1
|
da Rocha Torres Pavione N, de Moraes JVB, Ribeiro IC, de Castro RB, da Silva W, de Souza ACA, da Silva VHF, de Souza Vasconcellos R, da Costa Bressan G, Fietto JLR. Heterologous expression and biochemical characterization of the recombinant nucleoside triphosphate diphosphohydrolase 2 (LbNTPDase2) from Leishmania (Viannia) braziliensis. Purinergic Signal 2024; 20:509-520. [PMID: 37999896 PMCID: PMC11377403 DOI: 10.1007/s11302-023-09980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Leishmania braziliensis is a pathogenic protozoan parasite that causes American Tegumentary Leishmaniasis (ATL), an important tropical neglected disease. ENTPDases are nucleotidases that hydrolyze intracellular and/or extracellular nucleotides. ENTPDases are known as regulators of purinergic signalling induced by extracellular nucleotides. Leishmania species have two isoforms of ENTPDase, and, particularly, ENTPDase2 seems to be involved in infectivity and virulence. In this study, we conducted the heterologous expression and biochemical characterization of the recombinant ENTPDase2 of L. braziliensis (rLbNTPDase2). Our results show that this enzyme is a canonical ENTPDase with apyrase activity, capable of hydrolysing triphosphate and diphosphate nucleotides, and it is dependent on divalent cations (calcium or magnesium). Substrate specificity was characterized as UDP>GDP>ADP>GTP>ATP=UTP. The enzyme showed optimal activity at a neutral to basic pH and was partially inhibited by suramin and DIDS. Furthermore, the low apparent Km for ADP suggests that the enzyme may play a role in adenosine-mediated signalling. The biochemical characterization of this enzyme can open new avenues for using LbNTPDase2 as a drug target.
Collapse
Affiliation(s)
- Nancy da Rocha Torres Pavione
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- General Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - João Victor Badaró de Moraes
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- General Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Isadora Cunha Ribeiro
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Raissa Barbosa de Castro
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Walmir da Silva
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Gustavo da Costa Bressan
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | |
Collapse
|
2
|
Ribeiro IC, de Moraes JVB, Mariotini-Moura C, Polêto MD, da Rocha Torres Pavione N, de Castro RB, Miranda IL, Sartori SK, Alves KLS, Bressan GC, de Souza Vasconcellos R, Meyer-Fernandes JR, Diaz-Muñoz G, Fietto JLR. Synthesis of new non-natural L-glycosidic flavonoid derivatives and their evaluation as inhibitors of Trypanosoma cruzi ecto-nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase1). Purinergic Signal 2024; 20:399-419. [PMID: 37975950 PMCID: PMC11303637 DOI: 10.1007/s11302-023-09974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Trypanosoma cruzi is the pathogen of Chagas disease, a neglected tropical disease that affects more than 6 million people worldwide. There are no vaccines to prevent infection, and the therapeutic arsenal is very minimal and toxic. The unique E-NTPDase of T. cruzi (TcNTPDase1) plays essential roles in adhesion and infection and is a virulence factor. Quercetin is a flavonoid with antimicrobial, antiviral, and antitumor activities. Its potential as a partial inhibitor of NTPDases has also been demonstrated. In this work, we synthesized the non-natural L-glycoside derivatives of quercetin and evaluated them as inhibitors of recombinant TcNTPDase1 (rTcNTPDase1). These compounds, and quercetin and miquelianin, a natural quercetin derivative, were also tested. Compound 16 showed the most significant inhibitory effect (94%). Quercetin, miquelianin, and compound 14 showed inhibition close to 50%. We thoroughly investigated the inhibitory effect of 16. Our data suggested a competitive inhibition with a Ki of 8.39 μM (± 0.90). To better understand the interaction of compound 16 and rTcNTPDase1, we performed molecular dynamics simulations of the enzyme and docking analyses with the compounds. Our predictions show that compound 16 binds to the enzyme's catalytic site and interacts with important residues for NTPDase activity. As an inhibitor of a critical T. cruzi enzyme, (16) could be helpful as a starting point in the developing of a future treatment for Chagas disease. Furthermore, the discovery of (16) as an inhibitor of TcNTPDase1 may open new avenues in the study and development of new inhibitors of E-NTPDases.
Collapse
Affiliation(s)
- Isadora Cunha Ribeiro
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Christiane Mariotini-Moura
- General Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Medicine and Nursing Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcelo Depolo Polêto
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Raissa Barbosa de Castro
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Izabel Luzia Miranda
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Suélen Karine Sartori
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kryssia Lohayne Santos Alves
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Costa Bressan
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - José Roberto Meyer-Fernandes
- Laboratory of Cellular Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis, Health Sciences Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gaspar Diaz-Muñoz
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Juliana Lopes Rangel Fietto
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
- General Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Gomides TAR, de Souza MLM, de Figueiredo AB, Lima MR, Silveira AMS, de Assis GFM, Fraga LAO, Silveira-Nunes G, Martucci L, Garcia JD, Afonso LCC, Teixeira-Carvalho A, Leite PM. Expression of SmATPDases 1 and 2 in Schistosoma mansoni eggs favours IL-10 production in infected individuals. Parasite Immunol 2024; 46:e13017. [PMID: 37922505 DOI: 10.1111/pim.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2023]
Abstract
A role of IL-10 is down-regulating T-cell responses to schistosome antigens. Since SmATPDases can be correlated to modulation of the immune response, we evaluated the expression of enzymes in S. mansoni eggs. Faecal samples were collected from 40 infected individuals to detect coding regions of the SmATPDases. The cytokines were measured in supernatants of PBMC. The analysis was performed by the global median determination and set up high producers (HP) of cytokines. Six individuals expressed SmATPDase1, six expressed SmATPDase2 and six expressed both enzymes. The group who expressed only SmATPDase1 showed a high frequency of IFN-γ, TNF IL-4 HP; individuals who expressed only SmATPDase2 showed a high frequency of IFN-γ, IL-6 and IL-4 HP; and individuals who expressed both enzymes showed a high frequency of IL-10 HP. The comparison of the IFN-γ/IL-10 ratio presented higher indices in the group who had SmATPDase 2 expression than those who had the expression of both enzymes. The positive correlation between infection intensity and IL-10 levels remained only in the positive SmATPDase group. The IL-10 is the only cytokine induced by the expression of both enzymes. Our data suggest that the expression of both enzymes seems to be a factor that modulates the host immune response by inducing high IL-10 production.
