1
|
Zhang P, Zhao J, Zhang W, Guo Y, Zhang K. Sulfated peptides: key players in plant development, growth, and stress responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1474111. [PMID: 39502916 PMCID: PMC11534595 DOI: 10.3389/fpls.2024.1474111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Peptide hormones regulate plant development, growth, and stress responses. Sulfated peptides represent a class of proteins that undergo posttranslational modification by tyrosylprotein sulfotransferase (TPST), followed by specific enzymatic cleavage to generate mature peptides. This process contributes to the formation of various bioactive peptides, including PSKs (PHYTOSULFOKINEs), PSYs (PLANT PEPTIDE CONTAINING SULFATED TYROSINE), CIFs (CASPARIAN STRIP INTEGRITY FACTOR), and RGFs (ROOT MERISTEM GROWTH FACTOR). In the past three decades, significant progress has been made in understanding the molecular mechanisms of sulfated peptides that regulate plant development, growth, and stress responses. In this review, we explore the sequence properties of precursors, posttranslational modifications, peptide receptors, and signal transduction pathways of the sulfated peptides, analyzing their functions in plants. The cross-talk between PSK/RGF peptides and other phytohormones, such as brassinosteroids, auxin, salicylic acid, abscisic acid, gibberellins, ethylene, and jasmonic acid, is also described. The significance of sulfated peptides in crops and their potential application for enhancing crop productivity are discussed, along with future research directions in the study of sulfated peptides.
Collapse
Affiliation(s)
- Penghong Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jiangzhe Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Wei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Woudenberg S, Hadid F, Weijers D, Borassi C. The maternal embrace: the protection of plant embryos. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4210-4218. [PMID: 38400751 PMCID: PMC11263485 DOI: 10.1093/jxb/erae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
All land plants-the embryophytes-produce multicellular embryos, as do other multicellular organisms, such as brown algae and animals. A unique characteristic of plant embryos is their immobile and confined nature. Their embedding in maternal tissues may offer protection from the environment, but also physically constrains development. Across the different land plants, a huge discrepancy is present between their reproductive structures whilst leading to similarly complex embryos. Therefore, we review the roles that maternal tissues play in the control of embryogenesis across land plants. These nurturing, constraining, and protective roles include both direct and indirect effects. In this review, we explore how the maternal surroundings affect embryogenesis and which chemical and mechanical barriers are in place. We regard these questions through the lens of evolution, and identify key questions for future research.
Collapse
Affiliation(s)
- Sjoerd Woudenberg
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Feras Hadid
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Cecilia Borassi
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
3
|
He L, Wu L, Li J. Sulfated peptides and their receptors: Key regulators of plant development and stress adaptation. PLANT COMMUNICATIONS 2024; 5:100918. [PMID: 38600699 PMCID: PMC11211552 DOI: 10.1016/j.xplc.2024.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Four distinct types of sulfated peptides have been identified in Arabidopsis thaliana. These peptides play crucial roles in regulating plant development and stress adaptation. Recent studies have revealed that Xanthomonas and Meloidogyne can secrete plant-like sulfated peptides, exploiting the plant sulfated peptide signaling pathway to suppress plant immunity. Over the past three decades, receptors for these four types of sulfated peptides have been identified, all of which belong to the leucine-rich repeat receptor-like protein kinase subfamily. A number of regulatory proteins have been demonstrated to play important roles in their corresponding signal transduction pathways. In this review, we comprehensively summarize the discoveries of sulfated peptides and their receptors, mainly in Arabidopsis thaliana. We also discuss their known biological functions in plant development and stress adaptation. Finally, we put forward a number of questions for reference in future studies.
Collapse
Affiliation(s)
- Liming He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liangfan Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Harnvanichvech Y, Borassi C, Daghma DES, van der Kooij HM, Sprakel J, Weijers D. An elastic proteinaceous envelope encapsulates the early Arabidopsis embryo. Development 2023; 150:dev201943. [PMID: 37869985 PMCID: PMC10651100 DOI: 10.1242/dev.201943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Plant external surfaces are often covered by barriers that control the exchange of molecules, protect from pathogens and offer mechanical integrity. A key question is when and how such surface barriers are generated. Post-embryonic surfaces have well-studied barriers, including the cuticle, and it has been previously shown that the late Arabidopsis thaliana embryo is protected by an endosperm-derived sheath deposited onto a primordial cuticle. Here, we show that both cuticle and sheath are preceded by another structure during the earliest stages of embryogenesis. This structure, which we named the embryonic envelope, is tightly wrapped around the embryonic surface but can be physically detached by cell wall digestion. We show that this structure is composed primarily of extensin and arabinogalactan O-glycoproteins and lipids, which appear to form a dense and elastic crosslinked embryonic envelope. The envelope forms in cuticle-deficient mutants and in a mutant that lacks endosperm. This embryo-derived envelope is therefore distinct from previously described cuticle and sheath structures. We propose that it acts as an expandable diffusion barrier, as well as a means to mechanically confine the embryo to maintain its tensegrity during early embryogenesis.
