1
|
Yu TY, Wang P, Lv Y, Wang B, Zhao MR, Dong XW. Auxin Orchestrates Germ Cell Specification in Arabidopsis. Int J Mol Sci 2025; 26:3257. [PMID: 40244090 PMCID: PMC11989617 DOI: 10.3390/ijms26073257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The initiation and specification of germline cells are crucial for plant reproduction and the continuity of species. In Arabidopsis thaliana, auxin plays a vital role in guiding the transition of somatic cells into germline fate, orchestrating the specification of both male archesporial cells and female megaspore mother cells. This process is regulated through interaction with the transcription factor Sporocyteless/Nozzle, which forms a feedback mechanism that modulates germ cell specialization. Auxin biosynthesis, polar transport, and signal transduction pathways collectively ensure the accurate determination of germ cell fate. Furthermore, the coordination of auxin signaling with epigenetic regulation and miRNA-mediated control fine-tunes the differentiation between germline and somatic cells. This review discusses the mechanisms underlying auxin-guided germ cell specification. It proposes future research directions, including studies on PIN-FORMED-mediated polar transport, the role of the YUCCA family in auxin biosynthesis, and the involvement of the Transport Inhibitors Response 1/Auxn Signaling F-Box-Auxin Response Factor (TIR1/AFB-ARF) signaling pathway in germ cell fate determination. These insights will enhance our understanding of plant reproductive biology and provide new strategies for crop breeding.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | | | | | | | | | - Xin-Wei Dong
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Kiss T, Horváth ÁD, Cseh A, Berki Z, Balla K, Karsai I. Molecular genetic regulation of the vegetative-generative transition in wheat from an environmental perspective. ANNALS OF BOTANY 2025; 135:605-628. [PMID: 39364537 PMCID: PMC11904908 DOI: 10.1093/aob/mcae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The key to the wide geographical distribution of wheat is its high adaptability. One of the most commonly used methods for studying adaptation is investigation of the transition between the vegetative-generative phase and the subsequent intensive stem elongation process. These processes are determined largely by changes in ambient temperature, the diurnal and annual periodicity of daylength, and the composition of the light spectrum. Many genes are involved in the perception of external environmental signals, forming a complex network of interconnections that are then integrated by a few integrator genes. This hierarchical cascade system ensures the precise occurrence of the developmental stages that enable maximum productivity. This review presents the interrelationship of molecular-genetic pathways (Earliness per se, circadian/photoperiod length, vernalization - cold requirement, phytohormonal - gibberellic acid, light perception, ambient temperature perception and ageing - miRNA) responsible for environmental adaptation in wheat. Detailed molecular genetic mapping of wheat adaptability will allow breeders to incorporate new alleles that will create varieties best adapted to local environmental conditions.
Collapse
Affiliation(s)
- Tibor Kiss
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - Ádám D Horváth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - András Cseh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Zita Berki
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Krisztina Balla
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Ildikó Karsai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| |
Collapse
|
3
|
Zhang Y, Yue S, Wang X, Liu M, Xu S, Zhang X, Zhou Y. Global transcriptome dynamics of seagrass flowering and seed development process: insights from the iconic seagrass Zostera marina L. FRONTIERS IN PLANT SCIENCE 2025; 16:1545658. [PMID: 40182556 PMCID: PMC11965923 DOI: 10.3389/fpls.2025.1545658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
Seagrasses are the only group of higher angiosperms capable of fully living in seawater, playing a significant role in plant evolutionary history. However, studies on the molecular regulatory networks underlying sexual reproduction in seagrasses remain limited. This study evaluated the morphological changes of the spathe during eelgrass sexual reproduction and analyzed global transcriptome dynamics across eight sequential stages. The key findings are as follows:(1) Key flowering integrators such as FT, SOC1, AP1, and LFY exhibited high expression levels during the early stages, indicating their involvement in the induction of eelgrass flowering, consistent with terrestrial plants. (2) Based on the classical model of floral organ development in terrestrial plants - the "ABCDE model, genes related to the development of stamens, carpels, and ovules of eelgrass, including B-, C-, D-, and E-class genes, were identified. (3) Photosynthesis was temporarily suppressed after the initiation of sexual reproduction, and gradually resumed during the seed development stage, suggesting that the developed seed may perform photosynthesis. The Fv/Fm value (0.641 ± 0.028) of seeds at the developed seed stage further indicated that these seeds are indeed capable of photosynthesis. These findings provide important insights into the potential mechanisms underlying seagrass sexual reproduction and enrich knowledge of its reproductive genetics.
Collapse
Affiliation(s)
- Yu Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shidong Yue
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingjie Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaochun Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Nayak SP, Prasad P, Fakhrah S, Pattanaik D, Bag SK, Mohanty CS. Differential miRNA expression and regulatory mechanisms in pigmentation and fiber development of white and brown cotton (Gossypium hirsutum). Funct Integr Genomics 2025; 25:61. [PMID: 40074959 DOI: 10.1007/s10142-025-01568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Cotton (Gossypium hirsutum) is a major global natural fiber crop used in the textile industry. Although white colored cotton remains the most popular form of cultivated cotton, colored varieties could replace chemically dyed fibers and provide more environmental friendly alternatives. In order to investigate the role of miRNAs in fiber color, we selected white and brown cotton varieties for comparative investigations. Through small RNA sequencing, a number of known miRNA families were discovered (74 in white cotton and 61 in brown cotton, with 44 shared) in which 11 miRNA families were significantly elevated in brown cotton variety. Functional enrichment and network analysis of target genes of these miRNAs revealed their regulatory role in secondary metabolite biosynthesis pathway, particularly the flavonoids pathway, which are known to be associated with fiber coloration. Pigmentation and developmental-related miRNA members such as miR396e-5p, miR167l, and miR1446 were also significantly enriched. Real-time PCR results suggest the regulatory role of miRNAs in these two cotton varieties. Furthermore, 30 and 25 novel miRNAs were also identified in white and brown cotton, respectively. Our findings also show miRNAs associated with fiber coloration and development through the intricate networks of miRNA and targets. Understanding these systems may provide novel insights on improving the fiber color and quality.
Collapse
Affiliation(s)
- Sagar Prasad Nayak
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute Campus, Rana Pratap Marg, Lucknow 226001, India
| | - Priti Prasad
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute Campus, Rana Pratap Marg, Lucknow 226001, India
- Quantomics Pvt. Ltd., Lucknow, 226018, India
| | - Shafquat Fakhrah
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
- Department of Botany, University of Lucknow, Uttar Pradesh, Lucknow 226007, India
| | - Debashree Pattanaik
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute Campus, Rana Pratap Marg, Lucknow 226001, India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute Campus, Rana Pratap Marg, Lucknow 226001, India
| | - Chandra Sekhar Mohanty
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute Campus, Rana Pratap Marg, Lucknow 226001, India.
| |
Collapse
|
5
|
Wang S, He P, Wang Z, Zhang H, Meng S, Qi M. Galactinol synthase 4 influences plant height by affecting phenylpropanoid metabolism and the balance of soluble carbohydrates in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109484. [PMID: 39818071 DOI: 10.1016/j.plaphy.2025.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Plant height is a key trait that significantly influences plant architecture, disease resistance, adaptability to mechanical cultivation, and overall economic yield. Galactinol synthase (GolS) is a crucial enzyme involved in the biosynthesis of raffinose family oligosaccharides (RFOs). It plays a significant role in carbohydrate transport and storage, combating abiotic and biotic stresses, and regulating plant growth and development. The present study employed CRISPR/Cas9 gene-editing technology to create the gols4 mutant in tomato (Solanum lycopersicum), which exhibits a semi-dwarf phenotype. Results showed that glucose, sucrose, myo-inositol, galactinol, and raffinose levels were significantly reduced in the slgols4 mutant, impairing material transport and affecting the balance of soluble carbohydrates. Integration of transcriptomics and metabolomics data indicated not only a decrease in the expression of synthesis genes related to phenylpropanoid biosynthesis but also a significant reduction in the content of lignin and flavonoids, which are byproducts of phenylpropanoid metabolism. This may be a key factor contributing to dwarfism. Overall, these findings provide evidence for the role of SlGolS4 in regulating sugar metabolism and phenylpropanoid metabolism, offering new insights into tomato dwarfing cultivation and germplasm resources.
Collapse
Affiliation(s)
- Shuo Wang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Peijie He
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Zhijun Wang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Huidong Zhang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Sida Meng
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingfang Qi
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China.
| |
Collapse
|
6
|
Mouri IJ, Islam MS. A comprehensive in silico genome-wide identification and characterization of SQUAMOSA promoter binding protein (SBP) gene family in Musa acuminata. J Genet Eng Biotechnol 2025; 23:100461. [PMID: 40074435 PMCID: PMC11803833 DOI: 10.1016/j.jgeb.2025.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/26/2024] [Accepted: 01/14/2025] [Indexed: 03/14/2025]
Abstract
One of the largest and most significant transcription factor gene families in plants is the SQUAMOSA promoter binding protein (SBP) gene family and they perform critical regulatory roles in floral enhancement, fruit development, and stress resistance. The SBP protein family (also known as SPL) has not yet been thoroughly studied in the staple fruit crop, banana. A perennial monocot plant, banana is essential for ensuring food and nutrition security. This work detected 41 SBP genes in the banana species Musa acuminata. The MaSBPs were subsequently elucidated by investigating their gene structure, chromosomal position, RNA-Seq data, along with evolutionary connections with Arabidopsis and rice. Sequence alignment of MaSBPs revealed that all genes included a domain of two Zn finger motifs (CCCH and CCHC motifs) with an overlapping nuclear localization signal region. The conserved motifs sequence in the inferred MaSBP proteins were quite comparable. According to findings, the time frame of divergence for duplicated MaSBP gene pairs ranged from 42.39 to 109.11 million years and the dicot Arabidopsis and monocotyledonous plant banana diverged before the division of banana and monocot rice. Moreover, cis-acting element and GO annotation analysis exhibited possible biological activities of MaSBPs in flower development, phytohormone regulation, and stress tolerance. RNA-Seq expression profiling exhibited that genes MaSBP-3, MaSBP-20, MaSBP-37, MaSBP-40 were more expressed during floral and fruit development stage. The foundation for additional investigation of SBP protein sequences in other plants can be laid out by this study, which will shed light on some of their crucial biological functions.