Collapse
Affiliation(s)
- Thalisson Artur Ribeiro Gomides
- Laboratório de Imunoparasitologia, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Laboratório de Imunologia da Universidade Vale do Rio Doce, Govenador Valadares, Brazil
| | | | - Amanda Braga de Figueiredo
- Laboratório de Imunoparasitologia, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Alda Maria Soares Silveira
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | | | - Lúcia Alves Oliveira Fraga
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Gabriela Silveira-Nunes
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Letícia Martucci
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Jennifer Delgado Garcia
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Luís Carlos Crocco Afonso
- Laboratório de Imunoparasitologia, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ, Belo Horizonte, Brazil
| | - Pauline Martins Leite
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| |
Collapse
|
4
|
da Silva-Gomes NL, Ruivo LADS, Moreira C, Meuser-Batista M, da Silva CF, Batista DDGJ, Fragoso S, de Oliveira GM, Soeiro MDNC, Moreira OC. Overexpression of TcNTPDase-1 Gene Increases Infectivity in Mice Infected with Trypanosoma cruzi. Int J Mol Sci 2022; 23:ijms232314661. [PMID: 36498985 PMCID: PMC9736689 DOI: 10.3390/ijms232314661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes located on the surface of the T. cruzi plasma membrane, which hydrolyze a wide range of tri-/-diphosphate nucleosides. In this work, we used previously developed genetically modified strains of Trypanosoma cruzi (T. cruzi), hemi-knockout (KO +/−) and overexpressing (OE) the TcNTPDase-1 gene to evaluate the parasite infectivity profile in a mouse model of acute infection (n = 6 mice per group). Our results showed significantly higher parasitemia and mortality, and lower weight in animals infected with parasites OE TcNTPDase-1, as compared to the infection with the wild type (WT) parasites. On the other hand, animals infected with (KO +/−) parasites showed no mortality during the 30-day trial and mouse weight was more similar to the non-infected (NI) animals. In addition, they had low parasitemia (45.7 times lower) when compared with parasites overexpressing TcNTPDase-1 from the hemi-knockout (OE KO +/−) group. The hearts of animals infected with the OE KO +/− and OE parasites showed significantly larger regions of cardiac inflammation than those infected with the WT parasites (p < 0.001). Only animals infected with KO +/− did not show individual electrocardiographic changes during the period of experimentation. Together, our results expand the knowledge on the role of NTPDases in T. cruzi infectivity, reenforcing the potential of this enzyme as a chemotherapy target to treat Chagas disease (CD).
Collapse
Affiliation(s)
- Natália Lins da Silva-Gomes
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | - Claudia Moreira
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | - Marcelo Meuser-Batista
- Laboratório de Educação Profissional em Técnicas Laboratoriais em Saúde, EPSJV/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | | | - Stênio Fragoso
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | | | | | - Otacilio C. Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
- Correspondence:
| |
Collapse
|
5
|
da Silva W, Ribeiro IC, Agripino JDM, da Silva VHF, de Souza LÂ, Oliveira TA, Bressan GC, Vasconcellos RDS, Dumas C, Pelletier J, Sévigny J, Papadopoulou B, Fietto JLR. Leishmania infantum NTPDase1 and NTPDase2 play an important role in infection and nitric oxide production in macrophages. Acta Trop 2022; 237:106732. [DOI: 10.1016/j.actatropica.2022.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
|
6
|
Paula AT, Ribeiro KVG, Cardoso KF, Bastos DSS, Santos EC, Novaes RD, Cardoso SA, Oliveira LL. Protective immunity triggered by ectonucleoside triphosphate diphosphohydrolase-based biopharmaceuticals attenuates cardiac parasitism and prevents mortality in Trypanosoma cruzi infection. Bioorg Med Chem 2022; 72:116966. [PMID: 35998390 DOI: 10.1016/j.bmc.2022.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
Chagas disease is a potentially fatal infection in 21 endemic Latin America countries for which the effectiveness of reference antiparasitic chemotherapy is limited. Thus, we developed three biopharmaceuticals and evaluated the effectiveness of different immunization strategies (recombinant protein NTPDase-1 [rNTPDase-1], DNA plasmid encoding Trypanosoma cruzi NTPDase-1 [TcNTPDase-1] and DNA-NTPDase-1 prime/rNTPDase-1 boost [Prime-boost]) based on the surface ecto-nucleoside triphosphate diphosphohydrolase (ecto-NTPDase) enzyme of T. cruzi in animals challenged with a virulent strain (Y) of this parasite. BALB/c mice were immunized three times at 30 days intervals, challenged with T. cruzi 15 days after the last immunization, and euthanized 30 days after T. cruzi challenge. Our results showed limited polarization of specific anti-ecto-NTPDase immunoglobulins in mice receiving both immunization protocols. Conversely, the Prime-boost strategy stimulated the Th1 protective phenotype, upregulating TNF-α and downregulating IL-10 production while increasing the activation/distribution of CD3+/CD8+, CD4+/CD44hi and CD8+/CD44hi/CD62L cells in immunized and infected mice. Furthermore, IL-6 and IL10 levels were reduced, while the distribution of CD4+/CD44hi and CD3+/CD8+ cells was increased from rNTPDase-1 and DNA-NTPDase1-based immunization strategies. Animals receiving DNA-NTPDase1 and Prime-boost protocols before T. cruzi challenged exhibited an enhanced immunological response associated with IL-17 upregulation and remarkable downregulation of heart parasitism (T. cruzi DNA) and mortality. These findings indicated that NTPDase-1 with Prime-boost strategy induced a protective and sustained Th17 response, enhancing host resistance against T. cruzi. Thus, ecto-NTPDase is a potentially relevant and applicable in the development of biopharmaceuticals with greater immunoprophylactic potential for Chagas disease.
Collapse
Affiliation(s)
| | | | | | | | - Eliziária Cardoso Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Silvia Almeida Cardoso
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | |
Collapse
|
7
|
Finamore-Araujo P, Silva da Fonseca GL, Vieira CS, de Castro DP, Moreira OC. RNA as a feasible marker of Trypanosoma cruzi viability during the parasite interaction with the triatomine vector Rhodnius prolixus (Hemiptera, Triatominae). PLoS Negl Trop Dis 2022; 16:e0010535. [PMID: 35797352 PMCID: PMC9307183 DOI: 10.1371/journal.pntd.0010535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/22/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
A recurring question concerning Trypanosoma cruzi DNA detection/quantification is related to the fact that DNA amplification, by itself, does not differentiate between viable or dead parasites. On the other hand, RNA can be considered a potential molecular marker of pathogens viability. Herein, we developed a quantitative real-time PCR with reverse Transcription (RT-qPCR) to quantify viable T. cruzi in artificially infected Rhodnius prolixus whilst evaluating differences between DNA and mRNA quantification along the insect midgut during 5, 9, 15 and 29 days after feeding. The RT-qPCR presented an improved performance with linearities ranging from 107 to 102 parasites equivalents and 3 to 0.0032 intestine unit equivalents, and efficiencies of 100.3% and 102.8% for both T. cruzi and triatomine targets, respectively. Comparing both RT-qPCR and qPCR, we confirmed that RNA is faster degraded, no longer being detected at day 1 after parasite lysis, while DNA detection was stable, with no decrease in parasite load over the days, even after parasite lysis. We also observed statistical differences between the quantification of the parasite load by DNA and by RNA on day 15 after feeding of experimentally infected R. prolixus. When assessing different portions of the digestive tract, by RT-qPCR, we could detect a statistically significant reduction in the parasite amount in the anterior midgut. Oppositely, there was a statistically significant increase of the parasite load in the hindgut. In conclusion, for this study parasite’s viability in R. prolixus digestive tract were assessed targeting T. cruzi mRNA. In addition, differences between DNA and RNA detection observed herein, raise the possibility that RNA is a potential molecular viability marker, which could contribute to understanding the dynamics of the parasite infection in invertebrate hosts. In this study, we developed and standardized a Real-Time PCR with Reverse Transcription (RT-qPCR) to determine T. cruzi viability in R. prolixus samples. Moreover, we aimed to assess differences between the amplification signals of DNA and mRNA on a T. cruzi colonization kinetics in experimentally infected R. prolixus. Thus, it was possible to analyze the potential of parasite’s RNA as a molecular viability marker in parasite-vector interaction. This novel RT-qPCR methodology has potential application in viability assessment and raises the possibility for further monitoring of the parasite load in infected insects or studies related to vectorial capacity. Furthermore, the analysis of parasite viability by RT qPCR could be an especially effective tool for Chagas disease diagnostic purposes.
