1
|
Guercio AM, Gilio AK, Pawlak J, Shabek N. Structural insights into rice KAI2 receptor provide functional implications for perception and signal transduction. J Biol Chem 2024; 300:107593. [PMID: 39032651 PMCID: PMC11350264 DOI: 10.1016/j.jbc.2024.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
KAI2 receptors, classified as plant α/β hydrolase enzymes, are capable of perceiving smoke-derived butenolide signals and endogenous yet unidentified KAI2-ligands (KLs). While the number of functional KAI2 receptors varies among land plant species, rice has only one KAI2 gene. Rice, a significant crop and representative of grasses, relies on KAI2-mediated Arbuscular mycorrhiza (AM) symbioses to flourish in traditionally arid and nutrient-poor environments. This study presents the first crystal structure of an active rice (Oryza sativa, Os) KAI2 hydrolase receptor. Our structural and biochemical analyses uncover grass-unique pocket residues influencing ligand sensitivity and hydrolytic activity. Through structure-guided analysis, we identify a specific residue whose mutation enables the increase or decrease of ligand perception, catalytic activity, and signal transduction. Furthermore, we investigate OsKAI2-mediated signaling by examining its ability to form a complex with its binding partner, the F-box protein DWARF3 (D3) ubiquitin ligase and subsequent degradation of the target substrate OsSMAX1, demonstrating the significant role of hydrophobic interactions in the OsKAI2-D3 interface. This study provides new insights into the diverse and pivotal roles of the OsKAI2 signaling pathway in the plant kingdom, particularly in grasses.
Collapse
Affiliation(s)
- Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA
| | - Amelia K Gilio
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA
| | - Jacob Pawlak
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA.
| |
Collapse
|
2
|
Chang W, Qiao Q, Li Q, Li X, Li Y, Huang X, Wang Y, Li J, Wang B, Wang L. Non-transcriptional regulatory activity of SMAX1 and SMXL2 mediates karrikin-regulated seedling response to red light in Arabidopsis. MOLECULAR PLANT 2024; 17:1054-1072. [PMID: 38807366 DOI: 10.1016/j.molp.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/09/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways. The transcriptional repressor proteins SUPPRESSOR OF MAX2 1 (SMAX1), SMAX1-like2 (SMXL2), and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or by inhibiting the activities of transcription factors. In this study, we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis. We discovered that SMAX1 and SMXL2 with mutations in their ethylene-response factor-associated amphiphilic repression (EAR) motif had undetectable or weak transcriptional repression activities but still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of the smax1 smxl2 mutant. SMAX1 and SMXL2 directly interact with PHYTOCHROME INTERACTION FACTOR 4 (PIF4) and PIF5 to enhance their protein stability by interacting with phytochrome B (phyB) and suppressing the association of phyB with PIF4 and PIF5. The karrikin-responsive genes were then identified by treatment with GR24ent-5DS, a GR24 analog showing karrikin activity. Interestingly, INDOLE-3-ACETIC ACID INDUCIBLE 29 (IAA29) expression was repressed by GR24ent-5DS treatment in a PIF4- and PIF5-dependent and EAR-independent manner, whereas KARRIKIN UPREGULATED F-BOX 1 (KUF1) expression was induced in a PIF4- and PIF5-independent and EAR-dependent manner. Furthermore, the non-transcriptional regulatory activity of SMAX1, which is independent of the EAR motif, had a global effect on gene expression. Taken together, these results indicate that non-transcriptional regulatory activities of SMAX1 and SMXL2 mediate karrikin-regulated seedling response to red light.
Collapse
Affiliation(s)
- Wenwen Chang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Qiao
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtian Li
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Xin Li
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Xiahe Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Bing Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Wang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Park YJ, Nam BE, Park CM. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:865-882. [PMID: 38116738 DOI: 10.1111/jipb.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Bo Eun Nam
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
4
|
Zhang J, Zhang H, Luo S, Ye L, Wang C, Wang X, Tian C, Sun Y. Analysis and Functional Prediction of Core Bacteria in the Arabidopsis Rhizosphere Microbiome under Drought Stress. Microorganisms 2024; 12:790. [PMID: 38674734 PMCID: PMC11052302 DOI: 10.3390/microorganisms12040790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The effects of global warming, population growth, and economic development are increasing the frequency of extreme weather events, such as drought. Among abiotic stresses, drought has the greatest impact on soil biological activity and crop yields. The rhizosphere microbiota, which represents a second gene pool for plants, may help alleviate the effects of drought on crops. In order to investigate the structure and diversity of the bacterial communities on drought stress, this study analyzed the differences in the bacterial communities by high-throughput sequencing and bioinformatical analyses in the rhizosphere of Arabidopsis thaliana under normal and drought conditions. Based on analysis of α and β diversity, the results showed that drought stress had no significant effect on species diversity between groups, but affected species composition. Difference analysis of the treatments showed that the bacteria with positive responses to drought stress were Burkholderia-Caballeronia-Paraburkholderia (BCP) and Streptomyces. Drought stress reduced the complexity of the rhizosphere bacterial co-occurrence network. Streptomyces was at the core of the network in both the control and drought treatments, whereas the enrichment of BCP under drought conditions was likely due to a decrease in competitors. Functional prediction showed that the core bacteria metabolized a wide range of carbohydrates, such as pentose, glycans, and aromatic compounds. Our results provide a scientific and theoretical basis for the use of rhizosphere microbial communities to alleviate plant drought stress and the further exploration of rhizosphere microbial interactions under drought stress.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Hengfei Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Shouyang Luo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| | - Libo Ye
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Changji Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| | - Xiaonan Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| | - Yu Sun
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| |
Collapse
|
5
|
Meng Y, Lv Q, Li L, Wang B, Chen L, Yang W, Lei Y, Xie Y, Li X. E3 ubiquitin ligase TaSDIR1-4A activates membrane-bound transcription factor TaWRKY29 to positively regulate drought resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:987-1000. [PMID: 38018512 PMCID: PMC10955488 DOI: 10.1111/pbi.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
Drought is a deleterious abiotic stress factor that constrains crop growth and development. Post-translational modification of proteins mediated by the ubiquitin-proteasome system is an effective strategy for directing plant responses to stress, but the regulatory mechanisms in wheat remain unclear. In this study, we showed that TaSDIR1-4A is a positive modulator of the drought response. Overexpression of TaSDIR1-4A increased the hypersensitivity of stomata, root length and endogenous abscisic acid (ABA) content under drought conditions. TaSDIR1-4A encodes a C3H2C3-type RING finger protein with E3 ligase activity. Amino acid mutation in its conserved domain led to loss of activity and altered the subcellular localization. The membrane-bound transcription factor TaWRKY29 was identified by yeast two-hybrid screening, and it was confirmed as interacting with TaSDIR1-4A both in vivo and in vitro. TaSDIR1-4A mediated the polyubiquitination and proteolysis of the C-terminal amino acid of TaWRKY29, and its translocation from the plasma membrane to the nucleus. Activated TaWRKY29 bound to the TaABI5 promoter to stimulate its expression, thereby positively regulating the ABA signalling pathway and drought response. Our findings demonstrate the positive role of TaSDIR1-4A in drought tolerance and provide new insights into the involvement of UPS in the wheat stress response.
Collapse
Affiliation(s)
- Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yanhong Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
6
|
Kamran M, Melville KT, Waters MT. Karrikin signalling: impacts on plant development and abiotic stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1174-1186. [PMID: 38001035 PMCID: PMC10860534 DOI: 10.1093/jxb/erad476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023]
Abstract
Plants rely upon a diverse range of metabolites to control growth and development, and to overcome stress that results from suboptimal conditions. Karrikins (KARs) are a class of butenolide compounds found in smoke that stimulate seed germination and regulate various developmental processes in plants. KARs are perceived via a plant α/β-hydrolase called KARRIKIN INSENSITIVE2 (KAI2), which also functions as a receptor for a postulated phytohormone, provisionally termed KAI2 ligand (KL). Considered natural analogues of KL, KARs have been extensively studied for their effects on plant growth and their crosstalk with plant hormones. The perception and response pathway for KAR-KL signalling is closely related to that of strigolactones, another class of butenolides with numerous functions in regulating plant growth. KAR-KL signalling influences seed germination, seedling photomorphogenesis, root system architecture, abiotic stress responses, and arbuscular mycorrhizal symbiosis. Here, we summarize current knowledge of KAR-KL signalling, focusing on its role in plant development, its effects on stress tolerance, and its interaction with other signalling mechanisms.
Collapse
Affiliation(s)
- Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Kim T Melville
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Melville KT, Kamran M, Yao J, Costa M, Holland M, Taylor NL, Fritz G, Flematti GR, Waters MT. Perception of butenolides by Bacillus subtilis via the α/β hydrolase RsbQ. Curr Biol 2024; 34:623-631.e6. [PMID: 38183985 DOI: 10.1016/j.cub.2023.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
The regulation of behavioral and developmental decisions by small molecules is common to all domains of life. In plants, strigolactones and karrikins are butenolide growth regulators that influence several aspects of plant growth and development, as well as interactions with symbiotic fungi.1,2,3 DWARF14 (D14) and KARRIKIN INSENSITIVE2 (KAI2) are homologous enzyme-receptors that perceive strigolactones and karrikins, respectively, and that require hydrolase activity to effect signal transduction.4,5,6,7 RsbQ, a homolog of D14 and KAI2 from the gram-positive bacterium Bacillus subtilis, regulates growth responses to nutritional stress via the alternative transcription factor SigmaB (σB).8,9 However, the molecular function of RsbQ is unknown. Here, we show that RsbQ perceives butenolide compounds that are bioactive in plants. RsbQ is thermally destabilized by the synthetic strigolactone GR24 and its desmethyl butenolide equivalent dGR24. We show that, like D14 and KAI2, RsbQ is a functional butenolide hydrolase that undergoes covalent modification of the catalytic histidine residue. Exogenous application of both GR24 and dGR24 inhibited the endogenous signaling function of RsbQ in vivo, with dGR24 being 10-fold more potent. Application of dGR24 to B. subtilis phenocopied loss-of-function rsbQ mutations and led to a significant downregulation of σB-regulated transcripts. We also discovered that exogenous butenolides promoted the transition from planktonic to biofilm growth. Our results suggest that butenolides may serve as inter-kingdom signaling compounds between plants and bacteria to help shape rhizosphere communities.