Collapse
Affiliation(s)
- Israt Jahan Mouri
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Shariful Islam
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| |
Collapse
|
7
|
Li Y, Deng Y, Qin D, An X. Study of the SPL gene family and miR156-SPL module in Populus tomentosa: Potential roles in juvenile-to-adult phase transition and reproductive phase. Int J Biol Macromol 2025; 296:139547. [PMID: 39793817 DOI: 10.1016/j.ijbiomac.2025.139547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Populus tomentosa, a deciduous tree species distinguished by its significant economic and ecological value, enjoys a wide-ranging natural distribution. However, its long juvenile period severely restricts the advancement of breeding work. The SPL gene family, a distinctive class of transcription factors exclusive to the plant kingdom, is critical in various processes of plant growth and development. The miR156-SPL molecular module stands as an indispensable regulatory mechanism in the transition from the vegetative juvenile phase to the adult phase in plants. Consequently, this research endeavored a methodical and exhaustive exploration of the SPL gene family within the P.tomentosa species, synergistically integrating the miR156 family into the analysis. A total of 56 PtSPL genes were identified and subjected to a comprehensive analysis of their gene structure, conserved motifs, collinearity relationships, chromosomal localization, and promoter cis-acting elements. Further analysis of gene expression profiles confirmed the pivotal role of PtSPLs in the reproductive phase and tissue development of P. tomentosa. In addition, 11 members of miR156 in P. tomentosa were identified and their sequences analyzed, elucidating the miR156-SPL regulatory network. The target relationship between miR156k and PtSPLs was further validated by detecting the expression levels of PtSPLs in transgenic poplars overexpressing 35S::MIR156k. This comprehensive study lays a robust theoretical foundation for the continued exploration and application of the SPL genes in P. tomentosa, opening avenues for future research and potential advancements in plant biology and breeding strategies.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yufei Deng
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Debin Qin
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xinmin An
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Soares JR, Robledo KJM, de Souza VC, Dias LLL, Silva LAS, da Silveira EC, Souza CDS, Sousa ES, Sodrzeieski PA, Sarmiento YCG, de Matos EM, Falcão TCDA, Fialho LDS, Guimaraes VM, Viccini LF, Pierdona FG, Romanel E, Fouracre J, Otoni WC, Nogueira FTS. Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp. THE NEW PHYTOLOGIST 2025; 245:2237-2254. [PMID: 39668526 DOI: 10.1111/nph.20343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Passion flower extrafloral nectaries (EFNs) protrude from leaves and facilitate mutualistic interactions with insects; however, how age cues control EFN growth remains poorly understood. Here, we examined leaf and EFN morphology and development of two Passiflora species with distinct leaf shapes, and compared the phenotype of these to transgenics with manipulated activity of the age-dependent miR156, which targets several SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factors. Low levels of miR156 correlated with leaf maturation and EFN formation in Passiflora edulis and P. cincinnata. Accordingly, manipulating miR156 activity affected leaf heteroblasty and EFN development. miR156-overexpressing leaves exhibited less abundant and tiny EFNs in both Passiflora species. EFN abundance remained mostly unchanged when miR156 activity was reduced, but it led to larger EFNs in P. cincinnata. Transcriptome analysis of young leaf primordia revealed that miR156-targeted SPLs may be required to properly express leaf and EFN-associated genes. Importantly, altered miR156 activity impacted sugar profiles of the nectar and modified ecological relationships between EFNs and ants. Our work provides evidence that the miR156/SPL module indirectly regulates EFN development in an age-dependent manner and that the EFN development program is closely associated with the heteroblastic developmental program of the EFN-bearing leaves.
Collapse
Affiliation(s)
- Jessica Ribeiro Soares
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Kerly Jessenia Moncaleano Robledo
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Lana Laene Lima Dias
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Lazara Aline Simões Silva
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Emerson Campos da Silveira
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Claudinei da Silva Souza
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Elisandra Silva Sousa
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Pedro Alexandre Sodrzeieski
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Elyabe Monteiro de Matos
- Departamento de Biologia, Laboratório de Genética e Biotecnologia, ICB, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Thais Castilho de Arruda Falcão
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Universidade de São Paulo, Lorena, SP, 12602-810, Brazil
| | - Lilian da Silva Fialho
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Análises Bioquímicas/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Valeria Monteze Guimaraes
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Análises Bioquímicas/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Lyderson Facio Viccini
- Departamento de Biologia, Laboratório de Genética e Biotecnologia, ICB, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Flaviani Gabriela Pierdona
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Elisson Romanel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Universidade de São Paulo, Lorena, SP, 12602-810, Brazil
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
9
|
Zhu D, Geng X, Zeng F, Xu S, Peng J. Identification and expression analysis of the SPL gene family during flower bud differentiation in Rhododendron molle. Genes Genomics 2025; 47:171-182. [PMID: 39567421 DOI: 10.1007/s13258-024-01593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND The family of SQUAMOSA promoter binding protein-like (SPL) transcription factors is essential for regulating plant growth and development. While this SPL gene functional research has been limited in Rhododendron molle (R. molle). OBJECTIVE To preliminarily explore the regulatory mechanism of the SPL gene in flower bud development of R. molle. METHODS In this study, for R. molle, the flower bud differentiation period was determined by observing the morphological anatomy of the flower bud. The SPL gene family members were identified based on the R. molle genome, Additionally, the expressions of RmSPL genes at five flower bud differentiation stages were analyzed via Quantitative reverse transcription PCR (RT-qPCR). RESULTS We first characterized 20 SPL family members in the reference genome of R. molle. The phylogenetic analysis of plant SPL proteins separated them into eight subfamilies (G1-G8) according to conserved gene structures and protein motifs. Cis-elements of promoter region analysis showed that RmSPL genes were regulated by light, phytohormones, stress response, and plant growth and development and may play a critical role in the photoresponse, abasic acid, anaerobic induction, and meristematic expression. Gene expression analysis showed that 18 RmSPL genes were differentially expressed in different developing flower buds. In particular, RmSPL1/7/8/12/13 exhibited significantly different expressions, suggesting that they were likely essential genes for regulating the differentiation of flower buds. CONCLUSION In conclusion, our analysis of RmSPL genes provides a theoretical basis and reference for future functional analysis of RmSPL genes in the flower bud differentiation of R. molle.
Collapse
Affiliation(s)
- Dongmei Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingmin Geng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China.
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, 210037, China.
| | - Fanyu Zeng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Shida Xu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China
| | - Jieyu Peng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
10
|
Sahraei S, Mahdinezhad N, Emamjomeh A, Kavousi K, Solouki M, Delledonne M. Differentiation of long Non-Coding RNA expression profiles in three Fruiting stages of grape. Gene 2025; 934:149029. [PMID: 39447709 DOI: 10.1016/j.gene.2024.149029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Grapes are considered a crucial fruit crop with extensive uses globally. Cluster compactness is an undesirable trait for the productivity of Yaghooti grape, and it reduces its desirability among consumers. The RNA-Seq data were analyzed in three stages of cluster development using the FEELnc software, leading to the identification of 849 lncRNAs. 183 lncRNAs were differentially expressed during cluster development stages. The GO and KEGG enrichment analyses of these lncRNAs revealed that they target 1,814 genes, including CKX, PG, PME, NPC2, and UGT. The analysis demonstrated a relationship between these lncRNAs and key processes such as grape growth and development, secondary metabolite synthesis, and resistance to both biotic and abiotic stresses. These findings, combined with molecular experiments on lncRNA interactions with other regulatory factors, could enhance Yaghooti grape quality and decrease cluster compactness.
Collapse
Affiliation(s)
- Shahla Sahraei
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Nafiseh Mahdinezhad
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran.
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran; Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology, University of Zabol, Zabol, Iran.
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics (IBB), Department of Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB), University of Tehran, Tehran, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
11
|
Xuan L, Tian Y, Chen X, Gao L, Wang M, Wu H. Endogenous H 2S promotes Arabidopsis flowering through the regulation of GA20ox4 in the gibberellin pathway. PHYSIOLOGIA PLANTARUM 2025; 177:e70084. [PMID: 39901639 DOI: 10.1111/ppl.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Flowering time is a critical determinant of plant reproductive success and agricultural yield. Hydrogen sulfide (H₂S), as a signaling molecule, regulates various aspects of plant growth and development. In this study, we examined the role of endogenous H₂S in regulating flowering time in Arabidopsis. The O-acetylserine thiol lyase a1 (oasa1) mutant, which has elevated H₂S levels due to impaired OASA1 activity that catalyzes the synthesis of Cys from H2S, flowers earlier than wild type (WT). The OASA1 overexpression lines (OE-OASA1-#33/#142), characterized by reduced H₂S levels, show delayed flowering, accompanied by decreased expression of key flowering regulators, FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), and AGAMOUS-LIKE24 (AGL24). Notably, vernalization and short-day (SD) conditions did not affect their flowering patterns. Exogenous H₂S and GA₃ treatment rescued the delayed flowering phenotype of OE-OASA1-#33/#142. In oasa1, levels of GA intermediates (GA15 and GA53) were elevated, while their levels were reduced in OE-OASA1-#33/#142. RT-qPCR analysis showed a significant reduction in the expression of GIBBERELLIN 20-OXIDASE 4 (GA20ox4) in OE-OASA1-#33/#142 compared to WT. Overexpression of GA20ox4 (OE-GA20ox4-#20/#30) resulted in earlier flowering and partially rescued the delayed flowering phenotype of OE-OASA1-#33/#142. Additionally, the expression of age pathway-related genes, including miRNA172b and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3/4/5/9/15 (SPL3/4/5/9/15), was significantly reduced in OE-OASA1-#33/#142 seedlings. These findings suggest that endogenous H₂S positively regulates GA20ox4 expression, thereby promoting gibberellin synthesis and advancing flowering in Arabidopsis through the GA pathway. Furthermore, the promotion of flowering by H₂S appears to be linked to the age pathway.
Collapse
Affiliation(s)
- Lijuan Xuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Present address: Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Xiaoyan Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Pressent address: School of Life Sciences, Tsinghua University, Beijing, Beijing, China
| | - Le Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Liu X, Sun W, Liu H, Wang L, Manzoor MA, Wang J, Jiu S, Zhang C. PavSPLs are key regulators of growth, development, and stress response in sweet cherry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112279. [PMID: 39401543 DOI: 10.1016/j.plantsci.2024.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes are plant-specific transcription factors essential for plant growth, development, and stress responses. Their roles in sweet cherry are not well understood. In this study, we identified and isolated 16 SPL genes from the sweet cherry genome, categorizing them into 5 subfamilies, with 12 PavSPLs predicted as miR156 targets. Promoter regions of PavSPLs contain cis-elements associated with light, stress, and phytohormone responses, indicating their role in biological processes and abiotic stress responses. Seasonal expression analysis showed that PavSPL regulates sweet cherry recovery after dormancy. Gibberellin (GA) treatment reduced PavSPL expression, indicating its role in GA-mediated processes. PavSPL14 overexpression in Arabidopsis thaliana resulted in earlier flowering and increased plant height and growth. Yeast two-hybrid assays showed an interaction between PavSPL14 and DELLA protein PavDWARF8, suggesting PavSPL14 and PavDWARF8 co-regulate growth and development. These findings lay the groundwork for further research on PavSPL function in sweet cherry.