Collapse
Affiliation(s)
- Paula Finamore-Araujo
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriel Lucio Silva da Fonseca
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cecília Stahl Vieira
- Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Postgraduate Program in Science and Biotechnology, Biology Institute, Federal Fluminense University, Niterói, Brazil
| | - Daniele Pereira de Castro
- Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Otacilio Cruz Moreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
8
|
Eberhardt N, Bergero G, Mazzocco Mariotta YL, Aoki MP. Purinergic modulation of the immune response to infections. Purinergic Signal 2022; 18:93-113. [PMID: 34997903 PMCID: PMC8742569 DOI: 10.1007/s11302-021-09838-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are caused by the invasion of pathogenic microorganisms such as fungi, bacteria, viruses, and parasites. After infection, disease progression relies on the complex interplay between the host immune response and the microorganism evasion strategies. The host's survival depends on its ability to mount an efficient protective anti-microbial response to accomplish pathogen clearance while simultaneously preventing tissue injury by keeping under control the excessive inflammatory process. The purinergic system has the dual function of regulating the immune response and triggering effector antimicrobial mechanisms. This review provides an overview of the current knowledge of the modulation of innate and adaptive immunity driven by the purinergic system during parasitic, bacterial and viral infections.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Present Address: Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, USA
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina L. Mazzocco Mariotta
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M. Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Haya de La Torre and Medina Allende, Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
9
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. E-NTPDases: Possible Roles on Host-Parasite Interactions and Therapeutic Opportunities. Front Cell Infect Microbiol 2021; 11:769922. [PMID: 34858878 PMCID: PMC8630654 DOI: 10.3389/fcimb.2021.769922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Belonging to the GDA1/CD39 protein superfamily, nucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP) and inorganic phosphate (Pi). Several NTPDase isoforms have been described in different cells, from pathogenic organisms to animals and plants. Biochemical characterization of nucleotidases/NTPDases has revealed the existence of isoforms with different specificities regarding divalent cations (such as calcium and magnesium) and substrates. In mammals, NTPDases have been implicated in the regulation of thrombosis and inflammation. In parasites, such as Trichomonas vaginalis, Trypanosoma spp., Leishmania spp., Schistosoma spp. and Toxoplasma gondii, NTPDases were found on the surface of the cell, and important processes like growth, infectivity, and virulence seem to depend on their activity. For instance, experimental evidence has indicated that parasite NTPDases can regulate the levels of ATP and Adenosine (Ado) of the host cell, leading to the modulation of the host immune response. In this work, we provide a comprehensive review showing the involvement of the nucleotidases/NTPDases in parasites infectivity and virulence, and how inhibition of NTPDases contributes to parasite clearance and the development of new antiparasitic drugs.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Gomes-Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Girard MC, Ossowski MS, Muñoz-Calderón A, Fernández M, Hernández-Vásquez Y, Chadi R, Gómez KA. Trypanosoma cruzi Induces Regulatory B Cell Alterations in Patients With Chronic Chagas Disease. Front Cell Infect Microbiol 2021; 11:723549. [PMID: 34458163 PMCID: PMC8387560 DOI: 10.3389/fcimb.2021.723549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
The clinical evolution of patients with chronic Chagas disease (CCD) is mainly associated with an excessive inflammation and a defective immunomodulatory profile caused by the interaction between T. cruzi and the host. Regulatory B (Breg) cells exert immune suppression mostly through IL-10 production (B10 cells), but also through IL-10-independent mechanisms. Previously, we demonstrated that CCD patients with cardiomyopathy show changes in the ex vivo Breg cell phenotypic distribution although maintain IL-10 production capacity. Here, we sought to identify potential alterations on Breg cells upon in vitro stimulation. Isolated B cells from CCD patients with or without cardiomyopathy and non-infected (NI) donors were stimulated with T. cruzi lysate or CpG + CD40L, and characterized by flow cytometry based on the expression of CD24, CD27, CD38, and the regulatory molecules IL-10 and PD-L1. IL-10 and IL-17 secretion in the supernatant of B cells was evaluated by ELISA. Data showed that T. cruzi stimulation diminished the expression of CD24 and CD38 on CD27- B cells while reducing the percentage of CD24high inside CD27+ B cells. Furthermore, T. cruzi induced a regulatory B cell phenotype by increasing B10 cells and IL-10 secretion in all the groups. The innate-like B10 cells expansion observed in patients with cardiomyopathy would be associated with CD27- B10 cell subsets, while no predominant phenotype was found in the other groups. Patients with cardiomyopathy also displayed higher IL-17 secretion levels in T. cruzi-activated B cells. CpG + CD40L stimulation revealed that B cells from CCD patients and NI donors had the same ability to differentiate into B10 cells and secrete IL-10 in vitro. Additionally, CCD patients showed an increased frequency of CD24-CD27- B cells and a reduction in the percentage of CD24highCD27+ Breg cells, which appeared to be inversely correlated with the presence of T. cruzi DNA in blood. Finally, CCD patients exhibited a higher frequency of PD-L1+ B cells in T. cruzi-stimulated samples, suggesting that IL-10-independent mechanisms could also be tangled in the control of inflammation. Altogether, our results provide evidence about the potential role of Breg cells in the immune response developed against T. cruzi and its contribution to chronic Chagas cardiomyopathy.
Collapse
Affiliation(s)
- Magalí C. Girard
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos (LIIT), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Micaela S. Ossowski
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos (LIIT), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Arturo Muñoz-Calderón
- Laboratorio de Biología Molecular de la Enfermedad de Chagas (LabMECh), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marisa Fernández
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | | | - Raúl Chadi
- Hospital General de Agudos “Dr. Ignacio Pirovano”, Buenos Aires, Argentina
| | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos (LIIT), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Involvement of ectonucleotidases and purinergic receptor expression during acute Chagas disease in the cortex of mice treated with resveratrol and benznidazole. Purinergic Signal 2021; 17:493-502. [PMID: 34302569 DOI: 10.1007/s11302-021-09803-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/18/2021] [Indexed: 11/27/2022] Open
Abstract
Chagas disease (CD) is caused by the parasite Trypanosoma cruzi. CD affects people worldwide, primarily in tropical areas. The central nervous system (CNS) is an essential site for T. cruzi persistence during infection. The protozoan may pass through the blood-brain barrier and may cause motor and cognitive neuronal damage. Once in the CNS, T. cruzi triggers immune responses that the purinergic system can regulate. Treatment for CD is based on benznidazole (BNZ); however, this agent has negative side-effects and is toxic to the host. For this reason, we investigated whether resveratrol (RSV), a potent antioxidant and neuroprotective molecule, would modulate purinergic signaling and RSV alone or in combination with BNZ would prevent changes in purinergic signaling and oxidative damage caused by T. cruzi. We infected mice with T. cruzi and treated them with RSV or BNZ for 8 days. Increases in ATP and ADP hydrolysis by NTPDase in the total cortex of infected animals were observed. The treatment with RSV in infected group diminished ATP, ADP, and AMP hydrolysis compared to infected group. The combination of RSV + BNZ decreased AMP hydrolysis in infected animals compared to the INF group, exerting an anti-inflammatory effect. RSV acted as a neuroprotector, decreasing adenosine levels. Infected animals presented an increase of P2X7 and A2A density of purine receptors. RSV reduced P2X7 and A2A and increased A1 density receptors in infected animals. In addition, infected animals showed higher TBARS and reactive oxygen species (ROS) levels than control. RSV diminished ROS levels in infected mice, possibly due to antioxidant properties. In short, we conclude that resveratrol could act as a neuroprotective molecule, probably preventing inflammatory changes caused by infection by T. cruzi, even though the mice experienced high levels of parasitemia.
