1
|
Li Q, Liu Q, Li S, Zuo X, Zhou H, Gao Z, Xia B. Golgi-derived extracellular vesicle production induced by SARS-CoV-2 envelope protein. Apoptosis 2024:10.1007/s10495-024-02035-3. [PMID: 39580578 DOI: 10.1007/s10495-024-02035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/25/2024]
Abstract
Extracellular vesicles facilitate cell-to-cell communication, and some enveloped viruses utilize these vesicles as carriers to mediate viral transmission. SARS-CoV-2 envelope protein (2-E) forms a cation channel and overexpression of 2-E led to the generation of a distinct type of large extracellular vesicles (2-E-EVs). Although 2-E-EVs have been demonstrated to facilitate viral transmission in a receptor-independent way, the characteristics and biogenesis mechanism remain enigmatic. Via lipidomics and proteomic analysis, we found 2-E-EVs are distinct from endosome-derived exosomes. 2-E-EVs are notably enriched in Golgi apparatus components, aligning with the observed fragmentation in Golgi morphology. Through live cell imaging, we established a connection between 2-E-EVs formation, Golgi fragmentation, and channel activity, emphasizing the role of 2-E-EVs as ion channel-induced extracellular vesicles. Our work highlights 2-E-EVs as distinctive Golgi-derived vesicles, contributing to a deeper understanding of 2-E channel-mediated virus-host dynamics, with implications for therapeutic strategies and drug delivery.
Collapse
Affiliation(s)
- Qiguang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Shuangqu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xiaoli Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, China.
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Sede AR, Wengier DL, Borassi C, Ricardi M, Somoza SC, Aguiló R, Estevez JM, Muschietti JP. Arabidopsis pollen prolyl-hydroxylases P4H4/6 are relevant for correct hydroxylation and secretion of LRX11 in pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4415-4427. [PMID: 38877792 DOI: 10.1093/jxb/erae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/13/2024] [Indexed: 06/16/2024]
Abstract
Major constituents of the plant cell walls are structural proteins that belong to the hydroxyproline-rich glycoprotein (HRGP) family. Leucine-rich repeat extensin (LRX) proteins contain a leucine-rich domain and a C-terminal domain with repetitive Ser-Pro3-5 motifs that are potentially to be O-glycosylated. It has been demonstrated that pollen-specific LRX8-LRX11 from Arabidopsis thaliana are necessary to maintain the integrity of the pollen tube cell wall during polarized growth. In HRGPs, including classical extensins (EXTs), and probably in LRXs, proline residues are converted to hydroxyproline by prolyl-4-hydroxylases (P4Hs), thus defining novel O-glycosylation sites. In this context, we aimed to determine whether hydroxylation and subsequent O-glycosylation of Arabidopsis pollen LRXs are necessary for their proper function and cell wall localization in pollen tubes. We hypothesized that pollen-expressed P4H4 and P4H6 catalyze the hydroxylation of the proline units present in Ser-Pro3-5 motifs of LRX8-LRX11. Here, we show that the p4h4-1 p4h6-1 double mutant exhibits a reduction in pollen germination rates and a slight reduction in pollen tube length. Pollen germination is also inhibited by P4H inhibitors, suggesting that prolyl hydroxylation is required for pollen tube development. Plants expressing pLRX11::LRX11-GFP in the p4h4-1 p4h6-1 background show partial re-localization of LRX11-green fluorescent protein (GFP) from the pollen tube tip apoplast to the cytoplasm. Finally, immunoprecipitation-tandem mass spectrometry analysis revealed a decrease in oxidized prolines (hydroxyprolines) in LRX11-GFP in the p4h4-1 p4h6-1 background compared with lrx11 plants expressing pLRX11::LRX11-GFP. Taken together, these results suggest that P4H4 and P4H6 are required for pollen germination and for proper hydroxylation of LRX11 necessary for its localization in the cell wall of pollen tubes.
Collapse
Affiliation(s)
- Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | - Martiniano Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Sofía C Somoza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| | - Rafael Aguiló
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Cs. de la Vida, Universidad Andrés Bello, ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile and ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
3
|
Liang X, Zhu SH, Feng QN, Li S, Zhang Y. Arabidopsis Sar1b is critical for pollen tube growth. PLANT MOLECULAR BIOLOGY 2024; 114:64. [PMID: 38809410 DOI: 10.1007/s11103-024-01466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Pollen tube growth is an essential step leading to reproductive success in flowering plants, in which vesicular trafficking plays a key role. Vesicular trafficking from endoplasmic reticulum to the Golgi apparatus is mediated by the coat protein complex II (COPII). A key component of COPII is small GTPase Sar1. Five Sar1 isoforms are encoded in the Arabidopsis genome and they show distinct while redundant roles in various cellular and developmental processes, especially in reproduction. Arabidopsis Sar1b is essential for sporophytic control of pollen development while Sar1b and Sar1c are critical for gametophytic control of pollen development. Because functional loss of Sar1b and Sar1c resulted in pollen abortion, whether they influence pollen tube growth was unclear. Here we demonstrate that Sar1b mediates pollen tube growth, in addition to its role in pollen development. Although functional loss of Sar1b does not affect pollen germination, it causes a significant reduction in male transmission and of pollen tube penetration of style. We further show that membrane dynamics at the apex of pollen tubes are compromised by Sar1b loss-of-function. Results presented provide further support of functional complexity of the Sar1 isoforms.
