1
|
Amezquita J, Desbois M, Opperman KJ, Pak JS, Christensen EL, Nguyen NT, Diaz-Garcia K, Borgen MA, Grill B. Integrin adhesome axis inhibits the RPM-1 ubiquitin ligase signaling hub to regulate growth cone and axon development. PLoS Genet 2024; 20:e1011496. [PMID: 39671436 PMCID: PMC11642917 DOI: 10.1371/journal.pgen.1011496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024] Open
Abstract
Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches. Here, proteomic studies in C. elegans identified physical associations between the RPM-1 ubiquitin ligase signaling hub and numerous adhesome components including Talin (TLN-1), Kindlin (UNC-112) and β-integrin (PAT-3). C. elegans RPM-1 is orthologous to human MYCBP2, a prominent player in nervous system development recently associated with a neurodevelopmental disorder. After curating and updating the conserved C. elegans adhesome, we identified an adhesome subnetwork physically associated with RPM-1 that has extensive links to human neurobehavioral abnormalities. Using neuron-specific, CRISPR loss-of-function strategies, we demonstrate that a PAT-3/UNC-112/TLN-1 adhesome axis regulates axon termination in mechanosensory neurons by inhibiting RPM-1. Developmental time-course studies and pharmacological results suggest TLN-1 inhibition of RPM-1 affects growth cone collapse and microtubule dynamics during axon outgrowth. These results indicate the PAT-3/UNC-112/TLN-1 adhesome axis restricts RPM-1 signaling to ensure axon outgrowth is terminated in a spatially and temporally accurate manner. Thus, our findings orthogonally validate the adhesome using an organismal setting, identify an adhesome axis that inhibits RPM-1 (MYCBP2), and highlight important new links between the adhesome and brain disorders.
Collapse
Affiliation(s)
- Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Joseph S. Pak
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Elyse L. Christensen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Nikki T. Nguyen
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Karen Diaz-Garcia
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Melissa A. Borgen
- Florida Institute of Technology, Department of Biomedical Engineering and Sciences, Melbourne, United States of America
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 PMCID: PMC11698068 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
3
|
Chofflet N, Naito Y, Pastore AJ, Padmanabhan N, Nguyen PT, Poitras C, Feller B, Yi N, Van Prooijen J, Khaled H, Coulombe B, Clapcote SJ, Bourgault S, Siddiqui TJ, Rudenko G, Takahashi H. Structural and functional characterization of the IgSF21-neurexin2α complex and its related signaling pathways in the regulation of inhibitory synapse organization. Front Mol Neurosci 2024; 17:1371145. [PMID: 38571813 PMCID: PMC10989685 DOI: 10.3389/fnmol.2024.1371145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
The prevailing model behind synapse development and specificity is that a multitude of adhesion molecules engage in transsynaptic interactions to induce pre- and postsynaptic assembly. How these extracellular interactions translate into intracellular signal transduction for synaptic assembly remains unclear. Here, we focus on a synapse organizing complex formed by immunoglobulin superfamily member 21 (IgSF21) and neurexin2α (Nrxn2α) that regulates GABAergic synapse development in the mouse brain. We reveal that the interaction between presynaptic Nrxn2α and postsynaptic IgSF21 is a high-affinity receptor-ligand interaction and identify a binding interface in the IgSF21-Nrxn2α complex. Despite being expressed in both dendritic and somatic regions, IgSF21 preferentially regulates dendritic GABAergic presynaptic differentiation whereas another canonical Nrxn ligand, neuroligin2 (Nlgn2), primarily regulates perisomatic presynaptic differentiation. To explore mechanisms that could underlie this compartment specificity, we targeted multiple signaling pathways pharmacologically while monitoring the synaptogenic activity of IgSF21 and Nlgn2. Interestingly, both IgSF21 and Nlgn2 require c-jun N-terminal kinase (JNK)-mediated signaling, whereas Nlgn2, but not IgSF21, additionally requires CaMKII and Src kinase activity. JNK inhibition diminished de novo presynaptic differentiation without affecting the maintenance of formed synapses. We further found that Nrxn2α knockout brains exhibit altered synaptic JNK activity in a sex-specific fashion, suggesting functional linkage between Nrxns and JNK. Thus, our study elucidates the structural and functional relationship of IgSF21 with Nrxn2α and distinct signaling pathways for IgSF21-Nrxn2α and Nlgn2-Nrxn synaptic organizing complexes in vitro. We therefore propose a revised hypothesis that Nrxns act as molecular hubs to specify synaptic properties not only through their multiple extracellular ligands but also through distinct intracellular signaling pathways of these ligands.