Collapse
|
12
|
da Silva W, da Rocha Torres N, de Melo Agripino J, da Silva VHF, de Souza ACA, Ribeiro IC, de Oliveira TA, de Souza LA, Andrade LKR, de Moraes JVB, Diogo MA, de Castro RB, Polêto MD, Afonso LCC, Fietto JLR. ENTPDases from Pathogenic Trypanosomatids and Purinergic Signaling: Shedding Light towards Biotechnological Applications. Curr Top Med Chem 2021; 21:213-226. [PMID: 33019932 DOI: 10.2174/1568026620666201005125146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
ENTPDases are enzymes known for hydrolyzing extracellular nucleotides and playing an essential role in controlling the nucleotide signaling via nucleotide/purinergic receptors P2. Moreover, ENTPDases, together with Ecto-5´-nucleotidase activity, affect the adenosine signaling via P1 receptors. These signals control many biological processes, including the immune system. In this context, ATP is considered as a trigger to inflammatory signaling, while adenosine (Ado) induces anti-inflammatory response. The trypanosomatids Leishmania and Trypanosoma cruzi, pathogenic agents of Leishmaniasis and Chagas Disease, respectively, have their own ENTPDases named "TpENTPDases," which can affect the nucleotide signaling, adhesion and infection, in order to favor the parasite. Besides, TpENTPDases are essential for the parasite nutrition, since the Purine De Novo synthesis pathway is absent in them, which makes these pathogens dependent on the intake of purines and nucleopurines for the Salvage Pathway, in which TpENTPDases also take place. Here, we review information regarding TpNTPDases, including their known biological roles and their effect on the purinergic signaling. We also highlight the roles of these enzymes in parasite infection and their biotechnological applications, while pointing to future developments.
Collapse
Affiliation(s)
- Walmir da Silva
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Nancy da Rocha Torres
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Joice de Melo Agripino
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Anna Cláudia Alves de Souza
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Isadora Cunha Ribeiro
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Luciana Angelo de Souza
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | | | - Marcel Arruda Diogo
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Raíssa Barbosa de Castro
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Marcelo Depolo Polêto
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Luis Carlos Crocco Afonso
- Nucleo de Pesquisa em Ciencias Biologicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| |
Collapse
|
13
|
Leite ALJ, Oliveira DSD, Mota LWR, Carvalho LCF, Zimmermann FF, Paiva NCND, Vieira PMDA, de Lana M, Afonso LCC, Talvani A. Ectonucleotidases from trypomastigotes from different sources and various genetic backgrounds of Trypanosoma cruzi potentiate their infectivity and host inflammation. Cytokine 2020; 136:155255. [PMID: 32866897 DOI: 10.1016/j.cyto.2020.155255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/18/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023]
Abstract
Distinct populations of Trypanosoma cruzi interact with mammalian cardiac muscle cells causing different inflammation patterns and low heart functionality. During T. cruzi infection, the extracellular ATP is hydrolyzed to tri- and/or diphosphate nucleotides, based on the infectivity, virulence, and regulation of the inflammatory response. T. cruzi carries out this hydrolysis through the T. cruzi ectonucleotidase, NTPDase-1 (TcNTPDase-1). This study aimed to evaluate the role of TcNTPDase-1 in culture rich in metacyclic trypomastigote forms (MT) and cell culture-derived trypomastigote forms (CT) from Colombiana (discrete typing unit - DTU I), VL-10 (DTU II), and CL (DTU VI) strains of T. cruzi. For this, we measured TcNTPDase-1 activity in suramin-treated and untreated parasites and infected J774 cells and C57BL/6 mice with suramin pre-treated parasites to assess parasitic and inflammatory cardiac profile in the acute phase of infection. Our data indicated a higher TcNTPDase-1 activity for ATP in culture rich in metacyclic trypomastigote forms from Colombiana strain in comparison to those from VL-10 and CL strains. The cell culture-derived trypomastigote forms from CL strain presented higher capacity to hydrolyze ATP than those from Colombiana and VL-10 strains. Suramin inhibited ATP hydrolysis in all studied parasite forms and strains. Suramin pre-treated parasites reduced J774 cell infection and increased nitrite production in vitro. In vivo studies showed a reduction of inflammatory infiltrate in the cardiac tissues of animals infected with cell culture-derived trypomastigote forms from suramin pre-treated Colombiana strain. In conclusion, TcNTPDase-1 activity in trypomastigotes forms drives part of the biological characteristics observed in distinct DTUs and may induce cardiac pathogenesis during T. cruzi infection.
Collapse
Affiliation(s)
- Ana Luísa Junqueira Leite
- Laboratory of Immunobiology of the Inflammation, Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil
| | - Daniela Silva de Oliveira
- Laboratory of Immunobiology of the Inflammation, Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil
| | - Ludmilla Walter Reis Mota
- Laboratory of Immunobiology of the Inflammation, Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil; Laboratory of Chagas Disease, NUPEB, Universidade Federal de Ouro Preto, MG, Brazil
| | | | - Fernanda Francine Zimmermann
- Laboratory of Immunoparasitology, Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil
| | | | - Paula Melo de Abreu Vieira
- Laboratory of Morphopathology, Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil
| | - Marta de Lana
- Laboratory of Chagas Disease, NUPEB, Universidade Federal de Ouro Preto, MG, Brazil
| | - Luís Carlos Crocco Afonso
- Laboratory of Immunoparasitology, Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of the Inflammation, Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil.
