1
|
Smirnov A, Nurislamov A, Koncevaya G, Serova I, Kabirova E, Chuyko E, Maltceva E, Savoskin M, Zadorozhny D, Svyatchenko VA, Protopopova EV, Taranov OS, Legostaev SS, Loktev VB, Serov O, Battulin N. Characterizing a lethal CAG-ACE2 transgenic mouse model for SARS-CoV-2 infection using Cas9-enhanced nanopore sequencing. Transgenic Res 2024:10.1007/s11248-024-00413-w. [PMID: 39320390 DOI: 10.1007/s11248-024-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The SARS-CoV-2 pandemic has underscored the necessity for functional transgenic animal models for testing. Mouse lines with overexpression of the human receptor ACE2 serve as the common animal model to study COVID-19 infection. Overexpression of ACE2 under a strong ubiquitous promoter facilitates convenient and sensitive testing of COVID-19 pathology. We performed pronuclear microinjections using a 5 kb CAG-ACE2 linear transgene construct and identified three founder lines with 140, 72, and 73 copies, respectively. Two of these lines were further analyzed for ACE2 expression profiles and sensitivity to SARS-CoV-2 infection. Both lines expressed ACE2 in all organs analyzed. Embryonic fibroblast cell lines derived from transgenic embryos demonstrated severe cytopathic effects following infection, even at low doses of SARS-CoV-2 (0,1-1.0 TCID50). Infected mice from the two lines began to show COVID-19 clinical signs three days post-infection and succumbed between days 4 and 7. Histological examination of lung tissues from terminally ill mice revealed severe pathological alterations. To further characterize the integration site in one of the lines, we applied nanopore sequencing combined with Cas9 enrichment to examine the internal transgene concatemer structure. Oxford Nanopore sequencing (ONT) is becoming the gold standard for transgene insert characterization, but it is relatively inefficient without targeted region enrichment. We digested genomic DNA with Cas9 and gRNA against the ACE2 transgene to create ends suitable for ONT adapter ligation. ONT data analysis revealed that most of the transgene copies were arranged in a head-to-tail configuration, with palindromic junctions being rare. We also detected occasional plasmid backbone fragments within the concatemer, likely co-purified during transgene gel extraction, which is a common occurrence in pronuclear microinjections.
Collapse
Affiliation(s)
- Alexander Smirnov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Artem Nurislamov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
- Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Galina Koncevaya
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Eduard Chuyko
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | | | - Maxim Savoskin
- Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Daniil Zadorozhny
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia, 354340
| | - Victor A Svyatchenko
- State Research Center for Virology and Biotechnology "Vector", Novosibirsk, Koltsovo, Russia, 630559
| | - Elena V Protopopova
- State Research Center for Virology and Biotechnology "Vector", Novosibirsk, Koltsovo, Russia, 630559
| | - Oleg S Taranov
- State Research Center for Virology and Biotechnology "Vector", Novosibirsk, Koltsovo, Russia, 630559
| | - Stanislav S Legostaev
- State Research Center for Virology and Biotechnology "Vector", Novosibirsk, Koltsovo, Russia, 630559
| | - Valery B Loktev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
- Novosibirsk State University, Novosibirsk, Russia, 630090
- State Research Center for Virology and Biotechnology "Vector", Novosibirsk, Koltsovo, Russia, 630559
| | - Oleg Serov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
- Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090.
- Novosibirsk State University, Novosibirsk, Russia, 630090.
| |
Collapse
|
2
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Battaglia C, Michieletto D. Loops are geometric catalysts for DNA integration. Nucleic Acids Res 2024; 52:8184-8192. [PMID: 38864388 DOI: 10.1093/nar/gkae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
The insertion of DNA elements within genomes underpins both genetic diversity and disease when unregulated. Most of DNA insertions are not random and the physical mechanisms underlying the integration site selection are poorly understood. Here, we perform Molecular Dynamics simulations to study the insertion of DNA elements, such as viral DNA or transposons, into naked DNA or chromatin substrates. More specifically, we explore the role of loops within the polymeric substrate and discover that they act as 'geometric catalysts' for DNA integration by reducing the energy barrier for substrate deformation. Additionally, we discover that the 1D pattern and 3D conformation of loops have a marked effect on the distribution of integration sites. Finally, we show that loops may compete with nucleosomes to attract DNA integrations. These results may be tested in vitro and they may help to understand patterns of DNA insertions with implications in genome evolution and engineering.
Collapse
Affiliation(s)
- Cleis Battaglia
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
4
|
de Pater S, Kamoen L, van Schendel R, Hooykaas PJJ, Tijsterman M. Profiling Cas9- and Cas12a-induced mutagenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39052360 DOI: 10.1111/tpj.16943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
With the advancement of CRISPR technologies, a comprehensive understanding of repair mechanisms following double-strand break (DSB) formation is important for improving the precision and efficiency of genetic modifications. In plant genetics, two Cas nucleases are widely used, i.e. Cas9 and Cas12a, which differ with respect to PAM sequence composition, position of the DSB relative to the PAM, and DSB-end configuration (blunt vs. staggered). The latter difference has led to speculations about different options for repair and recombination. Here, we provide detailed repair profiles for LbCas12a in Arabidopsis thaliana, using identical experimental settings previously reported for Cas9-induced DSBs, thus allowing for a quantitative comparison of both nucleases. For both enzymes, non-homologous end-joining (NHEJ) produces 70% of mutations, whereas polymerase theta-mediated end-joining (TMEJ) generates 30%, indicating that DSB-end configuration does not dictate repair pathway choice. Relevant for genome engineering approaches aimed at integrating exogenous DNA, we found that Cas12a similarly stimulates the integration of T-DNA molecules as does Cas9. Long-read sequencing of both Cas9 and Cas12a repair outcomes further revealed a previously underappreciated degree of DNA loss upon TMEJ. The most notable disparity between Cas9 and Cas12a repair profiles is caused by how NHEJ acts on DSB ends with short overhangs: non-symmetric Cas9 cleavage produce 1 bp insertions, which we here show to depend on polymerase Lambda, whereas staggered Cas12a DSBs are not subjected to fill-in synthesis. We conclude that Cas9 and Cas12a are equally effective for genome engineering purposes, offering flexibility in nuclease choice based on the availability of compatible PAM sequences.
Collapse
Affiliation(s)
- Sylvia de Pater
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
| | - Lycka Kamoen
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, the Netherlands
| | - Paul J J Hooykaas
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
| | - Marcel Tijsterman
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, the Netherlands
| |
Collapse
|
5
|
Tang X, Ren Q, Yan X, Zhang R, Liu L, Han Q, Zheng X, Qi Y, Song H, Zhang Y. Boosting genome editing in plants with single transcript unit surrogate reporter systems. PLANT COMMUNICATIONS 2024; 5:100921. [PMID: 38616491 PMCID: PMC11211634 DOI: 10.1016/j.xplc.2024.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
CRISPR-Cas-based genome editing holds immense promise for advancing plant genomics and crop enhancement. However, the challenge of low editing activity complicates the identification of editing events. In this study, we introduce multiple single transcript unit surrogate reporter (STU-SR) systems to enhance the selection of genome-edited plants. These systems use the same single guide RNAs designed for endogenous genes to edit reporter genes, establishing a direct link between reporter gene editing activity and that of endogenous genes. Various strategies are used to restore functional reporter genes after genome editing, including efficient single-strand annealing (SSA) for homologous recombination in STU-SR-SSA systems. STU-SR-base editor systems leverage base editing to reinstate the start codon, enriching C-to-T and A-to-G base editing events. Our results showcase the effectiveness of these STU-SR systems in enhancing genome editing events in the monocot rice, encompassing Cas9 nuclease-based targeted mutagenesis, cytosine base editing, and adenine base editing. The systems exhibit compatibility with Cas9 variants, such as the PAM-less SpRY, and are shown to boost genome editing in Brassica oleracea, a dicot vegetable crop. In summary, we have developed highly efficient and versatile STU-SR systems for enrichment of genome-edited plants.
Collapse
Affiliation(s)
- Xu Tang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiurong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; School of Synbiology, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaodan Yan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Rui Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Li Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qinqin Han
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xuelian Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Hongyuan Song
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Yong Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
6
|
Raabe K, Sun L, Schindfessel C, Honys D, Geelen D. A word of caution: T-DNA-associated mutagenesis in plant reproduction research. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3248-3258. [PMID: 38477707 DOI: 10.1093/jxb/erae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
T-DNA transformation is prevalent in Arabidopsis research and has expanded to a broad range of crops and model plants. While major progress has been made in optimizing the Agrobacterium-mediated transformation process for various species, a variety of pitfalls associated with the T-DNA insertion may lead to the misinterpretation of T-DNA mutant analysis. Indeed, secondary mutagenesis either on the integration site or elsewhere in the genome, together with epigenetic interactions between T-DNA inserts or frequent genomic rearrangements, can be tricky to differentiate from the effect of the knockout of the gene of interest. These are mainly the case for genomic rearrangements that become balanced in filial generations without consequential phenotypical defects, which may be confusing particularly for studies that aim to investigate fertility and gametogenesis. As a cautionary note to the plant research community studying gametogenesis, we here report an overview of the consequences of T-DNA-induced secondary mutagenesis with emphasis on the genomic imbalance on gametogenesis. Additionally, we present a simple guideline to evaluate the T-DNA-mutagenized transgenic lines to decrease the risk of faulty analysis with minimal experimental effort.
Collapse
Affiliation(s)
- Karel Raabe
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Limin Sun
- Horticell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Cédric Schindfessel
- Horticell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Danny Geelen
- Horticell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Yamada H, Kato N, Ichikawa M, Mannen K, Kiba T, Osakabe Y, Sakakibara H, Matsui M, Okamoto T. DNA- and Selectable-Marker-Free Genome-Editing System Using Zygotes from Recalcitrant Maize Inbred B73. PLANT & CELL PHYSIOLOGY 2024; 65:729-736. [PMID: 38288629 DOI: 10.1093/pcp/pcae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 05/31/2024]
Abstract
Genome-editing tools such as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system have become essential tools for increasing the efficiency and accuracy of plant breeding. Using such genome-editing tools on maize, one of the most important cereal crops of the world, will greatly benefit the agriculture and the mankind. Conventional genome-editing methods typically used for maize involve insertion of a Cas9-guide RNA expression cassette and a selectable marker in the genome DNA; however, using such methods, it is essential to eliminate the inserted DNA cassettes to avoid legislative concerns on gene-modified organisms. Another major hurdle for establishing an efficient and broadly applicable DNA-free genome-editing system for maize is presented by recalcitrant genotypes/cultivars, since cell/tissue culture and its subsequent regeneration into plantlets are crucial for producing transgenic and/or genome-edited maize. In this study, to establish a DNA-free genome-editing system for recalcitrant maize genotypes/cultivars, Cas9-gRNA ribonucleoproteins were directly delivered into zygotes isolated from the pollinated flowers of the maize-B73 cultivar. The zygotes successfully developed and were regenerated into genome-edited plantlets by co-culture with phytosulfokine, a peptide phytohormone. The method developed herein made it possible to obtain DNA- and selectable-marker-free genome-edited recalcitrant maize genotypes/cultivars with high efficiency. This method can advance the molecular breeding of maize and other important cereals, regardless of their recalcitrant characteristics.