Collapse
Affiliation(s)
- Xin Liang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shi-Hao Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Ijabi J, Ijabi R, Roozehdar P, Kaminsky ZA, Moradi-Sardareh H, Tehranian N, Ahmed N. Tumor Targeting via siRNA-COG3 to Suppress Tumor Progression in Mice and Inhibit Cancer Metastasis and Angiogenesis in Ovarian Cancer Cell Lines. Microrna 2024; 13:140-154. [PMID: 38243930 DOI: 10.2174/0122115366275856240101083442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND The COG complex is implicated in the tethering of retrograde intra-Golgi vesicles, which involves vesicular tethering and SNAREs. SNARE complexes mediate the invasion and metastasis of cancer cells through MMPs which activate growth factors for ECM fragments by binding to integrin receptors. Increasing MMPs is in line with YKL40 since YKL40 is linked to promoting angiogenesis through VEGF and can increase ovarian cancer (OC) resistance to chemotropic and cell migration. OBJECTIVE The aim of this study is an assessment of siRNA-COG3 on proliferation, invasion, and apoptosis of OC cells. In addition, siRNA-COG3 may prevent the growth of OC cancer in mice with tumors. METHODS Primary OC cell lines will be treated with siRNA-COG3 to assay YKL40 and identified angiogenesis by Tube-like structure formation in HOMECs. The Golgi morphology was analyzed using Immunofluorescence microscopy. Furthermore, the effects of siRNA-COG3 on the proliferation and apoptosis of cells were evaluated using MTT and TUNEL assays. Clones of the HOSEpiC OC cell line were subcutaneously implanted in FVB/N mice. Mice were treated after two weeks of injection of cells using siRNA-COG3. Tumor development suppression was detected by D-luciferin. RT-PCR and western blotting analyses were applied to determine COG3, MT1- MMP, SNAP23, and YKL40 expression to investigate the effects of COG3 gene knockdown. RESULTS siRNA-COG3 exhibited a substantial effect in suppressing tumor growth in mice. It dramatically reduced OC cell proliferation and triggered apoptosis (all p < 0.01). Inhibition of COG3, YKL-40, and MT1-MPP led to suppression of angiogenesis and reduction of microvessel density through SNAP23 in OC cells. CONCLUSION Overall, by knockdown of the COG3 gene, MT1-MMP and YKL40 were dropped, leading to suppressed angiogenesis along with decreasing migration and proliferation. SiRNACOG3 may be an ideal agent to consider for clinical trial assessment therapy for OC, especially when an antiangiogenic SNAR-pathway targeting drug.
Collapse
Affiliation(s)
- Janat Ijabi
- Department of Hematology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Hematology, Faculty of Medicine and Health Sciences, University Sains Malaysia, Kubang Kerian, 15200 Kota Bharu, Kelantan, Malaysia
| | - Roghayeh Ijabi
- Faculty of Reproductive Health, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Parisa Roozehdar
- Department of Medical Veterinary, Azad University, Garmsar Branch, Garmsar, Iran
| | - Zachary A Kaminsky
- Faculty of Medicine, Department of Cellular and Molecular Medicine, Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Hemen Moradi-Sardareh
- Department of Basic Sciences, Asadabad School of Medical Sciences, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Najmeh Tehranian
- Department of Midwifery & Reproductive Health, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, Iran
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| |
Collapse
|
5
|
Choi HS, Bjornson M, Liang J, Wang J, Ke H, Hur M, De Souza A, Kumar KS, Mortimer JC, Dehesh K. COG-imposed Golgi functional integrity determines the onset of dark-induced senescence. NATURE PLANTS 2023; 9:1890-1901. [PMID: 37884654 DOI: 10.1038/s41477-023-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Plant survival depends on dynamic stress-response pathways in changing environments. To uncover pathway components, we screened an ethyl methanesulfonate-mutagenized transgenic line containing a stress-inducible luciferase construct and isolated a constitutive expression mutant. The mutant is the result of an amino acid substitution in the seventh subunit of the hetero-octameric conserved oligomeric Golgi (COG) complex of Arabidopsis thaliana. Complementation studies verified the Golgi localization of cog7, and stress tests established accelerated dark-induced carbon deprivation/senescence of the mutant compared with wild-type plants. Multiomics and biochemical analyses revealed accelerated induction of protein ubiquitination and autophagy, and a counterintuitive increased protein N-glycosylation in senescencing cog7 relative to wild-type. A revertant screen using the overexpressor (FOX)-hunting system established partial, but notable rescue of cog7 phenotypes by COG5 overexpression, and conversely premature senescence in reduced COG5 expressing lines. These findings identify COG-imposed Golgi functional integrity as a main player in ensuring cellular survival under energy-limiting conditions.