| |
Collapse
|
14
|
Silva-Gomes NL, Rampazzo RDCP, Moreira CMDN, Porcino GN, Dos Santos CMB, Krieger MA, Vasconcelos EG, Fragoso SP, Moreira OC. Knocking Down TcNTPDase-1 Gene Reduces in vitro Infectivity of Trypanosoma cruzi. Front Microbiol 2020; 11:434. [PMID: 32256481 PMCID: PMC7094052 DOI: 10.3389/fmicb.2020.00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 01/06/2023] Open
Abstract
Ecto-Nucleoside Triphosphate Diphosphohydrolases are enzymes that hydrolyze tri- and/or diphosphate nucleosides. Evidences pointed out to their participation in Trypanosoma cruzi virulence, infectivity, and purine acquisition. In this study, recombinant T. cruzi knocking out or overexpressing the TcNTPDase-1 gene were built, and the role of TcNTPDase-1 in the in vitro interaction with VERO cells was investigated. Results show that epimastigote forms of hemi-knockout parasites showed about 50% lower level of TcNTPDase-1 gene expression when compared to the wild type, while the T. cruzi overexpressing this gene reach 20 times higher gene expression. In trypomastigote forms, the same decreasing in TcNTPDase-1 gene expression was observed to the hemi-knockout parasites. The in vitro infection assays showed a reduction to 51.6 and 59.9% at the adhesion and to 25.2 and 26.4% at the endocytic indexes to the parasites knockout to one or other allele (Hygro and Neo hemi-knockouts), respectively. In contrast, the infection assays with T. cruzi overexpressing TcNTPDase-1 from the WT or Neo hemi-knockout parasites showed an opposite result, with the increasing to 287.7 and 271.1% at the adhesion and to 220.4 and 186.7% at the endocytic indexes, respectively. The parasitic load estimated in infected VERO cells by quantitative real time PCR corroborated these findings. Taken together, the partial silencing and overexpression of the TcNTPDase-1 gene generated viable parasites with low and high infectivity rates, respectively, corroborating that the enzyme encoded for this gene plays an important role to the T. cruzi infectivity.
Collapse
Affiliation(s)
- Natália Lins Silva-Gomes
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Gabriane Nascimento Porcino
- Laboratory of Structure and Function of Proteins, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Marco Aurélio Krieger
- Laboratory of Functional Genomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Eveline Gomes Vasconcelos
- Laboratory of Structure and Function of Proteins, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stenio Perdigão Fragoso
- Laboratory of Molecular Biology of Trypanosomatids, Carlos Chagas Institute, Curitiba, Brazil
| | - Otacilio C Moreira
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Abstract
Suramin is 100 years old and is still being used to treat the first stage of acute human sleeping sickness, caused by Trypanosoma brucei rhodesiense Suramin is a multifunctional molecule with a wide array of potential applications, from parasitic and viral diseases to cancer, snakebite, and autism. Suramin is also an enigmatic molecule: What are its targets? How does it get into cells in the first place? Here, we provide an overview of the many different candidate targets of suramin and discuss its modes of action and routes of cellular uptake. We reason that, once the polypharmacology of suramin is understood at the molecular level, new, more specific, and less toxic molecules can be identified for the numerous potential applications of suramin.
Collapse
|
16
|
de Carvalho LSA, Alves Jr Ij, Junqueira LR, Silva LM, Riani LR, de Faria Pinto P, da Silva Filho AA. ATP-Diphosphohydrolases in Parasites: Localization, Functions and Recent Developments in Drug Discovery. Curr Protein Pept Sci 2020; 20:873-884. [PMID: 31272352 DOI: 10.2174/1389203720666190704152827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023]
Abstract
ATP-diphosphohydrolases (EC 3.6.1.5), also known as ATPDases, NTPases, NTPDases, EATPases or apyrases, are enzymes that hydrolyze a variety of nucleoside tri- and diphosphates to their respective nucleosides, being their activities dependent on the presence of divalent cations, such as calcium and magnesium. Recently, ATP-diphosphohydrolases were identified on the surface of several parasites, such as Trypanosoma sp, Leishmania sp and Schistosoma sp. In parasites, the activity of ATPdiphosphohydrolases has been associated with the purine recuperation and/or as a protective mechanism against the host organism under conditions that involve ATP or ADP, such as immune responses and platelet activation. These proteins have been suggested as possible targets for the development of new antiparasitic drugs. In this review, we will comprehensively address the main aspects of the location and function of ATP-diphosphohydrolase in parasites. Also, we performed a detailed research in scientific database of recent developments in new natural and synthetic inhibitors of the ATPdiphosphohydrolases in parasites.
Collapse
Affiliation(s)
- Lara Soares Aleixo de Carvalho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Alves Jr Ij
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lauriene Ricardo Junqueira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lívia Mara Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lorena Rodrigues Riani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Priscila de Faria Pinto
- Departament of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ademar Alves da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
17
|
Damasio MP, Rocha MO, Sousa GR, Ferreira KS, Fares-Gusmão RC, Medeiros NI, Araujo FF, Chaves AT, Dutra WO, Correa-Oliveira R, Gomes JA. PD1 and PDL1 molecules control suppressor activity of regulatory T cells in chronic Chagas cardiomyopathy patients. Hum Immunol 2019; 80:517-522. [DOI: 10.1016/j.humimm.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
|
18
|
Maia ACRG, Porcino GN, Faria-Pinto P, Mendes TV, Antinarelli LMR, Coimbra ES, Reis AB, Juliano L, Juliano MA, Marques MJ, Vasconcelos EG. Leishmania infantum nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1) B-domain: Antibody antiproliferative effect on the promastigotes and IgG subclass responses in canine visceral leishmaniasis. Vet Parasitol 2019; 271:38-44. [PMID: 31303201 DOI: 10.1016/j.vetpar.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022]
Abstract
A nucleoside triphosphate diphosphohydrolase-1 (NTPDase 1) was identified on the surface, flagellum and kinetoplast from L. infantum promastigotes by immunocytochemistry and confocal laser scanning microscopy, using immune sera that recognized specifically the B domain of NTPDase 1 and produced against synthetic peptides (LbB1LJ and LbB2LJ) derived from this domain. The polyclonal antibodies had effective antileishmanial effect, reducing significantly in vitro promastigotes growth (21-25%), an antiproliferative effect also demonstrated by immune sera produced against recombinant r-pot B domain, and two other synthetic peptides (potB1LJ and potB2LJ). In addition, using these biomolecules in ELISA technique, IgG1 and IgG2 subclasses reactivities of either healthy dogs or infected by L. infantum and classified clinically as asymptomatic, oligosymptomatic and symptomatic were tested. Analysis of distinct IgG1 and IgG2 seropositivities patterns suggested antibody subclasses binding epitopes along B domain for protection against infection, indicating this domain as a new tool for prophylactic and immunotherapeutic investigations.
Collapse
Affiliation(s)
- Ana Carolina Ribeiro Gomes Maia
- Departamento de Bioquímica, Laboratório de Estrutura e Função de Proteínas, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil.