Collapse
Affiliation(s)
- Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Yusuke Naito
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Anthony John Pastore
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Nirmala Padmanabhan
- PrairieNeuro Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Phuong Trang Nguyen
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada
| | - Christian Poitras
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Benjamin Feller
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nayoung Yi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jeremie Van Prooijen
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Husam Khaled
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Steven J. Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Steve Bourgault
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada
| | - Tabrez J. Siddiqui
- PrairieNeuro Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Amezquita J, Desbois M, Opperman KJ, Pak JS, Christensen EL, Nguyen NT, Diaz-Garcia K, Borgen MA, Grill B. Axon development is regulated at genetic and proteomic interfaces between the integrin adhesome and the RPM-1 ubiquitin ligase signaling hub. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.566604. [PMID: 38014183 PMCID: PMC10680716 DOI: 10.1101/2023.11.15.566604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches. Here, proteomic studies in C. elegans identified physical associations between the RPM-1 ubiquitin ligase signaling hub and numerous adhesome components including Talin, Kindlin and beta-integrin. C. elegans RPM-1 is orthologous to human MYCBP2, a prominent player in nervous system development associated with a neurodevelopmental disorder. Using neuron-specific, CRISPR loss-of-function strategies, we show that core adhesome components affect axon development and interact genetically with RPM-1. Mechanistically, Talin opposes RPM-1 in a functional 'tug-of-war' on growth cones that is required for accurate axon termination. Thus, our findings orthogonally validate the adhesome via multi-component genetic and physical interfaces with a key neuronal signaling hub and identify new links between the adhesome and brain disorders.
Collapse
Affiliation(s)
- Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
- School of Life Sciences, Keele University, Keele, Staffordshire, UK
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Joseph S. Pak
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Elyse L. Christensen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Nikki T. Nguyen
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Karen Diaz-Garcia
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Melissa A. Borgen
- Florida Institute of Technology, Department of Biomedical Engineering and Sciences, Melbourne, USA
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
5
|
AlAbdi L, Desbois M, Rusnac DV, Sulaiman RA, Rosenfeld JA, Lalani S, Murdock DR, Burrage LC, Billie Au PY, Towner S, Wilson WG, Wong L, Brunet T, Strobl-Wildemann G, Burton JE, Hoganson G, McWalter K, Begtrup A, Zarate YA, Christensen EL, Opperman KJ, Giles AC, Helaby R, Kania A, Zheng N, Grill B, Alkuraya FS. Loss-of-function variants in MYCBP2 cause neurobehavioural phenotypes and corpus callosum defects. Brain 2023; 146:1373-1387. [PMID: 36200388 PMCID: PMC10319777 DOI: 10.1093/brain/awac364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Domniţa-Valeria Rusnac
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Raashda A Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shelley Towner
- Pediatric Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - William G Wilson
- Pediatric Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lawrence Wong
- Department of Genetics, Northern California Kaiser Permanente, Oakland, CA 94611, USA
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics (ING), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Jennifer E Burton
- Department of Genetics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - George Hoganson
- Department of Genetics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Kirsty McWalter
- Genedx, Inc., 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Amber Begtrup
- Genedx, Inc., 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Yuri A Zarate
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Elyse L Christensen
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Andrew C Giles
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ning Zheng
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| |
Collapse
|
6
|
Mizumoto K, Jin Y, Bessereau JL. Synaptogenesis: unmasking molecular mechanisms using Caenorhabditis elegans. Genetics 2023; 223:iyac176. [PMID: 36630525 PMCID: PMC9910414 DOI: 10.1093/genetics/iyac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023] Open
Abstract
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yishi Jin
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean-Louis Bessereau
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| |
Collapse
|
7
|