Collapse
Affiliation(s)
- Hee-Seung Choi
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Marta Bjornson
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Jiubo Liang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Jinzheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Amancio De Souza
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | | | - Jenny C Mortimer
- Lawrence Berkeley National Lab, Joint BioEnergy Institute, Emeryville, CA, USA
- School of Agriculture Food and Wine & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Liu F, Yang H, Tang R, Wang W, Shen H, Xu M, Hao T, Hu Y, Zhang Y, Bao Y. OsTKPR1 proteins with a single amino acid substitution fail the synthesis of a specific sporopollenin precursor and cause abnormal exine and pollen development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111792. [PMID: 37454819 DOI: 10.1016/j.plantsci.2023.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Fatty acid derivatives are key components of rice pollen exine. The synthesis of aliphatic sporopollenin precursors are initiated in the plastids of the tapetal cells, followed by multiple-step reactions conducted in the endoplasmic reticulum (ER). However, the relative contribution of different precursors to the precise structure of sporopollenin remains largely elusive, let alone the underlying mechanism. Here, we report that two complete male sterile mutants ostkpr1-3 (Tetraketide α-pyrone reductase 1-3, with OsTKPR1P124S substitution) and ostkpr1-4 (with truncated OsTKPR1stop) are defective in pollen exine, Ubisch body and anther cuticle development where ostkpr1-4 display severer phenotypes. Remarkably, OsTKPR1 could produce reduced hydroxylated tetraketide α-pyrone and reduced tetraketide α-pyrone, whereas OsTKPR1P124S fails to produce the latter. Pairwise interaction assays show that mutated OsTKPR1P124S is able to integrate into a recently characterized metabolon, thus its altered catalytic activity is not due to dis-integrity of the metabolon. In short, we find that reduced tetraketide α-pyrone is a key sporopollenin precursor required for normal exine formation, and the conserved 124th proline of OsTKPR1 is essential for the reduction activity. Therefore, this study provided new insights into the sporopollenin precursor constitution critical for exine formation.
Collapse
Affiliation(s)
- Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huiting Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rong Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wang Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haodong Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengxue Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tiancheng Hao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanyuan Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
7
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
8
|
Zouhar J, Cao W, Shen J, Rojo E. Retrograde transport in plants: Circular economy in the endomembrane system. Eur J Cell Biol 2023; 102:151309. [PMID: 36933283 DOI: 10.1016/j.ejcb.2023.151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The study of endomembrane trafficking is crucial for understanding how cells and whole organisms function. Moreover, there is a special interest in investigating endomembrane trafficking in plants, given its role in transport and accumulation of seed storage proteins and in secretion of cell wall material, arguably the two most essential commodities obtained from crops. The mechanisms of anterograde transport in the biosynthetic and endocytic pathways of plants have been thoroughly discussed in recent reviews, but, comparatively, retrograde trafficking pathways have received less attention. Retrograde trafficking is essential to recover membranes, retrieve proteins that have escaped from their intended localization, maintain homeostasis in maturing compartments, and recycle trafficking machinery for its reuse in anterograde transport reactions. Here, we review the current understanding on retrograde trafficking pathways in the endomembrane system of plants, discussing their integration with anterograde transport routes, describing conserved and plant-specific retrieval mechanisms at play, highlighting contentious issues and identifying open questions for future research.
Collapse
Affiliation(s)
- Jan Zouhar
- Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
9
|
Rui Q, Tan X, Liu F, Bao Y. An Update on the Key Factors Required for Plant Golgi Structure Maintenance. FRONTIERS IN PLANT SCIENCE 2022; 13:933283. [PMID: 35837464 PMCID: PMC9274083 DOI: 10.3389/fpls.2022.933283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plant Golgi apparatus serves as the central station of the secretory pathway and is the site where protein modification and cell wall matrix polysaccharides synthesis occur. The polarized and stacked cisternal structure is a prerequisite for Golgi function. Our understanding of Golgi structure maintenance and trafficking are largely obtained from mammals and yeast, yet, plant Golgi has many different aspects. In this review, we summarize the key players in Golgi maintenance demonstrated by genetic studies in plants, which function in ER-Golgi, intra-Golgi and post-Golgi transport pathways. Among these, we emphasize on players in intra-Golgi trafficking.
Collapse
|
10
|
Huang Y, Liu J, He J, Hu Z, Tan F, Zhu X, Yuan F, Jiang Z. UBIAD1 alleviates ferroptotic neuronal death by enhancing antioxidative capacity by cooperatively restoring impaired mitochondria and Golgi apparatus upon cerebral ischemic/reperfusion insult. Cell Biosci 2022; 12:42. [PMID: 35379328 PMCID: PMC8981649 DOI: 10.1186/s13578-022-00776-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Background Neuronal death due to over-oxidative stress responses defines the pathology of cerebral ischemic/reperfusion (I/R) insult. Ferroptosis is a form of oxidative cell death that is induced by disruption of the balance between antioxidants and pro-oxidants in cells. However, the potential mechanisms responsible for cerebral I/R-induced ferroptotic neuronal death have not been conclusively determined. UBIAD1, is a newly identified antioxidant enzyme that catalyzes coenzyme Q10 (CoQ10) and vitamin K2 biosynthesis in the Golgi apparatus membrane and mitochondria, respectively. Even though UBIAD1 is a significant mediator of apoptosis in cerebral I/R challenge, its roles in ferroptotic neuronal death remain undefined. Therefore, we investigated whether ferroptotic neuronal death is involved in cerebral I/R injury. Further, we evaluated the functions and possible mechanisms of UBIAD1 in cerebral I/R-induced ferroptotic neuronal death, with a major focus on mitochondrial and Golgi apparatus dysfunctions. Results Ferroptosis occurred in cerebral I/R. Ferroptotic neuronal death promoted cerebral I/R-induced brain tissue injury and neuronal impairment. UBIAD1 was expressed in cerebral tissues and was localized in neurons, astrocytes, and microglia. Under cerebral I/R conditions overexpressed UBIAD1 significantly suppressed lipid peroxidation and ferroptosis. Moreover, upregulated UBIAD1 protected against brain tissue damage and neuronal death by alleviating I/R-mediated lipid peroxidation and ferroptosis. However, UBIAD1 knockdown reversed these changes. Enhanced UBIAD1-mediated ferroptosis elevated the antioxidative capacity by rescuing mitochondrial and Golgi apparatus dysfunction in cerebral I/R-mediated neuronal injury. They improved the morphology and biofunctions of the mitochondria and Golgi apparatus, thereby elevating the levels of SOD, T-AOC and production of CoQ10, endothelial nitric oxide synthase (eNOS)-regulated nitric oxide (NO) generation as well as suppressed MDA generation. Conclusions The neuroprotective agent, UBIAD1, modulates I/R-mediated ferroptosis by restoring mitochondrial and Golgi apparatus dysfunction in damaged brain tissues and neurons, thereby enhancing antioxidative capacities. Moreover, the rescue of impaired mitochondrial and Golgi apparatus as a possible mechanism of regulating ferroptotic neuronal death is a potential treatment strategy for ischemic stroke. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00776-9.