Collapse
Affiliation(s)
- Xunju Liu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Wanxia Sun
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Haobo Liu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Li Wang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Muhammad Aamir Manzoor
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Jiyuan Wang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Songtao Jiu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Caixi Zhang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| |
Collapse
|
13
|
Sun B, Zhong Y, Tao Z, Zhu L, Miao X, Shi Z, Li H. OsMYB1 antagonizes OsSPL14 to mediate rice resistance to brown planthopper and Xanthomonas oryzae pv. oryzae. PLANT CELL REPORTS 2024; 44:13. [PMID: 39724382 DOI: 10.1007/s00299-024-03411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
KEY MESSAGE OsMYB1 negatively mediates rice resistance to brown planthopper and rice blight. Additionally, OsMYB1 interacts with OsSPL14 and antagonizes its function by oppositely regulating downstream resistance-related genes. In their natural habitats, plants are concurrently attacked by different biotic factors. Xanthomonas oryzae pv. oryzae (Xoo) is a pathogen that severely deteriorates rice yield and quality, and brown planthopper (BPH; Nilaparvata lugens) is a rice specific insect pest with the damage topping other pathogens. Although genes for respective resistance to BPH and Xoo have been widely reported, few studies pay attention to simultaneous resistance to both. In this study, we identified a MYB transcription factor, OsMYB1, which exhibited diverse transcriptional regulatory capabilities and a negative regulatory role in resistance to both BPH and Xoo. Biochemical and genetic analysis proved OsMYB1 to be a TF that could interact with OsSPL14, a positive regulator of rice resistance to Xoo. OsSPL14 mutants showed increased sensitivity to BPH, suggesting that OsSPL14 is contrary to OsMYB1 in regulating rice resistance to these two biotic stresses. Consistently, OsMYB1 and OsSPL14 displayed opposite functions in regulating defense-related genes. OsMYB1 can form transcription regulation complexes with repressor OsJAZs instead of co-repressor TOPLESS to possibly realize its transcriptional repression function. Taken together, we concluded that two interacting TFs in rice, OsMYB1 and OsSPL14, played antagonistic roles in regulating resistance to BPH and Xoo.
Collapse
Affiliation(s)
- Bo Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuan Zhong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihuan Tao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zhu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuexia Miao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenying Shi
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Haichao Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
14
|
Dawar P, Adhikari I, Mandal SN, Jayee B. RNA Metabolism and the Role of Small RNAs in Regulating Multiple Aspects of RNA Metabolism. Noncoding RNA 2024; 11:1. [PMID: 39846679 PMCID: PMC11755482 DOI: 10.3390/ncrna11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis. In eukaryotes, sRNAs, typically 20-31 nucleotides in length, are a class of ncRNAs found to function as nodes in various gene regulatory networks. sRNAs are known to play significant roles in regulating RNA population at the transcriptional, post-transcriptional, and translational levels. Along with sRNAs, such as miRNAs, siRNAs, and piRNAs, new categories of ncRNAs, i.e., lncRNAs and circRNAs, also contribute to RNA metabolism regulation in eukaryotes. In plants, various genetic screens have demonstrated that sRNA biogenesis mutants, as well as RNA metabolism pathway mutants, exhibit similar growth and development defects, misregulated primary and secondary metabolism, as well as impaired stress response. In addition, sRNAs are both the "products" and the "regulators" in broad RNA metabolism networks; gene regulatory networks involving sRNAs form autoregulatory loops that affect the expression of both sRNA and the respective target. This review examines the interconnected aspects of RNA metabolism with sRNA regulatory pathways in plants. It also explores the potential conservation of these pathways across different kingdoms, particularly in plants and animals. Additionally, the review highlights how cellular RNA homeostasis directly impacts adaptive responses to environmental changes as well as different developmental aspects in plants.
Collapse
Affiliation(s)
- Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Indra Adhikari
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Bhumika Jayee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
15
|
Zimmerman K, Pegler JL, Oultram JMJ, Collings DA, Wang MB, Grof CPL, Eamens AL. The Arabidopsis thaliana Double-Stranded RNA Binding Proteins DRB1 and DRB2 Are Required for miR160-Mediated Responses to Exogenous Auxin. Genes (Basel) 2024; 15:1648. [PMID: 39766914 PMCID: PMC11675975 DOI: 10.3390/genes15121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
DOUBLE-STRANDED RNA BINDING (DRB) proteins DRB1, DRB2, and DRB4 are essential for microRNA (miRNA) production in Arabidopsis thaliana (Arabidopsis) with miR160, and its target genes, AUXIN RESPONSE FACTOR10 (ARF10), ARF16, and ARF17, forming an auxin responsive miRNA expression module crucial for root development. Methods: Wild-type Arabidopsis plants (Columbia-0 (Col-0)) and the drb1, drb2, and drb12 mutants were treated with the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D), and the miR160-mediated response of these four Arabidopsis lines was phenotypically and molecularly characterized. Results: In 2,4-D-treated Col-0, drb1 and drb2 plants, altered miR160 abundance and ARF10, ARF16, and ARF17 gene expression were associated with altered root system development. However, miR160-directed molecular responses to treatment with 2,4-D was largely defective in the drb12 double mutant. In addition, via profiling of molecular components of the miR160 expression module in the roots of the drb4, drb14, and drb24 mutants, we uncovered a previously unknown role for DRB4 in regulating miR160 production. Conclusions: The miR160 expression module forms a central component of the molecular and phenotypic response of Arabidopsis plants to exogenous auxin treatment. Furthermore, DRB1, DRB2, and DRB4 are all required in Arabidopsis roots to control miR160 production, and subsequently, to appropriately regulate ARF10, ARF16, and ARF17 target gene expression.
Collapse
Affiliation(s)
- Kim Zimmerman
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle, Callaghan, NSW 2308, Australia; (K.Z.); (J.L.P.); (J.M.J.O.); (D.A.C.); (C.P.L.G.)
| | - Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle, Callaghan, NSW 2308, Australia; (K.Z.); (J.L.P.); (J.M.J.O.); (D.A.C.); (C.P.L.G.)
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle, Callaghan, NSW 2308, Australia; (K.Z.); (J.L.P.); (J.M.J.O.); (D.A.C.); (C.P.L.G.)
| | - David A. Collings
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle, Callaghan, NSW 2308, Australia; (K.Z.); (J.L.P.); (J.M.J.O.); (D.A.C.); (C.P.L.G.)
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ming-Bo Wang
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle, Callaghan, NSW 2308, Australia; (K.Z.); (J.L.P.); (J.M.J.O.); (D.A.C.); (C.P.L.G.)
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Andrew L. Eamens
- Seaweed Research Group, School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
16
|
Yang B, Sun Y, Minne M, Ge Y, Yue Q, Goossens V, Mor E, Callebaut B, Bevernaege K, Winne JM, Audenaert D, De Rybel B. SPL13 controls a root apical meristem phase change by triggering oriented cell divisions. Science 2024; 386:eado4298. [PMID: 39541454 PMCID: PMC7616863 DOI: 10.1126/science.ado4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Oriented cell divisions are crucial for determining the overall morphology and size of plants, but what controls the onset and duration of this process remains largely unknown. Here, we identified a small molecule that activates root apical meristem (RAM) expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13 (SPL13) a known player in the shoot's juvenile-to-adult transition. This expression leads to oriented cell divisions in the RAM through SHORT ROOT (SHR) and cell cycle regulators. We further show that the RAM has distinct juvenile and adult phases typed by morphological and molecular characteristics and that SPL factors are crucially required for this transition in Arabidopsis and rice (Oryza sativa). In summary, we provide molecular insights into the age-dependent morphological changes occurring in the RAM during phase change.
Collapse
Affiliation(s)
- Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yanhua Ge
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianru Yue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Eliana Mor
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brenda Callebaut
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Kevin Bevernaege
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Johan M. Winne
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
17
|
Dai D, Chen K, Tao J, Williams BP. Aging drives a program of DNA methylation decay in plant organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621941. [PMID: 39574626 PMCID: PMC11580858 DOI: 10.1101/2024.11.04.621941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
How organisms age is a question with broad implications for human health. In mammals, DNA methylation is a biomarker for biological age, which may predict age more accurately than date of birth. However, limitations in mammalian models make it difficult to identify mechanisms underpinning age-related DNA methylation changes. Here, we show that the short-lived model plant Arabidopsis thaliana exhibits a loss of epigenetic integrity during aging, causing heterochromatin DNA methylation decay and the expression of transposable elements. We show that the rate of epigenetic aging can be manipulated by extending or curtailing lifespan, and that shoot apical meristems are protected from this aging process. We demonstrate that a program of transcriptional repression suppresses DNA methylation maintenance pathways during aging, and that mutants of this mechanism display a complete absence of epigenetic decay. This presents a new paradigm in which a gene regulatory program sets the rate of epigenomic information loss during aging.
Collapse
|
18
|
Lorenzo CD. From the archives: Epidermal affairs-EVER links floral scent with cuticular waxes, while SPL9 and DEWAX connect them to diurnal regulation, and FIDDLEHEAD takes on a function in the epidermis. THE PLANT CELL 2024; 36:4675-4677. [PMID: 39141596 PMCID: PMC11530769 DOI: 10.1093/plcell/koae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Christian Damian Lorenzo
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
19
|
Zhang Z, Yang T, Liu Y, Wu S, Sun H, Wu J, Li Y, Zheng Y, Ren H, Yang Y, Shi S, Wang W, Pan Q, Lian L, Duan S, Zhu Y, Cai Y, Zhou H, Zhang H, Tang K, Cui J, Gao D, Chen L, Jiang Y, Sun X, Zhou X, Fei Z, Ma N, Gao J. Haplotype-resolved genome assembly and resequencing provide insights into the origin and breeding of modern rose. NATURE PLANTS 2024; 10:1659-1671. [PMID: 39394508 DOI: 10.1038/s41477-024-01820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
Modern rose (Rosa hybrida) is a recently formed interspecific hybrid and has become one of the most important and widely cultivated ornamentals. Here we report the haplotype-resolved chromosome-scale genome assembly of the tetraploid R. hybrida 'Samantha' ('JACmantha') and a genome variation map of 233 Rosa accessions involving various wild species, and old and modern cultivars. Homologous chromosomes of 'Samantha' exhibit frequent homoeologous exchanges. Population genomic and genomic composition analyses reveal the contributions of wild Rosa species to modern roses and highlight that R. odorata and its derived cultivars are important contributors to modern roses, much like R. chinensis 'Old Blush'. Furthermore, selective sweeps during modern rose breeding associated with major agronomic traits, including continuous and recurrent flowering, double flower, flower senescence and disease resistance, are identified. This study provides insights into the genetic basis of modern rose origin and breeding history, and offers unprecedented genomic resources for rose improvement.