| | - Gabriane Nascimento Porcino
- Departamento de Bioquímica, Laboratório de Estrutura e Função de Proteínas, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Priscila Faria-Pinto
- Departamento de Bioquímica, Laboratório de Estrutura e Função de Proteínas, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Túlio Vieira Mendes
- Hospital Naval Marcilio Dias, Marinha do Brasil, Doenças Infecciosas e Parasitárias, Rio de Janeiro, RJ, Brazil
| | - Luciana Maria Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas & Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcos José Marques
- Departamento de Ciências Biológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Eveline Gomes Vasconcelos
- Departamento de Bioquímica, Laboratório de Estrutura e Função de Proteínas, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| |
Collapse
|
19
|
Vijayamahantesh, Vijayalaxmi. Tinkering with targeting nucleotide signaling for control of intracellular Leishmania parasites. Cytokine 2019; 119:129-143. [PMID: 30909149 DOI: 10.1016/j.cyto.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Nucleotides are one of the most primitive extracellular signalling molecules across all phyla and regulate a multitude of responses. The biological effects of extracellular nucleotides/sides are mediated via the specific purinergic receptors present on the cell surface. In mammalian system, adenine nucleotides are the predominant nucleotides found in the extracellular milieu and mediate a constellation of physiological functions. In the context of host-pathogen interaction, extracellular ATP is recognized as a danger signal and potentiates the release of pro-inflammatory mediators from activated immune cells, on the other hand, its breakdown product adenosine exerts potential anti-inflammatory and immunosuppressive actions. Therefore, it is increasingly apparent that the interplay between extracellular ATP/adenosine ratios has a significant role in coordinating the regulation of the immune system in health and diseases. Several pathogens express ectonucleotidases on their surface and exploit the purinergic signalling as one of the mechanisms to modulate the host immune response. Leishmania pathogens are one of the most successful intracellular pathogens which survive within host macrophages and manipulate protective Th1 response into disease promoting Th2 response. In this review, we discuss the regulation of extracellular ATP and adenosine levels, the role of ATP/adenosine counter signalling in regulating the inflammation and immune responses during infection and how Leishmania parasites exploit the purinergic signalling to manipulate host response. We also discuss the challenges and opportunities in targeting purinergic signalling and the future prospects.
Collapse
Affiliation(s)
- Vijayamahantesh
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Vijayalaxmi
- Department of Zoology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
20
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|
21
|
Purinergic Antagonist Suramin Aggravates Myocarditis and Increases Mortality by Enhancing Parasitism, Inflammation, and Reactive Tissue Damage in Trypanosoma cruzi-Infected Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7385639. [PMID: 30364017 PMCID: PMC6186315 DOI: 10.1155/2018/7385639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
Suramin (Sur) acts as an ecto-NTPDase inhibitor in Trypanosoma cruzi and a P2-purinoceptor antagonist in mammalian cells. Although the potent antitrypanosomal effect of Sur has been shown in vitro, limited evidence in vivo suggests that this drug can be dangerous to T. cruzi-infected hosts. Therefore, we investigated the dose-dependent effect of Sur-based chemotherapy in a murine model of Chagas disease. Seventy uninfected and T. cruzi-infected male C57BL/6 mice were randomized into five groups: SAL = uninfected; INF = infected; SR5, SR10, and SR20 = infected treated with 5, 10, or 20 mg/kg Sur. In addition to its effect on blood and heart parasitism, the impact of Sur-based chemotherapy on leucocytes myocardial infiltration, cytokine levels, antioxidant defenses, reactive tissue damage, and mortality was analyzed. Our results indicated that animals treated with 10 and 20 mg/kg Sur were disproportionally susceptible to T. cruzi, exhibiting increased parasitemia and cardiac parasitism (amastigote nests and parasite load (T. cruzi DNA)), intense protein, lipid and DNA oxidation, marked myocarditis, and mortality. Animals treated with Sur also exhibited reduced levels of nonprotein antioxidants. However, the upregulation of catalase, superoxide dismutase, and glutathione-S-transferase was insufficient to counteract reactive tissue damage and pathological myocardial remodeling. It is still poorly understood whether Sur exerts a negative impact on the purinergic signaling of T. cruzi-infected host cells. However, our findings clearly demonstrated that through enhanced parasitism, inflammation, and reactive tissue damage, Sur-based chemotherapy contributes to aggravating myocarditis and increasing mortality rates in T. cruzi-infected mice, contradicting the supposed relevance attributed to this drug for the treatment of Chagas disease.
Collapse
|
22
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. NTPDase activities: possible roles onLeishmania sppinfectivity and virulence. Cell Biol Int 2018; 42:670-682. [DOI: 10.1002/cbin.10944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/27/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21941-590 Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Ciências Exatas, Departamento de Química; Universidade Federal Rural do Rio de Janeiro; Seropédica RJ Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21941-590 Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem; Rio de Janeiro RJ Brazil
| |
Collapse
|
23
|
Peres NTDA, Cunha LCS, Barbosa MLA, Santos MB, de Oliveira FA, de Jesus AMR, de Almeida RP. Infection of Human Macrophages by Leishmania infantum Is Influenced by Ecto-Nucleotidases. Front Immunol 2018; 8:1954. [PMID: 29379503 PMCID: PMC5770793 DOI: 10.3389/fimmu.2017.01954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Ecto-nucleotidase activity is involved in the infection process of Leishmania and various other parasites that enables modulation of host immune responses to promote disease progression. One of the enzymes responsible for this activity is the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase). The enzyme hydrolyzes nucleotides tri- and/or di-phosphate into monophosphate products, which are subsequently hydrolyzed into adenosine. These nucleotides can serve as purinergic signaling molecules involved in diverse cellular processes that govern immune responses. Given the importance of the extracellular metabolism of these nucleotides during intracellular pathogen infections, this study evaluates the role of ecto-nucleotidase activity during Leishmania infantum (L. infantum) infection in human macrophages. E-NTPDase protein expression and activity was evaluated in L. infantum during purine starvation, adenosine-enriched medium, or in the presence of an inhibitor of ecto-nucleotidases. Results show that E-NTPDase is expressed in L. infantum parasites, including on the cell membrane. Furthermore, functional activity of the enzyme was modulated according to the availability of adenosine in the medium. Purine starvation increased the hydrolytic capacity of nucleotides leading to higher infectivity, while growth in adenosine-enriched medium led to lower infectivity. Moreover, inhibiting E-NTPDase function decreased L. infantum infection in macrophages, suggesting the enzyme may serve as a ligand. Taken together, the ability of L. infantum to hydrolyze nucleotides is directly associated with increased infectivity in macrophages.