Dong X, Li Y, Li Q, Li W, Wu G. Identification of immune signatures in Parkinson's disease based on co-expression networks. Front Genet 2023; 14:1090382. [PMID: 36733342 PMCID: PMC9886886 DOI: 10.3389/fgene.2023.1090382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people, and there is less research on the relationship between immunity and PD. In this study, the protein-protein interaction networks (PPI) data, 2747 human immune-related genes (HIRGs), 2078 PD-related genes (PDRGs), and PD-related datasets (GSE49036 and GSE20292) were downloaded from the Human Protein Reference Database (HPRD), Amigo 2, DisGeNET, and Gene Expression Omnibus (GEO) databases, respectively. An immune- or PD-directed neighbor co-expressed network construction (IOPDNC) was drawn based on the GSE49036 dataset and HPRD database. Furthermore, a PD-directed neighbor co-expressed network was constructed. Modular clustering analysis was performed on the genes of the gene interaction network obtained in the first step to obtain the central core genes using the GraphWeb online website. The modules with the top 5 functional scores and the number of core genes greater than six were selected as PD-related gene modules. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of different module genes were performed. The single sample Gene Set Enrichment Analysis (ssGSEA) algorithm was used to calculate the immune cell infiltration of the PD and the normal samples. The quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) was performed to investigate the expression of module genes. An IOPDNC and PD-directed neighbor co-expressed network (PDNC network) were constructed. Furthermore, a total of 5 immune-PD modules were identified which could distinguish between PD and normal samples, and these module genes were strongly related to PD in protein interaction level or gene expression level. In addition, functional analysis indicated that module genes were involved in various neurodegenerative diseases, such as Alzheimer disease, Huntington disease, Parkinson disease, and Long-term depression. In addition, the genes of the 6 modules were significantly associated with these 4 differential immune cells (aDC cells, eosinophils, neutrophils, and Th2 cells). Finally, the result of qRT-PCR manifested that the expression of 6 module genes was significantly higher in normal samples than in PD samples. In our study, the immune-related genes were found to be strongly related to PD and might play key roles in PD.
Collapse
|
8
|
Tang C, Jin Y, Wang H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy. Front Synaptic Neurosci 2022; 14:1054605. [PMID: 36530954 PMCID: PMC9755596 DOI: 10.3389/fnsyn.2022.1054605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/18/2022] [Indexed: 06/12/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication caused by sepsis, and is responsible for increased mortality and poor outcomes in septic patients. Neurological dysfunction is one of the main manifestations of SAE patients. Patients may still have long-term cognitive impairment after hospital discharge, and the underlying mechanism is still unclear. Here, we first outline the pathophysiological changes of SAE, including neuroinflammation, glial activation, and blood-brain barrier (BBB) breakdown. Synapse dysfunction is one of the main contributors leading to neurological impairment. Therefore, we summarized SAE-induced synaptic dysfunction, such as synaptic plasticity inhibition, neurotransmitter imbalance, and synapses loss. Finally, we discuss the alterations in the synapse, synapse formation, and mediators associated with synapse formation during SAE. In this review, we focus on the changes in synapse/synapse formation caused by SAE, which can further understand the synaptic dysfunction associated with neurological impairment in SAE and provide important insights for exploring appropriate therapeutic targets of SAE.
Collapse
Affiliation(s)
| | | | - Huan Wang
- College of Life and Health, Dalian University, Dalian, China
| |
Collapse
|
9
|
Multiple signaling pathways are essential for synapse formation induced by synaptic adhesion molecules. Proc Natl Acad Sci U S A 2021; 118:2000173118. [PMID: 33431662 DOI: 10.1073/pnas.2000173118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Little is known about the cellular signals that organize synapse formation. To explore what signaling pathways may be involved, we employed heterologous synapse formation assays in which a synaptic adhesion molecule expressed in a nonneuronal cell induces pre- or postsynaptic specializations in cocultured neurons. We found that interfering pharmacologically with microtubules or actin filaments impaired heterologous synapse formation, whereas blocking protein synthesis had no effect. Unexpectedly, pharmacological inhibition of c-jun N-terminal kinases (JNKs), protein kinase-A (PKA), or AKT kinases also suppressed heterologous synapse formation, while inhibition of other tested signaling pathways-such as MAP kinases or protein kinase C-did not alter heterologous synapse formation. JNK and PKA inhibitors suppressed formation of both pre- and postsynaptic specializations, whereas AKT inhibitors impaired formation of post- but not presynaptic specializations. To independently test whether heterologous synapse formation depends on AKT signaling, we targeted PTEN, an enzyme that hydrolyzes phosphatidylinositol 3-phosphate and thereby prevents AKT kinase activation, to postsynaptic sites by fusing PTEN to Homer1. Targeting PTEN to postsynaptic specializations impaired heterologous postsynaptic synapse formation induced by presynaptic adhesion molecules, such as neurexins and additionally decreased excitatory synapse function in cultured neurons. Taken together, our results suggest that heterologous synapse formation is driven via a multifaceted and multistage kinase network, with diverse signals organizing pre- and postsynaptic specializations.