Collapse
Affiliation(s)
- Kim T Melville
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Jiaren Yao
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Marianne Costa
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Madeleine Holland
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Nicolas L Taylor
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia; Institute of Agriculture, The University of Western Australia, Perth WA 6009, Australia
| | - Georg Fritz
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, Perth WA 6009, Australia.
| |
Collapse
|
8
|
Li S, Baldwin G, Yang C, Lu R, Meng S, Huang J, Wang M, Baldwin IT. Field-work reveals a novel function for MAX2 in a native tobacco's high-light adaptions. PLANT, CELL & ENVIRONMENT 2024; 47:230-245. [PMID: 37750501 DOI: 10.1111/pce.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Laboratory studies have revealed that strigolatone (SL) and karrikin (KAR) signalling mediate responses to abiotic and biotic stresses, and reshape branching architecture that could increase reproductive performance and crop yields. To understand the ecological function of SL and KAR signalling, transgenic lines of wild tobacco Nicotiana attenuata, silenced in SL/KAR biosynthesis/signalling were grown in the glasshouse and in two field plots in the Great Basin Desert in Utah over four field seasons. Of the lines silenced in SL and KAR signalling components (irMAX2, irD14, irKAI2 and irD14 × irKAI2 plants), which exhibited the expected increases in shoot branching, only irMAX2 plants showed a strong leaf-bleaching phenotype when grown in the field. In the field, irMAX2 plants had lower sugar and higher leaf amino acid contents, lower lifetime fitness and were more susceptible to herbivore attack compared to wild-type plants. These irMAX2 phenotypes were not observed in glasshouse-grown plants. Transcriptomic analysis revealed dramatic responses to high-light intensity in irMAX2 leaves in the field: lutein contents decreased, and transcriptional responses to high-intensity light, singlet oxygen and hydrogen peroxide increased. PAR and UV-B manipulations in the field revealed that the irMAX2 bleaching phenotype is reversed by decreasing PAR, but not UV-B fluence. We propose that NaMAX2 functions in high-light adaptation and fitness optimisation by regulating high-light responses independently of its roles in the SL and KAR signalling pathways. The work provides another example of the value of studying the function of genes in the complex environments in which plants evolved, namely nature.
Collapse
Affiliation(s)
- Suhua Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ruirui Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuaishuai Meng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
9
|
Zhao M, Li M, Huang M, Liang C, Chen D, Hwang I, Zhang W, Wang M. The cysteine-rich receptor-like kinase CRK4 contributes to the different drought stress response between Columbia and Landsberg erecta. PLANT, CELL & ENVIRONMENT 2023; 46:3258-3272. [PMID: 37427814 DOI: 10.1111/pce.14665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
The natural variation between Arabidopsis (Arabidopsis thaliana) ecotypes Columbia (Col) and Landsberg erecta (Ler) strongly affects abscisic acid (ABA) signalling and drought tolerance. Here, we report that the cysteine-rich receptor-like protein kinase CRK4 is involved in regulating ABA signalling, which contributes to the differences in drought stress tolerance between Col-0 and Ler-0. Loss-of-function crk4 mutants in the Col-0 background were less drought tolerant than Col-0, whereas overexpressing CRK4 in the Ler-0 background partially to completely restored the drought-sensitive phenotype of Ler-0. F1 plants derived from a cross between the crk4 mutant and Ler-0 showed an ABA-insensitive phenotype with respect to stomatal movement, along with reduced drought tolerance like Ler-0. We demonstrate that CRK4 interacts with the U-box E3 ligase PUB13 and enhances its abundance, thus promoting the degradation of ABA-INSENSITIVE 1 (ABI1), a negative regulator of ABA signalling. Together, these findings reveal an important regulatory mechanism for modulating ABI1 levels by the CRK4-PUB13 module to fine-tune drought tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Min Zhao
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Mengdan Li
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Meng Huang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chaochao Liang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Biju S, Fuentes S, Gupta D. Novel insights into the mechanism(s) of silicon-induced drought stress tolerance in lentil plants revealed by RNA sequencing analysis. BMC PLANT BIOLOGY 2023; 23:498. [PMID: 37848813 PMCID: PMC10580624 DOI: 10.1186/s12870-023-04492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Lentil is an essential cool-season food legume that offers several benefits in human nutrition and cropping systems. Drought stress is the major environmental constraint affecting lentil plants' growth and productivity by altering various morphological, physiological, and biochemical traits. Our previous research provided physiological and biochemical evidence showing the role of silicon (Si) in alleviating drought stress in lentil plants, while the molecular mechanisms are still unidentified. Understanding the molecular mechanisms of Si-mediated drought stress tolerance can provide fundamental information to enhance our knowledge of essential gene functions and pathways modulated by Si during drought stress in plants. Thus, the present study compared the transcriptomic characteristics of two lentil genotypes (drought tolerant-ILL6002; drought sensitive-ILL7537) under drought stress and investigated the gene expression in response to Si supplementation using high-throughput RNA sequencing. RESULTS This study identified 7164 and 5576 differentially expressed genes (DEGs) from drought-stressed lentil genotypes (ILL 6002 and ILL 7537, respectively), with Si treatment. RNA sequencing results showed that Si supplementation could alter the expression of genes related to photosynthesis, osmoprotection, antioxidant systems and signal transduction in both genotypes under drought stress. Furthermore, these DEGs from both genotypes were found to be associated with the metabolism of carbohydrates, lipids and proteins. The identified DEGs were also linked to cell wall biosynthesis and vasculature development. Results suggested that Si modulated the dynamics of biosynthesis of alkaloids and flavonoids and their metabolism in drought-stressed lentil genotypes. Drought-recovery-related DEGs identified from both genotypes validated the role of Si as a drought stress alleviator. This study identified different possible defense-related responses mediated by Si in response to drought stress in lentil plants including cellular redox homeostasis by reactive oxygen species (ROS), cell wall reinforcement by the deposition of cellulose, lignin, xyloglucan, chitin and xylan, secondary metabolites production, osmotic adjustment and stomatal closure. CONCLUSION Overall, the results suggested that a coordinated interplay between various metabolic pathways is required for Si to induce drought tolerance. This study identified potential genes and different defence mechanisms involved in Si-induced drought stress tolerance in lentil plants. Si supplementation altered various metabolic functions like photosynthesis, antioxidant defence system, osmotic balance, hormonal biosynthesis, signalling, amino acid biosynthesis and metabolism of carbohydrates and lipids under drought stress. These novel findings validated the role of Si in drought stress mitigation and have also provided an opportunity to enhance our understanding at the genomic level of Si's role in alleviating drought stress in plants.
Collapse
Affiliation(s)
- Sajitha Biju
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Sigfredo Fuentes
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dorin Gupta
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
11
|
Varshney K, Gutjahr C. KAI2 Can Do: Karrikin Receptor Function in Plant Development and Response to Abiotic and Biotic Factors. PLANT & CELL PHYSIOLOGY 2023; 64:984-995. [PMID: 37548562 PMCID: PMC10504578 DOI: 10.1093/pcp/pcad077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
The α/β hydrolase KARRIKIN INSENSITIVE 2 (KAI2) functions as a receptor for a yet undiscovered phytohormone, provisionally termed KAI2 ligand (KL). In addition, it perceives karrikin, a butenolide compound found in the smoke of burnt plant material. KAI2-mediated signaling is involved in regulating seed germination and in shaping seedling and adult plant morphology, both above and below ground. It also governs responses to various abiotic stimuli and stresses and shapes biotic interactions. KAI2-mediated signaling is being linked to an elaborate cross-talk with other phytohormone pathways such as auxin, gibberellin, abscisic acid, ethylene and salicylic acid signaling, in addition to light and nutrient starvation signaling. Further connections will likely be revealed in the future. This article summarizes recent advances in unraveling the function of KAI2-mediated signaling and its interaction with other signaling pathways.
Collapse
Affiliation(s)
- Kartikye Varshney
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Caroline Gutjahr
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
12
|
Seo PJ, Lee HG, Choi HY, Lee S, Park CM. Complexity of SMAX1 signaling during seedling establishment. TRENDS IN PLANT SCIENCE 2023; 28:902-912. [PMID: 37069002 DOI: 10.1016/j.tplants.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Karrikins (KARs) are small butenolide compounds identified in the smoke of burning vegetation. Along with the stimulating effects on seed germination, KARs also regulate seedling vigor and adaptive behaviors, such as seedling morphogenesis, root hair development, and stress acclimation. The pivotal KAR signaling repressor, SUPPRESSOR OF MAX2 1 (SMAX1), plays central roles in these developmental and morphogenic processes through an extensive signaling network that governs seedling responses to endogenous and environmental cues. Here, we summarize the versatile roles of SMAX1 reported in recent years and discuss how SMAX1 integrates multiple growth hormone signals into optimizing seedling establishment. We also discuss the evolutionary relevance of the SMAX1-mediated signaling pathways during the colonization of aqueous plants to terrestrial environments.
Collapse
Affiliation(s)
- Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hye-Young Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sangmin Lee
- Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
13
|
Korek M, Marzec M. Strigolactones and abscisic acid interactions affect plant development and response to abiotic stresses. BMC PLANT BIOLOGY 2023; 23:314. [PMID: 37308831 DOI: 10.1186/s12870-023-04332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Strigolactones (SL) are the youngest group of plant hormones responsible for shaping plant architecture, especially the branching of shoots. However, recent studies provided new insights into the functioning of SL, confirming their participation in regulating the plant response to various types of abiotic stresses, including water deficit, soil salinity and osmotic stress. On the other hand, abscisic acid (ABA), commonly referred as a stress hormone, is the molecule that crucially controls the plant response to adverse environmental conditions. Since the SL and ABA share a common precursor in their biosynthetic pathways, the interaction between both phytohormones has been largely studied in the literature. Under optimal growth conditions, the balance between ABA and SL content is maintained to ensure proper plant development. At the same time, the water deficit tends to inhibit SL accumulation in the roots, which serves as a sensing mechanism for drought, and empowers the ABA production, which is necessary for plant defense responses. The SL-ABA cross-talk at the signaling level, especially regarding the closing of the stomata under drought conditions, still remains poorly understood. Enhanced SL content in shoots is likely to stimulate the plant sensitivity to ABA, thus reducing the stomatal conductance and improving the plant survival rate. Besides, it was proposed that SL might promote the closing of stomata in an ABA-independent way. Here, we summarize the current knowledge regarding the SL and ABA interactions by providing new insights into the function, perception and regulation of both phytohormones during abiotic stress response of plants, as well as revealing the gaps in the current knowledge of SL-ABA cross-talk.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland.