Collapse
Affiliation(s)
- Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Tuo Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, Guangdong, China
| | - Yi Zheng
- Bioinformatics Center, Beijing University of Agriculture, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Haoran Ren
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yuyong Yang
- Kunming Yang Chinese Rose Gardening Co. Ltd., Kunming, Yunnan, China
| | - Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Wenyan Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Qi Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Lijuan Lian
- People's Government of Weishanzhuang Town, Daxing, Beijing, China
| | | | - Yingxiong Zhu
- Yunnan Xinhaihui Flower Industry Co. Ltd., Tonghai, Yunnan, China
| | - Youming Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hougao Zhou
- College Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hao Zhang
- National Engineering Research Center for Ornamental Horticulture, Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Kaixue Tang
- National Engineering Research Center for Ornamental Horticulture, Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | | | - Dan Gao
- Smartgenomics Technology Institute, Tianjin, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA.
- USDA-ARS Robert W Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Yamagishi M, Nomizu T, Nakatsuka T. Overexpression of lily MicroRNA156-resistant SPL13A stimulates stem elongation and flowering in Lilium formosanum under non-inductive (non-chilling) conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1456183. [PMID: 39494055 PMCID: PMC11527630 DOI: 10.3389/fpls.2024.1456183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024]
Abstract
Flowering plants undergo juvenile vegetative, adult vegetative, and reproductive phases. Lily plants (Lilium spp.) develop scaly leaves during their juvenile vegetative phase. Stem elongation occurs in the adult vegetative phase and is followed by floral transition. As the duration of the juvenile vegetative phase is long in lilies, the microRNA156 (miR156) and SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) modules are expected to play a major role in vegetative phase change and flower induction. In the present study, we aimed to explore the functions of lily SLP13A. We evaluated phenotypic changes and gene expression in L. formosanum plants overexpressing miR156-resistant SPL13A (rSPL13A) and examined the accumulation levels of gene transcripts and mature miRNAs in non-transformed L. longiflorum plants. Lily plants overexpressing rSPL13A exhibited stem elongation under non-inductive conditions, and FLOWERING LOCUS T (FT) genes were poorly involved in this stem elongation. Flowering was induced in the transformed plants with elongated stems, and the accumulation of MADS5 (APETALA1) transcripts and mature miR172 was elevated in these plants. In non-transformed lilies, SPL13A transcripts were highly accumulated in the shoot apices of both juvenile and adult plants. As mature miR156 was poorly accumulated in the shoot apices of the adult plants, SPL13A was active enough to stimulate stem elongation and flower induction. In contrast, mature miR156 was reliably detected in shoot apices of the juvenile plants. Because our transient assay using tobacco plants expressing a SPL13A-GFP fusion protein indicated that miR156 repressed SPL13A expression mainly at the translational level, SPL13A activity should be insufficient to stimulate stem elongation in the juvenile plants. In addition, the accumulation of MADS5 transcripts and mature miR172 in the shoot apices increased with plant growth and peaked before the transition to the reproductive phase. Therefore, we conclude that SPL13A regulates stem elongation in the adult vegetative phase, which differs from the mechanisms evaluated in Arabidopsis and rice, wherein stem elongation proceeds in a reproductive phase and FT genes are heavily involved in it, and that SPL13A induces flowering by the activation of genes related to the age pathway underlying floral transition, as APETALA1 and primary-MIR172 are mainly involved in this pathway.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Toshikazu Nomizu
- Biotechnology Division, Niigata Agricultural Research Institute, Nagaoka, Niigata, Japan
| | - Takashi Nakatsuka
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
21
|
Pale M, Pérez-Torres CA, Arenas-Huertero C, Villafán E, Sánchez-Rangel D, Ibarra-Laclette E. Genome-Wide Transcriptional Response of Avocado to Fusarium sp. Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2886. [PMID: 39458832 PMCID: PMC11511450 DOI: 10.3390/plants13202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The avocado crop is relevant for its economic importance and because of its unique evolutionary history. However, there is a lack of information regarding the molecular processes during the defense response against fungal pathogens. Therefore, using a genome-wide approach in this work, we investigated the transcriptional response of the Mexican horticultural race of avocado (Persea americana var. drymifolia), including miRNAs profile and their possible targets. For that, we established an avocado-Fusarium hydroponic pathosystem and studied the response for 21 days. To guarantee robustness in the analysis, first, we improved the avocado genome assembly available for this variety, resulting in 822.49 Mbp in length with 36,200 gene models. Then, using an RNA-seq approach, we identified 13,778 genes differentially expressed in response to the Fusarium infection. According to their expression profile across time, these genes can be clustered into six groups, each associated with specific biological processes. Regarding non-coding RNAs, 8 of the 57 mature miRNAs identified in the avocado genome are responsive to infection caused by Fusarium, and the analysis revealed a total of 569 target genes whose transcript could be post-transcriptionally regulated. This study represents the first research in avocados to comprehensively explore the role of miRNAs in orchestrating defense responses against Fusarium spp. Also, this work provides valuable data about the genes involved in the intricate response of the avocado during fungal infection.
Collapse
Affiliation(s)
- Michel Pale
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, San Luis Potosí, Mexico;
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| |
Collapse
|
22
|
Li XM, Jenke H, Strauss S, Wang Y, Bhatia N, Kierzkowski D, Lymbouridou R, Huijser P, Smith RS, Runions A, Tsiantis M. Age-associated growth control modifies leaf proximodistal symmetry and enabled leaf shape diversification. Curr Biol 2024; 34:4547-4558.e9. [PMID: 39216485 DOI: 10.1016/j.cub.2024.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Biological shape diversity is often manifested in modulation of organ symmetry and modification of the patterned elaboration of repeated shape elements.1,2,3,4,5 Whether and how these two aspects of shape determination are coordinately regulated is unclear.5,6,7 Plant leaves provide an attractive system to investigate this problem, because they often show asymmetries along the proximodistal (PD) axis of their blades, along which they can also produce repeated marginal outgrowths such as serrations or leaflets.1 One aspect of leaf shape diversity is heteroblasty, where the leaf form in a single genotype is modified with progressive plant age.8,9,10,11 In Arabidopsis thaliana, a plant with simple leaves, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9) controls heteroblasty by activating CyclinD3 expression, thereby sustaining proliferative growth and retarding differentiation in adult leaves.12,13 However, the precise significance of SPL9 action for leaf symmetry and marginal patterning is unknown. By combining genetics, quantitative shape analyses, and time-lapse imaging, we show that PD symmetry of the leaf blade in A. thaliana decreases in response to an age-dependent SPL9 expression gradient, and that SPL9 action coordinately regulates the distribution and shape of marginal serrations and overall leaf form. Using comparative analyses, we demonstrate that heteroblastic growth reprogramming in Cardamine hirsuta, a complex-leafed relative of A. thaliana, also involves prolonging the duration of cell proliferation and delaying differentiation. We further provide evidence that SPL9 enables species-specific action of homeobox genes that promote leaf complexity. In conclusion, we identified an age-dependent layer of organ PD growth regulation that modulates leaf symmetry and has enabled leaf shape diversification.
Collapse
Affiliation(s)
- Xin-Min Li
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Hannah Jenke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Yi Wang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
23
|
Flynn N. Building a better blueprint for bolting. THE PLANT CELL 2024; 36:4289-4290. [PMID: 39179508 PMCID: PMC11448881 DOI: 10.1093/plcell/koae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Affiliation(s)
- Nora Flynn
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Department of Botany and Plant Sciences, University of California Riverside, CA 92507, USA
| |
Collapse
|
24
|
Redmond EJ, Ronald J, Davis SJ, Ezer D. Single-plant-omics reveals the cascade of transcriptional changes during the vegetative-to-reproductive transition. THE PLANT CELL 2024; 36:4594-4606. [PMID: 39121073 PMCID: PMC11449079 DOI: 10.1093/plcell/koae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Plants undergo rapid developmental transitions, which occur contemporaneously with gradual changes in physiology. Moreover, individual plants within a population undergo developmental transitions asynchronously. Single-plant-omics has the potential to distinguish between transcriptional events that are associated with these binary and continuous processes. Furthermore, we can use single-plant-omics to order individual plants by their intrinsic biological age, providing a high-resolution transcriptional time series. We performed RNA-seq on leaves from a large population of wild-type Arabidopsis (Arabidopsis thaliana) during the vegetative-to-reproductive transition. Though most transcripts were differentially expressed between bolted and unbolted plants, some regulators were more closely associated with leaf size and biomass. Using a pseudotime inference algorithm, we determined that some senescence-associated processes, such as the reduction in ribosome biogenesis, were evident in the transcriptome before a bolt was visible. Even in this near-isogenic population, some variants are associated with developmental traits. These results support the use of single-plant-omics to uncover rapid transcriptional dynamics by exploiting developmental asynchrony.
Collapse
Affiliation(s)
- Ethan J Redmond
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - James Ronald
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Seth J Davis
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Daphne Ezer
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| |
Collapse
|
25
|
Le Gloanec C, Gómez-Felipe A, Alimchandani V, Branchini E, Bauer A, Routier-Kierzkowska AL, Kierzkowski D. Modulation of cell differentiation and growth underlies the shift from bud protection to light capture in cauline leaves. PLANT PHYSIOLOGY 2024; 196:1214-1230. [PMID: 39106417 PMCID: PMC11444300 DOI: 10.1093/plphys/kiae408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Plant organs have evolved into diverse shapes for specialized functions despite emerging as simple protrusions at the shoot apex. Cauline leaves serve as photosynthetic organs and protective structures for emerging floral buds. However, the growth patterns underlying this dual function remain unknown. Here, we investigate the developmental dynamics shaping Arabidopsis (Arabidopsis thaliana) cauline leaves underlying their functional diversification from other laminar organs. We show that cauline leaves display a significant delay in overall elongation compared with rosette leaves. Using live imaging, we reveal that their functional divergence hinges on early modulation of the timing of cell differentiation and cellular growth rates. In contrast to rosette leaves and sepals, cell differentiation is delayed in cauline leaves, fostering extended proliferation, prolonged morphogenetic activity, and growth redistribution within the organ. Notably, cauline leaf growth is transiently suppressed during the early stages, keeping the leaf small and unfolded during the initiation of the first flowers. Our findings highlight the unique developmental timing of cauline leaves, underlying their shift from an early protective role to a later photosynthetic function.