Collapse
Affiliation(s)
- Yosapol Harnvanichvech
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Cecilia Borassi
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Diaa Eldin S. Daghma
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Hanne M. van der Kooij
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
5
|
Bizouerne E, Ly Vu J, Ly Vu B, Diouf I, Bitton F, Causse M, Verdier J, Buitink J, Leprince O. Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:3632. [PMID: 37896095 PMCID: PMC10610530 DOI: 10.3390/plants12203632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The stable production of high vigorous seeds is pivotal to crop yield. Also, a high longevity is essential to avoid progressive loss of seed vigour during storage. Both seed traits are strongly influenced by the environment during seed development. Here, we investigated the impact of heat stress (HS) during fruit ripening on tomato seed lifespan during storage at moderate relative humidity, speed (t50) and homogeneity of germination, using a MAGIC population that was produced under optimal and HS conditions. A plasticity index was used to assess the extent of the impact of HS for each trait. HS reduced the average longevity and germination homogeneity by 50% within the parents and MAGIC population. However, there was a high genetic variability in the seed response to heat stress. A total of 39 QTLs were identified, including six longevity QTLs for seeds from control (3) and HS (3) conditions, and six plasticity QTLs for longevity, with only one overlapping with a longevity QTL under HS. Four out of the six longevity QTL co-located with t50 QTL, revealing hotspots for seed quality traits. Twenty-one QTLs with intervals below 3 cM were analyzed using previous transcriptome and gene network data to propose candidate genes for seed vigour and longevity traits.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Joseph Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Benoît Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Isidore Diouf
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Frédérique Bitton
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Mathilde Causse
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Jérôme Verdier
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Julia Buitink
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Olivier Leprince
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| |
Collapse
|
6
|
Hou Q, Wang L, Qi Y, Yan T, Zhang F, Zhao W, Wan X. A systematic analysis of the subtilase gene family and expression and subcellular localization investigation of anther-specific members in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108041. [PMID: 37722281 DOI: 10.1016/j.plaphy.2023.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Subtilases (SBTs), also known as Subtilisin-like serine proteases, are extracellular alkaline protease proteins. SBTs function in all stages of plant growth, development and stress responses. Maize (Zea mays L.) is a crop widely used worldwide as food, feed, and industrial materials. However, information about the members and their functions of the SBT proteins in maize is lacking. In this study, we identified 58 ZmSBT genes from the maize genome and conducted a comprehensive investigation of ZmSBTs by phylogenetic, gene duplication event, gene structure, and protein conserved motif analyses. The ZmSBT proteins were phylogenetically classified into seven groups, and collinearity analysis indicated that many ZmSBTs originate from tandem or segmental duplications. Structural and homolog protein comparison revealed ZmSBTs have conserved protein structures with reported subtilase proteins, suggesting the conserved functions. Further analysis showed that ZmSBTs are expressed in different tissues, and many are responses to specific abiotic stress. Analysis of the anther-specific ZmSBT genes showed their expression peaked at different developmental stages of maize anthers. Subcellular localization analysis of selected maize ZmSBTs showed they are located in different cellular compartments. The information provided in this study is valuable for further functional study of ZmSBTs.
Collapse
Affiliation(s)
- Quancan Hou
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi lnternational lnstitute of Agricultural Biosciences, Beijing, 100192, China
| | - Linlin Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Qi
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tingwei Yan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fan Zhang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Zhao
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi lnternational lnstitute of Agricultural Biosciences, Beijing, 100192, China.
| |
Collapse
|
7
|
Renard J, Bissoli G, Planes MD, Gadea J, Naranjo MÁ, Serrano R, Ingram G, Bueso E. Endosperm Persistence in Arabidopsis Results in Seed Coat Fractures and Loss of Seed Longevity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2726. [PMID: 37514340 PMCID: PMC10383618 DOI: 10.3390/plants12142726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Seeds are specialized plant organs that carry, nurture, and protect plant offspring. Developmental coordination between the three genetically distinct seed tissues (the embryo, endosperm, and seed coat) is crucial for seed viability. In this study, we explore the relationship between the TFs AtHB25 and ICE1. Previous results identified ICE1 as a target gene of AtHB25. In seeds, a lack of ICE1 (ice1-2) suppresses the enhanced seed longevity and impermeability of the overexpressing mutant athb25-1D, but surprisingly, seed coat lipid polyester deposition is not affected, as shown by the double-mutant athb25-1D ice1-2 seeds. zou-4, another mutant lacking the transcriptional program for proper endosperm maturation and for which the endosperm persists, also presents a high sensitivity to seed aging. Analysis of gso1, gso2, and tws1-4 mutants revealed that a loss of embryo cuticle integrity does not underlie the seed-aging sensitivity of ice1-2 and zou-4. However, scanning electron microscopy revealed the presence of multiple fractures in the seed coats of the ice1 and zou mutants. Thus, this study highlights the importance of both seed coat composition and integrity in ensuring longevity and demonstrates that these parameters depend on multiple factors.
Collapse
Affiliation(s)
- Joan Renard
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France
| | - Gaetano Bissoli
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - María Dolores Planes
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Miguel Ángel Naranjo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022 Valencia, Spain
| |
Collapse
|
8
|
Fernández-Fernández ÁD, Stael S, Van Breusegem F. Mechanisms controlling plant proteases and their substrates. Cell Death Differ 2023; 30:1047-1058. [PMID: 36755073 PMCID: PMC10070405 DOI: 10.1038/s41418-023-01120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
In plants, proteolysis is emerging as an important field of study due to a growing understanding of the critical involvement of proteases in plant cell death, disease and development. Because proteases irreversibly modify the structure and function of their target substrates, proteolytic activities are stringently regulated at multiple levels. Most proteases are produced as dormant isoforms and only activated in specific conditions such as altered ion fluxes or by post-translational modifications. Some of the regulatory mechanisms initiating and modulating proteolytic activities are restricted in time and space, thereby ensuring precision activity, and minimizing unwanted side effects. Currently, the activation mechanisms and the substrates of only a few plant proteases have been studied in detail. Most studies focus on the role of proteases in pathogen perception and subsequent modulation of the plant reactions, including the hypersensitive response (HR). Proteases are also required for the maturation of coexpressed peptide hormones that lead essential processes within the immune response and development. Here, we review the known mechanisms for the activation of plant proteases, including post-translational modifications, together with the effects of proteinaceous inhibitors.