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland
| |
Collapse
|
14
|
Liu M, Shan Q, Ding E, Gu T, Gong B. Karrikin increases tomato cold tolerance via strigolactone and the abscisic acid signaling network. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111720. [PMID: 37120034 DOI: 10.1016/j.plantsci.2023.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
As a class of biostimulants, karrikins (KARs) were first identified from plant-derived smoke to regulate plant growth, development, and stress tolerance. However, the roles of KARs in plant cold tolerance and their crosstalk with strigolactones (SLs) and abscisic acid (ABA) remain elusive. We studied the interaction among KAR, SLs, and ABA in cold acclimatization with KAI2-, MAX1-, SnRK2.5-silenced, or cosilenced plant materials. KAI2 is involved in smoke-water- (SW-) and KAR-mediated cold tolerance. MAX1 acts downstream of KAR in cold acclimation. ABA biosynthesis and sensitivity are regulated by KAR and SLs, which improve cold acclimation through the SnRK2.5 component. The physiological mechanisms of SW and KAR in improving growth, yield, and tolerance under a long-term sublow temperature environment were also studied. SW and KAR were shown to improve tomato growth and yield under sublow temperature conditions by regulating nutritional uptake, leaf temperature control, photosynthetic defense, ROS scavenging, and CBF transcriptional activation. Together, SW, which functions via the KAR-mediated SL and ABA signaling network, has potential application value for increasing cold tolerance in tomato production.
Collapse
Affiliation(s)
- Minghui Liu
- State Key Laboratory of Crop Biology / College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Qing Shan
- State Key Laboratory of Crop Biology / College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Erqiao Ding
- State Key Laboratory of Crop Biology / College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Tingting Gu
- College of Agricultural Sciences and Technology, Shandong Agriculture and Engineering University, Ji'nan 250100, China
| | - Biao Gong
- State Key Laboratory of Crop Biology / College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
15
|
Waters MT, Nelson DC. Karrikin perception and signalling. THE NEW PHYTOLOGIST 2023; 237:1525-1541. [PMID: 36333982 DOI: 10.1111/nph.18598] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Karrikins (KARs) are a class of butenolide compounds found in smoke that were first identified as seed germination stimulants for fire-following species. Early studies of KARs classified the germination and postgermination responses of many plant species and investigated crosstalk with plant hormones that regulate germination. The discovery that Arabidopsis thaliana responds to KARs laid the foundation for identifying mutants with altered KAR responses. Genetic analysis of KAR signalling revealed an unexpected link to strigolactones (SLs), a class of carotenoid-derived plant hormones. Substantial progress has since been made towards understanding how KARs are perceived and regulate plant growth, in no small part due to advances in understanding SL perception. KAR and SL signalling systems are evolutionarily related and retain a high degree of similarity. There is strong evidence that KARs are natural analogues of an endogenous signal(s), KAI2 ligand (KL), which remains unknown. KAR/KL signalling regulates many developmental processes in plants including germination, seedling photomorphogenesis, and root and root hair growth. KAR/KL signalling also affects abiotic stress responses and arbuscular mycorrhizal symbiosis. Here, we summarise the current knowledge of KAR/KL signalling and discuss current controversies and unanswered questions in this field.
Collapse
Affiliation(s)
- Mark T Waters
- School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
16
|
Komatsu A, Kodama K, Mizuno Y, Fujibayashi M, Naramoto S, Kyozuka J. Control of vegetative reproduction in Marchantiapolymorpha by the KAI2-ligand signaling pathway. Curr Biol 2023; 33:1196-1210.e4. [PMID: 36863344 DOI: 10.1016/j.cub.2023.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
In vegetative reproduction of Marchantia polymorpha (M. polymorpha), propagules, called gemmae, are formed in gemma cups. Despite its significance for survival, control of gemma and gemma cup formation by environmental cues is not well understood. We show here that the number of gemmae formed in a gemma cup is a genetic trait. Gemma formation starts from the central region of the floor of the gemma cup, proceeds to the periphery, and terminates when the appropriate number of gemmae is initiated. The MpKARRIKIN INSENSITIVE2 (MpKAI2)-dependent signaling pathway promotes gemma cup formation and gemma initiation. The number of gemmae in a cup is controlled by modulating the ON/OFF switch of the KAI2-dependent signaling. Termination of the signaling results in the accumulation of MpSMXL, a suppressor protein. In the Mpsmxl mutants, gemma initiation continues, leading to the formation of a highly increased number of gemmae in a cup. Consistent with its function, the MpKAI2-dependent signaling pathway is active in gemma cups where gemmae initiate, as well as in the notch region of the mature gemma and midrib of the ventral side of the thallus. In this work, we also show that GEMMA CUP-ASSOCIATED MYB1 works downstream of this signaling pathway to promote gemma cup formation and gemma initiation. We also found that the availability of potassium affects gemma cup formation independently from the KAI2-dependent signaling pathway in M. polymorpha. We propose that the KAI2-dependent signaling pathway functions to optimize vegetative reproduction by adapting to the environment in M. polymorpha.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Mizuki Fujibayashi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
17
|
Zheng X, Liu F, Yang X, Li W, Chen S, Yue X, Jia Q, Sun X. The MAX2-KAI2 module promotes salicylic acid-mediated immune responses in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36738234 DOI: 10.1111/jipb.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Arabidopsis MORE AXILLARY GROWTH2 (MAX2) is a key component in the strigolactone (SL) and karrikin (KAR) signaling pathways and regulates the degradation of SUPPRESSOR OF MAX2 1/SMAX1-like (SMAX1/SMXL) proteins, which are transcriptional co-repressors that regulate plant architecture, as well as abiotic and biotic stress responses. The max2 mutation reduces resistance against Pseudomonas syringae pv. tomato (Pst). To uncover the mechanism of MAX2-mediated resistance, we evaluated the resistance of various SL and KAR signaling pathway mutants. The resistance of SL-deficient mutants and of dwarf 14 (d14) was similar to that of the wild-type, whereas the resistance of the karrikin insensitive 2 (kai2) mutant was compromised, demonstrating that the KAR signaling pathway, not the SL signaling pathway, positively regulates the immune response. We measured the resistance of smax1 and smxl mutants, as well as the double, triple, and quadruple mutants with max2, which revealed that both the smax1 mutant and smxl6/7/8 triple mutant rescue the low resistance phenotype of max2 and that SMAX1 accumulation diminishes resistance. The susceptibility of smax1D, containing a degradation-insensitive form of SMAX1, further confirmed the SMAX1 function in the resistance. The relationship between the accumulation of SMAX1/SMXLs and disease resistance suggested that the inhibitory activity of SMAX1 to resistance requires SMXL6/7/8. Moreover, the exogenous application of KAR2 enhanced resistance against Pst, but KAR-induced resistance depended on salicylic acid (SA) signaling. Inhibition of karrikin signaling delayed SA-mediated defense responses and inhibited pathogen-induced protein biosynthesis. Together, we propose that the MAX2-KAI2-SMAX1 complex regulates resistance with the assistance of SMXL6/7/8 and SA signaling and that SMAX1/SMXLs possibly form a multimeric complex with their target transcription factors to fine tune immune responses.
Collapse
Affiliation(s)
- Xiujuan Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Fangqian Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xianfeng Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Sique Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xinwu Yue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xinli Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| |
Collapse
|
18
|
Mostofa MG, Abdelrahman M, Rahman MM, Tran CD, Nguyen KH, Watanabe Y, Itouga M, Li W, Wang Z, Mochida K, Tran LSP. Karrikin Receptor KAI2 Coordinates Salt Tolerance Mechanisms in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1927-1942. [PMID: 35997763 DOI: 10.1093/pcp/pcac121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/13/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Plants activate a myriad of signaling cascades to tailor adaptive responses under environmental stresses, such as salinity. While the roles of exogenous karrikins (KARs) in salt stress mitigation are well comprehended, genetic evidence of KAR signaling during salinity responses in plants remains unresolved. Here, we explore the functions of the possible KAR receptor KARRIKIN-INSENSITIVE2 (KAI2) in Arabidopsis thaliana tolerance to salt stress by investigating comparative responses of wild-type (WT) and kai2-mutant plants under a gradient of NaCl. Defects in KAI2 functions resulted in delayed and inhibited cotyledon opening in kai2 seeds compared with WT seeds, suggesting that KAI2 played an important role in enhancing seed germination under salinity. Salt-stressed kai2 plants displayed more phenotypic aberrations, biomass reduction, water loss and oxidative damage than WT plants. kai2 shoots accumulated significantly more Na+ and thus had a lower K+/Na+ ratio, than WT, indicating severe ion toxicity in salt-stressed kai2 plants. Accordingly, kai2 plants displayed a lower expression of genes associated with Na+ homeostasis, such as SALT OVERLY SENSITIVE (SOS) 1, SOS2, HIGH-AFFINITY POTASSIUM TRANSPORTER 1;1 (HKT1;1) and CATION-HYDROGEN EXCHANGER 1 (NHX1) than WT plants. WT plants maintained a better glutathione level, glutathione-related redox status and antioxidant enzyme activities relative to kai2 plants, implying KAI2's function in oxidative stress mitigation in response to salinity. kai2 shoots had lower expression levels of genes involved in the biosynthesis of strigolactones (SLs), salicylic acid and jasmonic acid and the signaling of abscisic acid and SLs than those of WT plants, indicating interactive functions of KAI2 signaling with other hormone signaling in modulating plant responses to salinity. Collectively, these results underpin the likely roles of KAI2 in the alleviation of salinity effects in plants by regulating several physiological and biochemical mechanisms involved in ionic and osmotic balance, oxidative stress tolerance and hormonal crosstalk.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Mostafa Abdelrahman
- Faculty of Science, Galala University, Suze, El Sokhna 43511, Egypt
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Cuong Duy Tran
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong St., Hanoi 100000, Vietnam
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong St., Hanoi 100000, Vietnam
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Misao Itouga
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Beijing 130102, China
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Zhe Wang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
19
|
Abdelrahman M, Mostofa MG, Tran CD, El-Sayed M, Li W, Sulieman S, Tanaka M, Seki M, Tran LSP. The Karrikin Receptor Karrikin Insensitive2 Positively Regulates Heat Stress Tolerance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1914-1926. [PMID: 35880749 DOI: 10.1093/pcp/pcac112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the potential role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seedlings to high-temperature stress. We performed phenotypic, physiological and transcriptome analyses of Arabidopsis kai2 mutants and wild-type (WT) plants under control (kai2_C and WT_C, respectively) and 6- and 24-h heat stress conditions (kai2_H6, kai2_H24, WT_H6 and WT_H24, respectively) to understand the basis for KAI2-regulated heat stress tolerance. We discovered that the kai2 mutants exhibited hypersensitivity to high-temperature stress relative to WT plants, which might be associated with a more highly increased leaf surface temperature and cell membrane damage in kai2 mutant plants. Next, we performed comparative transcriptome analysis of kai2_C, kai2_H6, kai2_H24, WT_C, WT_H6 and WT_H24 to identify transcriptome differences between WT and kai2 mutants in response to heat stress. K-mean clustering of normalized gene expression separated the investigated genotypes into three clusters based on heat-treated and non-treated control conditions. Within each cluster, the kai2 mutants were separated from WT plants, implying that kai2 mutants exhibited distinct transcriptome profiles relative to WT plants. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed a repression in 'misfolded protein binding', 'heat shock protein binding', 'unfolded protein binding' and 'protein processing in endoplasmic reticulum' pathways, which was consistent with the downregulation of several genes encoding heat shock proteins and heat shock transcription factors in the kai2 mutant versus WT plants under control and heat stress conditions. Our findings suggest that chemical or genetic manipulation of KAI2 signaling may provide a novel way to improve heat tolerance in plants.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Faculty of Science, Galala University, Suez, El Sokhna 43511, Egypt
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Mohammad Golam Mostofa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Cuong Duy Tran
- Genetic Engineering Department, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham Van Dong Street, Hanoi 100000, Viet Nam
| | - Magdi El-Sayed
- Faculty of Science, Galala University, Suez, El Sokhna 43511, Egypt
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Khartoum North 13314, Sudan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198 Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198 Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813 Japan
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
20
|
Feng Z, Liang X, Tian H, Watanabe Y, Nguyen KH, Tran CD, Abdelrahman M, Xu K, Mostofa MG, Ha CV, Mochida K, Tian C, Tanaka M, Seki M, Liang Z, Miao Y, Tran LSP, Li W. SUPPRESSOR of MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) Negatively Regulate Drought Resistance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1900-1913. [PMID: 35681253 DOI: 10.1093/pcp/pcac080] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Recent investigations in Arabidopsis thaliana suggest that SUPPRESSOR of MORE AXILLARY GROWTH 2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) are negative regulators of karrikin (KAR) and strigolactone (SL) signaling during plant growth and development, but their functions in drought resistance and related mechanisms of action remain unclear. To understand the roles and mechanisms of SMAX1 and SMXL2 in drought resistance, we investigated the drought-resistance phenotypes and transcriptome profiles of smax1 smxl2 (s1,2) double-mutant plants in response to drought stress. The s1,2 mutant plants showed enhanced drought-resistance and lower leaf water loss when compared with wild-type (WT) plants. Transcriptome comparison of rosette leaves from the s1,2 mutant and the WT under normal and dehydration conditions suggested that the mechanism related to cuticle formation was involved in drought resistance. This possibility was supported by enhanced cuticle formation in the rosette leaves of the s1,2 mutant. We also found that the s1,2 mutant plants were more sensitive to abscisic acid in assays of stomatal closure, cotyledon opening, chlorophyll degradation and growth inhibition, and they showed a higher reactive oxygen species detoxification capacity than WT plants. In addition, the s1,2 mutant plants had longer root hairs and a higher root-to-shoot ratio than the WT plants, suggesting that the mutant had a greater capacity for water absorption than the WT. Taken together, our results indicate that SMAX1 and SMXL2 negatively regulate drought resistance, and disruption of these KAR- and SL-signaling-related genes may therefore provide a novel means for improving crop drought resistance.