Collapse
Affiliation(s)
- Nalu Teixeira de Aguiar Peres
- Laboratory of Molecular Biology, Department of Medicine, University Hospital, Federal University of Sergipe, São Cristóvão, Brazil.,Department of Morphology, Biological and Health Sciences Centre, Federal University of Sergipe, Aracaju, Brazil
| | - Luana Celina Seraphim Cunha
- Laboratory of Molecular Biology, Department of Medicine, University Hospital, Federal University of Sergipe, São Cristóvão, Brazil
| | - Meirielly Lima Almeida Barbosa
- Laboratory of Molecular Biology, Department of Medicine, University Hospital, Federal University of Sergipe, São Cristóvão, Brazil
| | - Márcio Bezerra Santos
- Laboratory of Molecular Biology, Department of Medicine, University Hospital, Federal University of Sergipe, São Cristóvão, Brazil.,Department of Health Science, Federal University of Sergipe, Aracaju, Brazil
| | - Fabrícia Alvise de Oliveira
- Laboratory of Molecular Biology, Department of Medicine, University Hospital, Federal University of Sergipe, São Cristóvão, Brazil
| | - Amélia Maria Ribeiro de Jesus
- Laboratory of Molecular Biology, Department of Medicine, University Hospital, Federal University of Sergipe, São Cristóvão, Brazil.,Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
| | - Roque Pacheco de Almeida
- Laboratory of Molecular Biology, Department of Medicine, University Hospital, Federal University of Sergipe, São Cristóvão, Brazil.,Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
| |
Collapse
|
24
|
Lima MHF, Sacramento LA, Quirino GFS, Ferreira MD, Benevides L, Santana AKM, Cunha FQ, Almeida RP, Silva JS, Carregaro V. Leishmania infantum Parasites Subvert the Host Inflammatory Response through the Adenosine A2 A Receptor to Promote the Establishment of Infection. Front Immunol 2017; 8:815. [PMID: 28775724 PMCID: PMC5517451 DOI: 10.3389/fimmu.2017.00815] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Adenosine is an endogenously released purine nucleoside that signals through four widely expressed G protein-coupled receptors: A1, A2A, A2B, and A3. Of these, A2AR is recognized as mediating major adenosine anti-inflammatory activity. During cutaneous leishmaniasis, adenosine induces immunosuppression, which promotes the establishment of infection. Herein, we demonstrated that A2AR signaling is exploited by Leishmania infantum parasites, the etiologic agent that causes Visceral Leishmaniasis, to successfully colonize the vertebrate host. A2AR gene-deleted mice exhibited a well-developed cellular reaction with a strong Th1 immune response in the parasitized organs. An intense infiltration of activated neutrophils into the disease-target organs was observed in A2AR−/− mice. These cells were characterized by high expression of CXCR2 and CD69 on their cell surfaces and increased cxcl1 expression. Interestingly, this phenotype was mediated by IFN-γ on the basis that a neutralizing antibody specific to this cytokine prevented neutrophilic influx into parasitized organs. In evaluating the immunosuppressive effects, we identified a decreased number of CD4+ FOXP3+ T cells and reduced il10 expression in A2AR−/− infected mice. During ex vivo cell culture, A2AR−/− splenocytes produced smaller amounts of IL-10. In conclusion, we demonstrated that the A2AR signaling pathway is detrimental to development of Th1-type adaptive immunity and that this pathway could be associated with the regulatory process. In particular, it promotes parasite surveillance.
Collapse
Affiliation(s)
- Mikhael H F Lima
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lais A Sacramento
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo F S Quirino
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcela D Ferreira
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciana Benevides
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alynne K M Santana
- Laboratory of Molecular Biology, Center for Biology and Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Fernando Q Cunha
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Laboratory of Inflammation and Pain, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roque P Almeida
- Laboratory of Molecular Biology, Center for Biology and Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - João S Silva
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Carregaro
- Laboratory of Immunoparasitology, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
25
|
Borges-Pereira L, Meissner KA, Wrenger C, Garcia CRS. Plasmodium falciparum GFP-E-NTPDase expression at the intraerythrocytic stages and its inhibition blocks the development of the human malaria parasite. Purinergic Signal 2017; 13:267-277. [PMID: 28285440 PMCID: PMC5563288 DOI: 10.1007/s11302-017-9557-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Plasmodium falciparum is the causative agent of the most dangerous form of malaria in humans. It has been reported that the P. falciparum genome encodes for a single ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), an enzyme that hydrolyzes extracellular tri- and di-phosphate nucleotides. The E-NTPDases are known for participating in invasion and as a virulence factor in many pathogenic protozoa. Despite its presence in the parasite genome, currently, no information exists about the activity of this predicted protein. Here, we show for the first time that P. falciparum E-NTPDase is relevant for parasite lifecycle as inhibition of this enzyme impairs the development of P. falciparum within red blood cells (RBCs). ATPase activity could be detected in rings, trophozoites, and schizonts, as well as qRT-PCR, confirming that E-NTPDase is expressed throughout the intraerythrocytic cycle. In addition, transfection of a construct which expresses approximately the first 500 bp of an E-NTPDase-GFP chimera shows that E-NTPDase co-localizes with the endoplasmic reticulum (ER) in the early stages and with the digestive vacuole (DV) in the late stages of P. falciparum intraerythrocytic cycle.
Collapse
Affiliation(s)
- Lucas Borges-Pereira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 101, travessa 14, São Paulo, SP, 05508-090, Brazil
| | - Kamila Anna Meissner
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Carsten Wrenger
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 101, travessa 14, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
26
|
Souza VDCG, Dos Santos JT, Cabral FL, Barbisan F, Azevedo MI, Dias Carli LF, de Avila Botton S, Dos Santos Jaques JA, Rosa Leal DB. Evaluation of P2X7 receptor expression in peripheral lymphocytes and immune profile from patients with indeterminate form of Chagas disease. Microb Pathog 2017; 104:32-38. [PMID: 28062289 DOI: 10.1016/j.micpath.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 12/24/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022]
Abstract
Chagas disease (CD) is caused by Trypanosoma cruzi, an intracellular protozoan which is a potent stimulator of cell-mediated immunity. In the indeterminate form of CD (IFCD) a modulation between pro- and anti-inflammatory responses establishes a host-parasite adaptation. It was previously demonstrated that purinergic ecto-enzymes regulates extracellular ATP and adenosine levels, influencing immune and inflammatory processes during IFCD. In inflammatory sites ATP, as well as its degradation product, adenosine, function as signaling molecules and immunoregulators through the activation of purinergic receptors. In this work, it was analyzed the gene and protein expression of P2X7 purinergic receptor in peripheral lymphocytes and serum immunoregulatory cytokines from IFCD patients. Gene and protein expression of P2X7 receptor (P2X7R), and serum cytokines (IL-2, IL-10, IL-17 and IFN-γ) were unaltered. However, IFCD group showed significantly higher IL-4 and IL-6 levels while TNF-α was significantly decreased. These results indicate that imune profile of IFCD patients displays anti-inflammatory characteristics, consistent with the establishment of an immunomodulatory response. Further study about the molecular knowledge of P2X7R in IFCD is useful to clarify the participation of purinergic system in the regulatory mechanism which avoid the progression of CD.
Collapse
Affiliation(s)
- Viviane do Carmo Gonçalves Souza
- Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Joabel Tonellotto Dos Santos
- Department of Large Animal Clinic de Clínica, Rural Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Fernanda Licker Cabral
- Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Fernanda Barbisan
- Department of Morphology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Maria Isabel Azevedo
- Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Luiz Felipe Dias Carli
- Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Sonia de Avila Botton
- Department of Preventive Veterinary Medicine, Rural Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | | | - Daniela Bitencourt Rosa Leal
- Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
27
|
Calil FA, Lima JM, de Oliveira AHC, Mariotini-Moura C, Fietto JLR, Cardoso CL. Immobilization of NTPDase-1 from Trypanosoma cruzi and Development of an Online Label-Free Assay. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:9846731. [PMID: 28070446 PMCID: PMC5192316 DOI: 10.1155/2016/9846731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
The use of IMERs (Immobilized Enzyme Reactors) as a stationary phase coupled to high performance chromatographic systems is an interesting approach in the screening of new ligands. In addition, IMERs offer many advantages over techniques that employ enzymes in solution. The enzyme nucleoside triphosphate diphosphohydrolase (NTPDase-1) from Trypanosoma cruzi acts as a pathogen infection facilitator, so it is a good target in the search for inhibitors. In this paper, immobilization of NTPDase-1 afforded ICERs (Immobilized Capillary Enzyme Reactors). A liquid chromatography method was developed and validated to monitor the ICER activity. The conditions for the application of these bioreactors were investigated, and excellent results were obtained. The enzyme was successfully immobilized, as attested by the catalytic activity detected in the TcNTPDase-1-ICER chromatographic system. Kinetic studies on the substrate ATP gave KM of 0.317 ± 0.044 mmol·L-1, which still presented high affinity compared to in solution. Besides that, the ICER was stable for 32 days, enough time to investigate samples of possible inhibitors, including especially the compound Suramin, that inhibited 51% the enzyme activity at 100 µmol·L-1, which is in accordance with the data for the enzyme in solution.