Collapse
Affiliation(s)
- Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan, 410008, People's Republic of China.,Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, People's Republic of China.,Hunan Provincial Key Laboratory of Neurorestoration, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xuelin Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
11
|
Luo C, Shi Y, Xiang Y. SNAREs Regulate Vesicle Trafficking During Root Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:853251. [PMID: 35360325 PMCID: PMC8964185 DOI: 10.3389/fpls.2022.853251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 05/13/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins assemble to drive the final membrane fusion step of membrane trafficking. Thus, SNAREs are essential for membrane fusion and vesicular trafficking, which are fundamental mechanisms for maintaining cellular homeostasis. In plants, SNAREs have been demonstrated to be located in different subcellular compartments and involved in a variety of fundamental processes, such as cytokinesis, cytoskeleton organization, symbiosis, and biotic and abiotic stress responses. In addition, SNAREs can also contribute to the normal growth and development of Arabidopsis. Here, we review recent progress in understanding the biological functions and signaling network of SNAREs in vesicle trafficking and the regulation of root growth and development in Arabidopsis.
Collapse
|
12
|
Robinson R, Sollapura V, Couroux P, Sprott D, Ravensdale M, Routly E, Xing T, Robert LS. The Brassica mature pollen and stigma proteomes: preparing to meet. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1546-1568. [PMID: 33650121 DOI: 10.1111/tpj.15219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Successful pollination in Brassica brings together the mature pollen grain and stigma papilla, initiating an intricate series of molecular processes meant to eventually enable sperm cell delivery for fertilization and reproduction. At maturity, the pollen and stigma cells have acquired proteomes, comprising the primary molecular effectors required upon their meeting. Knowledge of the roles and global composition of these proteomes in Brassica species is largely lacking. To address this gap, gel-free shotgun proteomics was performed on the mature pollen and stigma of Brassica carinata, a representative of the Brassica family and its many crop species (e.g. Brassica napus, Brassica oleracea and Brassica rapa) that holds considerable potential as a bio-industrial crop. A total of 5608 and 7703 B. carinata mature pollen and stigma proteins were identified, respectively. The pollen and stigma proteomes were found to reflect not only their many common functional and developmental objectives, but also the important differences underlying their cellular specialization. Isobaric tag for relative and absolute quantification (iTRAQ) was exploited in the first analysis of a developing Brassicaceae stigma, and revealed 251 B. carinata proteins that were differentially abundant during stigma maturation, providing insight into proteins involved in the initial phases of pollination. Corresponding pollen and stigma transcriptomes were also generated, highlighting functional divergences between the proteome and transcriptome during different stages of pollen-stigma interaction. This study illustrates the investigative potential of combining the most comprehensive Brassicaceae pollen and stigma proteomes to date with iTRAQ and transcriptome data to provide a unique global perspective of pollen and stigma development and interaction.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Vishwanath Sollapura
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Dave Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Michael Ravensdale
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Tim Xing
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
13
|
Dell’Aglio E. A COG in the machine: how good Golgi makes good pollen. PLANT PHYSIOLOGY 2021; 186:201-203. [PMID: 33674832 PMCID: PMC8154076 DOI: 10.1093/plphys/kiab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Elisa Dell’Aglio
- Institut National des Sciences Appliquées de Lyon, 69100 Villeurbanne, France
| |
Collapse
|
14
|
Rui Q, Tan X, Liu F, Li Y, Liu X, Li B, Wang J, Yang H, Qiao L, Li T, Fang S, Gao R, Wang W, Bednarek SY, Bao Y. Syntaxin of plants31 (SYP31) and SYP32 is essential for Golgi morphology maintenance and pollen development. PLANT PHYSIOLOGY 2021; 186:330-343. [PMID: 33576796 PMCID: PMC8154079 DOI: 10.1093/plphys/kiab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/19/2021] [Indexed: 05/27/2023]
Abstract
Pollen development is a key process for the sexual reproduction of angiosperms. The Golgi plays a critical role in pollen development via the synthesis and transport of cell wall materials. However, little is known about the molecular mechanisms underlying the maintenance of Golgi integrity in plants. In Arabidopsis thaliana, syntaxin of plants (SYP) 3 family proteins SYP31 and SYP32 are the only two Golgi-localized Qa-soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) with unknown endogenous functions. Here, we demonstrate the roles of SYP31 and SYP32 in modulating Golgi morphology and pollen development. Two independent lines of syp31/+ syp32/+ double mutants were male gametophytic lethal; the zero transmission rate of syp31 syp32 mutations was restored to largely normal levels by pSYP32:SYP32 but not pSYP32:SYP31 transgenes, indicating their functional differences in pollen development. The initial arrest of syp31 syp32 pollen occurred during the transition from the microspore to the bicellular stage, where cell plate formation in pollen mitosis I (PMI) and deposition of intine were abnormal. In syp31 syp32 pollen, the number and length of Golgi cisterna were significantly reduced, accompanied by many surrounding vesicles, which could be largely attributed to defects in anterograde and retrograde trafficking routes. SYP31 and SYP32 directly interacted with COG3, a subunit of the conserved oligomeric Golgi (COG) complex and were responsible for its Golgi localization, providing an underlying mechanism for SYP31/32 function in intra-Golgi trafficking. We propose that SYP31 and SYP32 play partially redundant roles in pollen development by modulating protein trafficking and Golgi structure.