Collapse
Affiliation(s)
- Hajime Yamada
- Agri-Bio Research Center, KANEKA CORPORATION, Higashibara 700, Iwata, Shizuoka, 438-0802 Japan
- Plant Innovation Center, Japan Tobacco, Inc., Higashibara 700, Iwata, Shizuoka, 438-0802 Japan
| | - Norio Kato
- Plant Innovation Center, Japan Tobacco, Inc., Higashibara 700, Iwata, Shizuoka, 438-0802 Japan
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, 192-0392 Japan
| | - Masako Ichikawa
- Agri-Bio Research Center, KANEKA CORPORATION, Higashibara 700, Iwata, Shizuoka, 438-0802 Japan
- Plant Innovation Center, Japan Tobacco, Inc., Higashibara 700, Iwata, Shizuoka, 438-0802 Japan
| | - Keiko Mannen
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
| | - Takatoshi Kiba
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Yuriko Osakabe
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Hitoshi Sakakibara
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Minami Matsui
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Takashi Okamoto
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, 192-0392 Japan
| |
Collapse
|
8
|
Kamoen L, Kralemann LEM, van Schendel R, van Tol N, Hooykaas PJJ, de Pater S, Tijsterman M. Genetic dissection of mutagenic repair and T-DNA capture at CRISPR-induced DNA breaks in Arabidopsis thaliana. PNAS NEXUS 2024; 3:pgae094. [PMID: 38463035 PMCID: PMC10923293 DOI: 10.1093/pnasnexus/pgae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
A practical and powerful approach for genome editing in plants is delivery of CRISPR reagents via Agrobacterium tumefaciens transformation. The double-strand break (DSB)-inducing enzyme is expressed from a transferred segment of bacterial DNA, the T-DNA, which upon transformation integrates at random locations into the host genome or is captured at the self-inflicted DSB site. To develop efficient strategies for precise genome editing, it is thus important to define the mechanisms that repair CRISPR-induced DSBs, as well as those that govern random and targeted integration of T-DNA. In this study, we present a detailed and comprehensive genetic analysis of Cas9-induced DSB repair and T-DNA capture in the model plant Arabidopsis thaliana. We found that classical nonhomologous end joining (cNHEJ) and polymerase theta-mediated end joining (TMEJ) are both, and in part redundantly, acting on CRISPR-induced DSBs to produce very different mutational outcomes. We used newly developed CISGUIDE technology to establish that 8% of mutant alleles have captured T-DNA at the induced break site. In addition, we find T-DNA shards within genomic DSB repair sites indicative of frequent temporary interactions during TMEJ. Analysis of thousands of plant genome-T-DNA junctions, followed up by genetic dissection, further reveals that TMEJ is responsible for attaching the 3' end of T-DNA to a CRISPR-induced DSB, while the 5' end can be attached via TMEJ as well as cNHEJ. By identifying the mechanisms that act to connect recombinogenic ends of DNA molecules at chromosomal breaks, and quantifying their contributions, our study supports the development of tailor-made strategies toward predictable engineering of crop plants.
Collapse
Affiliation(s)
- Lycka Kamoen
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Lejon E M Kralemann
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Niels van Tol
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Paul J J Hooykaas
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Sylvia de Pater
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Marcel Tijsterman
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| |
Collapse
|
9
|
Schilbert HM, Busche M, Sáez V, Angeli A, Weisshaar B, Martens S, Stracke R. Generation and characterisation of an Arabidopsis thaliana f3h/fls1/ans triple mutant that accumulates eriodictyol derivatives. BMC PLANT BIOLOGY 2024; 24:99. [PMID: 38331743 PMCID: PMC10854054 DOI: 10.1186/s12870-024-04787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Flavonoids are plant specialised metabolites, which derive from phenylalanine and acetate metabolism. They possess a variety of beneficial characteristics for plants and humans. Several modification steps in the synthesis of tricyclic flavonoids cause for the amazing diversity of flavonoids in plants. The 2-oxoglutarate-dependent dioxygenases (2-ODDs) flavanone 3-hydroxylase (F3H, synonym FHT), flavonol synthase (FLS) and anthocyanidin synthase (ANS, synonym leucoanthocyanidin dioxygenase (LDOX)), catalyse oxidative modifications to the central C ring. They are highly similar and have been shown to catalyse, at least in part, each other's reactions. FLS and ANS have been identified as bifunctional enzymes in many species, including Arabidopsis thaliana, stressing the capability of plants to bypass missing or mutated reaction steps on the way to flavonoid production. However, little is known about such bypass reactions and the flavonoid composition of plants lacking all three central flavonoid 2-ODDs. RESULTS To address this issue, we generated a f3h/fls1/ans mutant, as well as the corresponding double mutants and investigated the flavonoid composition of this mutant collection. The f3h/fls1/ans mutant was further characterised at the genomic level by analysis of a nanopore DNA sequencing generated genome sequence assembly and at the transcriptomic level by RNA-Seq analysis. The mutant collection established, including the novel double mutants f3h/fls1 and f3h/ans, was used to validate and analyse the multifunctionalities of F3H, FLS1, and ANS in planta. Metabolite analyses revealed the accumulation of eriodictyol and additional glycosylated derivatives in mutants carrying the f3h mutant allele, resulting from the conversion of naringenin to eriodictyol by flavonoid 3'-hydroxylase (F3'H) activity. CONCLUSIONS We describe the in planta multifunctionality of the three central flavonoid 2-ODDs from A. thaliana and identify a bypass in the f3h/fls1/ans triple mutant that leads to the formation of eriodictyol derivatives. As (homo-)eriodictyols are known as bitter taste maskers, the annotated eriodictyol (derivatives) and in particular the observations made on their in planta production, could provide valuable insights for the creation of novel food supplements.
Collapse
Affiliation(s)
- Hanna Marie Schilbert
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
| | - Mareike Busche
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
| | - Vania Sáez
- Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all'Adige (TN), Italy
| | - Andrea Angeli
- Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all'Adige (TN), Italy
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
| | - Stefan Martens
- Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all'Adige (TN), Italy
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
10
|
Fernandes JB, Naish M, Lian Q, Burns R, Tock AJ, Rabanal FA, Wlodzimierz P, Habring A, Nicholas RE, Weigel D, Mercier R, Henderson IR. Structural variation and DNA methylation shape the centromere-proximal meiotic crossover landscape in Arabidopsis. Genome Biol 2024; 25:30. [PMID: 38254210 PMCID: PMC10804481 DOI: 10.1186/s13059-024-03163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Centromeres load kinetochore complexes onto chromosomes, which mediate spindle attachment and allow segregation during cell division. Although centromeres perform a conserved cellular function, their underlying DNA sequences are highly divergent within and between species. Despite variability in DNA sequence, centromeres are also universally suppressed for meiotic crossover recombination, across eukaryotes. However, the genetic and epigenetic factors responsible for suppression of centromeric crossovers remain to be completely defined. RESULTS To explore the centromere-proximal meiotic recombination landscape, we map 14,397 crossovers against fully assembled Arabidopsis thaliana (A. thaliana) genomes. A. thaliana centromeres comprise megabase satellite repeat arrays that load nucleosomes containing the CENH3 histone variant. Each chromosome contains a structurally polymorphic region of ~3-4 megabases, which lack crossovers and include the satellite arrays. This polymorphic region is flanked by ~1-2 megabase low-recombination zones. These recombination-suppressed regions are enriched for Gypsy/Ty3 retrotransposons, and additionally contain expressed genes with high genetic diversity that initiate meiotic recombination, yet do not crossover. We map crossovers at high-resolution in proximity to CEN3, which resolves punctate centromere-proximal hotspots that overlap gene islands embedded in heterochromatin. Centromeres are densely DNA methylated and the recombination landscape is remodelled in DNA methylation mutants. We observe that the centromeric low-recombining zones decrease and increase crossovers in CG (met1) and non-CG (cmt3) mutants, respectively, whereas the core non-recombining zones remain suppressed. CONCLUSION Our work relates the genetic and epigenetic organization of A. thaliana centromeres and flanking pericentromeric heterochromatin to the zones of crossover suppression that surround the CENH3-occupied satellite repeat arrays.
Collapse
Affiliation(s)
- Joiselle B Fernandes
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Qichao Lian
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Fernando A Rabanal
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
| | - Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Anette Habring
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
| | - Robert E Nicholas
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
- University of Tübingen, Institute for Bioinformatics and Medical Informatics, D-72076, Tübingen, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
11
|
Thomson G, Dickinson L, Jacob Y. Genomic consequences associated with Agrobacterium-mediated transformation of plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:342-363. [PMID: 37831618 PMCID: PMC10841553 DOI: 10.1111/tpj.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Attenuated strains of the naturally occurring plant pathogen Agrobacterium tumefaciens can transfer virtually any DNA sequence of interest to model plants and crops. This has made Agrobacterium-mediated transformation (AMT) one of the most commonly used tools in agricultural biotechnology. Understanding AMT, and its functional consequences, is of fundamental importance given that it sits at the intersection of many fundamental fields of study, including plant-microbe interactions, DNA repair/genome stability, and epigenetic regulation of gene expression. Despite extensive research and use of AMT over the last 40 years, the extent of genomic disruption associated with integrating exogenous DNA into plant genomes using this method remains underappreciated. However, new technologies like long-read sequencing make this disruption more apparent, complementing previous findings from multiple research groups that have tackled this question in the past. In this review, we cover progress on the molecular mechanisms involved in Agrobacterium-mediated DNA integration into plant genomes. We also discuss localized mutations at the site of insertion and describe the structure of these DNA insertions, which can range from single copy insertions to large concatemers, consisting of complex DNA originating from different sources. Finally, we discuss the prevalence of large-scale genomic rearrangements associated with the integration of DNA during AMT with examples. Understanding the intended and unintended effects of AMT on genome stability is critical to all plant researchers who use this methodology to generate new genetic variants.