Collapse
Affiliation(s)
- Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zürich, Switzerland
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
9
|
Saladin S, D'Aronco S, Ingram G, Giorio C. Direct surface analysis mass spectrometry uncovers the vertical distribution of cuticle-associated metabolites in plants. RSC Adv 2023; 13:8487-8495. [PMID: 36926302 PMCID: PMC10012332 DOI: 10.1039/d2ra07166e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
The plant cuticle covers the plant's entire aerial surface and acts as the outermost protective layer. Despite being crucial for the survival of plants, surprisingly little is known about its biosynthesis. Conventional analytical techniques are limited to the isolation and depolymerization of the polyester cutin, which forms the cuticular scaffold. Although this approach allows the elucidation of incorporated cutin monomers, it neglects unincorporated metabolites participating in cutin polymerization. The feasibility of a novel approach is tested for in situ analysis of unpolymerized cuticular metabolites to enhance the understanding of cuticle biology. Intact cotyledons of Brassica napus and Arabidopsis thaliana seedlings are immersed in organic solvents for 60 seconds. Extracts are analyzed using high-resolution direct infusion mass spectrometry. A variety of different diffusion routes of plant metabolites across the cuticle are discussed. The results reveal different feasibilities depending on the research question and cuticle permeabilities in combination with the analyte's polarity. Especially hydrophilic analytes are expected to be co-located in the cell wall beneath the cuticle causing systematic interferences when comparing plants with different cuticle permeabilities. These interferences limit data interpretation to qualitative rather than quantitative comparison. In contrast, quantitative data evaluation is facilitated when analyzing cuticle-specific metabolites or plants with similar cuticle permeabilities.
Collapse
Affiliation(s)
- Siriel Saladin
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Sara D'Aronco
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL F-69342 Lyon France
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
10
|
Liu J, Lin Y, Chen J, Yan Q, Xue C, Wu R, Chen X, Yuan X. Genome-wide association studies provide genetic insights into natural variation of seed-size-related traits in mungbean. FRONTIERS IN PLANT SCIENCE 2022; 13:997988. [PMID: 36311130 PMCID: PMC9608654 DOI: 10.3389/fpls.2022.997988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 05/24/2023]
Abstract
Although mungbean (Vigna radiata (L.) R. Wilczek) is an important legume crop, its seed yield is relatively low. To address this issue, here 196 accessions with 3,607,508 SNP markers were used to identify quantitative trait nucleotides (QTNs), QTN-by-environment interactions (QEIs), and their candidate genes for seed length (SL), seed width, and 100-seed weight (HSW) in two environments. As a result, 98 QTNs and 20 QEIs were identified using 3VmrMLM, while 95, >10,000, and 15 QTNs were identified using EMMAX, GEMMA, and CMLM, respectively. Among 809 genes around these QTNs, 12 were homologous to known seed-development genes in rice and Arabidopsis thaliana, in which 10, 2, 1, and 0 genes were found, respectively, by the above four methods to be associated with the three traits, such as VrEmp24/25 for SL and VrKIX8 for HSW. Eight of the 12 genes were significantly differentially expressed between two large-seed and two small-seed accessions, and VrKIX8, VrPAT14, VrEmp24/25, VrIAR1, VrBEE3, VrSUC4, and Vrflo2 were further verified by RT-qPCR. Among 65 genes around these QEIs, VrFATB, VrGSO1, VrLACS2, and VrPAT14 were homologous to known seed-development genes in A. thaliana, although new experiments are necessary to explore these novel GEI-trait associations. In addition, 54 genes were identified in comparative genomics analysis to be associated with seed development pathway, in which VrKIX8, VrABA2, VrABI5, VrSHB1, and VrIKU2 were also identified in genome-wide association studies. This result provided a reliable approach for identifying seed-size-related genes in mungbean and a solid foundation for further molecular biology research on seed-size-related genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| |
Collapse
|
11
|
Fürst-Jansen JM, de Vries S, Lorenz M, von Schwartzenberg K, Archibald JM, de Vries J. Submergence of the filamentous Zygnematophyceae Mougeotia induces differential gene expression patterns associated with core metabolism and photosynthesis. PROTOPLASMA 2022; 259:1157-1174. [PMID: 34939169 PMCID: PMC9385824 DOI: 10.1007/s00709-021-01730-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/06/2021] [Indexed: 06/01/2023]
Abstract
The streptophyte algal class Zygnematophyceae is the closest algal sister lineage to land plants. In nature, Zygnematophyceae can grow in both terrestrial and freshwater habitats and how they do this is an important unanswered question. Here, we studied what happens to the zygnematophyceaen alga Mougeotia sp., which usually occurs in permanent and temporary freshwater bodies, when it is shifted to liquid growth conditions after growth on a solid substrate. Using global differential gene expression profiling, we identified changes in the core metabolism of the organism interlinked with photosynthesis; the latter went hand in hand with measurable impact on the photophysiology as assessed via pulse amplitude modulation (PAM) fluorometry. Our data reveal a pronounced change in the overall physiology of the alga after submergence and pinpoint candidate genes that play a role. These results provide insight into the importance of photophysiological readjustment when filamentous Zygnematophyceae transition between terrestrial and aquatic habitats.