Collapse
Affiliation(s)
- Zhonghui Feng
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
- College of Life Science, Baicheng Normal University, No. 57, Zhongxing West Road, Taobei District, Baicheng 137000, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xiaohan Liang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Hongtao Tian
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Kien Huu Nguyen
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Science, Pham Van Dong Street, Hanoi 100000, Vietnam
| | - Cuong Duy Tran
- Genetic Engineering Department, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham Van Dong Street, Hanoi 100000, Vietnam
| | - Mostafa Abdelrahman
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suze, New Galala 43511, Egypt
| | - Kun Xu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409, USA
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409, USA
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-tyo, Totsuka, Yokohama, 244-0813 Japan
- RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- School of Information and Data Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
| | - Chunjie Tian
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Zhengwei Liang
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409, USA
| | - Weiqiang Li
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| |
Collapse
|
21
|
Tripathi DK, Yadav SR, Mochida K, Tran LSP. Plant Growth Regulators: True Managers of Plant Life. PLANT & CELL PHYSIOLOGY 2023; 63:1757-1760. [PMID: 36478104 DOI: 10.1093/pcp/pcac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045 Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521 Japan
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
22
|
Xiang YH, Yu JJ, Liao B, Shan JX, Ye WW, Dong NQ, Guo T, Kan Y, Zhang H, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Lin HX. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. MOLECULAR PLANT 2022; 15:1908-1930. [PMID: 36303433 DOI: 10.1016/j.molp.2022.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Ongoing soil salinization drastically threatens crop growth, development, and yield worldwide. It is therefore crucial that we improve salt tolerance in rice by exploiting natural genetic variation. However, many salt-responsive genes confer undesirable phenotypes and therefore cannot be effectively applied to practical agricultural production. In this study, we identified a quantitative trait locus for salt tolerance from the African rice species Oryza glaberrima and named it as Salt Tolerance and Heading Date 1 (STH1). We found that STH1 regulates fatty acid metabolic homeostasis, probably by catalyzing the hydrolytic degradation of fatty acids, which contributes to salt tolerance. Meanwhile, we demonstrated that STH1 forms a protein complex with D3 and a vital regulatory factor in salt tolerance, OsHAL3, to regulate the protein abundance of OsHAL3 via the 26S proteasome pathway. Furthermore, we revealed that STH1 also serves as a co-activator with the floral integrator gene Heading date 1 to balance the expression of the florigen gene Heading date 3a under different circumstances, thus coordinating the regulation of salt tolerance and heading date. Notably, the allele of STH1 associated with enhanced salt tolerance and high yield is found in some African rice accessions but barely in Asian cultivars. Introgression of the STH1HP46 allele from African rice into modern rice cultivars is a desirable approach for boosting grain yield under salt stress. Collectively, our discoveries not only provide conceptual advances on the mechanisms of salt tolerance and synergetic regulation between salt tolerance and flowering time but also offer potential strategies to overcome the challenges resulted from increasingly serious soil salinization that many crops are facing.
Collapse
Affiliation(s)
- You-Huang Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Jun Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hai Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Chao Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
23
|
Trasoletti M, Visentin I, Campo E, Schubert A, Cardinale F. Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. PLANT, CELL & ENVIRONMENT 2022; 45:3611-3630. [PMID: 36207810 PMCID: PMC9828678 DOI: 10.1111/pce.14461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones are phytohormones with many attributed roles in development, and more recently in responses to environmental stress. We will review evidence of the latter in the frame of the classic distinction among the three main stress acclimation strategies (i.e., avoidance, tolerance and escape), by taking osmotic stress in its several facets as a non-exclusive case study. The picture we will sketch is that of a hormonal family playing important roles in each of the mechanisms tested so far, and influencing as well the build-up of environmental memory through priming. Thus, strigolactones appear to be backstage operators rather than frontstage players, setting the tune of acclimation responses by fitting them to the plant individual history of stress experience.
Collapse
Affiliation(s)
| | | | - Eva Campo
- DISAFA, PlantStressLabTurin UniversityTurinItaly
| | | | | |
Collapse
|
24
|
Tian H, Watanabe Y, Nguyen KH, Tran CD, Abdelrahman M, Liang X, Xu K, Sepulveda C, Mostofa MG, Van Ha C, Nelson DC, Mochida K, Tian C, Tanaka M, Seki M, Miao Y, Tran LSP, Li W. KARRIKIN UPREGULATED F-BOX 1 negatively regulates drought tolerance in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2671-2687. [PMID: 35822606 PMCID: PMC9706471 DOI: 10.1093/plphys/kiac336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The karrikin (KAR) receptor and several related signaling components have been identified by forward genetic screening, but only a few studies have reported on upstream and downstream KAR signaling components and their roles in drought tolerance. Here, we characterized the functions of KAR UPREGULATED F-BOX 1 (KUF1) in drought tolerance using a reverse genetics approach in Arabidopsis (Arabidopsis thaliana). We observed that kuf1 mutant plants were more tolerant to drought stress than wild-type (WT) plants. To clarify the mechanisms by which KUF1 negatively regulates drought tolerance, we performed physiological, transcriptome, and morphological analyses. We found that kuf1 plants limited leaf water loss by reducing stomatal aperture and cuticular permeability. In addition, kuf1 plants showed increased sensitivity of stomatal closure, seed germination, primary root growth, and leaf senescence to abscisic acid (ABA). Genome-wide transcriptome comparisons of kuf1 and WT rosette leaves before and after dehydration showed that the differences in various drought tolerance-related traits were accompanied by differences in the expression of genes associated with stomatal closure (e.g. OPEN STOMATA 1), lipid and fatty acid metabolism (e.g. WAX ESTER SYNTHASE), and ABA responsiveness (e.g. ABA-RESPONSIVE ELEMENT 3). The kuf1 mutant plants had higher root/shoot ratios and root hair densities than WT plants, suggesting that they could absorb more water than WT plants. Together, these results demonstrate that KUF1 negatively regulates drought tolerance by modulating various physiological traits, morphological adjustments, and ABA responses and that the genetic manipulation of KUF1 in crops is a potential means of enhancing their drought tolerance.
Collapse
Affiliation(s)
- Hongtao Tian
- Jilin Da’an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kien Huu Nguyen
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Cuong Duy Tran
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Mostafa Abdelrahman
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suze, New Galala 43511, Egypt
| | - Xiaohan Liang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Kun Xu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Claudia Sepulveda
- Department of Botany & Plant Sciences, University of California, Riverside, California 92521, USA
| | - Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas 79409, USA
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas 79409, USA
| | - David C Nelson
- Department of Botany & Plant Sciences, University of California, Riverside, California 92521, USA
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Chunjie Tian
- Jilin Da’an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | | | - Weiqiang Li
- Author for correspondence: or (W.L.), (L.-S.P.T.)
| |
Collapse
|
25
|
Dubois M. KUFfed by drought: A KARRIKIN-upregulated F-box protein compromises plant growth and survival under drought. PLANT PHYSIOLOGY 2022; 190:2087-2089. [PMID: 36063030 PMCID: PMC9706421 DOI: 10.1093/plphys/kiac413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
|
26
|
Martinez SE, Conn CE, Guercio AM, Sepulveda C, Fiscus CJ, Koenig D, Shabek N, Nelson DC. A KARRIKIN INSENSITIVE2 paralog in lettuce mediates highly sensitive germination responses to karrikinolide. PLANT PHYSIOLOGY 2022; 190:1440-1456. [PMID: 35809069 PMCID: PMC9516758 DOI: 10.1093/plphys/kiac328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Karrikins (KARs) are chemicals in smoke that can enhance germination of many plants. Lettuce (Lactuca sativa) cv. Grand Rapids germinates in response to nanomolar karrikinolide (KAR1). Lettuce is much less responsive to KAR2 or a mixture of synthetic strigolactone analogs, rac-GR24. We investigated the molecular basis of selective and sensitive KAR1 perception in lettuce. The lettuce genome contains two copies of KARRIKIN INSENSITIVE2 (KAI2), which in Arabidopsis (Arabidopsis thaliana) encodes a receptor that is required for KAR responses. LsKAI2b is more highly expressed than LsKAI2a in dry achenes and during early stages of imbibition. Through cross-species complementation assays in Arabidopsis, we found that an LsKAI2b transgene confers robust responses to KAR1, but LsKAI2a does not. Therefore, LsKAI2b likely mediates KAR1 responses in lettuce. We compared homology models of KAI2 proteins from lettuce and a fire-follower, whispering bells (Emmenanthe penduliflora). This identified pocket residues 96, 124, 139, and 161 as candidates that influence the ligand specificity of KAI2. Further support for the importance of these residues was found through a broader comparison of pocket residues among 281 KAI2 proteins from 184 asterid species. Almost all KAI2 proteins had either Tyr or Phe identity at position 124. Genes encoding Y124-type KAI2 are more broadly distributed in asterids than in F124-type KAI2. Substitutions at residues 96, 124, 139, and 161 in Arabidopsis KAI2 produced a broad array of responses to KAR1, KAR2, and rac-GR24. This suggests that the diverse ligand preferences observed among KAI2 proteins in plants could have evolved through relatively few mutations.