Collapse
Affiliation(s)
- Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Lauren Dickinson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
- Yale Cancer Center, Yale School of Medicine; New Haven, Connecticut 06511, USA
| |
Collapse
|
12
|
Thulasi Devendrakumar K, Goldstein M, Kronstad J, Li X. Deletions within intronic T-DNA lead to reversion of T-DNA mutant phenotypes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:161-176. [PMID: 37773774 DOI: 10.1111/tpj.16482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Agrobacterium-mediated transformation enables random transfer-DNA (T-DNA) insertion into plant genomes. T-DNA insertion into a gene's exons, introns or untranscribed regions close to the start or stop codon can disrupt gene function. Such T-DNA mutants have been useful for reverse genetics analysis, especially in Arabidopsis thaliana. As T-DNAs are inserted into genomic DNA, they are generally believed to be stably inherited. Here, we report a phenomenon of reversion of intronic T-DNA mutant phenotypes. From a suppressor screen using intronic T-DNA pi4kβ1,2 double mutant, we recovered intragenic mutants of pi4kβ1, which suppressed the autoimmunity of the double mutant. These mutants carried deletions in the intronic T-DNAs, resulting in elevated transcription of normal PI4Kβ1. Such reversion of T-DNA insertional mutant phenotype stresses the need for caution when using intronic T-DNA mutants and reiterates the importance of using irreversible null mutant alleles in genetic analyses.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Madeleine Goldstein
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - James Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
13
|
Zhao S, Luo J, Tang M, Zhang C, Song M, Wu G, Yan X. Analysis of the Candidate Genes and Underlying Molecular Mechanism of P198, an RNAi-Related Dwarf and Sterile Line. Int J Mol Sci 2023; 25:174. [PMID: 38203344 PMCID: PMC10778984 DOI: 10.3390/ijms25010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The genome-wide long hairpin RNA interference (lhRNAi) library is an important resource for plant gene function research. Molecularly characterizing lhRNAi mutant lines is crucial for identifying candidate genes associated with corresponding phenotypes. In this study, a dwarf and sterile line named P198 was screened from the Brassica napus (B. napus) RNAi library. Three different methods confirmed that eight copies of T-DNA are present in the P198 genome. However, only four insertion positions were identified in three chromosomes using fusion primer and nested integrated polymerase chain reaction. Therefore, the T-DNA insertion sites and copy number were further investigated using Oxford Nanopore Technologies (ONT) sequencing, and it was found that at least seven copies of T-DNA were inserted into three insertion sites. Based on the obtained T-DNA insertion sites and hairpin RNA (hpRNA) cassette sequences, three candidate genes related to the P198 phenotype were identified. Furthermore, the potential differentially expressed genes and pathways involved in the dwarfism and sterility phenotype of P198 were investigated by RNA-seq. These results demonstrate the advantage of applying ONT sequencing to investigate the molecular characteristics of transgenic lines and expand our understanding of the complex molecular mechanism of dwarfism and male sterility in B. napus.
Collapse
Affiliation(s)
- Shengbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Junling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Min Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Chi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Miaoying Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaohong Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
14
|
Koller F, Cieslak M. A perspective from the EU: unintended genetic changes in plants caused by NGT-their relevance for a comprehensive molecular characterisation and risk assessment. Front Bioeng Biotechnol 2023; 11:1276226. [PMID: 37965049 PMCID: PMC10641861 DOI: 10.3389/fbioe.2023.1276226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Several regions in the world are currently holding discussions in regard to the regulation of new genomic techniques (NGTs) and their application in agriculture. The European Commission, for instance, is proposing the introduction of specific regulation for NGT plants. Various questions need to be answered including e.g., the extent to which NGT-induced intended and unintended genetic modifications must be subjected to a mandatory risk assessment as part of an approval procedure. This review mostly focuses on findings in regard to unintended genetic changes that can be caused by the application of NGTs. More specifically, the review deals with the application of the nuclease CRISPR/Cas, which is currently the most important tool for developing NGT plants, and its potential to introduce double strand breaks (DSBs) at a targeted DNA sequence. For this purpose, we identified the differences in comparison to non-targeted mutagenesis methods used in conventional breeding. The review concludes that unintended genetic changes caused by NGT processes are relevant to risk assessment. Due to the technical characteristics of NGTs, the sites of the unintended changes, their genomic context and their frequency (in regard to specific sites) mean that the resulting gene combinations (intended or unintended) may be unlikely to occur with conventional methods. This, in turn, implies that the biological effects (phenotypes) can also be different and may cause risks to health and the environment. Therefore, we conclude that the assessment of intended as well as unintended genetic changes should be part of a mandatory comprehensive molecular characterisation and risk assessment of NGT plants that are meant for environmental releases or for market authorisation.
Collapse
Affiliation(s)
- Franziska Koller
- Fachstelle Gentechnik und Umwelt (FGU), Munich, Bavaria, Germany
| | | |
Collapse
|
15
|
Neelakandan AK, Kabahuma M, Yang Q, Lopez M, Wisser RJ, Balint-Kurti P, Lauter N. Characterization of integration sites and transfer DNA structures in Agrobacterium-mediated transgenic events of maize inbred B104. G3 (BETHESDA, MD.) 2023; 13:jkad166. [PMID: 37523773 PMCID: PMC10542558 DOI: 10.1093/g3journal/jkad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
In maize, the community-standard transformant line B104 is a useful model for dissecting features of transfer DNA (T-DNA) integration due to its compatibility with Agrobacterium-mediated transformation and the availability of its genome sequence. Knowledge of transgene integration sites permits the analysis of the genomic environment that governs the strength of gene expression and phenotypic effects due to the disruption of an endogenous gene or regulatory element. In this study, we optimized a fusion primer and nested integrated PCR (FPNI-PCR) technique for T-DNA detection in maize to characterize the integration sites of 89 T-DNA insertions in 81 transformant lines. T-DNA insertions preferentially occurred in gene-rich regions and regions distant from centromeres. Integration junctions with and without microhomologous sequences as well as junctions with de novo sequences were detected. Sequence analysis of integration junctions indicated that T-DNA was incorporated via the error-prone repair pathways of nonhomologous (predominantly) and microhomology-mediated (minor) end-joining. This report provides a quantitative assessment of Agrobacterium-mediated T-DNA integration in maize with respect to insertion site features, the genomic distribution of T-DNA incorporation, and the mechanisms of integration. It also demonstrates the utility of the FPNI-PCR technique, which can be adapted to any species of interest.
Collapse
Affiliation(s)
| | - Mercy Kabahuma
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdisciplinary Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Qin Yang
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Miriam Lopez
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011, USA
| | - Randall J Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environmentaux, INRAE, University of Montpellier, L’Institut Agro, Montpellier 34000, France
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC 27695, USA
| | - Nick Lauter
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdisciplinary Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011, USA
| |
Collapse
|
16
|
Subburaj S, Agapito-Tenfen SZ. Establishment of targeted mutagenesis in soybean protoplasts using CRISPR/Cas9 RNP delivery via electro-transfection. FRONTIERS IN PLANT SCIENCE 2023; 14:1255819. [PMID: 37841627 PMCID: PMC10570537 DOI: 10.3389/fpls.2023.1255819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
The soybean (Glycine max L.) is an important crop with high agronomic value. The improvement of agronomic traits through gene editing techniques has broad application prospects in soybean. The polyethylene glycol (PEG)-mediated cell transfection has been successfully used to deliver the CRISPR/Cas9-based ribonucleoprotein (RNP) into soybean protoplasts. However, several downstream analyses or further cell regeneration protocols might be hampered by PEG contamination within the samples. Here in this study, we attempted to transfect CRISPR/Cas9 RNPs into trifoliate leaf-derived soybean protoplasts using Neon electroporation to overcome the need for PEG transfection for the first time. We investigated different electroporation parameters including pulsing voltage (V), strength and duration of pulses regarding protoplast morphology, viability, and delivery of CRISPR/Cas9. Electroporation at various pulsing voltages with 3 pulses and 10 ms per pulse was found optimal for protoplast electro-transfection. Following electro-transfection at various pulsing voltages (500 V, 700 V, 1,000 V, and 1,300 V), intact protoplasts were observed at all treatments. However, the relative frequency of cell viability and initial cell divisions decreased with increasing voltages. Confocal laser scanning microscopy (CLSM) confirmed that the green fluorescent protein (GFP)-tagged Cas9 was successfully internalized into the protoplasts. Targeted deep sequencing results revealed that on-target insertion/deletion (InDel) frequencies were increased with increasing voltages in protoplasts electro-transfected with CRISPR/Cas9 RNPs targeting constitutive pathogen response 5 (CPR5). InDel patterns ranged from +1 bp to -6 bp at three different target sites in CPR5 locus with frequencies ranging from 3.8% to 8.1% following electro-transfection at 1,300 V and 2.1% to 3.8% for 700 V and 1,000 V, respectively. Taken together, our results demonstrate that the CRISPR/Cas9 RNP system can be delivered into soybean protoplasts by the Neon electroporation system for efficient and effective gene editing. The electro-transfection system developed in this study would also further facilitate and serve as an alternative delivery method for DNA-free genome editing of soybean and other related species for genetic screens and potential trait improvement.
Collapse
Affiliation(s)
| | - Sarah Zanon Agapito-Tenfen
- NORCE Norwegian Research Centre AS, Climate & Environment Department, Siva Innovasjonssenter, Tromsø, Norway
| |
Collapse
|
17
|
Hsieh JWA, Chang P, Kuang LY, Hsing YIC, Chen PY. Rice transformation treatments leave specific epigenome changes beyond tissue culture. PLANT PHYSIOLOGY 2023; 193:1297-1312. [PMID: 37394940 PMCID: PMC10517251 DOI: 10.1093/plphys/kiad382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
During transgenic plant production, tissue culture often carries epigenetic, and genetic changes that underlie somaclonal variations, leading to unpredictable phenotypes. Additionally, specific treatments for rice (Oryza sativa) transformation processes may individually or jointly contribute to somaclonal variations, but their specific impacts on rice epigenomes toward transcriptional variations remain unknown. Here, the impact of individual transformation treatments on genome-wide DNA methylation and the transcriptome were examined. In addition to activating stress-responsive genes, individual transformation components targeted different gene expression modules that were enriched in specific functional categories. The transformation treatments strongly impacted DNA methylation and expression; 75% were independent of tissue culture. Furthermore, our genome-wide analysis showed that the transformation treatments consistently resulted in global hypo-CHH methylation enriched at promoters highly associated with downregulation, particularly when the promoters were colocalized with miniature inverted-repeat transposable elements. Our results clearly highlight the specificity of impacts triggered by individual transformation treatments during rice transformation with the potential association between DNA methylation and gene expression. These changes in gene expression and DNA methylation resulting from rice transformation treatments explain a significant portion of somaclonal variations, that is, way beyond the tissue culture effect.
Collapse
Affiliation(s)
- Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National
Taiwan University, Taipei 10617, Taiwan
| | - Pearl Chang
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
- Department of Tropical Agriculture and International Cooperation/Department
of Biological Science and Technology, National Pingtung University of Science and
Technology, Pingtung 91201, Taiwan
| | - Lin-Yun Kuang
- The Transgenic Plant Core Facility, Agricultural Biotechnology Research
Center, Academia Sinica, Taipei 115201, Taiwan
| | - Yue-Ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National
Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Nishizawa‐Yokoi A, Gelvin SB. Transformation and regeneration of DNA polymerase Θ mutant rice plants. PLANT DIRECT 2023; 7:e526. [PMID: 37681196 PMCID: PMC10480422 DOI: 10.1002/pld3.526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Agrobacterium T-DNA integration into the plant genome is essential for the process of transgenesis and is widely used for genome engineering. The importance of the non-homologous end-joining (NHEJ) protein DNA polymerase Θ, encoded by the PolQ gene, for T-DNA integration is controversial, with some groups claiming it is essential whereas others claim T-DNA integration in Arabidopsis and rice polQ mutant plant tissue. Because of pleiotropic effects of PolQ loss on plant development, scientists have previously had difficulty regenerating transgenic polQ mutant plants. We describe a protocol for regenerating transgenic polQ mutant rice plants using a sequential transformation method. This protocol may be applicable to other plant species.