Collapse
Affiliation(s)
- Janine M.R. Fürst-Jansen
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, University of Goettingen, 37077 Goettingen, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, University of Goettingen, 37077 Goettingen, Germany
| | - Maike Lorenz
- Department of Experimental Phycology and SAG Culture Collection of Algae, Albrecht-von-Haller Institute for Plant Science, University of Goettingen, Nikolausberger Weg 18, 37073 Goettingen, Germany
| | - Klaus von Schwartzenberg
- Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Universität Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, University of Goettingen, 37077 Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstr. 1, 37077 Goettingen, Germany
| |
Collapse
|
12
|
Emonet A, Hay A. Development and diversity of lignin patterns. PLANT PHYSIOLOGY 2022; 190:31-43. [PMID: 35642915 PMCID: PMC9434266 DOI: 10.1093/plphys/kiac261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 05/27/2023]
Abstract
Different patterns of lignified cell walls are associated with diverse functions in a variety of plant tissues. These functions rely on the stiffness and hydrophobicity that lignin polymers impart to the cell wall. The precise pattern of subcellular lignin deposition is critical for the structure-function relationship in each lignified cell type. Here, we describe the role of xylem vessels as water pipes, Casparian strips as apoplastic barriers, and the role of asymmetrically lignified endocarp b cells in exploding seed pods. We highlight similarities and differences in the genetic mechanisms underpinning local lignin deposition in these diverse cell types. By bringing together examples from different developmental contexts and different plant species, we propose that comparative approaches can benefit our understanding of lignin patterning mechanisms.
Collapse
Affiliation(s)
- Aurélia Emonet
- Max Planck Institute for Plant Breeding Research, Cologne, North Rhine-Westphalia, 50829, Germany
| | | |
Collapse
|
13
|
Abstract
In angiosperms, double fertilization triggers the concomitant development of two closely juxtaposed tissues, the embryo and the endosperm. Successful seed development and germination require constant interactions between these tissues, which occur across their common interface. The embryo-endosperm interface is a complex and poorly understood compound apoplast comprising components derived from both tissues, across which nutrients transit to fuel embryo development. Interface properties, which affect molecular diffusion and thus communication, are themselves dynamically regulated by molecular and physical dialogues between the embryo and endosperm. We review the current understanding of embryo-endosperm interactions, with a focus on the structure, properties, and function of their shared interface. Concentrating on Arabidopsis, but with reference to other species, we aim to situate recent findings within the broader context of seed physiology, developmental biology, and genetic factors such as parental conflicts over resource allocation.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium;
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, Université de Lyon 1, Lyon, France;
| |
Collapse
|
14
|
Berhin A, Nawrath C, Hachez C. Subtle interplay between trichome development and cuticle formation in plants. THE NEW PHYTOLOGIST 2022; 233:2036-2046. [PMID: 34704619 DOI: 10.1111/nph.17827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Trichomes and cuticles are key protective epidermal specializations. This review highlights the genetic interplay existing between trichome and cuticle formation in a variety of species. Controlling trichome development, the biosynthesis of trichome-derived specialized metabolites as well as cuticle biosynthesis and deposition can be viewed as different aspects of a common defensive strategy adopted by plants to protect themselves from environmental stresses. Existence of such interplay is based on the mining of published transcriptomic data as well as on phenotypic observations in trichome or cuticle mutants where the morphology of both structures often appear to be concomitantly altered. Given the existence of several trichome developmental pathways depending on the plant species and the types of trichomes, genetic interactions between cuticle formation and trichome development are complex to decipher and not easy to generalize. Based on our review of the literature, a schematic overview of the gene network mediating this transcriptional interplay is presented for two model plant species: Arabidopsis thaliana and Solanum lycopersicum. In addition to fundamental new insights on the regulation of these processes, identifying key transcriptional switches controlling both processes could also facilitate more applied investigations aiming at improving much desired agronomical traits in plants.
Collapse
Affiliation(s)
- Alice Berhin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Christiane Nawrath
- Department of Molecular Plant Biology, University of Lausanne, Unil-Sorge, 1015, Lausanne, Switzerland
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
Cui Y, Lu X, Gou X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. PLANT COMMUNICATIONS 2022; 3:100273. [PMID: 35059634 PMCID: PMC8760141 DOI: 10.1016/j.xplc.2021.100273] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 05/30/2023]
Abstract
Reproduction is a crucial process in the life span of flowering plants, and directly affects human basic requirements in agriculture, such as grain yield and quality. Typical receptor-like protein kinases (RLKs) are a large family of membrane proteins sensing extracellular signals to regulate plant growth, development, and stress responses. In Arabidopsis thaliana and other plant species, RLK-mediated signaling pathways play essential roles in regulating the reproductive process by sensing different ligand signals. Molecular understanding of the reproductive process is vital from the perspective of controlling male and female fertility. Here, we summarize the roles of RLKs during plant reproduction at the genetic and molecular levels, including RLK-mediated floral organ development, ovule and anther development, and embryogenesis. In addition, the possible molecular regulatory patterns of those RLKs with unrevealed mechanisms during reproductive development are discussed. We also point out the thought-provoking questions raised by the research on these plant RLKs during reproduction for future investigation.