Collapse
Affiliation(s)
- Qingchen Rui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaoyun Tan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Feng Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yanbin Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xin Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Bingxuan Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Junxia Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Huiting Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lixin Qiao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tingting Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shuo Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Rongrong Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiqun Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
15
|
Zhang B, Zhang C, Liu C, Fu A, Luan S. A Golgi-localized manganese transporter functions in pollen tube tip growth to control male fertility in Arabidopsis. PLANT COMMUNICATIONS 2021; 2:100178. [PMID: 34027392 PMCID: PMC8132125 DOI: 10.1016/j.xplc.2021.100178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 05/12/2023]
Abstract
Manganese (Mn) serves as an essential cofactor for many enzymes in various compartments of a plant cell. Allocation of Mn among various organelles thus plays a central role in Mn homeostasis to support metabolic processes. We report the identification of a Golgi-localized Mn transporter (named PML3) that is essential for rapid cell elongation in young tissues such as emerging leaves and the pollen tube. In particular, the pollen tube defect in the pml3 loss-of-function mutant caused severe reduction in seed yield, a critical agronomic trait. Further analysis suggested that a loss of pectin deposition in the pollen tube might cause the pollen tube to burst and slow its elongation, leading to decreased male fertility. As the Golgi apparatus serves as the major hub for biosynthesis and modification of cell-wall components, PML3 may function in Mn homeostasis of this organelle, thereby controlling metabolic and/or trafficking processes required for pectin deposition in rapidly elongating cells.
Collapse
Affiliation(s)
- Bin Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chi Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Congge Liu
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
- Corresponding author
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
16
|
Rui Q, Wang J, Li Y, Tan X, Bao Y. Arabidopsis COG6 is essential for pollen tube growth and Golgi structure maintenance. Biochem Biophys Res Commun 2020; 528:447-452. [PMID: 32499114 DOI: 10.1016/j.bbrc.2020.05.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/15/2022]
Abstract
The conserved oligomeric Golgi (COG) complex, which consists of eight subunits named COG1-COG8, is highly conserved with homologous subunits present in most eukaryotic species. In yeast and mammalian, the COG complex has been implicated in the tethering of retrograde intra-Golgi vesicles. Although homologs of COG subunits have been identified in Arabidopsis, the functions of the complex and its subunits remain to be fully elucidated. In this study, we have utilized genetic and cytologic approaches to characterize the role of the COG6 subunit. We showed that a mutation in COG6 caused male transmission defect due to aberrant pollen tube growth. At the subcellular level, Golgi bodies exhibited altered morphology in cog6 pollen and cell wall components were incorrectly deposited in pollen tubes. COG6 fused to green fluorescent protein (GFP), which complemented the aberrant growth of cog6 pollen tubes, was localized to the Golgi apparatus. We propose that COG6, as a subunit of the COG complex, modulates Golgi morphology and vesicle trafficking homeostasis during pollen tube growth.
Collapse
Affiliation(s)
- Qingchen Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Junxia Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanbin Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaoyun Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
17
|
Lawaju BR, Niraula P, Lawrence GW, Lawrence KS, Klink VP. The Glycine max Conserved Oligomeric Golgi (COG) Complex Functions During a Defense Response to Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2020; 11:564495. [PMID: 33262774 PMCID: PMC7686354 DOI: 10.3389/fpls.2020.564495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The conserved oligomeric Golgi (COG) complex, functioning in retrograde trafficking, is a universal structure present among eukaryotes that maintains the correct Golgi structure and function. The COG complex is composed of eight subunits coalescing into two sub-complexes. COGs1-4 compose Sub-complex A. COGs5-8 compose Sub-complex B. The observation that COG interacts with the syntaxins, suppressors of the erd2-deletion 5 (Sed5p), is noteworthy because Sed5p also interacts with Sec17p [alpha soluble NSF attachment protein (α-SNAP)]. The α-SNAP gene is located within the major Heterodera glycines [soybean cyst nematode (SCN)] resistance locus (rhg1) and functions in resistance. The study presented here provides a functional analysis of the Glycine max COG complex. The analysis has identified two paralogs of each COG gene. Functional transgenic studies demonstrate at least one paralog of each COG gene family functions in G. max during H. glycines resistance. Furthermore, treatment of G. max with the bacterial effector harpin, known to function in effector triggered immunity (ETI), leads to the induced transcription of at least one member of each COG gene family that has a role in H. glycines resistance. In some instances, altered COG gene expression changes the relative transcript abundance of syntaxin 31. These results indicate that the G. max COG complex functions through processes involving ETI leading to H. glycines resistance.