Collapse
Affiliation(s)
- Ayako Nishizawa‐Yokoi
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Stanton B. Gelvin
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
19
|
Dickinson L, Yuan W, LeBlanc C, Thomson G, Wang S, Jacob Y. Regulation of gene editing using T-DNA concatenation. NATURE PLANTS 2023; 9:1398-1408. [PMID: 37653336 PMCID: PMC11193869 DOI: 10.1038/s41477-023-01495-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Transformation via Agrobacterium tumefaciens is the predominant method used to introduce exogenous DNA into plant genomes1,2. Transfer DNA (T-DNA) originating from Agrobacterium can be integrated as a single copy or in complex concatenated forms3,4, but the mechanisms affecting final T-DNA structure remain unknown. Here we demonstrate that inclusion of retrotransposon (RT)-derived sequences in T-DNA can increase T-DNA copy number by more than 50-fold in Arabidopsis thaliana. These additional T-DNA copies are organized into large concatemers, an effect primarily induced by the long terminal repeats (LTRs) of RTs that can be replicated using non-LTR DNA repeats. We found that T-DNA concatenation is dependent on the activity of the DNA repair proteins MRE11, RAD17 and ATR. Finally, we show that T-DNA concatenation can be used to increase the frequency of targeted mutagenesis and gene targeting. Overall, this work uncovers molecular determinants that modulate T-DNA copy number in Arabidopsis and demonstrates the utility of inducing T-DNA concatenation for plant gene editing.
Collapse
Affiliation(s)
- Lauren Dickinson
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Wenxin Yuan
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Geoffrey Thomson
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Wouters M, Bastiaanse H, Rombauts S, de Vries L, De Pooter T, Strazisar M, Neutelings G, Vanholme R, Boerjan W. Suppression of the Arabidopsis cinnamoyl-CoA reductase 1-6 intronic T-DNA mutation by epigenetic modification. PLANT PHYSIOLOGY 2023; 192:3001-3016. [PMID: 37139862 PMCID: PMC7614886 DOI: 10.1093/plphys/kiad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) transfer DNA (T-DNA) insertion collections are popular resources for fundamental plant research. Cinnamoyl-CoA reductase 1 (CCR1) catalyzes an essential step in the biosynthesis of the cell wall polymer lignin. Accordingly, the intronic T-DNA insertion mutant ccr1-6 has reduced lignin levels and shows a stunted growth phenotype. Here, we report restoration of the ccr1-6 mutant phenotype and CCR1 expression levels after a genetic cross with a UDP-glucosyltransferase 72e1 (ugt72e1),-e2,-e3 T-DNA mutant. We discovered that the phenotypic recovery was not dependent on the UGT72E family loss of function but due to an epigenetic phenomenon called trans T-DNA suppression. Via trans T-DNA suppression, the gene function of an intronic T-DNA mutant was restored after the introduction of an additional T-DNA sharing identical sequences, leading to heterochromatinization and splicing out of the T-DNA-containing intron. Consequently, the suppressed ccr1-6 allele was named epiccr1-6. Long-read sequencing revealed that epiccr1-6, not ccr1-6, carries dense cytosine methylation over the full length of the T-DNA. We showed that the SAIL T-DNA in the UGT72E3 locus could trigger the trans T-DNA suppression of the GABI-Kat T-DNA in the CCR1 locus. Furthermore, we scanned the literature for other potential cases of trans T-DNA suppression in Arabidopsis and found that 22% of the publications matching our query report on double or higher-order T-DNA mutants that meet the minimal requirements for trans T-DNA suppression. These combined observations indicate that intronic T-DNA mutants need to be used with caution since methylation of intronic T-DNA might derepress gene expression and can thereby confound results.
Collapse
Affiliation(s)
- Marlies Wouters
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Héloïse Bastiaanse
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stéphane Rombauts
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lisanne de Vries
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Godfrey Neutelings
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576, CNRS, Université de Lille, Lille, France
| | - Ruben Vanholme
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Wout Boerjan
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Magembe EM, Li H, Taheri A, Zhou S, Ghislain M. Identification of T-DNA structure and insertion site in transgenic crops using targeted capture sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1156665. [PMID: 37502707 PMCID: PMC10369180 DOI: 10.3389/fpls.2023.1156665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023]
Abstract
The commercialization of GE crops requires a rigorous safety assessment, which includes a precise DNA level characterization of inserted T-DNA. In the past, several strategies have been developed for identifying T-DNA insertion sites including, Southern blot and different PCR-based methods. However, these methods are often challenging to scale up for screening of dozens of transgenic events and for crops with complex genomes, like potato. Here, we report using target capture sequencing (TCS) to characterize the T-DNA structure and insertion sites of 34 transgenic events in potato. This T-DNA is an 18 kb fragment between left and right borders and carries three resistance (R) genes (RB, Rpi-blb2 and Rpi-vnt1.1 genes) that result in complete resistance to late blight disease. Using TCS, we obtained a high sequence read coverage within the T-DNA and junction regions. We identified the T-DNA breakpoints on either ends for 85% of the transgenic events. About 74% of the transgenic events had their T-DNA with 3R gene sequences intact. The flanking sequences of the T-DNA were from the potato genome for half of the transgenic events, and about a third (11) of the transgenic events have a single T-DNA insertion mapped into the potato genome, of which five events do not interrupt an existing potato gene. The TCS results were confirmed using PCR and Sanger sequencing for 6 of the best transgenic events representing 20% of the transgenic events suitable for regulatory approval. These results demonstrate the wide applicability of TCS for the precise T-DNA insertion characterization in transgenic crops.
Collapse
Affiliation(s)
- Eric Maina Magembe
- Potato Agri-food Systems Program, International Potato Center, Nairobi, Kenya
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Marc Ghislain
- Potato Agri-food Systems Program, International Potato Center, Nairobi, Kenya
| |
Collapse
|
22
|
Wang X, Niu S, Yang J, Dong Y, Liu X, Jiao Y, Wang Z. Effects of stacking breeding on the methylome and transcriptome profile of transgenic rice with glyphosate tolerance. PLANTA 2023; 258:34. [PMID: 37378818 DOI: 10.1007/s00425-023-04181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
MAIN CONCLUSION Transcriptomics and methylomics were used to identify the potential effects resulting from GM rice breeding stacks, which provided scientific data for the safety assessment strategy of stacked GM crops in China. Gene interaction is one of the main concerns for stacked genetically modified crop safety. With the development of technology, the combination of omics and bioinformatics has become a useful tool to evaluate the unintended effects of genetically modified crops. In this study, transcriptomics and methylomics were used as molecular profiling techniques to identify the potential effects of stack through breeding. Stacked transgenic rice En-12 × Ec-26 was used as material, which was obtained through hybridization using parents En-12 and Ec-26, in which the foreign protein can form functional EPSPS protein by intein-mediated trans-splitting. Differentially methylated region (DMR) analysis showed that the effect of stacking breeding on methylation was less than that of genetic transformation at the methylome level. Differentially expressed gene (DEG) analysis showed that the DEGs between En-12 × Ec-26 and its parents were far fewer than those between transgenic rice and Zhonghua 11 (ZH11), and no unintended new genes were found in En-12 × Ec-26. Statistical analysis of gene expression and methylation involved in shikimic acid metabolism showed that there was no difference in gene expression, although there were 16 and 10 DMR genes between En-12 × Ec-26 and its parents (En and Ec) in methylation, respectively. The results indicated that the effect of stacking breeding on gene expression and DNA methylation was less than the effect of genetic transformation. This study provides scientific data supporting safety assessments of stacked GM crops in China.
Collapse
Affiliation(s)
- Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China
| | - Shance Niu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jiangtao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China
| | - Yufeng Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Cropedit Biotechnology Co., Ltd, Beijing, 102206, China
| | - Xiaojing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China
| | - Yue Jiao
- Development Center for Science and Technology, MARA, Beijing, 100122, China.
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China.
| |
Collapse
|
23
|
Dickinson L, Yuan W, LeBlanc C, Thomson G, Wang S, Jacob Y. Induction of T-DNA amplification by retrotransposon-derived sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531200. [PMID: 36945545 PMCID: PMC10028825 DOI: 10.1101/2023.03.05.531200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Transformation via Agrobacterium tumefaciens (Agrobacterium) is the predominant method used to introduce exogenous DNA into plants. Transfer DNA (T-DNA) originating from Agrobacterium can be integrated as a single copy or in concatenated forms in plant genomes, but the mechanisms affecting final T-DNA structure remain unknown. In this study, we demonstrate that the inclusion of retrotransposon (RT)-derived sequences in T-DNA can increase transgene copy number by more than 50-fold in Arabidopsis thaliana (Arabidopsis). RT-mediated amplification of T-DNA results in large concatemers in the Arabidopsis genome, which are primarily induced by the long terminal repeats (LTRs) of RTs. T-DNA amplification is dependent on the activity of DNA repair proteins associated with theta-mediated end joining (TMEJ). Finally, we show that T-DNA amplification can increase the frequency of targeted mutagenesis and gene targeting. Overall, this work uncovers molecular determinants that modulate T-DNA copy number in Arabidopsis and demonstrates the utility of inducing T-DNA amplification for plant gene editing.
Collapse
Affiliation(s)
- Lauren Dickinson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Wenxin Yuan
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Chantal LeBlanc
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Siyuan Wang
- Yale University, Department of Genetics, Yale School of Medicine; New Haven, Connecticut 06510, USA
- Yale University, Department of Cell Biology, Yale School of Medicine; New Haven, Connecticut 06510, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| |
Collapse
|
24
|
Zhang X, Li S, Li X, Song M, Ma S, Tian Y, Gao L. Peat-based hairy root transformation using Rhizobium rhizogenes as a rapid and efficient tool for easily exploring potential genes related to root-knot nematode parasitism and host response. PLANT METHODS 2023; 19:22. [PMID: 36871001 PMCID: PMC9985853 DOI: 10.1186/s13007-023-01003-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Root-knot nematodes (RKNs) pose a worldwide threat to agriculture of many crops including cucumber. Genetic transformation (GT) has emerged as a powerful tool for exploration of plant-RKN interactions and genetic improvement of RKN resistance. However, it is usually difficult to achieve a highly efficient and stable GT protocol for most crops due to the complexity of this process. RESULTS Here we firstly applied the hairy root transformation system in exploring root-RKN interactions in cucumber plants and developed a rapid and efficient tool transformation using Rhizobium rhizogenes strain K599. A solid-medium-based hypocotyl-cutting infection (SHI) method, a rockwool-based hypocotyl-cutting infection (RHI) method, and a peat-based cotyledon-node injection (PCI) method was evaluated for their ability to induce transgenic roots in cucumber plants. The PCI method generally outperformed the SHI and RHI methods for stimulating more transgenic roots and evaluating the phenotype of roots during nematode parasitism. Using the PCI method, we generated the CRISPR/Cas9-mediated malate synthase (MS) gene (involved in biotic stress responses) knockout plant and the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16, a potential host susceptibility gene for RKN) promoter-driven GUS expressing plant. Knockout of MS in hairy roots resulted in effective resistance against RKNs, while nematode infection induced a strong expression of LBD16-driven GUS in root galls. This is the first report of a direct link between these genes and RKN performance in cucumber. CONCLUSION Taken together, the present study demonstrates that the PCI method allows fast, easy and efficient in vivo studies of potential genes related to root-knot nematode parasitism and host response.