Collapse
Affiliation(s)
- Constance Le Gloanec
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Andrea Gómez-Felipe
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Viraj Alimchandani
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Elvis Branchini
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Amélie Bauer
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Anne-Lise Routier-Kierzkowska
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Daniel Kierzkowski
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
26
|
Shang C, Hou Q, Qiao G, Tian T, Wen X. CpSPL10-CpELF4 module involves in the negative regulation of flower bud differentiation in Chinese cherry. Int J Biol Macromol 2024; 280:135964. [PMID: 39322142 DOI: 10.1016/j.ijbiomac.2024.135964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
SQUAMOSA promoter-binding protein-like (SPL) genes play a crucial role in regulating floral induction. Despite such importance, a comprehensive study of SPLs in Chinese cherry flower bud development has been absent. In this study, 32 CpSPL genes were identified. According to expression profiling, CpSPLs exhibited tissue-specific expression and distinct trends throughout flower bud differentiation. Specifically, CpSPL10 was greatly expressed at the beginning of the differentiation, and its role was further investigated. Its overexpression extended the vegetative growth of transgenic tobacco plants, delayed flowering by about 20 days. Moreover, the accumulation of NbELF4 (Early flowering 4) transcripts was enhanced due to the up-regulated levels of CpSPL10 in tobacco plants. ELF4 functions as a major element of the circadian clock; its high expression typically delays the transition from vegetative-to-reproductive growth. Further experiments revealed that CpSPL10 interacts with CpSPL9 or a transposase-derived transcription factor CpFRS5 (FAR1-RELATED SEQUENCE 5) and activates the expression of the downstream gene CpELF4. Notably, the GUS fusing reporter assay detected the activation of CpSPL10 and CpELF4 promoters in shoot apical meristems of transgenic Arabidopsis. These findings revealed the negative regulation of the CpSPL10-CpELF4 module in flower bud differentiation, providing references for supplementing the specific relationships among SPL, FRS, and ELF4.
Collapse
Affiliation(s)
- Chunqiong Shang
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang 550025, Guizhou Province, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Tian Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
27
|
An L, Ma J, Fan C, Li H, Wu A. Genome-Wide Characterization and Analysis of the SPL Gene Family in Eucalyptus grandis. Int J Genomics 2024; 2024:2708223. [PMID: 39295962 PMCID: PMC11410410 DOI: 10.1155/2024/2708223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
SQUAMOSA promoter-binding protein-like (SPL) gene family, a group of plant-specific transcription factors, played crucial roles in regulating plant growth, development, signal transduction, and stress response. This study focuses on the SPL gene family in the fast-growing Eucalyptus grandis, employing bioinformatics approaches to identify and analyze the gene physiochemical characteristics, conserved domains, structural composition, chromosomal distribution, phylogenetic relationships, cis-acting elements, and their expression patterns in various tissues and stress treatments. Twenty-three SPL genes were identified in E. grandis, which uneven distributed across seven chromosomes and classified into five groups. Prediction of cis-acting elements revealed that these genes might be related to light, hormone, and stress responses. Furthermore, EgSPL9 and EgSPL23, mainly expressed in the stem apex and lateral branches, seem to be involved in hormone stress resistance. Our study provides insights into the potential functions of the EgSPL genes in plant growth, stress response, and hormone transduction, offering valuable perspectives for subsequent research into their biological roles.
Collapse
Affiliation(s)
- Lijun An
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm College of Forestry and Landscape Architectures South China Agricultural University, Guangzhou 510642, China
| | - Jiasi Ma
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm College of Forestry and Landscape Architectures South China Agricultural University, Guangzhou 510642, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry Research Institute of Tropical Forestry Chinese Academy of Forestry, Guangzhou 510520, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm College of Forestry and Landscape Architectures South China Agricultural University, Guangzhou 510642, China
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm College of Forestry and Landscape Architectures South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Zhou C, Liu H, Wang H, Niu S, El-Kassaby YA, Li W. Deciphering the Role of SVP-Like Genes and Their Key Regulation Networks During Reproductive Cone Development in Pinus tabuliformis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39257299 DOI: 10.1111/pce.15129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024]
Abstract
Reproductive development plays an essential role in the perpetuation of genetic material and environmental adaptation. In angiosperms, the Short Vegetative Phase (SVP) serves as a flowering repressor, influencing the development of floral organs. In this study, heterologous transformation of Arabidopsis thaliana with SVP-like genes (PtSVL1 and PtSVL2) derived from Pinus tabuliformis significantly impacted stamen formation and pollen fertility, without altering flowering time. Gene co-expression networks revealed that SVP-like and SOC1-like genes function as key coregulatory transcription factors during the initial stages of cone development in P. tabuliformis. Interestingly, the regulatory module of SOC1 regulated by SVP in angiosperms is absent in conifers and conifer SVP-like exercises its function in a form that is physically bound to SOC1-like. Furthermore, combining the yeast one-hybrid scanning with co-expression network analysis, revealed that SPLs and TPSs were the principal downstream target genes of PtSVL1. Notably, the PtSPL16 promoter is positively regulated by PtSVL1, and overexpression of PtSPL16 results in delayed flowering in Arabidopsis, suggesting that the PtSVL1-PtSPL16 module plays a crucial role in regulating reproductive development in conifers. Collectively, these findings enhance our understanding of the roles of SVP-like genes in conifers and the key regulatory networks centred on PtSVL1 during reproductive cone development.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongmei Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Huili Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
29
|
He A, Zhou H, Ma C, Bai Q, Yang H, Yao X, Wu W, Xue G, Ruan J. Genome-wide identification and expression analysis of the SPL gene family and its response to abiotic stress in barley (Hordeum vulgare L.). BMC Genomics 2024; 25:846. [PMID: 39251952 PMCID: PMC11384689 DOI: 10.1186/s12864-024-10773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Squamosa promoter-binding protein-like (SPL) is a plant-specific transcription factor that is widely involved in the regulation of plant growth and development, including flower and grain development, stress responses, and secondary metabolite synthesis. However, this gene family has not been comprehensively evaluated in barley, the most adaptable cereal crop with a high nutritional value. RESULTS In this study, a total of 15 HvSPL genes were identified based on the Hordeum vulgare genome. These genes were named HvSPL1 to HvSPL15 based on the chromosomal distribution of the HvSPL genes and were divided into seven groups (I, II, III, V, VI, VII, and VIII) based on the phylogenetic tree analysis. Chromosomal localization revealed one pair of tandem duplicated genes and one pair of segmental duplicated genes. The HvSPL genes exhibited the highest collinearity with the monocotyledonous plant, Zea mays (27 pairs), followed by Oryza sativa (18 pairs), Sorghum bicolor (16 pairs), and Arabidopsis thaliana (3 pairs), and the fewest homologous genes with Solanum lycopersicum (1 pair). The distribution of the HvSPL genes in the evolutionary tree was relatively scattered, and HvSPL proteins tended to cluster with SPL proteins from Z. mays and O. sativa, indicating a close relationship between HvSPL and SPL proteins from monocotyledonous plants. Finally, the spatial and temporal expression patterns of the 14 HvSPL genes from different subfamilies were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Based on the results, the HvSPL gene family exhibited tissue-specific expression and played a regulatory role in grain development and abiotic stress. HvSPL genes are highly expressed in various tissues during seed development. The expression levels of HvSPL genes under the six abiotic stress conditions indicated that many genes responded to stress, especially HvSPL8, which exhibited high expression under multiple stress conditions, thereby warranting further attention. CONCLUSION In this study, 15 SPL gene family members were identified in the genome of Hordeum vulgare, and the phylogenetic relationships, gene structure, replication events, gene expression, and potential roles of these genes in millet development were studied. Our findings lay the foundation for exploring the HvSPL genes and performing molecular breeding of barley.
Collapse
Affiliation(s)
- Ailing He
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hui Zhou
- Sichuan Province Seed Station, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chao Ma
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qing Bai
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Haizhu Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
30
|
Huang H, Zheng M, Jenks MA, Yang P, Zhao H, Lü S. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 13 (SLP13) together with SPL9 redundantly regulates wax biosynthesis under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4978-4992. [PMID: 38706401 DOI: 10.1093/jxb/erae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Wax biosynthesis is closely controlled by many regulators under different environmental conditions. We have previously shown that the module miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9)-DEWAX is involved in the diurnal regulation of wax production; however, it was not determined whether other SPLs are also involved in wax synthesis. Here, we report that SPL13 also regulates drought-induced wax production, by directly and indirectly affecting the expression of the two wax biosynthesis genes ECERIFERUM1 (CER1) and CER4, respectively. In addition, we show that SPL13 together with SPL9 redundantly regulates wax accumulation under both normal and drought stress conditions, and that simultaneous mutation of both genes additively increases cuticle permeability and decreases drought tolerance. However, in contrast to SPL9, SPL13 does not seem to participate in the DEWAX-mediated diurnal regulation of wax production.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Minglü Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721, USA
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
31
|
Nowak K, Wójcik AM, Konopka K, Jarosz A, Dombert K, Gaj MD. miR156-SPL and miR169-NF-YA Modules Regulate the Induction of Somatic Embryogenesis in Arabidopsis via LEC- and Auxin-Related Pathways. Int J Mol Sci 2024; 25:9217. [PMID: 39273166 PMCID: PMC11394981 DOI: 10.3390/ijms25179217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The embryogenic transition of plant somatic cells to produce somatic embryos requires extensive reprogramming of the cell transcriptome. The prominent role of transcription factors (TFs) and miRNAs in controlling somatic embryogenesis (SE) induction in plants was documented. The profiling of MIRNA expression in the embryogenic culture of Arabidopsis implied the contribution of the miR156 and miR169 to the embryogenic induction. In the present study, the function of miR156 and miR169 and the candidate targets, SPL and NF-YA genes, were investigated in Arabidopsis SE. The results showed that misexpression of MIRNA156 and candidate SPL target genes (SPL2, 3, 4, 5, 9, 10, 11, 13, 15) negatively affected the embryogenic potential of transgenic explants, suggesting that specific fine-tuning of the miR156 and target genes expression levels seems essential for efficient SE induction. The results revealed that SPL11 under the control of miR156 might contribute to SE induction by regulating the master regulators of SE, the LEC (LEAFY COTYLEDON) genes (LEC1, LEC2, FUS3). Moreover, the role of miR169 and its candidate NF-YA targets in SE induction was demonstrated. The results showed that several miR169 targets, including NF-YA1, 3, 5, 8, and 10, positively regulated SE. We found, that miR169 via NF-YA5 seems to modulate the expression of a master SE regulator LEC1/NF-YA and other auxin-related genes: YUCCA (YUC4, 10) and PIN1 in SE induction. The study provided new insights into miR156-SPL and miR169-NF-YA functions in the auxin-related and LEC-controlled regulatory network of SE.