Collapse
Affiliation(s)
- Bisho Ram Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Vincent P. Klink
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
- *Correspondence: Vincent P. Klink, ;
| |
Collapse
|
18
|
Li B, Li Y, Liu F, Tan X, Rui Q, Tong Y, Qiao L, Gao R, Li G, Shi R, Li Y, Bao Y. Overexpressed Tomosyn Binds Syntaxins and Blocks Secretion during Pollen Development. PLANT PHYSIOLOGY 2019; 181:1114-1126. [PMID: 31530628 PMCID: PMC6836850 DOI: 10.1104/pp.19.00965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex formation is necessary for intracellular membrane fusion and thus has a key role in processes such as secretion. However, little is known about the regulatory factors that bind to Qa-SNAREs, which are also known as syntaxins (SYPs) in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) Tomosyn protein (AtTMS) and demonstrated that it is a conserved regulator of SYPs in plants. AtTMS binds strongly via its R-SNARE motif-containing C terminus to the Qa domain of PM-resident, pollen-expressed SYP1s (SYP111, SYP124, SYP125, SYP131, and SYP132), which were narrowed down from 12 SYPs. AtTMS is highly expressed in pollen from the bicellular stage onwards, and overexpression of AtTMS under the control of the UBIQUITIN10, MSP1, or LAT52 promoter all resulted in defective pollen after the microspore stage in which secretion was inhibited, leading to the failure of intine deposition and cell plate formation during pollen mitosis I. In tobacco (Nicotiana benthamiana) leaf epidermal cells, overexpression of AtTMS inhibited the secretion of secreted GFP. The defects were rescued by mCherry-tagged SYP124, SYP125, SYP131, or SYP132. In vivo, SYP132 partially rescued the pMSP1:AtTMS phenotype. In addition, AtTMS, lacking a transmembrane domain, was recruited to the plasma membrane by SYP124, SYP125, SYP131, and SYP132 and competed with Vesicle-Associated Membrane Protein721/722 for binding to, for example, SYP132. Together, our results demonstrated that AtTMS might serve as a negative regulator of secretion, whereby active secretion might be fine-tuned during pollen development.
Collapse
Affiliation(s)
- Bingxuan Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanbin Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Feng Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoyun Tan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingchen Rui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueshan Tong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lixin Qiao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Rongrong Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ge Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Rui Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yan Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yiqun Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
19
|
Blackburn JB, D'Souza Z, Lupashin VV. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett 2019; 593:2466-2487. [PMID: 31381138 PMCID: PMC6771879 DOI: 10.1002/1873-3468.13570] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
The conserved oligomeric Golgi (COG) complex, a multisubunit tethering complex of the CATCHR (complexes associated with tethering containing helical rods) family, controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle targeting within the Golgi. In humans, COG defects lead to severe multisystemic diseases known as COG-congenital disorders of glycosylation (COG-CDG). The COG complex both physically and functionally interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, and vesicular coats. Here, we review our current knowledge of COG-related trafficking and glycosylation defects in humans and model organisms, and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting.
Collapse
Affiliation(s)
- Jessica B. Blackburn
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Present address:
Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Zinia D'Souza
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Vladimir V. Lupashin
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
20
|
Silvestris DA, Picardi E, Cesarini V, Fosso B, Mangraviti N, Massimi L, Martini M, Pesole G, Locatelli F, Gallo A. Dynamic inosinome profiles reveal novel patient stratification and gender-specific differences in glioblastoma. Genome Biol 2019; 20:33. [PMID: 30760294 PMCID: PMC6373152 DOI: 10.1186/s13059-019-1647-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Adenosine-to-inosine (A-to-I) RNA editing is an essential post-transcriptional mechanism mediated by ADAR enzymes that have been recently associated with cancer. Results Here, we characterize the inosinome signature in normal brain and de novo glioblastoma (GBM) using new metrics that re-stratify GBM patients according to their editing profiles and indicate this post-transcriptional event as a possible molecular mechanism for sexual dimorphism in GBM. We find that over 85% of de novo GBMs carry a deletion involving the genomic locus of ADAR3, which is specifically expressed in the brain. By analyzing RNA editing and patient outcomes, an intriguing gender-dependent link appears, with high editing of Alus shown to be beneficial only in male patients. We propose an inosinome-based molecular stratification of GBM patients that identifies two different GBM subgroups, INO-1 and INO-2, which can identify novel high-risk gender-specific patient groups for which more aggressive treatments may be necessary. Conclusions Our data provide a detailed picture of RNA editing landscape in normal brain and GBM, exploring A-to-I RNA editing regulation, disclosing unexpected editing implications for GBM patient stratification and identification of gender-dependent high-risk patients, and suggesting COG3 I/V as an eligible site for future personalized targeted gene therapy. Electronic supplementary material The online version of this article (10.1186/s13059-019-1647-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Domenico Alessandro Silvestris
- RNA Editing Lab., Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo, 15 00146, Rome, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Valeriana Cesarini
- RNA Editing Lab., Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo, 15 00146, Rome, Italy
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Nicolò Mangraviti
- RNA Editing Lab., Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo, 15 00146, Rome, Italy
| | - Luca Massimi
- Fondazione Policlinico Universitario "A. Gemelli," IRCCS, UOC Neurochirurgia Infantile, Rome, Italy.,Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Martini
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, UOC Anatomia Patologica, Rome, Italy.,Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Franco Locatelli
- RNA Editing Lab., Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo, 15 00146, Rome, Italy.,Department of Pediatrics, "La Sapienza" University, Rome, Italy
| | - Angela Gallo
- RNA Editing Lab., Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo, 15 00146, Rome, Italy.