Collapse
Affiliation(s)
- Xu Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Mengyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
25
|
Guzmán-Benito I, Achkar NP, Bologna N, Ursache R. CRISPR/Cas-mediated inplanta gene targeting: current advances and challenges. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad072. [PMID: 36861321 DOI: 10.1093/jxb/erad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 06/18/2023]
Abstract
We can use gene targeting (GT) to make modifications at a specific region in a plant's genome and create high-precision tools for plant biotechnology and breeding. However, its low efficiency is a major barrier to its use in plants. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas-based site-specific nucleases capable of inducing double-strand breaks in desired loci resulted in the development of novel approaches for plant GT. Several studies have recently demonstrated improvements in GT efficiency through cell-type-specific expression of Cas nucleases, the use of self-amplified GT-vector DNA, or manipulation of RNA silencing and DNA repair pathways. In this review, we summarize recent advances in CRISPR/Cas-mediated GT in plants and discuss potential efficiency improvements. Increasing the efficiency of GT technology will help us pave the way for increased crop yields and food safety in environmentally friendly agriculture.
Collapse
Affiliation(s)
- Irene Guzmán-Benito
- The Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Natalia Patricia Achkar
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Nicolas Bologna
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Robertas Ursache
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
26
|
Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, Wang X, Lippman ZB, Schatz MC, Soyk S. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol 2022; 23:258. [PMID: 36522651 PMCID: PMC9753292 DOI: 10.1186/s13059-022-02823-7] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Advancing crop genomics requires efficient genetic systems enabled by high-quality personalized genome assemblies. Here, we introduce RagTag, a toolset for automating assembly scaffolding and patching, and we establish chromosome-scale reference genomes for the widely used tomato genotype M82 along with Sweet-100, a new rapid-cycling genotype that we developed to accelerate functional genomics and genome editing in tomato. This work outlines strategies to rapidly expand genetic systems and genomic resources in other plant species.
Collapse
Affiliation(s)
- Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ludivine Lebeigle
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Melanie Kirsche
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Katie Jenike
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shujun Ou
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sergey Aganezov
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
27
|
Chen Z, Debernardi JM, Dubcovsky J, Gallavotti A. Recent advances in crop transformation technologies. NATURE PLANTS 2022; 8:1343-1351. [PMID: 36522447 DOI: 10.1038/s41477-022-01295-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/30/2022] [Indexed: 05/12/2023]
Abstract
Agriculture is experiencing a technological inflection point in its history, while also facing unprecedented challenges posed by human population growth and global climate changes. Key advancements in precise genome editing and new methods for rapid generation of bioengineered crops promise to both revolutionize the speed and breadth of breeding programmes and increase our ability to feed and sustain human population growth. Although genome editing enables targeted and specific modifications of DNA sequences, several existing barriers prevent the widespread adoption of editing technologies for basic and applied research in established and emerging crop species. Inefficient methods for the transformation and regeneration of recalcitrant species and the genotype dependency of the transformation process remain major hurdles. These limitations are frequent in monocotyledonous crops, which alone provide most of the calories consumed by human populations. Somatic embryogenesis and de novo induction of meristems - pluripotent groups of stem cells responsible for plant developmental plasticity - are essential strategies to quickly generate transformed plants. Here we review recent discoveries that are rapidly advancing nuclear transformation technologies and promise to overcome the obstacles that have so far impeded the widespread adoption of genome editing in crop species.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | - Juan M Debernardi
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
28
|
Rudenko NN, Permyakova NV, Ignatova LK, Nadeeva EM, Zagorskaya AA, Deineko EV, Ivanov BN. The Role of Carbonic Anhydrase αCA4 in Photosynthetic Reactions in Arabidopsis thaliana Studied, Using the Cas9 and T-DNA Induced Mutations in Its Gene. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233303. [PMID: 36501340 PMCID: PMC9735932 DOI: 10.3390/plants11233303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 05/27/2023]
Abstract
An homozygous mutant line of Arabidopsis thaliana with a knocked out At4g20990 gene encoding thylakoid carbonic anhydrase αCA4 was created using a CRISPR/Cas9 genome editing system. The effects of the mutation were compared with those in two mutant lines obtained by the T-DNA insertion method. In αCA4 knockouts of all three lines, non-photochemical quenching of chlorophyll a fluorescence was lower than in the wild type (WT) plants due to a decrease in its energy-dependent component. The αCA4 knockout also affected the level of expression of the genes encoding all proteins of the PSII light harvesting antennae, the genes encoding cytoplasmic and thylakoid CAs and the genes induced by plant immune signals. The production level of starch synthesis during the light period, as well as the level of its utilization during the darkness, were significantly higher in these mutants than in WT plants. These data confirm that the previously observed differences between insertional mutants and WT plants were not the result of the negative effects of T-DNA insertion transgenesis but the results of αCA4 gene knockout. Overall, the data indicate the involvement of αCA4 in the photosynthetic reactions in the thylakoid membrane, in particular in processes associated with the protection of higher plants' photosynthetic apparatus from photoinhibition.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Natalya V. Permyakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Lyudmila K. Ignatova
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Elena M. Nadeeva
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Alla A. Zagorskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V. Deineko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Boris N. Ivanov
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
29
|
Chu P, Agapito-Tenfen SZ. Unintended Genomic Outcomes in Current and Next Generation GM Techniques: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212997. [PMID: 36365450 PMCID: PMC9655061 DOI: 10.3390/plants11212997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 05/27/2023]
Abstract
Classical genetic engineering and new genome editing techniques, especially the CRISPR/Cas technology, increase the possibilities for modifying the genetic material in organisms. These technologies have the potential to provide novel agricultural traits, including modified microorganisms and environmental applications. However, legitimate safety concerns arise from the unintended genetic modifications (GM) that have been reported as side-effects of such techniques. Here, we systematically review the scientific literature for studies that have investigated unintended genomic alterations in plants modified by the following GM techniques: Agrobacterium tumefaciens-mediated gene transfer, biolistic bombardment, and CRISPR-Cas9 delivered via Agrobacterium-mediated gene transfer (DNA-based), biolistic bombardment (DNA-based) and as ribonucleoprotein complexes (RNPs). The results of our literature review show that the impact of such techniques in host genomes varies from small nucleotide polymorphisms to large genomic variation, such as segmental duplication, chromosome truncation, trisomy, chromothripsis, breakage fusion bridge, including large rearrangements of DNA vector-backbone sequences. We have also reviewed the type of analytical method applied to investigate the genomic alterations and found that only five articles used whole genome sequencing in their analysis methods. In addition, larger structural variations detected in some studies would not be possible without long-read sequencing strategies, which shows a potential underestimation of such effects in the literature. As new technologies are constantly evolving, a more thorough examination of prospective analytical methods should be conducted in the future. This will provide regulators working in the field of genetically modified and gene-edited organisms with valuable information on the ability to detect and identify genomic interventions.
Collapse
|
30
|
Li S, Wang C, You C, Zhou X, Zhou H. T-LOC: A comprehensive tool to localize and characterize T-DNA integration sites. PLANT PHYSIOLOGY 2022; 190:1628-1639. [PMID: 35640125 PMCID: PMC9614469 DOI: 10.1093/plphys/kiac225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/23/2022] [Indexed: 05/30/2023]
Abstract
Scientists have developed many approaches based on PCR or next-generation sequencing to localize and characterize integrated T-DNAs in transgenic plants generated by Agrobacterium tumefaciens-mediated T-DNA transfer. However, none of these methods has the robust ability to handle all transgenic plants with diversified T-DNA patterns. Utilizing the valuable information in the whole-genome sequencing data of transgenic plants, we have developed a comprehensive approach (T-LOC) to localize and characterize T-DNA integration sites (TISs). We evaluated the performance of T-LOC on genome sequencing data from 48 transgenic rice (Oryza sativa) plants that provide real and unbiased resources of T-DNA integration patterns. T-LOC discovered 75 full TISs and reported a diversified pattern of T-DNA integration: the ideal single-copy T-DNA between two borders, multiple-copy of T-DNAs in tandem or inverted repeats, truncated partial T-DNAs with or without the selection hygromycin gene, the inclusion of T-DNA backbone, the integration at the genome repeat region, and the concatenation of multiple ideal or partial T-DNAs. In addition, we reported that DNA fragments from the two A. tumefaciens plasmids can be fused with T-DNA and integrated into the plant genome. Besides, T-LOC characterizes the genomic changes at TISs, including deletion, duplication, accurate repair, and chromosomal rearrangement. Moreover, we validated the robustness of T-LOC using PCR, Sanger sequencing, and Nanopore sequencing. In summary, T-LOC is a robust approach to studying the TISs independent of the integration pattern and can recover all types of TISs in transgenic plants.
Collapse
Affiliation(s)
| | | | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | |
Collapse
|
31
|
Cui F, Li X, Wu W, Luo W, Wu Y, Brosché M, Overmyer K. Ectopic expression of BOTRYTIS SUSCEPTIBLE1 reveals its function as a positive regulator of wound-induced cell death and plant susceptibility to Botrytis. THE PLANT CELL 2022; 34:4105-4116. [PMID: 35946779 PMCID: PMC9516177 DOI: 10.1093/plcell/koac206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/31/2022] [Indexed: 06/01/2023]
Abstract
Programmed cell death (PCD) is integral to plant life and required for stress responses, immunity, and development. Our understanding of the regulation of PCD is incomplete, especially concerning regulators involved in multiple divergent processes. The botrytis-susceptible (bos1) mutant of Arabidopsis is highly susceptible to fungal infection by Botrytis cinerea (Botrytis). BOS1 (also known as MYB108) regulates cell death propagation during plant responses to wounding. The bos1-1 allele contains a T-DNA insertion in the 5'-untranslated region upstream of the start codon. This insertion results in elevated expression of BOS1/MYB108. We used clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease 9 (Cas9) system (CRISPR/Cas9) to create new bos1 alleles with disrupted exons, and found that these lines lacked the typical bos1-1 wounding and Botrytis phenotypes. They did exhibit reduced fertility, as was previously observed in other bos1 alleles. Resequencing of the bos1-1 genome confirmed the presence of a mannopine synthase (MAS) promoter at the T-DNA left border. Expression of the BOS1 gene under control of the MAS promoter in wild-type plants conferred the characteristic phenotypes of bos1-1: Botrytis sensitivity and response to wounding. Multiple overexpression lines demonstrated that BOS1 was involved in regulation of cell death propagation in a dosage-dependent manner. Our data indicate that bos1-1 is a gain-of-function mutant and that BOS1 function in regulation of fertility and Botrytis response can both be understood as misregulated cell death.