Collapse
Affiliation(s)
- Stephanie E Martinez
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Caitlin E Conn
- Department of Biology, Berry College, Mount Berry, Georgia 30149, USA
| | - Angelica M Guercio
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - Claudia Sepulveda
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Christopher J Fiscus
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Daniel Koenig
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
27
|
Ha CV, Mostofa MG, Nguyen KH, Tran CD, Watanabe Y, Li W, Osakabe Y, Sato M, Toyooka K, Tanaka M, Seki M, Burritt DJ, Anderson CM, Zhang R, Nguyen HM, Le VP, Bui HT, Mochida K, Tran LSP. The histidine phosphotransfer AHP4 plays a negative role in Arabidopsis plant response to drought. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1732-1752. [PMID: 35883014 DOI: 10.1111/tpj.15920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cytokinin plays an important role in plant stress responses via a multistep signaling pathway, involving the histidine phosphotransfer proteins (HPs). In Arabidopsis thaliana, the AHP2, AHP3 and AHP5 proteins are known to affect drought responses; however, the role of AHP4 in drought adaptation remains undetermined. In the present study, using a loss-of-function approach we showed that AHP4 possesses an important role in the response of Arabidopsis to drought. This is evidenced by the higher survival rates of ahp4 than wild-type (WT) plants under drought conditions, which is accompanied by the downregulated AHP4 expression in WT during periods of dehydration. Comparative transcriptome analysis of ahp4 and WT plants revealed AHP4-mediated expression of several dehydration- and/or abscisic acid-responsive genes involved in modulation of various physiological and biochemical processes important for plant drought acclimation. In comparison with WT, ahp4 plants showed increased wax crystal accumulation in stems, thicker cuticles in leaves, greater sensitivity to exogenous abscisic acid at germination, narrow stomatal apertures, heightened leaf temperatures during dehydration, and longer root length under osmotic stress. In addition, ahp4 plants showed greater photosynthetic efficiency, lower levels of reactive oxygen species, reduced electrolyte leakage and lipid peroxidation, and increased anthocyanin contents under drought, when compared with WT. These differences displayed in ahp4 plants are likely due to upregulation of genes that encode enzymes involved in reactive oxygen species scavenging and non-enzymatic antioxidant metabolism. Overall, our findings suggest that AHP4 plays a crucial role in plant drought adaptation.
Collapse
Affiliation(s)
- Chien Van Ha
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Donald Danforth Plant Science Center, 975 N Warson Rd, Saint Louis, Missouri, 63132, USA
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Mohammad Golam Mostofa
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Kien Huu Nguyen
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, 100000, Vietnam
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, 100000, Vietnam
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, J2-12, 4259 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Mayuko Sato
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | - Ru Zhang
- Donald Danforth Plant Science Center, 975 N Warson Rd, Saint Louis, Missouri, 63132, USA
| | - Huong Mai Nguyen
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Vy Phuong Le
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Hien Thuy Bui
- Division of Plant Science and Technology, Christopher S. Bond Life Science Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Keiichi Mochida
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- School of Information and Data Science, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| |
Collapse
|
28
|
Kim JY, Park YJ, Lee JH, Park CM. SMAX1 Integrates Karrikin and Light Signals into GA-Mediated Hypocotyl Growth during Seedling Establishment. PLANT & CELL PHYSIOLOGY 2022; 63:932-943. [PMID: 35477800 DOI: 10.1093/pcp/pcac055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/13/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Morphogenic adaptation of young seedlings to light environments is a critical developmental process that ensures plant survival and propagation, as they emerge from the soil. Photomorphogenic responses are facilitated by a network of light and growth hormonal signals, such as auxin and gibberellic acid (GA). Karrikins (KARs), a group of butenolide compounds produced from burning plant materials in wildfires, are known to stimulate seed germination in fire-prone plant species. Notably, recent studies support that they also regulate seedling growth, while underlying molecular mechanisms have been unexplored yet. Here, we demonstrate that SUPPRESSOR OF MAX2 1 (SMAX1), a negative regulator of KAR signaling, integrates light and KAR signals into GA-DELLA pathways that regulate hypocotyl growth during seedling establishment. We found that SMAX1 facilitates degradation of DELLA proteins in the hypocotyls. Interestingly, light induces the accumulation of SMAX1 proteins, and SMAX1-mediated degradation of DELLA is elevated in seedling establishment during the dark-to-light transition. Our observations indicate that SMAX1-mediated integration of light and KAR signals into GA pathways elaborately modulates seedling establishment.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
29
|
Komatsu S, Yamaguchi H, Hitachi K, Tsuchida K, Rehman SU, Ohno T. Morphological, Biochemical, and Proteomic Analyses to Understand the Promotive Effects of Plant-Derived Smoke Solution on Wheat Growth under Flooding Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1508. [PMID: 35684281 PMCID: PMC9183026 DOI: 10.3390/plants11111508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Wheat is an important staple food crop for one-third of the global population; however, its growth is reduced by flooding. On the other hand, a plant-derived smoke solution enhances plant growth; however, its mechanism is not fully understood. To reveal the effects of the plant-derived smoke solution on wheat under flooding, morphological, biochemical, and proteomic analyses were conducted. The plant-derived smoke solution improved wheat-leaf growth, even under flooding. According to the functional categorization of proteomic results, oppositely changed proteins were correlated with photosynthesis, glycolysis, biotic stress, and amino-acid metabolism with or without the plant-derived smoke solution under flooding. Immunoblot analysis confirmed that RuBisCO activase and RuBisCO large/small subunits, which decreased under flooding, were recovered by the application of the plant-derived smoke solution. Furthermore, the contents of chlorophylls a and b significantly decreased by flooding stress; however, they were recovered by the application of the plant-derived smoke solution. In glycolysis, fructose-bisphosphate aldolase and glyceraldehyde-3-phosphate dehydrogenase decreased with the application of the plant-derived smoke solution under flooding as compared with flooding alone. Additionally, glutamine, glutamic acid, aspartic acid, and serine decreased under flooding; however, they were recovered by the plant-derived smoke solution. These results suggest that the application of the plant-derived smoke solution improves the recovery of wheat growth through the regulation of photosynthesis and glycolysis even under flooding conditions. Furthermore, the plant-derived smoke solution might promote wheat tolerance against flooding stress through the regulation of amino-acid metabolism.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Life and Environmental Sciences, Fukui University of Technology, Fukui 910-8505, Japan;
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Shafiq Ur Rehman
- Department of Biology, University of Haripur, Haripur 22620, Pakistan;
| | - Toshihisa Ohno
- Faculty of Life and Environmental Sciences, Fukui University of Technology, Fukui 910-8505, Japan;
| |
Collapse
|
30
|
Sepulveda C, Guzmán MA, Li Q, Villaécija-Aguilar JA, Martinez SE, Kamran M, Khosla A, Liu W, Gendron JM, Gutjahr C, Waters MT, Nelson DC. KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2022; 119:e2112820119. [PMID: 35254909 PMCID: PMC8931227 DOI: 10.1073/pnas.2112820119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
SignificanceKarrikins are chemicals in smoke that stimulate regrowth of many plants after fire. However, karrikin responses are not limited to species from fire-prone environments and can affect growth after germination. Putatively, this is because karrikins mimic an unknown signal in plants, KAI2 ligand (KL). Karrikins likely require modification in plants to become bioactive. We identify a gene, KUF1, that appears to negatively regulate biosynthesis of KL and metabolism of a specific karrikin. KUF1 expression increases in response to karrikin or KL signaling, thus forming a negative feedback loop that limits further activation of the signaling pathway. This discovery will advance understanding of how karrikins are perceived and how smoke-activated germination evolved. It will also aid identification of the elusive KL.
Collapse
Affiliation(s)
- Claudia Sepulveda
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Michael A. Guzmán
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Qingtian Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | | | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Muhammad Kamran
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Aashima Khosla
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, 85354 Germany
| | - Mark T. Waters
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - David C. Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| |
Collapse
|
31
|
Li Q, Martín-Fontecha ES, Khosla A, White AR, Chang S, Cubas P, Nelson DC. The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress. PLANT COMMUNICATIONS 2022; 3:100303. [PMID: 35529949 PMCID: PMC9073322 DOI: 10.1016/j.xplc.2022.100303] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/15/2021] [Accepted: 01/25/2022] [Indexed: 05/25/2023]
Abstract
The effects of the phytohormone strigolactone (SL) and smoke-derived karrikins (KARs) on plants are generally distinct, despite the fact that they are perceived through very similar mechanisms. The homologous receptors DWARF14 (D14) and KARRIKIN-INSENSITIVE2 (KAI2), together with the F-box protein MORE AXILLARY GROWTH2 (MAX2), mediate SL and KAR responses, respectively, by targeting different SMAX1-LIKE (SMXL) family proteins for degradation. These mechanisms are putatively well-insulated, with D14-MAX2 targeting SMXL6, SMXL7, and SMXL8 and KAI2-MAX2 targeting SMAX1 and SMXL2 in Arabidopsis thaliana. Recent evidence challenges this model. We investigated whether D14 can target SMAX1 and whether this occurs naturally. Genetic analysis indicates that the SL analog GR24 promotes D14-SMAX1 crosstalk. Although D14 shows weaker interactions with SMAX1 than with SMXL2 or SMXL7, D14 mediates GR24-induced degradation of SMAX1 in plants. Osmotic stress triggers SMAX1 degradation, which is protective, through SL biosynthesis and signaling genes. Thus, D14-SMAX1 crosstalk may be beneficial and not simply a vestige of the evolution of the SL pathway.