Collapse
|
10
|
Crawley O, Grill B. Autophagy in axonal and presynaptic development. Curr Opin Neurobiol 2021; 69:139-148. [PMID: 33940492 DOI: 10.1016/j.conb.2021.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
The study of autophagy in the nervous system has predominantly centered on degeneration. Evidence is now cementing crucial roles for autophagy in neuronal development and growth, especially in axonal and presynaptic compartments. A picture is emerging that autophagy typically promotes the growth of axons and reduces presynaptic stability. Nonetheless, these are not rigid principles, and it remains unclear why autophagy does not always display these relationships during axonal and presynaptic development. Recent progress has identified mechanisms underlying spatiotemporal control of autophagy in neurons and begun to unravel how autophagy is integrated with other cellular processes, such as proteasomal degradation and axon guidance. Ultimately, understanding how autophagy is regulated and its role in the developing nervous system is key to comprehending how the nervous system assembles its stereotyped yet plastic configuration. It is also likely to inform how we think about neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Oliver Crawley
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain.
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98199, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
11
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Nelson JC, Witze E, Ma Z, Ciocco F, Frerotte A, Randlett O, Foskett JK, Granato M. Acute Regulation of Habituation Learning via Posttranslational Palmitoylation. Curr Biol 2020; 30:2729-2738.e4. [PMID: 32502414 PMCID: PMC8446937 DOI: 10.1016/j.cub.2020.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/06/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Habituation is an adaptive learning process that enables animals to adjust innate behaviors to changes in their environment. Despite its well-documented implications for a wide diversity of behaviors, the molecular and cellular basis of habituation learning is not well understood. Using whole-genome sequencing of zebrafish mutants isolated in an unbiased genetic screen, we identified the palmitoyltransferase Huntingtin interacting protein 14 (Hip14) as a critical regulator of habituation learning. We demonstrate that Hip14 regulates depression of sensory inputs onto an identified hindbrain neuron and provide evidence that Hip14 palmitoylates the Shaker-like K+ voltage-gated channel subunit (Kv1.1), thereby regulating Kv1.1 subcellular localization. Furthermore, we show that, like for Hip14, loss of Kv1.1 leads to habituation deficits and that Hip14 is dispensable in development and instead acts acutely to promote habituation. Combined, these results uncover a previously unappreciated role for acute posttranslational palmitoylation at defined circuit components to regulate learning.