| |
Collapse
|
21
|
Golgi-localized LOT regulates trans-Golgi network biogenesis and pollen tube growth. Proc Natl Acad Sci U S A 2018; 115:12307-12312. [PMID: 30413616 DOI: 10.1073/pnas.1809206115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The trans-Golgi network (TGN) is an essential tubular-vesicular organelle derived from the Golgi and functions as an independent sorting and trafficking hub within the cell. However, the molecular regulation of TGN biogenesis remains enigmatic. Here we identified an Arabidopsis mutant loss of TGN (lot) that is defective in TGN formation and sterile due to impaired pollen tube growth in the style. The mutation leads to overstacking of the Golgi cisternae and significant reduction in the number of TGNs and vesicles surrounding the Golgi in pollen, which is corroborated by the dispersed cytosolic distribution of TGN-localized proteins. Consistently, deposition of extracellular pectin and plasma membrane localization of kinases and phosphoinositide species are also impaired. Subcellular localization analysis suggests that LOT is localized on the periphery of the Golgi cisternae, but the mutation does not affect the localization of Golgi-resident proteins. Furthermore, the yeast complementation result suggests that LOT could functionally act as a component of the guanine nucleotide exchange factor (GEF) complex of small Rab GTPase Ypt6. Taken together, these findings suggest that LOT is a critical player for TGN biogenesis in the plant lineage.
Collapse
|
22
|
He M, Lan M, Zhang B, Zhou Y, Wang Y, Zhu L, Yuan M, Fu Y. Rab-H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1051-1069. [PMID: 29975455 DOI: 10.1111/jipb.12694] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/03/2018] [Indexed: 05/26/2023]
Abstract
Cell-wall deposition of cellulose microfibrils is essential for plant growth and development. In plant cells, cellulose synthesis is accomplished by cellulose synthase complexes located in the plasma membrane. Trafficking of the complex between endomembrane compartments and the plasma membrane is vital for cellulose biosynthesis; however, the mechanism for this process is not well understood. We here report that, in Arabidopsis thaliana, Rab-H1b, a Golgi-localized small GTPase, participates in the trafficking of CELLULOSE SYNTHASE 6 (CESA6) to the plasma membrane. Loss of Rab-H1b function resulted in altered distribution and motility of CESA6 in the plasma membrane and reduced cellulose content. Seedlings with this defect exhibited short, fragile etiolated hypocotyls. Exocytosis of CESA6 was impaired in rab-h1b cells, and endocytosis in mutant cells was significantly reduced as well. We further observed accumulation of vesicles around an abnormal Golgi apparatus having an increased number of cisternae in rab-h1b cells, suggesting a defect in cisternal homeostasis caused by Rab-H1b loss function. Our findings link Rab GTPases to cellulose biosynthesis, during hypocotyl growth, and suggest Rab-H1b is crucial for modulating the trafficking of cellulose synthase complexes between endomembrane compartments and the plasma membrane and for maintaining Golgi organization and morphology.
Collapse
Affiliation(s)
- Ming He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Miao Lan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Youqun Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Blackburn JB, Kudlyk T, Pokrovskaya I, Lupashin VV. More than just sugars: Conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects. Traffic 2018; 19:463-480. [PMID: 29573151 PMCID: PMC5948163 DOI: 10.1111/tra.12564] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 01/03/2023]
Abstract
The conserved oligomeric Golgi (COG) complex controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle trafficking within the Golgi. Human COG defects lead to severe multisystemic diseases known as COG-congenital disorders of glycosylation (COG-CDG). To gain better understanding of COG-CDGs, we compared COG knockout cells with cells deficient to 2 key enzymes, Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase and uridine diphosphate-glucose 4-epimerase (GALE), which contribute to proper N- and O-glycosylation. While all knockout cells share similar defects in glycosylation, these defects only account for a small fraction of observed COG knockout phenotypes. Glycosylation deficiencies were not associated with the fragmented Golgi, abnormal endolysosomes, defective sorting and secretion or delayed retrograde trafficking, indicating that these phenotypes are probably not due to hypoglycosylation, but to other specific interactions or roles of the COG complex. Importantly, these COG deficiency specific phenotypes were also apparent in COG7-CDG patient fibroblasts, proving the human disease relevance of our CRISPR knockout findings. The knowledge gained from this study has important implications, both for understanding the physiological role of COG complex in Golgi homeostasis in eukaryotic cells, and for better understanding human diseases associated with COG/Golgi impairment.
Collapse
Affiliation(s)
- Jessica B Blackburn
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tetyana Kudlyk
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Irina Pokrovskaya
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Vladimir V Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
24
|
Bascom CS, Hepler PK, Bezanilla M. Interplay between Ions, the Cytoskeleton, and Cell Wall Properties during Tip Growth. PLANT PHYSIOLOGY 2018; 176:28-40. [PMID: 29138353 PMCID: PMC5761822 DOI: 10.1104/pp.17.01466] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/05/2017] [Indexed: 05/08/2023]
Abstract
Tip growth is a focused and tightly regulated apical explosion that depends on the interconnected activities of ions, the cytoskeleton, and the cell wall.
Collapse
Affiliation(s)
- Carlisle S Bascom
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
- Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01002
| | - Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01002
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
25
|
Ravikumar R, Steiner A, Assaad FF. Multisubunit tethering complexes in higher plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:97-105. [PMID: 28889036 DOI: 10.1016/j.pbi.2017.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 08/18/2017] [Indexed: 05/23/2023]
Abstract
Tethering complexes mediate the initial, specific contact between donor and acceptor membranes. This review focuses on the modularity and function of multisubunit tethering complexes (MTCs) in higher plants. One emphasis is on molecular interactions of plant MTCs. Here, a number of insights have been gained concerning interactions between different tethering complexes, and between tethers and microtubule-associated proteins. The roles of tethering complexes in abiotic stress responses appear indirect, but in the context of biotic stress responses it has been suggested that some tethers are direct targets of pathogen effectors or virulence factors. In light of the central roles tethering complexes play in plant development, an emerging concept is that tethers may be co-opted for plant adaptive responses.