Collapse
|
16
|
Zhang H, Li X, Wang W, Li H, Cui Y, Zhu Y, Kui H, Yi J, Li J, Gou X. SERKs regulate embryonic cuticle integrity through the TWS1-GSO1/2 signaling pathway in Arabidopsis. THE NEW PHYTOLOGIST 2022; 233:313-328. [PMID: 34614228 DOI: 10.1111/nph.17775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The embryonic cuticle integrity is critical for the embryo to separate from the neighboring endosperm. The sulfated TWISTED SEED1 (TWS1) peptide precursor generated in the embryo diffuses through gaps of the nascent cuticle to the surrounding endosperm, where it is cleaved by ABNORMAL LEAF SHAPE1 (ALE1) and becomes an active mature form. The active TWS1 is perceived by receptor-like protein kinases GASSHO1 (GSO1) and GSO2 in the embryonic epidermal cells to start the downstream signaling and guide the formation of an intact embryonic cuticle. However, the early signaling events after TWS1 is perceived by GSO1/2 are still unknown. Here, we report that serk1/2/3 embryos show cuticle defects similar to ale1, tws1, and gso1/2. Genetic and biochemical analyses were performed to dissect the signaling pathway mediated by SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASEs (SERKs) during cuticle development. SERKs function with GSO1/2 in a common pathway to monitor the integrity of the embryonic cuticle. SERKs interact with GSO1/2, which can be enhanced dramatically by TWS1. The phosphorylation levels of SERKs and GSO1/2 rely on each other and can respond to and be elevated by TWS1. Our results demonstrate that SERKs may function as coreceptors of GSO1/2 to transduce the TWS1 signal and ultimately regulate embryonic cuticle integrity.
Collapse
Affiliation(s)
- Hong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaonan Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenping Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiqiang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
17
|
Love A, Wagner GP. Co-option of stress mechanisms in the origin of evolutionary novelties. Evolution 2021; 76:394-413. [PMID: 34962651 PMCID: PMC9303342 DOI: 10.1111/evo.14421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
It is widely accepted that stressful conditions can facilitate evolutionary change. The mechanisms elucidated thus far accomplish this with a generic increase in heritable variation that facilitates more rapid adaptive evolution, often via plastic modifications of existing characters. Through scrutiny of different meanings of stress in biological research, and an explicit recognition that stressors must be characterized relative to their effect on capacities for maintaining functional integrity, we distinguish between: (1) previously identified stress‐responsive mechanisms that facilitate evolution by maintaining an adaptive fit with the environment, and (2) the co‐option of stress‐responsive mechanisms that are specific to stressors leading to the origin of novelties via compensation. Unlike standard accounts of gene co‐option that identify component sources of evolutionary change, our model documents the cost‐benefit trade‐offs and thereby explains how one mechanism—an immediate response to acute stress—is transformed evolutionarily into another—routine protection from recurring stressors. We illustrate our argument with examples from cell type origination as well as processes and structures at higher levels of organization. These examples suggest a general principle of evolutionary origination based on the capacity to switch between regulatory states related to reproduction and proliferation versus survival and differentiation.
Collapse
Affiliation(s)
- Alan Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT-06520.,Yale Systems Biology Institute, West Haven, CT-06516.,Department of Evolutionary Biology, University of Vienna, Austria
| |
Collapse
|
18
|
Jin X, Liu Y, Hou Z, Zhang Y, Fang Y, Huang Y, Cai H, Qin Y, Cheng Y. Genome-Wide Investigation of SBT Family Genes in Pineapple and Functional Analysis of AcoSBT1.12 in Floral Transition. Front Genet 2021; 12:730821. [PMID: 34557223 PMCID: PMC8452990 DOI: 10.3389/fgene.2021.730821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
SBT (Subtilisin-like serine protease), a clan of serine proteolytic enzymes, plays a versatile role in plant growth and defense. Although SBT family genes have been obtained from studies of dicots such as Arabidopsis, little is known about the potential functions of SBT in the monocots. In this study, 54 pineapple SBT genes (AcoSBTs) were divided into six subfamilies and then identified to be experienced strong purifying selective pressure and distributed on 25 chromosomes unevenly. Cis-acting element analysis indicated that almost all AcoSBTs promoters contain light-responsive elements. Further, the expression pattern via RNA-seq data showed that different AcoSBTs were preferentially expressed in different above-ground tissues. Transient expression in tobacco showed that AcoSBT1.12 was located in the plasma membrane. Moreover, Transgenic Arabidopsis ectopically overexpressing AcoSBT1.12 exhibited delayed flowering time. In addition, under the guidance of bioinformatic prediction, we found that AcoSBT1.12 could interact with AcoCWF19L, AcoPUF2, AcoCwfJL, Aco012905, and AcoSZF1 by yeast-two hybrid (Y2H). In summary, this study provided valuable information on pineapple SBT genes and illuminated the biological function of AcoSBT1.12 in floral transition.
Collapse
Affiliation(s)
- Xingyue Jin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Plant Protection, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Plant Protection, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhimin Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Plant Protection, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunfei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Plant Protection, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunying Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Plant Protection, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youmei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Plant Protection, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Plant Protection, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Plant Protection, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Plant Protection, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Xiao W, Hu S, Zou X, Cai R, Liao R, Lin X, Yao R, Guo X. Lectin receptor-like kinase LecRK-VIII.2 is a missing link in MAPK signaling-mediated yield control. PLANT PHYSIOLOGY 2021; 187:303-320. [PMID: 34618128 PMCID: PMC8418426 DOI: 10.1093/plphys/kiab241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/01/2021] [Indexed: 05/13/2023]
Abstract
The energy allocation for vegetative and reproductive growth is regulated by developmental signals and environmental cues, which subsequently affects seed output. However, the molecular mechanism underlying how plants coordinate yield-related traits to control yield in changing source-sink relationships remains largely unknown. Here, we discovered the lectin receptor-like kinase LecRK-VIII.2 as a specific receptor-like kinase that coordinates silique number, seed size, and seed number to determine seed yield in Arabidopsis (Arabidopsis thaliana). The lecrk-VIII.2 mutants develop smaller seeds, but more siliques and seeds, leading to increased yield. In contrast, the plants overexpressing LecRK-VIII.2 form bigger seeds, but less siliques and seeds, which results in similar yield to that of wild-type plants. Interestingly, LecRK-VIII.2 promotes the growth of the rosette, root, and stem by coordinating the source-sink relationship. Additionally, LecRK-VIII.2 positively regulates cell expansion and proliferation in the seed coat, and maternally controls seed size. The genetic and biochemical analyses demonstrated that LecRK-VIII.2 acts upstream of the mitogen-activated protein kinase (MAPK) gene MPK6 to regulate silique number, seed size, and seed number. Collectively, these findings uncover LecRK-VIII.2 as an upstream component of the MAPK signaling pathway to control yield-related traits and suggest its potential for crop improvement aimed at developing plants with stable yield, a robust root system, and improved lodging resistance.