Collapse
Affiliation(s)
| | | | | | - Wenbo Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Mikael Brosché
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Program, Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - Kirk Overmyer
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Program, Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
32
|
Lopez LS, Völkner C, Day PM, Lewis CM, Lewis CL, Schneider D, Correa Galvis V, Cruz JA, Armbruster U, Kramer DM, Kunz H. The Arabidopsis T-DNA mutant SALK_008491 carries a 14-kb deletion on chromosome 3 that provides rare insights into the plant response to dynamic light stress. PLANT DIRECT 2022; 6:e429. [PMID: 35875836 PMCID: PMC9300446 DOI: 10.1002/pld3.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 05/14/2023]
Abstract
In nature, plants experience rapid changes in light intensity and quality throughout the day. To maximize growth, they have established molecular mechanisms to optimize photosynthetic output while protecting components of the light-dependent reaction and CO2 fixation pathways. Plant phenotyping of mutant collections has become a powerful tool to unveil the genetic loci involved in environmental acclimation. Here, we describe the phenotyping of the transfer-DNA (T-DNA) insertion mutant line SALK_008491, previously known as nhd1-1. Growth in a fluctuating light regime caused a loss in growth rate accompanied by a spike in photosystem (PS) II damage and increased non-photochemical quenching (NPQ). Interestingly, an independent nhd1 null allele did not recapitulate the NPQ phenotype. Through bulk sequencing of a backcrossed segregating F2 pool, we identified an ~14-kb large deletion on chromosome 3 (Chr3) in SALK_008491 affecting five genes upstream of NHD1. Besides NHD1, which encodes for a putative plastid Na+/H+ antiporter, the stromal NAD-dependent D-3-phosphoglycerate dehydrogenase 3 (PGDH3) locus was eradicated. Although some changes in the SALK_008491 mutant's photosynthesis can be assigned to the loss of PGDH3, our follow-up studies employing respective single mutants and complementation with overlapping transformation-competent artificial chromosome (TAC) vectors reveal that the exacerbated fluctuating light sensitivity in SALK_008491 mutants result from the simultaneous loss of PGDH3 and NHD1. Altogether, the data obtained from this large deletion-carrying mutant provide new and unintuitive insights into the molecular mechanisms that function to protect the photosynthetic machinery. Moreover, our study renews calls for caution when setting up reverse genetic studies using T-DNA lines. Although second-site insertions, indels, and SNPs have been reported before, large deletion surrounding the insertion site causes yet another problem. Nevertheless, as shown through this research, such unpredictable genetic events following T-DNA mutagenesis can provide unintuitive insights that allow for understanding complex phenomena such as the plant acclimation to dynamic high light stress.
Collapse
Affiliation(s)
- Laura S. Lopez
- School of Biological SciencesWashington State UniversityPullmanWashington
| | - Carsten Völkner
- School of Biological SciencesWashington State UniversityPullmanWashington
- Department of Plant BiochemistryLMU MunichPlanegg‐MartinsriedGermany
| | - Philip M. Day
- School of Biological SciencesWashington State UniversityPullmanWashington
| | - Chance M. Lewis
- School of Biological SciencesWashington State UniversityPullmanWashington
| | - Chase L. Lewis
- School of Biological SciencesWashington State UniversityPullmanWashington
| | - Dominik Schneider
- Compact Plants Phenomics CenterWashington State UniversityPullmanWashingtonUSA
| | | | - Jeffrey A. Cruz
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - David M. Kramer
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
| | - Hans‐Henning Kunz
- School of Biological SciencesWashington State UniversityPullmanWashington
- Department of Plant BiochemistryLMU MunichPlanegg‐MartinsriedGermany
| |
Collapse
|
33
|
Ohzeki J, Kugou K, Otake K, Okazaki K, Takahashi S, Shibata D, Masumoto H. Introduction of a long synthetic repetitive DNA sequence into cultured tobacco cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:101-110. [PMID: 35937535 PMCID: PMC9300429 DOI: 10.5511/plantbiotechnology.21.1210a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/10/2021] [Indexed: 05/15/2023]
Abstract
Genome information has been accumulated for many species, and these genes and regulatory sequences are expected to be applied in plants by enhancing or creating new metabolic pathways. We hypothesized that manipulating a long array of repetitive sequences using tethered chromatin modulators would be effective for robust regulation of gene expression in close proximity to the arrays. This approach is based on a human artificial chromosome made of long synthetic repetitive DNA sequences in which we manipulated the chromatin by tethering the modifiers. However, a method for introducing long repetitive DNA sequences into plants has not yet been established. Therefore, we constructed a bacterial artificial chromosome-based binary vector in Escherichia coli cells to generate a construct in which a cassette of marker genes was inserted into 60-kb synthetic human centromeric repetitive DNA. The binary vector was then transferred to Agrobacterium cells and its stable maintenance confirmed. Next, using Agrobacterium-mediated genetic transformation, this construct was successfully introduced into the genome of cultured tobacco BY-2 cells to obtain a large number of stable one-copy strains. ChIP analysis of obtained BY-2 cell lines revealed that the introduced synthetic repetitive DNA has moderate chromatin modification levels with lower heterochromatin (H3K9me2) or euchromatin (H3K4me3) modifications compared to the host centromeric repetitive DNA or an active Tub6 gene, respectively. Such a synthetic DNA sequence with moderate chromatin modification levels is expected to facilitate manipulation of the chromatin structure to either open or closed.
Collapse
Affiliation(s)
- Junichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kazuto Kugou
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Koei Okazaki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Shibata
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
- E-mail: Tel: +81-438-52-3952 Fax: +81-438-52-3946
| |
Collapse
|
34
|
Singer K, Lee LY, Yuan J, Gelvin SB. Characterization of T-Circles and Their Formation Reveal Similarities to Agrobacterium T-DNA Integration Patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:849930. [PMID: 35599900 PMCID: PMC9121065 DOI: 10.3389/fpls.2022.849930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Agrobacterium transfers T-DNA to plants where it may integrate into the genome. Non-homologous end-joining (NHEJ) has been invoked as the mechanism of T-DNA integration, but the role of various NHEJ proteins remains controversial. Genetic evidence for the role of NHEJ in T-DNA integration has yielded conflicting results. We propose to investigate the formation of T-circles as a proxy for understanding T-DNA integration. T-circles are circular double-strand T-DNA molecules, joined at their left (LB) and right (RB) border regions, formed in plants. We characterized LB-RB junction regions from hundreds of T-circles formed in Nicotiana benthamiana or Arabidopsis thaliana. These junctions resembled T-DNA/plant DNA junctions found in integrated T-DNA: Among complex T-circles composed of multiple T-DNA molecules, RB-RB/LB-LB junctions predominated over RB-LB junctions; deletions at the LB were more frequent and extensive than those at the RB; microhomology was frequently used at junction sites; and filler DNA, from the plant genome or various Agrobacterium replicons, was often present between the borders. Ku80 was not required for efficient T-circle formation, and a VirD2 ω mutation affected T-circle formation and T-DNA integration similarly. We suggest that investigating the formation of T-circles may serve as a surrogate for understanding T-DNA integration.
Collapse
|
35
|
Kralemann LEM, de Pater S, Shen H, Kloet SL, van Schendel R, Hooykaas PJJ, Tijsterman M. Distinct mechanisms for genomic attachment of the 5' and 3' ends of Agrobacterium T-DNA in plants. NATURE PLANTS 2022; 8:526-534. [PMID: 35534719 DOI: 10.1038/s41477-022-01147-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Agrobacterium tumefaciens, a pathogenic bacterium capable of transforming plants through horizontal gene transfer, is nowadays the preferred vector for plant genetic engineering. The vehicle for transfer is the T-strand, a single-stranded DNA molecule bound by the bacterial protein VirD2, which guides the T-DNA into the plant's nucleus where it integrates. How VirD2 is removed from T-DNA, and which mechanism acts to attach the liberated end to the plant genome is currently unknown. Here, using newly developed technology that yields hundreds of T-DNA integrations in somatic tissue of Arabidopsis thaliana, we uncover two redundant mechanisms for the genomic capture of the T-DNA 5' end. Different from capture of the 3' end of the T-DNA, which is the exclusive action of polymerase theta-mediated end joining (TMEJ), 5' attachment is accomplished either by TMEJ or by canonical non-homologous end joining (cNHEJ). We further find that TMEJ needs MRE11, whereas cNHEJ requires TDP2 to remove the 5' end-blocking protein VirD2. As a consequence, T-DNA integration is severely impaired in plants deficient for both MRE11 and TDP2 (or other cNHEJ factors). In support of MRE11 and cNHEJ specifically acting on the 5' end, we demonstrate rescue of the integration defect of double-deficient plants by using T-DNAs that are capable of forming telomeres upon 3' capture. Our study provides a mechanistic model for how Agrobacterium exploits the plant's own DNA repair machineries to transform it.
Collapse
Affiliation(s)
| | - Sylvia de Pater
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Hexi Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, China
| | - Susan L Kloet
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Marcel Tijsterman
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
36
|
Aesaert S, Impens L, Coussens G, Van Lerberge E, Vanderhaeghen R, Desmet L, Vanhevel Y, Bossuyt S, Wambua AN, Van Lijsebettens M, Inzé D, De Keyser E, Jacobs TB, Karimi M, Pauwels L. Optimized Transformation and Gene Editing of the B104 Public Maize Inbred by Improved Tissue Culture and Use of Morphogenic Regulators. FRONTIERS IN PLANT SCIENCE 2022; 13:883847. [PMID: 35528934 PMCID: PMC9072829 DOI: 10.3389/fpls.2022.883847] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 05/13/2023]
Abstract
Plant transformation is a bottleneck for the application of gene editing in plants. In Zea mays (maize), a breakthrough was made using co-transformation of the morphogenic transcription factors BABY BOOM (BBM) and WUSCHEL (WUS) to induce somatic embryogenesis. Together with adapted tissue culture media, this was shown to increase transformation efficiency significantly. However, use of the method has not been reported widely, despite a clear need for increased transformation capacity in academic settings. Here, we explore use of the method for the public maize inbred B104 that is widely used for transformation by the research community. We find that only modifying tissue culture media already boosts transformation efficiency significantly and can reduce the time in tissue culture by 1 month. On average, production of independent transgenic plants per starting embryo increased from 1 to 4% using BIALAPHOS RESISTANCE (BAR) as a selection marker. In addition, we reconstructed the BBM-WUS morphogenic gene cassette and evaluated its functionality in B104. Expression of the morphogenic genes under tissue- and development stage-specific promoters led to direct somatic embryo formation on the scutellum of zygotic embryos. However, eight out of ten resulting transgenic plants showed pleiotropic developmental defects and were not fertile. This undesirable phenotype was positively correlated with the copy number of the morphogenic gene cassette. Use of constructs in which morphogenic genes are flanked by a developmentally controlled Cre/LoxP recombination system led to reduced T-DNA copy number and fertile T0 plants, while increasing transformation efficiency from 1 to 5% using HIGHLY-RESISTANT ACETOLACTATE SYNTHASE as a selection marker. Addition of a CRISPR/Cas9 module confirmed functionality for gene editing applications, as exemplified by editing the gene VIRESCENT YELLOW-LIKE (VYL) that can act as a visual marker for gene editing in maize. The constructs, methods, and insights produced in this work will be valuable to translate the use of BBM-WUS and other emerging morphogenic regulators (MRs) to other genotypes and crops.