Collapse
Affiliation(s)
- Qingtian Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autόnoma de Madrid, Madrid, Spain
| | - Aashima Khosla
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Alexandra R.F. White
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Sunhyun Chang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autόnoma de Madrid, Madrid, Spain
| | - David C. Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
32
|
White ARF, Mendez JA, Khosla A, Nelson DC. Rapid analysis of strigolactone receptor activity in a Nicotiana benthamiana dwarf14 mutant. PLANT DIRECT 2022; 6:e389. [PMID: 35355884 PMCID: PMC8948499 DOI: 10.1002/pld3.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 05/29/2023]
Abstract
DWARF14 (D14) is an ɑ/β-hydrolase and receptor for the plant hormone strigolactone (SL) in angiosperms. Upon SL perception, D14 works with MORE AXILLARY GROWTH2 (MAX2) to trigger polyubiquitination and degradation of DWARF53(D53)-type proteins in the SUPPRESSOR OF MAX2 1-LIKE (SMXL) family. We used CRISPR-Cas9 to generate knockout alleles of the two homoeologous D14 genes in the Nicotiana benthamiana genome. The Nbd14a,b double mutant had several phenotypes that are consistent with the loss of SL perception in other plants, including increased axillary bud outgrowth, reduced height, shortened petioles, and smaller leaves. A ratiometric fluorescent reporter system was used to monitor degradation of SMXL7 from Arabidopsis thaliana (AtSMXL7) after transient expression in N. benthamiana and treatment with the strigolactone analog GR24. AtSMXL7 was degraded after treatment with GR245DS, which has the stereochemical configuration of natural SLs, as well as its enantiomer GR24 ent-5DS. In Nbd14a,b leaves, AtSMXL7 abundance was unaffected by rac-GR24 or either GR24 stereoisomer. Transient coexpression of AtD14 with the AtSMXL7 reporter in Nbd14a,b restored the degradation response to rac-GR24, but required an active catalytic triad. We used this platform to evaluate the ability of several AtD14 mutants that had not been characterized in plants to target AtSMXL7 for degradation.
Collapse
Affiliation(s)
- Alexandra R. F. White
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jose A. Mendez
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - Aashima Khosla
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - David C. Nelson
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
33
|
Richmond BL, Coelho CL, Wilkinson H, McKenna J, Ratchinski P, Schwarze M, Frost M, Lagunas B, Gifford ML. Elucidating connections between the strigolactone biosynthesis pathway, flavonoid production and root system architecture in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2022; 174:e13681. [PMID: 35362177 PMCID: PMC9324854 DOI: 10.1111/ppl.13681] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are the most recently discovered phytohormones, and their roles in root architecture and metabolism are not fully understood. Here, we investigated four MORE AXILLARY GROWTH (MAX) SL mutants in Arabidopsis thaliana, max3-9, max4-1, max1-1 and max2-1, as well as the SL receptor mutant d14-1 and karrikin receptor mutant kai2-2. By characterising max2-1 and max4-1, we found that variation in SL biosynthesis modified multiple metabolic pathways in root tissue, including that of xyloglucan, triterpenoids, fatty acids and flavonoids. The transcription of key flavonoid biosynthetic genes, including TRANSPARENT TESTA4 (TT4) and TRANSPARENT TESTA5 (TT5) was downregulated in max2 roots and seedlings, indicating that the proposed MAX2 regulation of flavonoid biosynthesis has a widespread effect. We found an enrichment of BRI1-EMS-SUPPRESSOR 1 (BES1) targets amongst genes specifically altered in the max2 mutant, reflecting that the regulation of flavonoid biosynthesis likely occurs through the MAX2 degradation of BES1, a key brassinosteroid-related transcription factor. Finally, flavonoid accumulation decreased in max2-1 roots, supporting a role for MAX2 in regulating both SL and flavonoid biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Maximillian Schwarze
- School of Life SciencesUniversity of WarwickCoventryUK
- School of BiosciencesBirminghamUK
| | - Matthew Frost
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Miriam L. Gifford
- School of Life SciencesUniversity of WarwickCoventryUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryUK
| |
Collapse
|
34
|
Meng Y, Varshney K, Incze N, Badics E, Kamran M, Davies SF, Oppermann LMF, Magne K, Dalmais M, Bendahmane A, Sibout R, Vogel J, Laudencia-Chingcuanco D, Bond CS, Soós V, Gutjahr C, Waters MT. KARRIKIN INSENSITIVE2 regulates leaf development, root system architecture and arbuscular-mycorrhizal symbiosis in Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1559-1574. [PMID: 34953105 DOI: 10.1111/tpj.15651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
KARRIKIN INSENSITIVE2 (KAI2) is an α/β-hydrolase required for plant responses to karrikins, which are abiotic butenolides that can influence seed germination and seedling growth. Although represented by four angiosperm species, loss-of-function kai2 mutants are phenotypically inconsistent and incompletely characterised, resulting in uncertainties about the core functions of KAI2 in plant development. Here we characterised the developmental functions of KAI2 in the grass Brachypodium distachyon using molecular, physiological and biochemical approaches. Bdkai2 mutants exhibit increased internode elongation and reduced leaf chlorophyll levels, but only a modest increase in water loss from detached leaves. Bdkai2 shows increased numbers of lateral roots and reduced root hair growth, and fails to support normal root colonisation by arbuscular-mycorrhizal (AM) fungi. The karrikins KAR1 and KAR2 , and the strigolactone (SL) analogue rac-GR24, each elicit overlapping but distinct changes to the shoot transcriptome via BdKAI2. Finally, we show that BdKAI2 exhibits a clear ligand preference for desmethyl butenolides and weak responses to methyl-substituted SL analogues such as GR24. Our findings suggest that KAI2 has multiple roles in shoot development, root system development and transcriptional regulation in grasses. Although KAI2-dependent AM symbiosis is likely conserved within monocots, the magnitude of the effect of KAI2 on water relations may vary across angiosperms.
Collapse
Affiliation(s)
- Yongjie Meng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kartikye Varshney
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Norbert Incze
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Eszter Badics
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Sabrina F Davies
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Larissa M F Oppermann
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
| | - Marion Dalmais
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
| | - Abdel Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, Versailles Cedex, F-78026, France
- UR1268 BIA, INRAE, Nantes, 44300, France
| | - John Vogel
- DOE Joint Genome Institute, Berkeley, California, 94720, USA
| | | | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Vilmos Soós
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
35
|
Guercio AM, Torabi S, Cornu D, Dalmais M, Bendahmane A, Le Signor C, Pillot JP, Le Bris P, Boyer FD, Rameau C, Gutjahr C, de Saint Germain A, Shabek N. Structural and functional analyses explain Pea KAI2 receptor diversity and reveal stereoselective catalysis during signal perception. Commun Biol 2022; 5:126. [PMID: 35149763 PMCID: PMC8837635 DOI: 10.1038/s42003-022-03085-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
KAI2 proteins are plant α/β hydrolase receptors which perceive smoke-derived butenolide signals and endogenous, yet unidentified KAI2-ligands (KLs). The number of functional KAI2 receptors varies among species and KAI2 gene duplication and sub-functionalization likely plays an adaptative role by altering specificity towards different KLs. Legumes represent one of the largest families of flowering plants and contain many agronomic crops. Prior to their diversification, KAI2 underwent duplication resulting in KAI2A and KAI2B. Here we demonstrate that Pisum sativum KAI2A and KAI2B are active receptors and enzymes with divergent ligand stereoselectivity. KAI2B has a higher affinity for and hydrolyses a broader range of substrates including strigolactone-like stereoisomers. We determine the crystal structures of PsKAI2B in apo and butenolide-bound states. The biochemical, structural, and mass spectra analyses of KAI2s reveal a transient intermediate on the catalytic serine and a stable adduct on the catalytic histidine, confirming its role as a bona fide enzyme. Our work uncovers the stereoselectivity of ligand perception and catalysis by diverged KAI2 receptors and proposes adaptive sensitivity to KAR/KL and strigolactones by KAI2B.
Collapse
Affiliation(s)
- Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Salar Torabi
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354, Freising, Germany
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marion Dalmais
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Le Signor
- Agroecologie, AgroSup Dijon, INRAE, Université Bourgogne Franche Comte, 21000, Dijon, France
| | - Jean-Paul Pillot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Philippe Le Bris
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Catherine Rameau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354, Freising, Germany
| | | | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
36
|
Kuromori T, Fujita M, Takahashi F, Yamaguchi‐Shinozaki K, Shinozaki K. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:342-358. [PMID: 34863007 PMCID: PMC9300012 DOI: 10.1111/tpj.15619] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Plant response to drought stress includes systems for intracellular regulation of gene expression and signaling, as well as inter-tissue and inter-organ signaling, which helps entire plants acquire stress resistance. Plants sense water-deficit conditions both via the stomata of leaves and roots, and transfer water-deficit signals from roots to shoots via inter-organ signaling. Abscisic acid is an important phytohormone involved in the drought stress response and adaptation, and is synthesized mainly in vascular tissues and guard cells of leaves. In leaves, stress-induced abscisic acid is distributed to various tissues by transporters, which activates stomatal closure and expression of stress-related genes to acquire drought stress resistance. Moreover, the stepwise stress response at the whole-plant level is important for proper understanding of the physiological response to drought conditions. Drought stress is sensed by multiple types of sensors as molecular patterns of abiotic stress signals, which are transmitted via separate parallel signaling networks to induce downstream responses, including stomatal closure and synthesis of stress-related proteins and metabolites. Peptide molecules play important roles in the inter-organ signaling of dehydration from roots to shoots, as well as signaling of osmotic changes and reactive oxygen species/Ca2+ . In this review, we have summarized recent advances in research on complex plant drought stress responses, focusing on inter-tissue signaling in leaves and inter-organ signaling from roots to shoots. We have discussed the mechanisms via which drought stress adaptations and resistance are acquired at the whole-plant level, and have proposed the importance of quantitative phenotyping for measuring plant growth under drought conditions.