Collapse
Affiliation(s)
- Jessica C Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Eric Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Zhongming Ma
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Francesca Ciocco
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Abigaile Frerotte
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Owen Randlett
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Goodwani S, Fernandez C, Acton PJ, Buggia-Prevot V, McReynolds ML, Ma J, Hu CH, Hamby ME, Jiang Y, Le K, Soth MJ, Jones P, Ray WJ. Dual Leucine Zipper Kinase Is Constitutively Active in the Adult Mouse Brain and Has Both Stress-Induced and Homeostatic Functions. Int J Mol Sci 2020; 21:ijms21144849. [PMID: 32659913 PMCID: PMC7402291 DOI: 10.3390/ijms21144849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/15/2023] Open
Abstract
Dual leucine zipper kinase (DLK, Map3k12) is an axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). In peripheral nerves DLK is generally inactive until induced by injury, after which it transmits signals to the nucleus via retrograde transport. Here we report that in contrast to this mode of regulation, in the uninjured adult mouse cerebellum, DLK constitutively drives nuclear p-c-Jun in cerebellar granule neurons, whereas in the forebrain, DLK is similarly expressed and active, but nuclear p-c-Jun is undetectable. When neurodegeneration results from mutant human tau in the rTg4510 mouse model, p-c-Jun then accumulates in neuronal nuclei in a DLK-dependent manner, and the extent of p-c-Jun correlates with markers of synaptic loss and gliosis. This regional difference in DLK-dependent nuclear p-c-Jun accumulation could relate to differing levels of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1), whereas the forebrain contains more JIP-3 and plenty of SH3 (POSH). To characterize the functional differences between constitutive- versus injury-induced DLK signaling, RNA sequencing was performed after DLK inhibition in the cerebellum and in the non-transgenic and rTg4510 forebrain. In all contexts, DLK inhibition reduced a core set of transcripts that are associated with the JNK pathway. Non-transgenic forebrain showed almost no other transcriptional changes in response to DLK inhibition, whereas the rTg4510 forebrain and the cerebellum exhibited distinct differentially expressed gene signatures. In the cerebellum, but not the rTg4510 forebrain, pathway analysis indicated that DLK regulates insulin growth factor-1 (IGF1) signaling through the transcriptional induction of IGF1 binding protein-5 (IGFBP5), which was confirmed and found to be functionally relevant by measuring signaling through the IGF1 receptor. Together these data illuminate the complex multi-functional nature of DLK signaling in the central nervous system (CNS) and demonstrate its role in homeostasis as well as tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- Sunil Goodwani
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Celia Fernandez
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Paul J. Acton
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Virginie Buggia-Prevot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Morgan L. McReynolds
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Jiacheng Ma
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Cheng Hui Hu
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Mary E. Hamby
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Yongying Jiang
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - Kang Le
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - Michael J. Soth
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - Philip Jones
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
- Correspondence: ; Tel.: +1-713-794-4558
| |
Collapse
|
14
|
Protein Kinase C Isozymes and Autophagy during Neurodegenerative Disease Progression. Cells 2020; 9:cells9030553. [PMID: 32120776 PMCID: PMC7140419 DOI: 10.3390/cells9030553] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Protein kinase C (PKC) isozymes are members of the Serine/Threonine kinase family regulating cellular events following activation of membrane bound phospholipids. The breakdown of the downstream signaling pathways of PKC relates to several disease pathogeneses particularly neurodegeneration. PKC isozymes play a critical role in cell death and survival mechanisms, as well as autophagy. Numerous studies have reported that neurodegenerative disease formation is caused by failure of the autophagy mechanism. This review outlines PKC signaling in autophagy and neurodegenerative disease development and introduces some polyphenols as effectors of PKC isozymes for disease therapy.
Collapse
|
15
|
Autophagy is inhibited by ubiquitin ligase activity in the nervous system. Nat Commun 2019; 10:5017. [PMID: 31676756 PMCID: PMC6825199 DOI: 10.1038/s41467-019-12804-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an intracellular catabolic process prominent in starvation, aging and disease. Neuronal autophagy is particularly important, as it affects the development and function of the nervous system, and is heavily implicated in neurodegenerative disease. Nonetheless, how autophagy is regulated in neurons remains poorly understood. Using an unbiased proteomics approach, we demonstrate that the primary initiator of autophagy, the UNC-51/ULK kinase, is negatively regulated by the ubiquitin ligase RPM-1. RPM-1 ubiquitin ligase activity restricts UNC-51 and autophagosome formation within specific axonal compartments, and exerts effects broadly across the nervous system. By restraining UNC-51 activity, RPM-1 inhibits autophagosome formation to affect axon termination, synapse maintenance and behavioral habituation. These results demonstrate how UNC-51 and autophagy are regulated subcellularly in axons, and unveils a mechanism for restricting initiation of autophagy across the nervous system. Our findings have important implications beyond nervous system development, given growing links between altered autophagy regulation and neurodegenerative diseases.