Collapse
Affiliation(s)
- Wenjun Xiao
- College of Biology, Hunan University, Changsha 410082, China
| | - Shuai Hu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China
| | - Ruqiong Cai
- College of Biology, Hunan University, Changsha 410082, China
| | - Rui Liao
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxia Lin
- College of Biology, Hunan University, Changsha 410082, China
| | - Ruifeng Yao
- College of Biology, Hunan University, Changsha 410082, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
20
|
Singer SD, Jayawardhane KN, Jiao C, Weselake RJ, Chen G. The effect of AINTEGUMENTA-LIKE 7 over-expression on seed fatty acid biosynthesis, storage oil accumulation and the transcriptome in Arabidopsis thaliana. PLANT CELL REPORTS 2021; 40:1647-1663. [PMID: 34215912 DOI: 10.1007/s00299-021-02715-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors. Although AINTEGUMENTA-LIKE 7 (AIL7) is involved in meristematic function and shoot phyllotaxy, its effect in the context of lipid biosynthesis has yet to be assessed. Here, we generated AIL7 seed-specific over-expression lines and found that they exhibited significant alterations in FA composition and decreased total lipid accumulation in seeds. Seeds and seedlings from transgenic lines also exhibited morphological deviations compared to wild type. Correspondingly, RNA-Seq analysis demonstrated that the expression of many genes related to FA biosynthesis and TAG breakdown were significantly altered in developing siliques from transgenic lines compared to wild-type plants. The seed-specific over-expression of AIL7 also altered the expression profiles of many genes related to starch metabolism, photosynthesis and stress response, suggesting further roles for AIL7 in plants. These findings not only advance our understanding of the lipid biosynthetic pathway in seeds, but also provide evidence for additional functions of AIL7, which could prove valuable in downstream breeding and/or metabolic engineering endeavors.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada.
| | - Kethmi N Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
21
|
Fujita S. CASPARIAN STRIP INTEGRITY FACTOR (CIF) family peptides - regulator of plant extracellular barriers. Peptides 2021; 143:170599. [PMID: 34174383 DOI: 10.1016/j.peptides.2021.170599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023]
Abstract
In multicellular organisms, water and most of the small molecules, such as nutrients, toxic substances, and signaling compounds, move freely through extracellular spaces, depending on their biochemical nature. To restrict the simple diffusion of small molecules, multicellular organisms have evolved extracellular barriers across specific tissue layers, such as tight junctions in the animal epithelium. Similar extracellular barriers are also generated in plants through the accumulation of hydrophobic chemicals, such as lignin or cutin, although the detailed molecular mechanisms underlying this process remain elusive. Here, I summarize recent advances in extracellular barrier formation in plants by focusing mainly on CASPARIAN STRIP INTEGRITY FACTOR (CIF) family peptides, which trigger the spatially precise deposition of designated cell wall components, enabling plants to establish transcellular barrier networks correctly. The genome of Arabidopsis thaliana, a model plant species, harbors five CIF genes, which encode propeptides which are processed into small secreted peptides of 21-24 amino acids. Sulfation of tyrosine residues in CIF peptides ensures their full bioactivity and high-affinity binding to their receptors SCHENGEN3/GASSHO1 (SGN3/GSO1) and GSO2 in vitro. Additionally, in vivo analysis shows that physical restriction of CIF peptide diffusion and the subcellular localization of a signaling module and expression patterns of a peptide processing enzyme specify the location of signal activation. Thus, the CIF peptide family provides fascinating models for understanding mature peptide biogenesis and spatially limited signal activation with small diffusive molecules.
Collapse
Affiliation(s)
- Satoshi Fujita
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
22
|
Gilles LM, Calhau ARM, La Padula V, Jacquier NMA, Lionnet C, Martinant JP, Rogowsky PM, Widiez T. Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane. J Cell Biol 2021; 220:212519. [PMID: 34323919 PMCID: PMC8327379 DOI: 10.1083/jcb.202010077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023] Open
Abstract
Phospholipases cleave phospholipids, major membrane constituents. They are thus essential for many developmental processes, including male gamete development. In flowering plants, mutation of phospholipase NOT-LIKE-DAD (NLD, also known as MTL or ZmPLA1) leads to peculiar defects in sexual reproduction, notably the induction of maternal haploid embryos. Contrary to previous reports, NLD does not localize to cytosol and plasma membrane of sperm cells but to the pollen endo-plasma membrane (endo-PM), a specific membrane derived from the PM of the pollen vegetative cell that encircles the two sperm cells. After pollen tube burst, NLD localizes at the apical region of the egg apparatus. Pharmacological approaches coupled with targeted mutagenesis revealed that lipid anchoring together with electrostatic interactions are involved in the attachment of NLD to this atypical endo-PM. Membrane surface-charge and lipid biosensors indicated that phosphatidylinositol-4,5-bisphosphate is enriched in the endo-PM, uncovering a unique example of how membrane electrostatic properties can define a specific polar domain (i.e., endo-PM), which is critical for plant reproduction and gamete formation.