Collapse
Affiliation(s)
| | | | | | | | | | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (A.M.W.); (K.K.); (A.J.); (K.D.)
| |
Collapse
|
32
|
Nazari M, Kordrostami M, Ghasemi-Soloklui AA, Eaton-Rye JJ, Pashkovskiy P, Kuznetsov V, Allakhverdiev SI. Enhancing Photosynthesis and Plant Productivity through Genetic Modification. Cells 2024; 13:1319. [PMID: 39195209 PMCID: PMC11352682 DOI: 10.3390/cells13161319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Enhancing crop photosynthesis through genetic engineering technologies offers numerous opportunities to increase plant productivity. Key approaches include optimizing light utilization, increasing cytochrome b6f complex levels, and improving carbon fixation. Modifications to Rubisco and the photosynthetic electron transport chain are central to these strategies. Introducing alternative photorespiratory pathways and enhancing carbonic anhydrase activity can further increase the internal CO2 concentration, thereby improving photosynthetic efficiency. The efficient translocation of photosynthetically produced sugars, which are managed by sucrose transporters, is also critical for plant growth. Additionally, incorporating genes from C4 plants, such as phosphoenolpyruvate carboxylase and NADP-malic enzymes, enhances the CO2 concentration around Rubisco, reducing photorespiration. Targeting microRNAs and transcription factors is vital for increasing photosynthesis and plant productivity, especially under stress conditions. This review highlights potential biological targets, the genetic modifications of which are aimed at improving photosynthesis and increasing plant productivity, thereby determining key areas for future research and development.
Collapse
Affiliation(s)
- Mansoureh Nazari
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran;
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran;
| | - Julian J. Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
- Faculty of Engineering and Natural Sciences, Bahcesehir University, 34349 Istanbul, Turkey
| |
Collapse
|
33
|
Byrne ME. In preprints: lifetime changes in leaf shape. Development 2024; 151:dev204213. [PMID: 39045848 DOI: 10.1242/dev.204213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Affiliation(s)
- Mary E Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
34
|
Li Q, Wang Y, Sun Z, Li H, Liu H. The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development. Int J Mol Sci 2024; 25:7680. [PMID: 39062923 PMCID: PMC11276867 DOI: 10.3390/ijms25147680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In the realm of plant biology, small RNAs (sRNAs) are imperative in the orchestration of gene expression, playing pivotal roles across a spectrum of developmental sequences and responses to environmental stressors. The biosynthetic cascade of sRNAs is characterized by an elaborate network of enzymatic pathways that meticulously process double-stranded RNA (dsRNA) precursors into sRNA molecules, typically 20 to 30 nucleotides in length. These sRNAs, chiefly microRNAs (miRNAs) and small interfering RNAs (siRNAs), are integral in guiding the RNA-induced silencing complex (RISC) to selectively target messenger RNAs (mRNAs) for post-transcriptional modulation. This regulation is achieved either through the targeted cleavage or the suppression of translational efficiency of the mRNAs. In plant development, sRNAs are integral to the modulation of key pathways that govern growth patterns, organ differentiation, and developmental timing. The biogenesis of sRNA itself is a fine-tuned process, beginning with transcription and proceeding through a series of processing steps involving Dicer-like enzymes and RNA-binding proteins. Recent advances in the field have illuminated the complex processes underlying the generation and function of small RNAs (sRNAs), including the identification of new sRNA categories and the clarification of their involvement in the intercommunication among diverse regulatory pathways. This review endeavors to evaluate the contemporary comprehension of sRNA biosynthesis and to underscore the pivotal role these molecules play in directing the intricate performance of plant developmental processes.
Collapse
Affiliation(s)
| | | | | | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| |
Collapse
|
35
|
Singh S, Praveen A, Bhadrecha P. Genome-wide identification and analysis of SPL gene family in chickpea (Cicer arietinum L.). PROTOPLASMA 2024; 261:799-818. [PMID: 38378886 DOI: 10.1007/s00709-024-01936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
A transcription factor in plants encodes SQUAMOSA promoter binding protein-like (SPL) serves a broad spectrum of important roles for the plant, like, growth, flowering, and signal transduction. A gene family that encodes SPL proteins is documented in various model plant species, including Arabidopsis thaliana and Oryza sativa. Chickpea (Cicer arietinum), a leguminous crop, has not been thoroughly explored with regard to the SPL protein-encoding gene family. Chickpea SPL family genes were located and characterized computationally using a genomic database. Gene data of chickpea were obtained from the phytozome repository and was examined using bioinformatics methods. For investigating the possible roles of SPLs in chickpea, genome-wide characterization, expression, as well as structural analyses of this SPL gene family were performed. Cicer arietinum genome had 19 SPL genes, whereas, according to phylogenetic analysis, the SPLs in chickpea are segregated among four categories: Group-I has 2 introns, Group-II and IV have 1-2 introns (except CaSPL13 and CaSPL15 having 3 introns), and Group-III has 9 introns (except CaSPL1 and CaSPL11 with 1 and 8 introns, respectively). The SBP domain revealed that SPL proteins featured two zinc-binding sites, i.e., C3H and C2HC and one nuclear localization signal. All CaSPL proteins are found to contain highly conserved motifs, i.e., Motifs 1, 2, and 4, except CaSPL10 in which Motifs 1 and 4 were absent. Following analysis, it was found that Motifs 1 and 2 of the chickpea SBP domain are Zinc finger motifs, and Motif 4 includes a nuclear localization signal. All pairs of CaSPL paralogs developed by purifying selection. The CaSPL promoter investigation discovered cis-elements that are responsive to stress, light, and phytohormones. Examination of their expression patterns highlighted major CaSPLs to be evinced primarily among younger pods and flowers. Indicating their involvement in the plant's growth as well as development, along with their capacity to react as per different situations by handling the regulation of target gene's expression, several CaSPL genes are also expressed under certain stress conditions, namely, cold, salt, and drought. The majority of the CaSPL genes are widely expressed and play crucial roles in terms of the plant's growth, development, and responses to the environmental-stress conditions. Our work provides extensive insight into the gene family CaSPL, which might facilitate further studies related to the evolution and functions of the SPL genes for chickpea and other plant species.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, U.P., India.
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 67, India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
36
|
Nakayama H. Leaf form diversity and evolution: a never-ending story in plant biology. JOURNAL OF PLANT RESEARCH 2024; 137:547-560. [PMID: 38592658 PMCID: PMC11230983 DOI: 10.1007/s10265-024-01541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
Leaf form can vary at different levels, such as inter/intraspecies, and diverse leaf shapes reflect their remarkable ability to adapt to various environmental conditions. Over the past two decades, considerable progress has been made in unraveling the molecular mechanisms underlying leaf form diversity, particularly the regulatory mechanisms of leaf complexity. However, the mechanisms identified thus far are only part of the entire process, and numerous questions remain unanswered. This review aims to provide an overview of the current understanding of the molecular mechanisms driving leaf form diversity while highlighting the existing gaps in our knowledge. By focusing on the unanswered questions, this review aims to shed light on areas that require further research, ultimately fostering a more comprehensive understanding of leaf form diversity.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
37
|
Jia X, Xu S, Wang Y, Jin L, Gao T, Zhang Z, Yang C, Qing Y, Li C, Ma F. Age-dependent changes in leaf size in apple are governed by a cytokinin-integrated module. PLANT PHYSIOLOGY 2024; 195:2406-2427. [PMID: 38588053 DOI: 10.1093/plphys/kiae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
Plants undergo various age-dependent changes in leaf morphology during juvenile to adult vegetative stage. However, the precise molecular mechanisms governing these changes in apple (Malus domestica) remain unknown. Here, we showed that CYTOKININ OXIDASE/DEHYDROGENASE5 (MdCKX5), an age-dependent gene, encodes a functional CKX enzyme and serves as the common downstream target of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MdSPL14 and WRKY transcription factor MdWRKY24 to control the degradation of cytokinin (CK). As the target of mdm-microRNA156a, MdSPL14 interacts with MdWRKY24 to coordinately repress the transcription of MdCKX5 by forming the age-mediated mdm-miR156a-MdSPL14-MdWRKY24 module, which regulates age-dependent changes in CK during the juvenile-to-adult phase transition. We further demonstrated that MdARR6, a type-A ARABIDOPSIS RESPONSE REGULATOR (ARR), is a negative feedback regulator in the CK signaling pathway. Silencing of MdARR6 in apple resulted in large leaves with smaller epidermal cells and a greater number of epidermal cells. Biochemical analysis showed that the mdm-miR156a-MdSPL14-MdWRKY24 module acts as a transcriptional repressor to directly regulate MdARR6 expression, thus controlling the age-dependent changes in leaf size by reducing CK responses. These findings established a link between the age pathway and CK signaling and revealed the molecular mechanism underlying age-dependent changes during the juvenile-to-adult phase transition; our results also provide targets for the genetic improvement of the vegetative phase transition in apple.
Collapse
Affiliation(s)
- Xumei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuo Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lu Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yubin Qing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
38
|
Patil BL, Tripathi S. Differential expression of microRNAs in response to Papaya ringspot virus infection in differentially responding genotypes of papaya ( Carica papaya L.) and its wild relative. FRONTIERS IN PLANT SCIENCE 2024; 15:1398437. [PMID: 38966149 PMCID: PMC11222417 DOI: 10.3389/fpls.2024.1398437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
Papaya ringspot virus (PRSV) is one of the most devastating viruses of papaya that has significantly hampered papaya production across the globe. Although PRSV resistance is known in some of its wild relatives, such as Vasconcellea cauliflora and in some of the improved papaya genotypes, the molecular basis of this resistance mechanism has not been studied and understood. Plant microRNAs are an important class of small RNAs that regulate the gene expression in several plant species against the invading plant pathogens. These miRNAs are known to manifest the expression of genes involved in resistance against plant pathogens, through modulation of the plant's biochemistry and physiology. In this study we made an attempt to study the overall expression pattern of small RNAs and more specifically the miRNAs in different papaya genotypes from India, that exhibit varying levels of tolerance or resistance to PRSV. Our study found that the expression of some of the miRNAs was differentially regulated in these papaya genotypes and they had entirely different miRNA expression profile in healthy and PRSV infected symptomatic plants. This data may help in improvement of papaya cultivars for resistance against PRSV through new breeding initiatives or biotechnological approaches such as genome editing.