Collapse
Affiliation(s)
| | | | - Farhah F Assaad
- Botany, Technische Universität München, 85354 Freising, Germany.
| |
Collapse
|
26
|
Haijes HA, Jaeken J, Foulquier F, van Hasselt PM. Hypothesis: lobe A (COG1–4)-CDG causes a more severe phenotype than lobe B (COG5–8)-CDG. J Med Genet 2017; 55:137-142. [DOI: 10.1136/jmedgenet-2017-104586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/07/2017] [Accepted: 06/21/2017] [Indexed: 01/26/2023]
Abstract
The conserved oligomeric Golgi (COG) complex consists of eight subunits organized in two lobes: lobe A (COG1–4) and lobe B (COG5–8). The different functional roles of COG lobe A and lobe B might result in distinct clinical phenotypes in patients with COG-CDG (congenital disorders of glycosylation). This hypothesis is supported by three observations. First, knock-down of COG lobe A components affects Golgi morphology more severely than knock-down of COG lobe B components. Second, nearly all of the 27 patients with lobe B COG-CDG had bi-allelic truncating mutations, as compared with only one of the six patients with lobe A COG-CDG. This represents a frequency gap which suggests that bi-allelic truncating mutations in COG lobe A genes might be non-viable. Third, in support, large-scale exome data of healthy adults (Exome Aggregation Consortium (ExAC)) underline that COG lobe A genes are less tolerant to genetic variation than COG lobe B genes. Thus, comparable molecular defects are more detrimental in lobe A COG-CDG than in lobe B COG-CDG. In a larger perspective, clinical phenotypic severity corresponded nicely with tolerance to genetic variation. Therefore, genomic epidemiology can potentially be used as a photographic negative for mutational severity.
Collapse
|
27
|
Qi J, Greb T. Cell polarity in plants: the Yin and Yang of cellular functions. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:105-110. [PMID: 27918938 PMCID: PMC7212042 DOI: 10.1016/j.pbi.2016.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 05/03/2023]
Abstract
Spatial organization is fundamental for the performance of living organisms and is reflected in a distinct distribution of structures and molecules down to the subcellular level. In particular, eukaryotic cells harbor a vast range of possibilities for distributing organelles, the cytoskeleton or the extracellular matrix in an active and highly regulated manner. An asymmetric or polar distribution is rather the rule than the exception and often reflects a particular position or orientation of a cell within a multicellular body. Here, we highlight recent insights into the regulation of cell polarity in plants and reveal the interactive nature of underlying molecular processes.
Collapse
Affiliation(s)
- Jiyan Qi
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Abstract
The delivery of proteins to the apoplast or protein secretion is an essential process in plant cells. Proteins are secreted to perform various biological functions such as cell wall modification and defense response. Conserved from yeast to mammals, both conventional and unconventional protein secretion pathways have been demonstrated in plants. In the conventional protein secretion pathway, secretory proteins with an N-terminal signal peptide are transported to the extracellular region via the endoplasmic reticulum-Golgi apparatus and the subsequent endomembrane system. By contrast, multiple unconventional protein secretion pathways are proposed to mediate the secretion of the leaderless secretory proteins. In this review, we summarize the recent findings and provide a comprehensive overview of protein secretion pathways in plant cells.
Collapse
Affiliation(s)
- Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Yonglun Zeng
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
29
|
Wang Y, Liu F, Ren Y, Wang Y, Liu X, Long W, Wang D, Zhu J, Zhu X, Jing R, Wu M, Hao Y, Jiang L, Wang C, Wang H, Bao Y, Wan J. GOLGI TRANSPORT 1B Regulates Protein Export from the Endoplasmic Reticulum in Rice Endosperm Cells. THE PLANT CELL 2016; 28:2850-2865. [PMID: 27803308 PMCID: PMC5155349 DOI: 10.1105/tpc.16.00717] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 05/04/2023]
Abstract
Coat protein complex II (COPII) mediates the first step of anterograde transport of newly synthesized proteins from the endoplasmic reticulum (ER) to other endomembrane compartments in eukaryotes. A group of evolutionarily conserved proteins (Sar1, Sec23, Sec24, Sec13, and Sec31) constitutes the basic COPII coat machinery; however, the details of how the COPII coat assembly is regulated remain unclear. Here, we report a protein transport mutant of rice (Oryza sativa), named glutelin precursor accumulation4 (gpa4), which accumulates 57-kD glutelin precursors and forms two types of ER-derived abnormal structures. GPA4 encodes the evolutionarily conserved membrane protein GOT1B (also known as GLUP2), homologous to the Saccharomyces cerevisiae GOT1p. The rice GOT1B protein colocalizes with Arabidopsis thaliana Sar1b at Golgi-associated ER exit sites (ERESs) when they are coexpressed in Nicotiana benthamiana Moreover, GOT1B physically interacts with rice Sec23, and both proteins are present in the same complex(es) with rice Sar1b. The distribution of rice Sar1 in the endomembrane system, its association with rice Sec23c, and the ERES organization pattern are significantly altered in the gpa4 mutant. Taken together, our results suggest that GOT1B plays an important role in mediating COPII vesicle formation at ERESs, thus facilitating anterograde transport of secretory proteins in plant cells.
Collapse
Affiliation(s)
- Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yuanyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|