Collapse
Affiliation(s)
- Laurine M Gilles
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.,Limagrain, Limagrain Field Seeds, Research Centre, Gerzat, France
| | - Andrea R M Calhau
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Veronica La Padula
- Centre Technologique des Microstructures, Université de Lyon 1, Lyon, France
| | - Nathanaël M A Jacquier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.,Limagrain, Limagrain Field Seeds, Research Centre, Gerzat, France
| | - Claire Lionnet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | | | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
23
|
Baluška F, Mancuso S. Individuality, self and sociality of vascular plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190760. [PMID: 33550947 DOI: 10.1098/rstb.2019.0760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular plants are integrated into coherent bodies via plant-specific synaptic adhesion domains, action potentials (APs) and other means of long-distance signalling running throughout the plant bodies. Plant-specific synapses and APs are proposed to allow plants to generate their self identities having unique ways of sensing and acting as agents with their own goals guiding their future activities. Plants move their organs with a purpose and with obvious awareness of their surroundings and require APs to perform and control these movements. Self-identities allow vascular plants to act as individuals enjoying sociality via their self/non-self-recognition and kin recognition. Flowering plants emerge as cognitive and intelligent organisms when the major strategy is to attract and control their animal pollinators as well as seed dispersers by providing them with food enriched with nutritive and manipulative/addictive compounds. Their goal in interactions with animals is manipulation for reproduction, dispersal and defence. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| |
Collapse
|
24
|
Kazaz S, Barthole G, Domergue F, Ettaki H, To A, Vasselon D, De Vos D, Belcram K, Lepiniec L, Baud S. Differential Activation of Partially Redundant Δ9 Stearoyl-ACP Desaturase Genes Is Critical for Omega-9 Monounsaturated Fatty Acid Biosynthesis During Seed Development in Arabidopsis. THE PLANT CELL 2020; 32:3613-3637. [PMID: 32958563 PMCID: PMC7610281 DOI: 10.1105/tpc.20.00554] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
The spatiotemporal pattern of deposition, final amount, and relative abundance of oleic acid (cis-ω-9 C18:1) and its derivatives in the different lipid fractions of the seed of Arabidopsis (Arabidopsis thaliana) indicates that omega-9 monoenes are synthesized at high rates in this organ. Accordingly, we observed that four Δ9 stearoyl-ACP desaturase (SAD)-coding genes (FATTY ACID BIOSYNTHESIS2 [FAB2], ACYL-ACYL CARRIER PROTEIN5 [AAD5], AAD1, and AAD6) are transcriptionally induced in seeds. We established that the three most highly expressed ones are directly activated by the WRINKLED1 transcription factor. We characterized a collection of 30 simple, double, triple, and quadruple mutants affected in SAD-coding genes and thereby revealed the functions of these desaturases throughout seed development. Production of oleic acid by FAB2 and AAD5 appears to be critical at the onset of embryo morphogenesis. Double homozygous plants from crossing fab2 and aad5 could never be obtained, and further investigations revealed that the double mutation results in the arrest of embryo development before the globular stage. During later stages of seed development, these two SADs, together with AAD1, participate in the elaboration of the embryonic cuticle, a barrier essential for embryo-endosperm separation during the phase of invasive embryo growth through the endosperm. This study also demonstrates that the four desaturases redundantly contribute to storage lipid production during the maturation phase.
Collapse
Affiliation(s)
- Sami Kazaz
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Guillaume Barthole
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Frédéric Domergue
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
- CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
| | - Hasna Ettaki
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Alexandra To
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Damien Vasselon
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Delphine De Vos
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Katia Belcram
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
25
|
Wang Z, Gou X. Receptor-Like Protein Kinases Function Upstream of MAPKs in Regulating Plant Development. Int J Mol Sci 2020; 21:ijms21207638. [PMID: 33076465 PMCID: PMC7590044 DOI: 10.3390/ijms21207638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of protein kinase broadly involved in various signal pathways in eukaryotes. In plants, MAPK cascades regulate growth, development, stress responses and immunity by perceiving signals from the upstream regulators and transmitting the phosphorylation signals to the downstream signaling components. To reveal the interactions between MAPK cascades and their upstream regulators is important for understanding the functional mechanisms of MAPKs in the life span of higher plants. Typical receptor-like protein kinases (RLKs) are plasma membrane-located to perceive endogenous or exogenous signal molecules in regulating plant growth, development and immunity. MAPK cascades bridge the extracellular signals and intracellular transcription factors in many RLK-mediated signaling pathways. This review focuses on the current findings that RLKs regulate plant development through MAPK cascades and discusses questions that are worth investigating in the near future.