Collapse
|
16
|
Borgen MA, Giles AC, Wang D, Grill B. Synapse maintenance is impacted by ATAT-2 tubulin acetyltransferase activity and the RPM-1 signaling hub. eLife 2019; 8:44040. [PMID: 30652969 PMCID: PMC6355192 DOI: 10.7554/elife.44040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Synapse formation is comprised of target cell recognition, synapse assembly, and synapse maintenance. Maintaining established synaptic connections is essential for generating functional circuitry and synapse instability is a hallmark of neurodegenerative disease. While many molecules impact synapse formation generally, we know little about molecules that affect synapse maintenance in vivo. Using genetics and developmental time course analysis in C.elegans, we show that the α-tubulin acetyltransferase ATAT-2 and the signaling hub RPM-1 are required presynaptically to maintain stable synapses. Importantly, the enzymatic acetyltransferase activity of ATAT-2 is required for synapse maintenance. Our analysis revealed that RPM-1 is a hub in a genetic network composed of ATAT-2, PTRN-1 and DLK-1. In this network, ATAT-2 functions independent of the DLK-1 MAPK and likely acts downstream of RPM-1. Thus, our study reveals an important role for tubulin acetyltransferase activity in presynaptic maintenance, which occurs via the RPM-1/ATAT-2 pathway.
Collapse
Affiliation(s)
- Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
17
|
Chen X, Shibata AC, Hendi A, Kurashina M, Fortes E, Weilinger NL, MacVicar BA, Murakoshi H, Mizumoto K. Rap2 and TNIK control Plexin-dependent tiled synaptic innervation in C. elegans. eLife 2018; 7:38801. [PMID: 30063210 PMCID: PMC6067881 DOI: 10.7554/elife.38801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
During development, neurons form synapses with their fate-determined targets. While we begin to elucidate the mechanisms by which extracellular ligand-receptor interactions enhance synapse specificity by inhibiting synaptogenesis, our knowledge about their intracellular mechanisms remains limited. Here we show that Rap2 GTPase (rap-2) and its effector, TNIK (mig-15), act genetically downstream of Plexin (plx-1) to restrict presynaptic assembly and to form tiled synaptic innervation in C. elegans. Both constitutively GTP- and GDP-forms of rap-2 mutants exhibit synaptic tiling defects as plx-1 mutants, suggesting that cycling of the RAP-2 nucleotide state is critical for synapse inhibition. Consistently, PLX-1 suppresses local RAP-2 activity. Excessive ectopic synapse formation in mig-15 mutants causes a severe synaptic tiling defect. Conversely, overexpression of mig-15 strongly inhibited synapse formation, suggesting that mig-15 is a negative regulator of synapse formation. These results reveal that subcellular regulation of small GTPase activity by Plexin shapes proper synapse patterning in vivo. Genes do more than just direct the color of our hair or eyes. They produce proteins that are involved in almost every process in the body. In humans, the majority of active genes can be found in the brain, where they help it to develop and work properly – effectively controlling how we move and behave. The brain’s functional units, the nerve cells or neurons, communicate with each other by releasing messenger molecules in the gap between them, the synapse. These molecules are then picked up from specific receptor proteins of the receiving neuron. In the nervous system, neurons only form synapses with the cells they need to connect with, even though they are surrounded by many more cells. This implies that they use specific mechanisms to stop neurons from forming synapses with incorrect target cells. This is important, because if too many synapses were present or if synapses formed with incorrect target cells, it would compromise the information flow in the nervous system. This would ultimately lead to various neurological conditions, including Autism Spectrum Disorder. In 2013, researchers found that in the roundworm Caenorhabditis elegans, a receptor protein called Plexin, is located at the surface of the neurons and can inhibit the formation of nearby synapses. Now, Chen et al. – including one author involved in the previous research – wanted to find out what genes Plexin manipulates when it stops synapses from growing. Knowing what each of those genes does can help us understand how neurons can inhibit synapses. The results revealed that Plexin appears to regulate two genes, Rap2 and TNIK. Plexin reduced the activity of Rap2 in the neuron that released the messenger, which hindered the formation of synapses. The gene TNIK and its protein on the other hand, have the ability to modify other proteins and could so inhibit the growth of synapses. When TNIK was experimentally removed, the number of synapses increased, but when its activity was increased, the number of synapses was strongly reduced. These findings could help scientists understand how mutations in Rap2 or TNIK can lead to various neurological conditions. A next step will be to test if these genes also affect the formation of synapses in other species such as mice, which have a more complex nervous system that is structurally and functionally more similar to that of humans.
Collapse
Affiliation(s)
- Xi Chen
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Akihiro Ce Shibata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ardalan Hendi
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Ethan Fortes
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | | | - Brian A MacVicar
- Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|