Collapse
Affiliation(s)
| | - Savarni Tripathi
- ICAR-Indian Agricultural Research Institute, Regional Station, Pune, India
| |
Collapse
|
39
|
Zhao D, Zheng H, Li J, Wan M, Shu K, Wang W, Hu X, Hu Y, Qiu L, Wang X. Natural Variation in the Promoter of GmSPL9d Affects Branch Number in Soybean. Int J Mol Sci 2024; 25:5991. [PMID: 38892178 PMCID: PMC11172651 DOI: 10.3390/ijms25115991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The branch number is a crucial factor that influences density tolerance and is closely associated with the yield of soybean. However, its molecular regulation mechanisms remain poorly understood. This study cloned a candidate gene GmSPL9d for regulating the soybean branch number based on the rice OsSPL14 homologous gene. Meanwhile, the genetic diversity of the GmSPL9d was analyzed using 3599 resequencing data and identified 55 SNP/InDel variations, which were categorized into seven haplotypes. Evolutionary analysis classified these haplotypes into two groups: GmSPL9d H-I and GmSPL9d H-II. Soybean varieties carrying the GmSPL9d H-II haplotype exhibited a significantly lower branch number compared with those carrying the GmSPL9d H-I haplotype. Association analysis between the variation sites and branch number phenotypes revealed a significant correlation between the promoter variations and the branch number. Promoter activity assays demonstrated that the GmSPL9d H-II promoter displayed significantly higher activity than the GmSPL9d H-I promoter. Transgenic experiments confirmed that the plants that carried the GmSPL9d H-II promoter exhibited a significantly lower branch number compared with those that carried the GmSPL9d H-I promoter. These findings indicate that the variation in the GmSPL9d promoter affected its transcription level, leading to differences in the soybean branch number. This study provides valuable molecular targets for improving the soybean plant structure.
Collapse
Affiliation(s)
- Duo Zhao
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China; (D.Z.); (H.Z.); (J.L.); (M.W.); (K.S.); (W.W.); (X.H.); (Y.H.)
| | - Haowei Zheng
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China; (D.Z.); (H.Z.); (J.L.); (M.W.); (K.S.); (W.W.); (X.H.); (Y.H.)
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China; (D.Z.); (H.Z.); (J.L.); (M.W.); (K.S.); (W.W.); (X.H.); (Y.H.)
| | - Mingyue Wan
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China; (D.Z.); (H.Z.); (J.L.); (M.W.); (K.S.); (W.W.); (X.H.); (Y.H.)
| | - Kuo Shu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China; (D.Z.); (H.Z.); (J.L.); (M.W.); (K.S.); (W.W.); (X.H.); (Y.H.)
| | - Wenhui Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China; (D.Z.); (H.Z.); (J.L.); (M.W.); (K.S.); (W.W.); (X.H.); (Y.H.)
| | - Xiaoyu Hu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China; (D.Z.); (H.Z.); (J.L.); (M.W.); (K.S.); (W.W.); (X.H.); (Y.H.)
| | - Yu Hu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China; (D.Z.); (H.Z.); (J.L.); (M.W.); (K.S.); (W.W.); (X.H.); (Y.H.)
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China; (D.Z.); (H.Z.); (J.L.); (M.W.); (K.S.); (W.W.); (X.H.); (Y.H.)
| |
Collapse
|
40
|
Stavridou E, Karamichali I, Siskas E, Bosmali I, Osanthanunkul M, Madesis P. Identification of Sex-Associated Genetic Markers in Pistacia lentiscus var. chia for Early Male Detection. Genes (Basel) 2024; 15:632. [PMID: 38790261 PMCID: PMC11120708 DOI: 10.3390/genes15050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Pistacia lentiscus var. chia is a valuable crop for its high-added-value mastic, a resin with proven pharmaceutical and cosmeceutical properties harvested from the male tree trunk. To achieve the maximum economic benefits from the cultivation of male mastic trees, it is important to develop early sex diagnosis molecular tools for distinguishing the sex type. Thus far, the work on sex identification has focused on Pistacia vera with promising results; however, the low transferability rates of these markers in P. lentiscus necessitates the development of species-specific sex-linked markers for P. lentiscus var. chia. To our knowledge, this is the first report regarding: (i) the development of species-specific novel transcriptome-based markers for P. lentiscus var. chia and their assessment on male, female and monoecious individuals using PCR-HRM analysis, thus, introducing a cost-effective method for sex identification with high accuracy that can be applied with minimum infrastructure, (ii) the effective sex identification in mastic tree using a combination of different sex-linked ISSR and SCAR markers with 100% accuracy, and (iii) the impact evaluation of sex type on the genetic diversity of different P. lentiscus var. chia cultivars. The results of this study are expected to provide species-specific markers for accurate sex identification that could contribute to the selection process of male mastic trees at an early stage for mass propagation systems and to facilitate future breeding efforts related to sex-linked productivity and quality of mastic resin.
Collapse
Affiliation(s)
- Evangelia Stavridou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (E.S.)
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
| | - Ioanna Karamichali
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
| | - Evangelos Siskas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (E.S.)
| | - Irini Bosmali
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
| | - Maslin Osanthanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Centre in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panagiotis Madesis
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
41
|
Liu W, Yang Y, Hu Y, Peng X, He L, Ma T, Zhu S, Xiang L, Chen N. Overexpression of SQUAMOSA promoter binding protein-like 4a (NtSPL4a) alleviates Cd toxicity in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108656. [PMID: 38685151 DOI: 10.1016/j.plaphy.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Squamosa Promoter Binding Protein-Like (SPL) plays a crucial role in regulating plant development and combating stress, yet its mechanism in regulating resistance to Cd toxicity remains unclear. In this study, we cloned a nuclear-localized transcription factor, NtSPL4a, from the tobacco cultivar TN90. Transient co-expression results showed that miR156 significantly reduced the expression of NtSPL4a by binding to the 3'-UTR of its transcript. We obtained transgenic tobacco overexpressing NtSPL4a (including the 3'-UTR) and NtSPL4aΔ (lacking the 3'-UTR) through Agrobacterium-mediated genetic transformation. Compared to the wild type (WT), overexpression of NtSPL4a/NtSPL4aΔ shortened the flowering time and exhibited a more developed root system. The transgenic tobacco showed significantly reduced Cd content, being 85.1% (OE-NtSPL4a) and 46.7% (OE-NtSPL4aΔ) of WT, respectively. Moreover, the upregulation of NtSPL4a affected the mineral nutrient homeostasis in transgenic tobacco. Additionally, overexpression of NtSPL4a/NtSPL4aΔ effectively alleviated leaf chlorosis and oxidative stress induced by Cd toxicity. One possible reason is that the overexpression of NtSPL4a/NtSPL4aΔ can effectively promote the accumulation of non-enzymatic antioxidants. A comparative transcriptomic analysis was performed between transgenic tobacco and WT to further unravel the global impacts brought by NtSPL4a. The tobacco overexpressing NtSPL4a had 183 differentially expressed genes (77 upregulated, 106 downregulated), while the tobacco overexpressing NtSPL4aΔ had 594 differentially expressed genes (244 upregulated, 350 downregulated) compared to WT. These differentially expressed genes mainly included transcription factors, metal transport proteins, flavonoid biosynthesis pathway genes, and plant stress-related genes. Our study provides new insights into the role of the transcript factor SPL in regulating Cd tolerance.
Collapse
Affiliation(s)
- Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ya Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yingying Hu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiang Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tengfei Ma
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing, 400715, China
| | - Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Nan Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
42
|
Li N, Xu Y, Lu Y. A Regulatory Mechanism on Pathways: Modulating Roles of MYC2 and BBX21 in the Flavonoid Network. PLANTS (BASEL, SWITZERLAND) 2024; 13:1156. [PMID: 38674565 PMCID: PMC11054080 DOI: 10.3390/plants13081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Genes of metabolic pathways are individually or collectively regulated, often via unclear mechanisms. The anthocyanin pathway, well known for its regulation by the MYB/bHLH/WDR (MBW) complex but less well understood in its connections to MYC2, BBX21, SPL9, PIF3, and HY5, is investigated here for its direct links to the regulators. We show that MYC2 can activate the structural genes of the anthocyanin pathway but also suppress them (except F3'H) in both Arabidopsis and Oryza when a local MBW complex is present. BBX21 or SPL9 can activate all or part of the structural genes, respectively, but the effects can be largely overwritten by the local MBW complex. HY5 primarily influences expressions of the early genes (CHS, CHI, and F3H). TF-TF relationships can be complex here: PIF3, BBX21, or SPL9 can mildly activate MYC2; MYC2 physically interacts with the bHLH (GL3) of the MBW complex and/or competes with strong actions of BBX21 to lessen a stimulus to the anthocyanin pathway. The dual role of MYC2 in regulating the anthocyanin pathway and a similar role of BBX21 in regulating BAN reveal a network-level mechanism, in which pathways are modulated locally and competing interactions between modulators may tone down strong environmental signals before they reach the network.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunzhang Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Sun X, Zhang L, Xu W, Zheng J, Yan M, Zhao M, Wang X, Yin Y. A Comprehensive Analysis of the Peanut SQUAMOSA Promoter Binding Protein-like Gene Family and How AhSPL5 Enhances Salt Tolerance in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1057. [PMID: 38674467 PMCID: PMC11055087 DOI: 10.3390/plants13081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
SPL (SQUAMOSA promoter binding protein-like), as one family of plant transcription factors, plays an important function in plant growth and development and in response to environmental stresses. Despite SPL gene families having been identified in various plant species, the understanding of this gene family in peanuts remains insufficient. In this study, thirty-eight genes (AhSPL1-AhSPL38) were identified and classified into seven groups based on a phylogenetic analysis. In addition, a thorough analysis indicated that the AhSPL genes experienced segmental duplications. The analysis of the gene structure and protein motif patterns revealed similarities in the structure of exons and introns, as well as the organization of the motifs within the same group, thereby providing additional support to the conclusions drawn from the phylogenetic analysis. The analysis of the regulatory elements and RNA-seq data suggested that the AhSPL genes might be widely involved in peanut growth and development, as well as in response to environmental stresses. Furthermore, the expression of some AhSPL genes, including AhSPL5, AhSPL16, AhSPL25, and AhSPL36, were induced by drought and salt stresses. Notably, the expression of the AhSPL genes might potentially be regulated by regulatory factors with distinct functionalities, such as transcription factors ERF, WRKY, MYB, and Dof, and microRNAs, like ahy-miR156. Notably, the overexpression of AhSPL5 can enhance salt tolerance in transgenic Arabidopsis by enhancing its ROS-scavenging capability and positively regulating the expression of stress-responsive genes. These results provide insight into the evolutionary origin of plant SPL genes and how they enhance plant tolerance to salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinyu Wang
- Yantai Academy of Agricultural Sciences, Yantai 265500, China; (X.S.); (L.Z.); (W.X.); (J.Z.); (M.Y.); (M.Z.)