Collapse
Affiliation(s)
- Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lennert Impens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Els Van Lerberge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rudy Vanderhaeghen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurence Desmet
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Shari Bossuyt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Angeline Ndele Wambua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Thomas B. Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
37
|
Canaguier A, Guilbaud R, Denis E, Magdelenat G, Belser C, Istace B, Cruaud C, Wincker P, Le Paslier MC, Faivre-Rampant P, Barbe V. Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection. BMC Genomics 2022; 23:317. [PMID: 35448948 PMCID: PMC9026655 DOI: 10.1186/s12864-022-08499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemblies. Nowadays, technologies such as DNA long read sequencing and optical mapping have revolutionized the understanding of SVs in genomes, due to the enhancement of the power of SVs detection. This study aims to investigate performance of two techniques, 1) long-read sequencing obtained with the MinION device (Oxford Nanopore Technologies) and 2) optical mapping obtained with Saphyr device (Bionano Genomics) to detect and characterize SVs in the genomes of the two ecotypes of Arabidopsis thaliana, Columbia-0 (Col-0) and Landsberg erecta 1 (Ler-1). RESULTS We described the SVs detected from the alignment of the best ONT assembly and DLE-1 optical maps of A. thaliana Ler-1 against the public reference genome Col-0 TAIR10.1. After filtering (SV > 1 kb), 1184 and 591 Ler-1 SVs were retained from ONT and Bionano technologies respectively. A total of 948 Ler-1 ONT SVs (80.1%) corresponded to 563 Bionano SVs (95.3%) leading to 563 common locations. The specific locations were scrutinized to assess improvement in SV detection by either technology. The ONT SVs were mostly detected near TE and gene features, and resistance genes seemed particularly impacted. CONCLUSIONS Structural variations linked to ONT sequencing error were removed and false positives limited, with high quality Bionano SVs being conserved. When compared with the Col-0 TAIR10.1 reference genome, most of the detected SVs discovered by both technologies were found in the same locations. ONT assembly sequence leads to more specific SVs than Bionano one, the latter being more efficient to characterize large SVs. Even if both technologies are complementary approaches, ONT data appears to be more adapted to large scale populations studies, while Bionano performs better in improving assembly and describing specificity of a genome compared to a reference.
Collapse
Affiliation(s)
- Aurélie Canaguier
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Romane Guilbaud
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Erwan Denis
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Ghislaine Magdelenat
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Corinne Cruaud
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Marie-Christine Le Paslier
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Patricia Faivre-Rampant
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
38
|
Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat Commun 2022; 13:1607. [PMID: 35338132 PMCID: PMC8956640 DOI: 10.1038/s41467-022-29132-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance. Aegilops sharonensis is a wild diploid relative of wheat. Here, the authors assemble the genome of Ae. sharonensis and use the assembly as an aid to clone the Ae. sharonensis-derived stem rust resistance gene Sr62 in the allohexaploid genome of wheat.
Collapse
|
39
|
Then C, Miyazaki J, Bauer-Panskus A. Deficiencies in the Risk Assessment of Genetically Engineered Bt Cowpea Approved for Cultivation in Nigeria: A Critical Review. PLANTS 2022; 11:plants11030380. [PMID: 35161361 PMCID: PMC8838765 DOI: 10.3390/plants11030380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022]
Abstract
We analyze the application filed for the marketing and cultivation of genetically engineered Bt cowpea (event AAT 709A) approved in Nigeria in 2019. Cowpea (Vigna ungiguiculata) is extensively grown throughout sub-Saharan Africa and consumed by around two hundred million people. The transgenic plants produce an insecticidal, recombinant Bt toxin meant to protect the plants against the larvae of Maruca vitrata, which feed on the plants and are also known as pod borer. Our analysis of the application reveals issues of concern regarding the safety of the Bt toxins produced in the plants. These concerns include stability of gene expression, impact on soil organisms, effects on non-target species and food safety. In addition, we show deficiencies in the risk assessment of potential gene flow and uncontrolled spread of the transgenes and cultivated varieties as well as the maintenance of seed collections. As far as information is publicly available, we analyze the application by referring to established standards of GMO risk assessment. We take the provisions of the Cartagena Protocol on Biosafety (CPB) into account, of which both Nigeria and the EU are parties. We also refer to the EU standards for GMO risk assessment, which are complementary to the provisions of the CPB.
Collapse
|
40
|
Banakar R, Schubert M, Kurgan G, Rai KM, Beaudoin SF, Collingwood MA, Vakulskas CA, Wang K, Zhang F. Efficiency, Specificity and Temperature Sensitivity of Cas9 and Cas12a RNPs for DNA-free Genome Editing in Plants. Front Genome Ed 2022; 3:760820. [PMID: 35098208 PMCID: PMC8790294 DOI: 10.3389/fgeed.2021.760820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
Delivery of genome editing reagents using CRISPR-Cas ribonucleoproteins (RNPs) transfection offers several advantages over plasmid DNA-based delivery methods, including reduced off-target editing effects, mitigation of random integration of non-native DNA fragments, independence of vector constructions, and less regulatory restrictions. Compared to the use in animal systems, RNP-mediated genome editing is still at the early development stage in plants. In this study, we established an efficient and simplified protoplast-based genome editing platform for CRISPR-Cas RNP delivery, and then evaluated the efficiency, specificity, and temperature sensitivity of six Cas9 and Cas12a proteins. Our results demonstrated that Cas9 and Cas12a RNP delivery resulted in genome editing frequencies (8.7-41.2%) at various temperature conditions, 22°C, 26°C, and 37°C, with no significant temperature sensitivity. LbCas12a often exhibited the highest activities, while AsCas12a demonstrated higher sequence specificity. The high activities of CRISPR-Cas RNPs at 22° and 26°C, the temperature preferred by plant transformation and tissue culture, led to high mutagenesis efficiencies (34.0-85.2%) in the protoplast-regenerated calli and plants with the heritable mutants recovered in the next generation. This RNP delivery approach was further extended to pennycress (Thlaspi arvense), soybean (Glycine max) and Setaria viridis with up to 70.2% mutagenesis frequency. Together, this study sheds light on the choice of RNP reagents to achieve efficient transgene-free genome editing in plants.
Collapse
Affiliation(s)
- Raviraj Banakar
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | | | - Gavin Kurgan
- Integrated DNA Technologies, Coralville, IA, United States
| | - Krishan Mohan Rai
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | | | | | | | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
41
|
van Tol N, van Schendel R, Bos A, van Kregten M, de Pater S, Hooykaas PJ, Tijsterman M. Gene targeting in polymerase theta-deficient Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:112-125. [PMID: 34713516 PMCID: PMC9299229 DOI: 10.1111/tpj.15557] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 05/26/2023]
Abstract
Agrobacterium tumefaciens-mediated transformation has been for decades the preferred tool to generate transgenic plants. During this process, a T-DNA carrying transgenes is transferred from the bacterium to plant cells, where it randomly integrates into the genome via polymerase theta (Polθ)-mediated end joining (TMEJ). Targeting of the T-DNA to a specific genomic locus via homologous recombination (HR) is also possible, but such gene targeting (GT) events occur at low frequency and are almost invariably accompanied by random integration events. An additional complexity is that the product of recombination between T-DNA and target locus may not only map to the target locus (true GT), but also to random positions in the genome (ectopic GT). In this study, we have investigated how TMEJ functionality affects the biology of GT in plants, by using Arabidopsis thaliana mutated for the TEBICHI gene, which encodes for Polθ. Whereas in TMEJ-proficient plants we predominantly found GT events accompanied by random T-DNA integrations, GT events obtained in the teb mutant background lacked additional T-DNA copies, corroborating the essential role of Polθ in T-DNA integration. Polθ deficiency also prevented ectopic GT events, suggesting that the sequence of events leading up to this outcome requires TMEJ. Our findings provide insights that can be used for the development of strategies to obtain high-quality GT events in crop plants.
Collapse
Affiliation(s)
- Niels van Tol
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Robin van Schendel
- Department of Human GeneticsLeiden University Medical CenterEinthovenweg 20Leiden2300 RCThe Netherlands
| | - Alex Bos
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Maartje van Kregten
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Sylvia de Pater
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Paul J.J. Hooykaas
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Marcel Tijsterman
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
- Department of Human GeneticsLeiden University Medical CenterEinthovenweg 20Leiden2300 RCThe Netherlands
| |
Collapse
|
42
|
Bush SJ, Murren CJ, Urrutia AO, Kover PX. Contrasting gene-level signatures of selection with reproductive fitness. Mol Ecol 2021; 31:1515-1526. [PMID: 34918851 PMCID: PMC9304172 DOI: 10.1111/mec.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Selection leaves signatures in the DNA sequence of genes, with many test statistics devised to detect its action. While these statistics are frequently used to support hypotheses about the adaptive significance of particular genes, the effect these genes have on reproductive fitness is rarely quantified experimentally. Consequently, it is unclear how gene-level signatures of selection are associated with empirical estimates of gene effect on fitness. Eukaryotic datasets that permit this comparison are very limited. Using the model plant Arabidopsis thaliana, for which these resources are available, we calculated seven gene-level substitution and polymorphism-based statistics commonly used to infer selection (dN/dS, NI, DOS, Tajima's D, Fu and Li's D*, Fay and Wu's H, and Zeng's E) and, using knockout lines, compared these to gene-level estimates of effect on fitness. We found that consistent with expectations, essential genes were more likely to be classified as negatively selected. By contrast, using 379 Arabidopsis genes for which data was available, we found no evidence that genes predicted to be positively selected had a significantly different effect on fitness than genes evolving more neutrally. We discuss these results in the context of the analytic challenges posed by Arabidopsis, one of the only systems in which this study could be conducted, and advocate for examination in additional systems. These results are relevant to the evaluation of genome-wide studies across species where experimental fitness data is unavailable, as well as highlighting an increasing need for the latter.
Collapse
Affiliation(s)
- Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, SC, USA, 29424
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Instituto de Ecologia, UNAM, Ciudad de Mexico, 04510, Mexico
| | - Paula X Kover
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
43
|
Smirnov A, Battulin N. Concatenation of Transgenic DNA: Random or Orchestrated? Genes (Basel) 2021; 12:genes12121969. [PMID: 34946918 PMCID: PMC8701086 DOI: 10.3390/genes12121969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Generation of transgenic organisms by pronuclear microinjection has become a routine procedure. However, while the process of DNA integration in the genome is well understood, we still do not know much about the recombination between transgene molecules that happens in the first moments after DNA injection. Most of the time, injected molecules are joined together in head-to-tail tandem repeats-the so-called concatemers. In this review, we focused on the possible concatenation mechanisms and how they could be studied with genetic reporters tracking individual copies in concatemers. We also discuss various features of concatemers, including palindromic junctions and repeat-induced gene silencing (RIGS). Finally, we speculate how cooperation of DNA repair pathways creates a multicopy concatenated insert.