Collapse
Affiliation(s)
- Takashi Kuromori
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Miki Fujita
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
| | - Fuminori Takahashi
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Department of Biological Science and TechnologyGraduate School of Advanced EngineeringTokyo University of Science6‐3‐1 Niijyuku, Katsushika‐kuTokyo125‐8585Japan
| | - Kazuko Yamaguchi‐Shinozaki
- Laboratory of Plant Molecular PhysiologyGraduate School of Agricultural and Life SciencesThe University of Tokyo1‐1‐1 Yayoi, Bunkyo‐kuTokyo113‐8657Japan
- Research Institute for Agricultural and Life SciencesTokyo University of Agriculture1‐1‐1 Sakuragaoka, Setagaya‐kuTokyo156‐8502Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Biotechonology CenterNational Chung Hsing University (NCHU)Taichung402Taiwan
| |
Collapse
|
37
|
Temmerman A, Guillory A, Bonhomme S, Goormachtig S, Struk S. Masks Start to Drop: Suppressor of MAX2 1-Like Proteins Reveal Their Many Faces. FRONTIERS IN PLANT SCIENCE 2022; 13:887232. [PMID: 35645992 PMCID: PMC9133912 DOI: 10.3389/fpls.2022.887232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 05/11/2023]
Abstract
Although the main players of the strigolactone (SL) signaling pathway have been characterized genetically, how they regulate plant development is still poorly understood. Of central importance are the SUPPRESSOR OF MAX2 1-LIKE (SMXL) proteins that belong to a family of eight members in Arabidopsis thaliana, of which one subclade is involved in SL signaling and another one in the pathway of the chemically related karrikins. Through proteasomal degradation of these SMXLs, triggered by either DWARF14 (D14) or KARRIKIN INSENSITIVE2 (KAI2), several physiological processes are controlled, such as, among others, shoot and root architecture, seed germination, and seedling photomorphogenesis. Yet another clade has been shown to be involved in vascular development, independently of the D14 and KAI2 actions and not relying on proteasomal degradation. Despite their role in several aspects of plant development, the exact molecular mechanisms by which SMXLs regulate them are not completely unraveled. To fill the major knowledge gap in understanding D14 and KAI2 signaling, SMXLs are intensively studied, making it challenging to combine all the insights into a coherent characterization of these important proteins. To this end, this review provides an in-depth exploration of the recent data regarding their physiological function, evolution, structure, and molecular mechanism. In addition, we propose a selection of future perspectives, focusing on the apparent localization of SMXLs in subnuclear speckles, as observed in transient expression assays, which we couple to recent advances in the field of biomolecular condensates and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Arne Temmerman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-Center for Plant Systems Biology, Ghent, Belgium
| | - Ambre Guillory
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Sandrine Bonhomme
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-Center for Plant Systems Biology, Ghent, Belgium
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-Center for Plant Systems Biology, Ghent, Belgium
- *Correspondence: Sylwia Struk,
| |
Collapse
|
38
|
Luo Y, Teng S, Yin H, Zhang S, Tuo X, Tran LSP. Transcriptome Analysis Reveals Roles of Anthocyanin- and Jasmonic Acid-Biosynthetic Pathways in Rapeseed in Response to High Light Stress. Int J Mol Sci 2021; 22:ijms222313027. [PMID: 34884828 PMCID: PMC8657659 DOI: 10.3390/ijms222313027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
Rapeseed (Brassica napus) is one of the major important oil crops worldwide and is largely cultivated in the Qinghai-Tibetan plateau (QTP), where long and strong solar-radiation is well-known. However, the molecular mechanisms underlying rapeseed's response to light stress are largely unknown. In the present study, the color of rapeseed seedlings changed from green to purple under high light (HL) stress conditions. Therefore, changes in anthocyanin metabolism and the transcriptome of rapeseed seedlings cultured under normal light (NL) and HL conditions were analyzed to dissect how rapeseed responds to HL at the molecular level. Results indicated that the contents of anthocyanins, especially glucosides of cyanidin, delphinidin, and petunidin, which were determined by liquid chromatography-mass spectrometry (LC-MS), increased by 9.6-, 4.2-, and 59.7-fold in rapeseed seedlings exposed to HL conditions, respectively. Next, RNA-sequencing analysis identified 7390 differentially expressed genes (DEGs), which included 4393 up-regulated and 2997 down-regulated genes. Among the up-regulated genes, many genes related to the anthocyanin-biosynthetic pathway were enriched. For example, genes encoding dihydroflavonol reductase (BnDFR) and anthocyanin synthase (BnANS) were especially induced by HL conditions, which was also confirmed by RT-qPCR analysis. In addition, two PRODUCTION OF ANTHOCYANIN PIGMENTATION 2 (BnPAP2) and GLABRA3 (BnGL3) genes encoding MYB-type and bHLH-type transcription factors, respectively, whose expression was also up-regulated by HL stress, were found to be associated with the changes in anthocyanin biosynthesis. Many genes involved in the jasmonic acid (JA)-biosynthetic pathway were also up-regulated under HL conditions. This finding, which is in agreement with the well-known positive regulatory role of JA in anthocyanin biosynthesis, suggests that the JA may also play a key role in the responses of rapeseed seedlings to HL. Collectively, these data indicate that anthocyanin biosynthesis-related and JA biosynthesis-related pathways mediate HL responses in rapeseed. These findings collectively provide mechanistic insights into the mechanisms involved in the response of rapeseed to HL stress, and the identified key genes may potentially be used to improve HL tolerance of rapeseed cultivars through genetic engineering or breeding strategies.
Collapse
Affiliation(s)
- Yuxiu Luo
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (Y.L.); (S.T.); (X.T.)
| | - Shoulian Teng
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (Y.L.); (S.T.); (X.T.)
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: (H.Y.); or (L.-S.P.T.); Tel.: +86-971-531-0086 (H.Y.)
| | - Shengping Zhang
- Qinghai Academy of Agriculture and Forestry, Qinghai University, Xining 810016, China;
| | - Xiaoyun Tuo
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (Y.L.); (S.T.); (X.T.)
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- Correspondence: (H.Y.); or (L.-S.P.T.); Tel.: +86-971-531-0086 (H.Y.)
| |
Collapse
|
39
|
Rehman NU, Li X, Zeng P, Guo S, Jan S, Liu Y, Huang Y, Xie Q. Harmony but Not Uniformity: Role of Strigolactone in Plants. Biomolecules 2021; 11:1616. [PMID: 34827614 PMCID: PMC8615677 DOI: 10.3390/biom11111616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Strigolactones (SLs) represent an important new plant hormone class marked by their multifunctional roles in plants and rhizosphere interactions, which stimulate hyphal branching in arbuscular mycorrhizal fungi (AMF) and seed germination of root parasitic plants. SLs have been broadly implicated in regulating root growth, shoot architecture, leaf senescence, nodulation, and legume-symbionts interaction, as well as a response to various external stimuli, such as abiotic and biotic stresses. These functional properties of SLs enable the genetic engineering of crop plants to improve crop yield and productivity. In this review, the conservation and divergence of SL pathways and its biological processes in multiple plant species have been extensively discussed with a particular emphasis on its interactions with other different phytohormones. These interactions may shed further light on the regulatory networks underlying plant growth, development, and stress responses, ultimately providing certain strategies for promoting crop yield and productivity with the challenges of global climate and environmental changes.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Peichun Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saad Jan
- Agriculture Department, Entomology Section Bacha Khan University, Charsadda 24420, Pakistan;
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences and Technology, Guangxi University, Nanning 530004, China;
| | - Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310001, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
40
|
Sardar R, Ahmed S, Yasin NA. Seed priming with karrikinolide improves growth and physiochemical features of coriandrum sativum under cadmium stress. ENVIRONMENTAL ADVANCES 2021; 5:100082. [DOI: 10.1016/j.envadv.2021.100082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
41
|
Shah FA, Ni J, Tang C, Chen X, Kan W, Wu L. Karrikinolide alleviates salt stress in wheat by regulating the redox and K +/Na + homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:921-933. [PMID: 34555666 DOI: 10.1016/j.plaphy.2021.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Karrikinolide (KAR1), identified in biochars, has gained research attention because of its significant role in seed germination, seedling development, root development, and abiotic stresses. However, KAR1 regulation of salt stress in wheat is elusive. This study investigated the physiological mechanism involved in KAR1 alleviation of salt stress in wheat. The results showed KAR1 boosted seed germination percentage under salinity stress via stimulating the relative expression of genes regulating gibberellins biosynthesis and decreasing the expression levels of abscisic acid biosynthesis and signaling genes. As seen in seed germination, exogenous supplementation of KAR1 dramatically mitigated the salt stress also in wheat seedling, resulting in increased root and shoot growth as measured in biomass as compared to salt stress alone. Salt stress significantly induced the endogenous hydrogen peroxide and malondialdehyde levels, whereas KAR1 strictly counterbalanced them. Under salt stress, KAR1 supplementation showed significant induction in reduced glutathione (GSH) and reduction in oxidized glutathione (GSSG) content, which improved GSH/GSSG ratio in wheat seedlings. Exogenous supplementation of KAR1 significantly promoted the activities of enzymatic antioxidants in wheat seedlings exposed to salt stress. KAR1 induced the relative expression of genes regulating the biosynthesis of antioxidants in wheat seedlings under salinity. Moreover, KAR1 induced the expression level of K+/Na+ homeostasis genes, reduced Na+ concentration, and induced K+ concentration in wheat seedling under salt stress. The results suggest that KAR1 supplementation maintained the redox and K+/Na+ homeostasis in wheat seedling under salinity, which might be a crucial part of physiological mechanisms in KAR1 induced tolerance to salt stress. In conclusion, we exposed the protective role of KAR1 against salt stress in wheat.
Collapse
Affiliation(s)
- Faheem Afzal Shah
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Jun Ni
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Caiguo Tang
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Xue Chen
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Wenjie Kan
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Lifang Wu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China; Zhongke Hefei Intelligent Agricultural Valley Co., Ltd, Hefei, PR China.
| |
Collapse
|
42
|
Bursch K, Niemann ET, Nelson DC, Johansson H. Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1346-1362. [PMID: 34160854 DOI: 10.1111/tpj.15383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/18/2021] [Indexed: 05/15/2023]
Abstract
The butenolide molecule, karrikin (KAR), emerging in smoke of burned plant material, enhances light responses such as germination, inhibition of hypocotyl elongation, and anthocyanin accumulation in Arabidopsis. The KAR signaling pathway consists of KARRIKIN INSENSITIVE 2 (KAI2) and MORE AXILLARY GROWTH 2 (MAX2), which, upon activation, act in an SCF E3 ubiquitin ligase complex to target the downstream signaling components SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE 2 (SMXL2) for degradation. How degradation of SMAX1 and SMXL2 is translated into growth responses remains unknown. Although light clearly influences the activity of KAR, the molecular connection between the two pathways is still poorly understood. Here, we demonstrate that the KAR signaling pathway promotes the activity of a transcriptional module consisting of ELONGATED HYPOCOTYL 5 (HY5), B-BOX DOMAIN PROTEIN 20 (BBX20), and BBX21. The bbx20 bbx21 mutant is largely insensitive to treatment with KAR2 , similar to a hy5 mutant, with regards to inhibition of hypocotyl elongation and anthocyanin accumulation. Detailed analysis of higher order mutants in combination with RNA-sequencing analysis revealed that anthocyanin accumulation downstream of SMAX1 and SMXL2 is fully dependent on the HY5-BBX module. However, the promotion of hypocotyl elongation by SMAX1 and SMXL2 is, in contrast to KAR2 treatment, only partially dependent on BBX20, BBX21, and HY5. Taken together, these results suggest that light- and KAR-dependent signaling intersect at the HY5-BBX transcriptional module.
