tolerance responses, presumably via retrograde signaling.
Collapse
|