Collapse
Affiliation(s)
- Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Institute of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
44
|
Gong W, Zhou Y, Wang R, Wei X, Zhang L, Dai Y, Zhu Z. Analysis of T-DNA integration events in transgenic rice. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153527. [PMID: 34563791 DOI: 10.1016/j.jplph.2021.153527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Agrobacterium-mediated plant transformation has been widely used for introducing transgene(s) into a plant genome and plant breeding. However, our understanding of T-DNA integration into rice genome remains limited relative to that in the model dicot Arabidopsis. To better elucidate the T-DNA integration into the rice genome, we investigated extensively the T-DNA ends and their flanking rice genomic sequences from two transgenic rice plants carrying Cowpea Trypsin Inhibitor (CpTI)-derived gene Signal-CpTI-KDEL (SCK) and Bacillus thuringiensis (BT) gene, respectively, by TAIL-PCR method. Analysis of the junction sequences between the T-DNA ends and rice genome DNA indicated that there were three joining patterns of microhomology, filler DNA sequences, and exact joining, and both the T-DNA ends tend to adopt identical manner to join the rice genome. After T-DNA integration, there were several variations of rice genomic sequences, including small deletions at the integration sites, superfluous DNA inserted between T-DNA and genome, and translocation of genomic DNA in the flanking regions. The translocation block could be from a noncontiguous region in the same chromosome or different chromosomes at the integration sites, and the originating position of the translocated block resulted in comparable deletion based on a cut/paste mechanism rather than a replication mechanism. Our study may lead to a better understand of T-DNA integration mechanism and facilitate functional genomic studies and further crop improvement.
Collapse
Affiliation(s)
- Wankui Gong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - Yun Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Rui Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; Public Health Emergency Center, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Xiaoli Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Dai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
45
|
Kawall K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2259. [PMID: 34834620 PMCID: PMC8622673 DOI: 10.3390/plants10112259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The use of site-directed nucleases (SDNs) in crop plants to alter market-oriented traits is expanding rapidly. At the same time, there is an on-going debate around the safety and regulation of crops altered with the site-directed nuclease 1 (SDN-1) technology. SDN-1 applications can be used to induce a variety of genetic alterations ranging from fairly 'simple' genetic alterations to complex changes in plant genomes using, for example, multiplexing approaches. The resulting plants can contain modified alleles and associated traits, which are either known or unknown in conventionally bred plants. The European Commission recently published a study on new genomic techniques suggesting an adaption of the current GMO legislation by emphasizing that targeted mutagenesis techniques can produce genomic alterations that can also be obtained by natural mutations or conventional breeding techniques. This review highlights the need for a case-specific risk assessment of crop plants derived from SDN-1 applications considering both the characteristics of the product and the process to ensure a high level of protection of human and animal health and the environment. The published literature on so-called market-oriented traits in crop plants altered with SDN-1 applications is analyzed here to determine the types of SDN-1 application in plants, and to reflect upon the complexity and the naturalness of such products. Furthermore, it demonstrates the potential of SDN-1 applications to induce complex alterations in plant genomes that are relevant to generic SDN-associated risks. In summary, it was found that nearly half of plants with so-called market-oriented traits contain complex genomic alterations induced by SDN-1 applications, which may also pose new types of risks. It further underscores the need for data on both the process and the end-product for a case-by-case risk assessment of plants derived from SDN-1 applications.
Collapse
Affiliation(s)
- Katharina Kawall
- Fachstelle Gentechnik und Umwelt, Frohschammerstr. 14, 80807 Munich, Germany
| |
Collapse
|
46
|
Yassitepe JEDCT, da Silva VCH, Hernandes-Lopes J, Dante RA, Gerhardt IR, Fernandes FR, da Silva PA, Vieira LR, Bonatti V, Arruda P. Maize Transformation: From Plant Material to the Release of Genetically Modified and Edited Varieties. FRONTIERS IN PLANT SCIENCE 2021; 12:766702. [PMID: 34721493 PMCID: PMC8553389 DOI: 10.3389/fpls.2021.766702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Over the past decades, advances in plant biotechnology have allowed the development of genetically modified maize varieties that have significantly impacted agricultural management and improved the grain yield worldwide. To date, genetically modified varieties represent 30% of the world's maize cultivated area and incorporate traits such as herbicide, insect and disease resistance, abiotic stress tolerance, high yield, and improved nutritional quality. Maize transformation, which is a prerequisite for genetically modified maize development, is no longer a major bottleneck. Protocols using morphogenic regulators have evolved significantly towards increasing transformation frequency and genotype independence. Emerging technologies using either stable or transient expression and tissue culture-independent methods, such as direct genome editing using RNA-guided endonuclease system as an in vivo desired-target mutator, simultaneous double haploid production and editing/haploid-inducer-mediated genome editing, and pollen transformation, are expected to lead significant progress in maize biotechnology. This review summarises the significant advances in maize transformation protocols, technologies, and applications and discusses the current status, including a pipeline for trait development and regulatory issues related to current and future genetically modified and genetically edited maize varieties.
Collapse
Affiliation(s)
- Juliana Erika de Carvalho Teixeira Yassitepe
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Viviane Cristina Heinzen da Silva
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - José Hernandes-Lopes
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ricardo Augusto Dante
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Isabel Rodrigues Gerhardt
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Fernanda Rausch Fernandes
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Priscila Alves da Silva
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Leticia Rios Vieira
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Vanessa Bonatti
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
47
|
Syombua ED, Tripathi JN, Obiero GO, Nguu EK, Yang B, Wang K, Tripathi L. Potential applications of the CRISPR/Cas technology for genetic improvement of yam (
Dioscorea
spp.). Food Energy Secur 2021. [DOI: 10.1002/fes3.330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Easter D. Syombua
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
- Centre for Biotechnology and Bioinformatics (CEBIB) University of Nairobi Nairobi Kenya
| | | | - George O. Obiero
- Centre for Biotechnology and Bioinformatics (CEBIB) University of Nairobi Nairobi Kenya
| | - Edward K. Nguu
- Department of Biochemistry University of Nairobi Nairobi Kenya
| | - Bing Yang
- Division of Plant Sciences Bond Life Sciences Center University of Missouri Columbia MO USA
- Donald Danforth Plant Science Center St. Louis MO USA
| | - Kan Wang
- Department of Agronomy Iowa State University Ames IA USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| |
Collapse
|
48
|
Varshney RK, Barmukh R, Roorkiwal M, Qi Y, Kholova J, Tuberosa R, Reynolds MP, Tardieu F, Siddique KHM. Breeding custom-designed crops for improved drought adaptation. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e202100017. [PMID: 36620433 PMCID: PMC9744523 DOI: 10.1002/ggn2.202100017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 01/11/2023]
Abstract
The current pace of crop improvement is inadequate to feed the burgeoning human population by 2050. Higher, more stable, and sustainable crop production is required against a backdrop of drought stress, which causes significant losses in crop yields. Tailoring crops for drought adaptation may hold the key to address these challenges and provide resilient production systems for future harvests. Understanding the genetic and molecular landscape of the functionality of alleles associated with adaptive traits will make designer crop breeding the prospective approach for crop improvement. Here, we highlight the potential of genomics technologies combined with crop physiology for high-throughput identification of the genetic architecture of key drought-adaptive traits and explore innovative genomic breeding strategies for designing future crops.
Collapse
Affiliation(s)
- Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- State Agricultural Biotechnology Centre, Centre for Crop and Food InnovationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rutwik Barmukh
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Manish Roorkiwal
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Jana Kholova
- Crop Physiology and ModellingInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Roberto Tuberosa
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | | | - Francois Tardieu
- Université de Montpellier, INRAE, Laboratoire d'Ecophysiologie des Plantes sous Stress, EnvironnementauxMontpellierFrance
| | - Kadambot H. M. Siddique
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
49
|
Permyakova NV, Marenkova TV, Belavin PA, Zagorskaya AA, Sidorchuk YV, Uvarova EA, Kuznetsov VV, Rozov SM, Deineko EV. Assessment of the Level of Accumulation of the dIFN Protein Integrated by the Knock-In Method into the Region of the Histone H3.3 Gene of Arabidopsis thaliana. Cells 2021; 10:2137. [PMID: 34440906 PMCID: PMC8394151 DOI: 10.3390/cells10082137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. We investigated the possibility of obtaining a suspension cell culture of Arabidopsis thaliana carrying a site-specific integration of a target gene encoding modified human interferon (dIFN) using endonuclease Cas9. For the targeted insertion, we selected the region of the histone H3.3 gene (HTR5) with a high constitutive level of expression. Our results indicated that Cas9-induced DNA integration occurred with the highest frequency with the construction with donor DNA surrounded by homology arms and Cas9 endonuclease recognition sites. Among the monoclones of the four cell lines with knock-in studied, there is high heterogeneity in the level of expression and accumulation of the target protein. The accumulation of dIFN protein in cell lines with targeted insertions into the target region of the HTR5 gene does not statistically differ from the level of accumulation of dIFN protein in the group of lines with random integration of the transgene. However, one among the monoclonal lines with knock-in has a dIFN accumulation level above 2% of TSP, which is very high.
Collapse
Affiliation(s)
- Natalya V. Permyakova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Lavrentieva 10, 630090 Novosibirsk, Russia; (T.V.M.); (P.A.B.); (A.A.Z.); (Y.V.S.); (E.A.U.); (V.V.K.); (S.M.R.); (E.V.D.)
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Patocchi A, Keilwagen J, Berner T, Wenzel S, Broggini GAL, Altschmied L, Hanke MV, Flachowsky H. No Evidence of Unexpected Transgenic Insertions in T1190 - A Transgenic Apple Used in Rapid Cycle Breeding - Following Whole Genome Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:715737. [PMID: 34456955 PMCID: PMC8386123 DOI: 10.3389/fpls.2021.715737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 05/24/2023]
Abstract
Rapid cycle breeding uses transgenic early flowering plants as crossbreed parents to facilitate the shortening of breeding programs for perennial crops with long-lasting juvenility. Rapid cycle breeding in apple was established using the transgenic genotype T1190 expressing the BpMADS4 gene of silver birch. In this study, the genomes of T1190 and its non-transgenic wild-type PinS (F1-offspring of 'Pinova' and 'Idared') were sequenced by Illumina short-read sequencing in two separate experiments resulting in a mean sequencing depth of 182× for T1190 and 167× for PinS. The sequencing revealed 8,450 reads, which contain sequences of ≥20 bp identical to the plant transformation vector. These reads were assembled into 125 contigs, which were examined to see whether they contained transgenic insertions or if they are not using a five-step procedure. The sequence of one contig represents the known T-DNA insertion on chromosome 4 of T1190. The sequences of the remaining contigs were either equally present in T1190 and PinS, their part with sequence identity to the vector was equally present in apple reference genomes, or they seem to result from endophytic contaminations rather than from additional transgenic insertions. Therefore, we conclude that the transgenic apple plant T1190 contains only one transgenic insertion, located on chromosome 4, and shows no further partial insertions of the transformation vector. Accession Numbers: JQ974028.1.
Collapse
Affiliation(s)
- Andrea Patocchi
- Research Division Plant Breeding, Agroscope, Wädenswil, Switzerland
| | - Jens Keilwagen
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Quedlinburg, Germany
| | - Thomas Berner
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Quedlinburg, Germany
| | - Stefanie Wenzel
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Giovanni A. L. Broggini
- Swiss Federal Institute of Technology, Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Lothar Altschmied
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Germany
| | - Magda-Viola Hanke
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|