| | - Yan Yin
- Yantai Academy of Agricultural Sciences, Yantai 265500, China; (X.S.); (L.Z.); (W.X.); (J.Z.); (M.Y.); (M.Z.)
| |
Collapse
|
44
|
Wu T, Liu Z, Yu T, Zhou R, Yang Q, Cao R, Nie F, Ma X, Bai Y, Song X. Flowering genes identification, network analysis, and database construction for 837 plants. HORTICULTURE RESEARCH 2024; 11:uhae013. [PMID: 38585015 PMCID: PMC10995624 DOI: 10.1093/hr/uhae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 04/09/2024]
Abstract
Flowering is one of the most important biological phenomena in the plant kingdom, which not only has important ecological significance, but also has substantial horticultural ornamental value. In this study, we undertook an exhaustive review of the advancements in our understanding of plant flowering genes. We delved into the identification and conducted comparative analyses of flowering genes across virtually all sequenced angiosperm plant genomes. Furthermore, we established an extensive angiosperm flowering atlas, encompassing a staggering 183 720 genes across eight pathways, along with 10 155 ABCDE mode genes, which play a pivotal role in plant flowering regulation. Through the examination of expression patterns, we unveiled the specificities of these flowering genes. An interaction network between flowering genes of the ABCDE model and their corresponding upstream genes offered a blueprint for comprehending their regulatory mechanisms. Moreover, we predicted the miRNA and target genes linked to the flowering processes of each species. To culminate our efforts, we have built a user-friendly web interface, named the Plant Flowering-time Gene Database (PFGD), accessible at http://pfgd.bio2db.com/. We firmly believe that this database will serve as a cornerstone in the global research community, facilitating the in-depth exploration of flowering genes in the plant kingdom. In summation, this pioneering endeavor represents the first comprehensive collection and comparative analysis of flowering genes in plants, offering valuable resources for the study of plant flowering genetics.
Collapse
Affiliation(s)
- Tong Wu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhuo Liu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Yu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus 8200, Denmark
| | - Qihang Yang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rui Cao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Fulei Nie
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
- College of Horticultural Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066600, China
| | - Yun Bai
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
45
|
Luo H, Yang J, Liu S, Li S, Si H, Zhang N. Control of Plant Height and Lateral Root Development via Stu-miR156 Regulation of SPL9 Transcription Factor in Potato. PLANTS (BASEL, SWITZERLAND) 2024; 13:723. [PMID: 38475569 DOI: 10.3390/plants13050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding small-molecule RNAs that usually regulate the expression of target genes at the post-transcriptional level. miR156 is one of a class of evolutionarily highly conserved miRNA families. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor is one of the target genes that is regulated by miR156. SPL transcription factors are involved in regulating plant growth and development, hormone response, stress response, and photosynthesis. In the present study, transgenic potato plants with overexpressed miR156 were obtained via the Agrobacterium-mediated transformation method. The results showed that the expression levels of the target gene, StSPL9, were all downregulated in the transgenic plants with overexpressed Stu-miR156. Compared with those of the control plants, the plant height and root length of the transgenic plants were significantly decreased, while the number of lateral roots was significantly increased. These results revealed that the miR156/SPLs module was involved in regulating potato plant height and root growth.
Collapse
Affiliation(s)
- Hongyu Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengyan Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
46
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. New insights into QTNs and potential candidate genes governing rice yield via a multi-model genome-wide association study. BMC PLANT BIOLOGY 2024; 24:124. [PMID: 38373874 PMCID: PMC10877931 DOI: 10.1186/s12870-024-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the globally important staple food crops, and yield-related traits are prerequisites for improved breeding efficiency in rice. Here, we used six different genome-wide association study (GWAS) models for 198 accessions, with 553,229 single nucleotide markers (SNPs) to identify the quantitative trait nucleotides (QTNs) and candidate genes (CGs) governing rice yield. RESULTS Amongst the 73 different QTNs in total, 24 were co-localized with already reported QTLs or loci in previous mapping studies. We obtained fifteen significant QTNs, pathway analysis revealed 10 potential candidates within 100kb of these QTNs that are predicted to govern plant height, days to flowering, and plot yield in rice. Based on their superior allelic information in 20 elite and 6 inferior genotypes, we found a higher percentage of superior alleles in the elite genotypes in comparison to inferior genotypes. Further, we implemented expression analysis and enrichment analysis enabling the identification of 73 candidate genes and 25 homologues of Arabidopsis, 19 of which might regulate rice yield traits. Of these candidate genes, 40 CGs were found to be enriched in 60 GO terms of the studied traits for instance, positive regulator metabolic process (GO:0010929), intracellular part (GO:0031090), and nucleic acid binding (GO:0090079). Haplotype and phenotypic variation analysis confirmed that LOC_OS09G15770, LOC_OS02G36710 and LOC_OS02G17520 are key candidates associated with rice yield. CONCLUSIONS Overall, we foresee that the QTNs, putative candidates elucidated in the study could summarize the polygenic regulatory networks controlling rice yield and be useful for breeding high-yielding varieties.
Collapse
Grants
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India.
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), South Asia Hub, ICRISAT, Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | | |
Collapse
|
47
|
Kaur H, Manchanda P, Sidhu GS, Chhuneja P. Genome-wide identification and characterization of flowering genes in Citrus sinensis (L.) Osbeck: a comparison among C. Medica L., C. Reticulata Blanco, C. Grandis (L.) Osbeck and C. Clementina. BMC Genom Data 2024; 25:20. [PMID: 38378481 PMCID: PMC10880302 DOI: 10.1186/s12863-024-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Flowering plays an important role in completing the reproductive cycle of plants and obtaining next generation of plants. In case of citrus, it may take more than a year to achieve progeny. Therefore, in order to fasten the breeding processes, the juvenility period needs to be reduced. The juvenility in plants is regulated by set of various flowering genes. The citrus fruit and leaves possess various medicinal properties and are subjected to intensive breeding programs to produce hybrids with improved quality traits. In order to break juvenility in Citrus, it is important to study the role of flowering genes. The present study involved identification of genes regulating flowering in Citrus sinensis L. Osbeck via homology based approach. The structural and functional characterization of these genes would help in targeting genome editing techniques to induce mutations in these genes for producing desirable results. RESULTS A total of 43 genes were identified which were located on all the 9 chromosomes of citrus. The in-silico analysis was performed to determine the genetic structure, conserved motifs, cis-regulatory elements (CREs) and phylogenetic relationship of the genes. A total of 10 CREs responsible for flowering were detected in 33 genes and 8 conserved motifs were identified in all the genes. The protein structure, protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to study the functioning of these genes which revealed the involvement of flowering proteins in circadian rhythm pathways. The gene ontology (GO) and gene function analysis was performed to functionally annotate the genes. The structure of the genes and proteins were also compared among other Citrus species to study the evolutionary relationship among them. The expression study revealed the expression of flowering genes in floral buds and ovaries. The qRT-PCR analysis revealed that the flowering genes were highly expressed in bud stage, fully grown flower and early stage of fruit development. CONCLUSIONS The findings suggested that the flowering genes were highly conserved in citrus species. The qRT-PCR analysis revealed the tissue specific expression of flowering genes (CsFT, CsCO, CsSOC, CsAP, CsSEP and CsLFY) which would help in easy detection and targeting of genes through various forward and reverse genetic approaches.
Collapse
Affiliation(s)
- Harleen Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India.
| | - Gurupkar S Sidhu
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| |
Collapse
|
48
|
Wu JW, Zhao ZY, Hu RC, Huang YF. Genome-wide identification, stress- and hormone-responsive expression characteristics, and regulatory pattern analysis of Scutellaria baicalensis SbSPLs. PLANT MOLECULAR BIOLOGY 2024; 114:20. [PMID: 38363403 PMCID: PMC10873456 DOI: 10.1007/s11103-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024]
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.
Collapse
Affiliation(s)
- Jia-Wen Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150000, China
| | - Zi-Yi Zhao
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Ren-Chuan Hu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Yun-Feng Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| |
Collapse
|
49
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
50
|
Yan X, Yuan X, Lv J, Zhang B, Huang Y, Li Q, Ma J, Li Y, Wang X, Li Y, Yu Y, Liu Q, Liu T, Mi W, Dong C. Molecular basis of SAP05-mediated ubiquitin-independent proteasomal degradation of transcription factors. Nat Commun 2024; 15:1170. [PMID: 38326322 PMCID: PMC10850148 DOI: 10.1038/s41467-024-45521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
SAP05, a secreted effector by the obligate parasitic bacteria phytoplasma, bridges host SPL and GATA transcription factors (TFs) to the 26 S proteasome subunit RPN10 for ubiquitination-independent degradation. Here, we report the crystal structures of SAP05 in complex with SPL5, GATA18 and RPN10, which provide detailed insights into the protein-protein interactions involving SAP05. SAP05 employs two opposing lobes with an acidic path and a hydrophobic path to contact TFs and RPN10, respectively. Our crystal structures, in conjunction with mutagenesis and degradation assays, reveal that SAP05 targets plant GATAs but not animal GATAs dependent on their direct salt-bridged electrostatic interactions. Additionally, SAP05 hijacks plant RPN10 but not animal RPN10 due to structural steric hindrance and the key hydrophobic interactions. This study provides valuable molecular-level information into the modulation of host proteins to prevent insect-borne diseases.
Collapse
Affiliation(s)
- Xiaojie Yan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xinxin Yuan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianke Lv
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bing Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yongle Huang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Qianqian Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jinfeng Ma
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yanran Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaolu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Yao Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Quanyan Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tong Liu
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wenyi Mi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Cheng Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China.
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|