Collapse
|
26
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
27
|
Fujita S, De Bellis D, Edel KH, Köster P, Andersen TG, Schmid-Siegert E, Dénervaud Tendon V, Pfister A, Marhavý P, Ursache R, Doblas VG, Barberon M, Daraspe J, Creff A, Ingram G, Kudla J, Geldner N. SCHENGEN receptor module drives localized ROS production and lignification in plant roots. EMBO J 2020; 39:e103894. [PMID: 32187732 PMCID: PMC7196915 DOI: 10.15252/embj.2019103894] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Production of reactive oxygen species (ROS) by NADPH oxidases (NOXs) impacts many processes in animals and plants, and many plant receptor pathways involve rapid, NOX‐dependent increases of ROS. Yet, their general reactivity has made it challenging to pinpoint the precise role and immediate molecular action of ROS. A well‐understood ROS action in plants is to provide the co‐substrate for lignin peroxidases in the cell wall. Lignin can be deposited with exquisite spatial control, but the underlying mechanisms have remained elusive. Here, we establish a kinase signaling relay that exerts direct, spatial control over ROS production and lignification within the cell wall. We show that polar localization of a single kinase component is crucial for pathway function. Our data indicate that an intersection of more broadly localized components allows for micrometer‐scale precision of lignification and that this system is triggered through initiation of ROS production as a critical peroxidase co‐substrate.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Tonni Grube Andersen
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | | | | | - Alexandre Pfister
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Peter Marhavý
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Robertas Ursache
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Verónica G Doblas
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Marie Barberon
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Doll NM, Bovio S, Gaiti A, Marsollier AC, Chamot S, Moussu S, Widiez T, Ingram G. The Endosperm-Derived Embryo Sheath Is an Anti-adhesive Structure that Facilitates Cotyledon Emergence during Germination in Arabidopsis. Curr Biol 2020; 30:909-915.e4. [PMID: 32155415 DOI: 10.1016/j.cub.2019.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022]
Abstract
Germination sensu stricto in Arabidopsis involves seed-coat and endosperm rupture by the emerging seedling root. Subsequently, the cotyledons emerge rapidly from the extra-embryonic tissues of the seed, allowing autotrophic seedling establishment [1, 2]. Seedling survival depends upon the presence of an intact seedling cuticle that prevents dehydration, which has hitherto been assumed to form the interface between the newly germinated seedling and its environment [3-5]. Here, we show that in Arabidopsis, this is not the case. The primary interface between the emerging seedling and its environment is formed by an extra-cuticular endosperm-derived glycoprotein-rich structure called the sheath, which is maintained as a continuous layer at seedling surfaces during germination and becomes fragmented as cotyledons expand. Mutants lacking an endosperm-specific cysteine-rich peptide (KERBEROS [KRS]) show a complete loss of sheath production [6]. Although krs mutants have no defects in germination sensu stricto, they show delayed cotyledon emergence, a defect not observed in seedlings with defects in cuticle biosynthesis. Biophysical analyses reveal that the surfaces of wild-type cotyledons show minimal adhesion to silica beads in an aqueous environment at cotyledon emergence but that adhesion increases as cotyledons expand. In contrast, krs mutant cotyledons show enhanced adhesion at germination. Mutants with defects in cuticle biosynthesis, but no sheath defects, show a similar adhesion profile to wild-type seedlings at germination. We propose that the sheath reduces the adhesiveness of the cotyledon surface under the humid conditions necessary for seed germination and thus promotes seed-coat shedding and rapid seedling establishment.
Collapse
Affiliation(s)
- Nicolas M Doll
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Angelo Gaiti
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Anne-Charlotte Marsollier
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Sophy Chamot
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Steven Moussu
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France.
| |
Collapse
|
29
|
Doll NM, Royek S, Fujita S, Okuda S, Chamot S, Stintzi A, Widiez T, Hothorn M, Schaller A, Geldner N, Ingram G. A two-way molecular dialogue between embryo and endosperm is required for seed development. Science 2020; 367:431-435. [PMID: 31974252 DOI: 10.1126/science.aaz4131] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2023]
Abstract
The plant embryonic cuticle is a hydrophobic barrier deposited de novo by the embryo during seed development. At germination, it protects the seedling from water loss and is, thus, critical for survival. Embryonic cuticle formation is controlled by a signaling pathway involving the ABNORMAL LEAF SHAPE1 subtilase and the two GASSHO receptor-like kinases. We show that a sulfated peptide, TWISTED SEED1 (TWS1), acts as a GASSHO ligand. Cuticle surveillance depends on the action of the subtilase, which, unlike the TWS1 precursor and the GASSHO receptors, is not produced in the embryo but in the neighboring endosperm. Subtilase-mediated processing of the embryo-derived TWS1 precursor releases the active peptide, triggering GASSHO-dependent cuticle reinforcement in the embryo. Thus, a bidirectional molecular dialogue between embryo and endosperm safeguards cuticle integrity before germination.
Collapse
Affiliation(s)
- N M Doll
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - S Royek
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - S Fujita
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - S Okuda
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - S Chamot
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - A Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - T Widiez
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - M Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - A Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - N Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - G Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.
| |
Collapse
|
30
|
Ingram GC. Family plot: the impact of the endosperm and other extra-embryonic seed tissues on angiosperm zygotic embryogenesis. F1000Res 2020; 9. [PMID: 32055398 PMCID: PMC6961419 DOI: 10.12688/f1000research.21527.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
The zygotic embryos of angiosperms develop buried deep within seeds and surrounded by two main extra-embryonic tissues: the maternally derived seed coat tissues and the zygotic endosperm. Generally, these tissues are considered to play an important role in nurturing the developing embryo by acting as conduits for maternally derived nutrients. They are also critical for key seed traits (dormancy establishment and control, longevity, and physical resistance) and thus for seed and seedling survival. However, recent studies have highlighted the fact that extra-embryonic tissues in the seed also physically and metabolically limit embryonic development and that unique mechanisms may have evolved to overcome specific developmental and genetic constraints associated with the seed habit in angiosperms. The aim of this review is to illustrate how these studies have begun to reveal the highly complex physical and physiological relationship between extra-embryonic tissues and the developing embryo. Where possible I focus on Arabidopsis because of space constraints, but other systems will be cited where relevant.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| |
Collapse
|