Collapse
Affiliation(s)
- Katharina Bursch
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, 14195, Germany
| | - Ella T Niemann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, 14195, Germany
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Henrik Johansson
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
43
|
Hull R, Choi J, Paszkowski U. Conditioning plants for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102071. [PMID: 34186295 PMCID: PMC8425181 DOI: 10.1016/j.pbi.2021.102071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The evolutionarily ancient α/β hydrolase DWARF14-LIKE (D14L) is indispensable for the perception of beneficial arbuscular mycorrhizal (AM) fungi in the rhizosphere, and for a range of developmental processes. Variants of D14L recognise natural strigolactones and the smoke constituent karrikin, both classified as butenolides, and additional unknown ligand(s), critical for symbiosis and development. Recent advances in the understanding of downstream effects of D14L signalling include biochemical evidence for the degradation of the repressor SMAX1. Indeed, genetic removal of rice SMAX1 leads to the de-repression of symbiosis programmes and to the simultaneous increase in strigolactone production. As strigolactones are key to attraction of the fungus in the rhizosphere, the D14L signalling pathway appears to coordinate fungal stimulation and root symbiotic competency. Here, we discuss the possible integrative roles of D14L signalling in conditioning plants for AM symbiosis.
Collapse
Affiliation(s)
- Raphaella Hull
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Jeongmin Choi
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Uta Paszkowski
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK.
| |
Collapse
|
44
|
Woraathasin N, Nualsri C, Sutjit C, Keawraksa O, Rongsawat T, Nakkanong K. Genotypic variation in 9-Cis-Epoxycarotenoid Dioxygenase3 gene expression and abscisic acid accumulation in relation to drought tolerance of Hevea brasiliensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1513-1522. [PMID: 34366593 PMCID: PMC8295429 DOI: 10.1007/s12298-021-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) is a stress-related plant hormone, which is reported to confer drought tolerance. A key enzyme in ABA biosynthesis is 9-cis-epoxycarotenoid dioxygenase. In this study, changes in morphological, physiological response, HbNCED3, and ABA accumulation of RRIM 623 and PB 5/51 rubber clones were observed at different time points of water deficit conditions (0, 3, 5, 7, and 9 days of withholding water). During water deficit, the relative water content (RWC), photosynthetic rate (Pn), and stomatal conductance (Gs) decreased, whereas the electro leakage (EL) increased. The magnitudes of the changes in these parameters were greater for PB 5/51 than for RRIM 623. Therefore, RRIM 623 was designated as representative of drought-tolerant clone and PB 5/51 as a drought-sensitive clone. The HbNCED3 transcription level of RRIM 623 showed lower expression compared with that of PB 5/51, which corresponded to the accumulation of ABA. RRIM 623 accumulated less ABA than PB 5/51. The ABA in RRIM 623 gradually increased, especially on the 7th day of withholding water, whereas that in PB 5/51 rapidly increased during the early periods of drought conditions. Additionally, the sensitivity of stomatal response to ABA showed that RRIM 623 had a higher sensitivity than PB 5/51. These results demonstrate that the drought-tolerant rubber clone, RRIM 623, was characterized by lower ABA accumulation during drought stress than the drought-sensitive clone, PB 5/51. The drought tolerance mechanism of the RRIM 623 might be associated with stomatal sensitivity to ABA accumulation under drought stress.
Collapse
Affiliation(s)
- Natthakorn Woraathasin
- Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000 Thailand
| | - Charassri Nualsri
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900 Thailand
- Tropical Fruit and Plantation Crops Research Center, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Chutima Sutjit
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900 Thailand
| | - Orawan Keawraksa
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900 Thailand
| | - Thanyakorn Rongsawat
- Tropical Fruit and Plantation Crops Research Center, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Korakot Nakkanong
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900 Thailand
- Tropical Fruit and Plantation Crops Research Center, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| |
Collapse
|
45
|
Sedaghat M, Emam Y, Mokhtassi-Bidgoli A, Hazrati S, Lovisolo C, Visentin I, Cardinale F, Tahmasebi-Sarvestani Z. The Potential of the Synthetic Strigolactone Analogue GR24 for the Maintenance of Photosynthesis and Yield in Winter Wheat under Drought: Investigations on the Mechanisms of Action and Delivery Modes. PLANTS 2021; 10:plants10061223. [PMID: 34208497 PMCID: PMC8233996 DOI: 10.3390/plants10061223] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022]
Abstract
Strigolactones (SLs) have been implicated in many plant biological and physiological processes, including the responses to abiotic stresses such as drought, in concert with other phytohormones. While it is now clear that exogenous SLs may help plants to survive in harsh environmental condition, the best, most effective protocols for treatment have not been defined yet, and the mechanisms of action are far from being fully understood. In the set of experiments reported here, we contrasted two application methods for treatment with a synthetic analog of SL, GR24. A number of morphometric, physiological and biochemical parameters were measured following foliar application of GR24 or application in the residual irrigation water in winter wheat plants under irrigated and drought stress conditions. Depending on the concentration and the method of GR24 application, differentiated photosynthesis and transpiration rate, stomatal conductance, leaf water potential, antioxidant enzyme activities and yield in drought conditions were observed. We present evidence that different methods of GR24 application led to increased photosynthesis and yield under stress by a combination of drought tolerance and escape factors, which should be considered for future research exploring the potential of this new family of bioactive molecules for practical applications.
Collapse
Affiliation(s)
- Mojde Sedaghat
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Correspondence:
| | - Yahya Emam
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115111, Iran; (A.M.-B.); (Z.T.-S.)
| | - Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714161, Iran;
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | - Ivan Visentin
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | - Francesca Cardinale
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | | |
Collapse
|
46
|
Chen Y, Dubois M, Vermeersch M, Inzé D, Vanhaeren H. Distinct cellular strategies determine sensitivity to mild drought of Arabidopsis natural accessions. PLANT PHYSIOLOGY 2021; 186:1171-1185. [PMID: 33693949 PMCID: PMC8195540 DOI: 10.1093/plphys/kiab115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/14/2021] [Indexed: 05/18/2023]
Abstract
The worldwide distribution of Arabidopsis (Arabidopsis thaliana) accessions imposes different types of evolutionary pressures, which contributes to various responses of these accessions to environmental stresses. Responses to drought stress have mostly been studied in the Columbia accession, which is predominantly used in plant research. However, the reactions to drought stress are complex and our understanding of the responses that contribute to maintaining plant growth during mild drought (MD) is very limited. Here, we studied the mechanisms with which natural accessions react to MD at a physiological and molecular level during early leaf development. We documented variations in MD responses among natural accessions and used transcriptome sequencing of a drought-sensitive accession, ICE163, and a drought-insensitive accession, Yeg-1, to gain insights into the mechanisms underlying this discrepancy. This revealed that ICE163 preferentially induces jasmonate- and anthocyanin-related pathways, which are beneficial in biotic stress defense, whereas Yeg-1 has a more pronounced activation of abscisic acid signaling, the classical abiotic stress response. Related physiological traits, including the content of proline, anthocyanins, and reactive oxygen species, stomatal closure, and cellular leaf parameters, were investigated and linked to the transcriptional responses. We can conclude that most of these processes constitute general drought response mechanisms that are regulated similarly in drought-insensitive and -sensitive accessions. However, the capacity to close stomata and maintain cell expansion under MD appeared to be major factors that allow to better sustain leaf growth under MD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Address for communication:
| | - Hannes Vanhaeren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| |
Collapse
|
47
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
48
|
Nelson DC. The mechanism of host-induced germination in root parasitic plants. PLANT PHYSIOLOGY 2021; 185:1353-1373. [PMID: 33793958 PMCID: PMC8133615 DOI: 10.1093/plphys/kiab043] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/25/2021] [Indexed: 05/25/2023]
Abstract
Chemical signals known as strigolactones (SLs) were discovered more than 50 years ago as host-derived germination stimulants of parasitic plants in the Orobanchaceae. Strigolactone-responsive germination is an essential adaptation of obligate parasites in this family, which depend upon a host for survival. Several species of obligate parasites, including witchweeds (Striga, Alectra spp.) and broomrapes (Orobanche, Phelipanche spp.), are highly destructive agricultural weeds that pose a significant threat to global food security. Understanding how parasites sense SLs and other host-derived stimulants will catalyze the development of innovative chemical and biological control methods. This review synthesizes the recent discoveries of strigolactone receptors in parasitic Orobanchaceae, their signaling mechanism, and key steps in their evolution.
Collapse
Affiliation(s)
- David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| |
Collapse
|
49
|
Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, Kuca K, Tripathi V. Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. Int J Mol Sci 2021; 22:3327. [PMID: 33805113 PMCID: PMC8036902 DOI: 10.3390/ijms22073327] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
According to Darwin's theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR-Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR-Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR-Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR-Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.
Collapse
Affiliation(s)
- Sweta Nidhi
- Department of Genomics and Bioinformatics, Aix-Marseille University, 13007 Marseille, France;
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India;
| | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| | - George Thomas
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| |
Collapse
|
50
|
Shah FA, Ni J, Yao Y, Hu H, Wei R, Wu L. Overexpression of Karrikins Receptor Gene Sapium sebiferum KAI2 Promotes the Cold Stress Tolerance via Regulating the Redox Homeostasis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:657960. [PMID: 34335642 PMCID: PMC8320022 DOI: 10.3389/fpls.2021.657960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/07/2021] [Indexed: 05/04/2023]
Abstract
KARRIKINS INSENSITIVE2 (KAI2) is the receptor gene for karrikins, recently found to be involved in seed germination, hypocotyl development, and the alleviation of salinity and osmotic stresses. Nevertheless, whether KAI2 could regulate cold tolerance remains elusive. In the present study, we identified that Arabidopsis mutants of KAI2 had a high mortality rate, while overexpression of, a bioenergy plant, Sapium sebiferum KAI2 (SsKAI2) significantly recovered the plants after cold stress. The results showed that the SsKAI2 overexpression lines (OEs) had significantly increased levels of proline, total soluble sugars, and total soluble protein. Meanwhile, SsKAI2 OEs had a much higher expression of cold-stress-acclimation-relate genes, such as Cold Shock Proteins and C-REPEAT BINDING FACTORS under cold stress. Moreover, the results showed that SsKAI2 OEs were hypersensitive to abscisic acid (ABA), and ABA signaling genes were w significantly affected in SsKAI2 OEs under cold stress, suggesting a potential interaction between SsKAI2 and ABA downstream signaling. In SsKAI2 OEs, the electrolyte leakage, hydrogen peroxide, and malondialdehyde contents were reduced under cold stress in Arabidopsis. SsKAI2 OEs enhanced the anti-oxidants like ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and total glutathione level under cold stress. Conclusively, these results provide novel insights into the understanding of karrikins role in the regulation of cold stress adaptation.
Collapse
Affiliation(s)
- Faheem Afzal Shah
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jun Ni
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yuanyuan Yao
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hao Hu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Ruyue Wei
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lifang Wu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Taihe Experimental Station, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Taihe, China
- *Correspondence: Lifang Wu,
| |
Collapse
|