Collapse
Affiliation(s)
- Felipe Antunes Calil
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Juliana Maria Lima
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Arthur Henrique Cavalcante de Oliveira
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Christiane Mariotini-Moura
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
- Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INBEQMeDI), São Carlos, SP, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
- Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INBEQMeDI), São Carlos, SP, Brazil
| | - Carmen Lucia Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| |
Collapse
|
28
|
Menezes CB, Frasson AP, Meirelles LC, Tasca T. Adenosine, but not guanosine, protects vaginal epithelial cells from Trichomonas vaginalis cytotoxicity. Microbes Infect 2016; 19:122-131. [PMID: 27871906 DOI: 10.1016/j.micinf.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis causes the most common non-viral sexually transmitted disease worldwide. The cytoadherence and cytotoxicity upon the vaginal epithelial cells are crucial for the infection. Extracellular nucleotides are released during cell damage and, along with their nucleosides, can activate purinoceptors. The opposing effects of nucleotides versus nucleosides are regulated by ectonucleotidases. Herein we evaluated the hemolysis and cytolysis induced by T. vaginalis, as well as the extracellular nucleotide hydrolysis along with the effects mediated by nucleotides and nucleosides on cytotoxicity. In addition, the gene expression of purinoceptors in host cells was determined. The hemolysis and cytolysis exerted by all T. vaginalis isolates presented positive Pearson correlation. All T. vaginalis isolates were able to hydrolyze nucleotides, showing higher NTPDase than ecto-5'-nucleotidase activity. The most cytotoxic isolate, TV-LACM6, hydrolyzes ATP, GTP with more efficiency than AMP and GMP. The vaginal epithelial cell line (HMVII) expressed the genes for all subtypes of P1, P2X and P2Y receptors. Finally, when nucleotides and nucleosides were tested, the cytotoxic effect elicited by TV-LACM6 was increased with nucleotides. In contrast, the cytotoxicity was reversed by adenosine in presence of EHNA, but not by guanosine, contributing to the understanding of the purinergic signaling role on T. vaginalis cytotoxicity.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Domo Salute Consultoria Regulatória Ltda, Rua Cristóvão Colombo 2948/411, CEP 90560-002, Porto Alegre, RS, Brazil
| | - Lucia Collares Meirelles
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
29
|
Bastos MS, Tremblay A, Agripino JM, Rabelo ILA, Barreto LP, Pelletier J, Lecka J, Silva-Júnior A, Bressan GC, Almeida MR, Sévigny J, Fietto JLR. The expression of NTPDase1 and -2 of Leishmania infantum chagasi in bacterial and mammalian cells: Comparative expression, refolding and nucleotidase characterization. Protein Expr Purif 2016; 131:60-69. [PMID: 27856402 DOI: 10.1016/j.pep.2016.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/17/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Visceral Leishmaniasis (VL) represents an important global health problem in several warm countries around the world. The main targets in this study are the two nucleoside triphosphate diphosphohydrolases (NTPDases) from Leishmania infantum chagasi that are the main etiologic agent of VL in the New World. These enzymes, called LicNTPDase1 and -2, are homologous to members 5 and 6 of the mammalian E-NTPDase/CD39 superfamily of enzymes. These enzymes hydrolyze nucleotides and accordingly can participate in the purine salvage pathways and in the modulation of purinergic signaling through the extracellular nucleotide-dependent host immune responses. They can therefore affect adhesion and infection of host cells and the parasite virulence. To further characterize these enzymes, in this work, we expressed LicNTPDase1 and -2 in the classical bacterial system Escherichia coli and mammalian cell system COS-7 cells. Our data demonstrate that changes in refolding after expression in bacteria can increase the activity of recombinant (r) rLicNTPDase2 up to 20 times but has no significant effect on rLicNTPDase1. Meanwhile, the expression in COS-7 led to a significant increase in activity for rLicNTPDase1.
Collapse
Affiliation(s)
- M S Bastos
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas- INBEQMeDI, Brazil; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - A Tremblay
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - J M Agripino
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - I L A Rabelo
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - L P Barreto
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - J Pelletier
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - J Lecka
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada
| | - A Silva-Júnior
- Veterinary Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - G C Bressan
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - M R Almeida
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - J Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada
| | - J L R Fietto
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas- INBEQMeDI, Brazil.
| |
Collapse
|
30
|
Walton EL. Perturbing purinergic signaling: A pathogen's guidebook to counteracting inflammatory responses. Biomed J 2016; 39:229-233. [PMID: 27793264 PMCID: PMC6138819 DOI: 10.1016/j.bj.2016.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 11/29/2022] Open
Abstract
In this issue of the Biomedical Journal, we learn how bacteria and parasites alike counteract inflammatory signaling by manipulating purinergic signaling. We also focus on an original article shedding light on the role of an Epstein–Barr virus encoded gene in metastasis in nasopharyngeal carcinoma. Finally, we learn about a possible link between Trichomonas vaginalis and recurrent urinary tract infection.
Collapse
Affiliation(s)
- Emma L Walton
- Staff Writer at the Biomedical Journal, 56 Dronningens Gate, 7012 Trondheim, Norway.
| |
Collapse
|
31
|
Figueiredo ABD, Souza-Testasicca MC, Afonso LCC. Purinergic signaling and infection by Leishmania: A new approach to evasion of the immune response. Biomed J 2016; 39:244-250. [PMID: 27793266 PMCID: PMC6139394 DOI: 10.1016/j.bj.2016.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/18/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022] Open
Abstract
Infection by protozoan parasites is part of the most common Tropical Neglected Diseases. In the case of leishmaniasis, several millions of people are at risk of contracting the disease. In spite of innumerous studies that elucidated the immune response capable of killing the parasite, the understanding of the evasion mechanisms utilized by the parasite to survive within the very cell responsible for its destruction is still incomplete. In this review, we offer a new approach to the control of the immune response against the parasite. The ability of the parasite to modulate the levels of extracellular ATP and adenosine either by directly acting on the levels of these molecules or by inducing the expression of CD39 and CD73 on the infected cell may influence the magnitude of the immune response against the parasite contributing to its growth and survival.
Collapse
Affiliation(s)
- Amanda Braga de Figueiredo
- Immunoparasitology Laboratory, Department of Biological Sciences, ICEB/NUPEB, Federal University of Ouro Preto, Brazil
| | | | - Luis Carlos Crocco Afonso
- Immunoparasitology Laboratory, Department of Biological Sciences, ICEB/NUPEB, Federal University of Ouro Preto, Brazil.
| |
Collapse
|
32
|
Magnesium-Dependent Ecto-ATP Diphosphohydrolase Activity in Leishmania donovani. Curr Microbiol 2016; 73:811-819. [PMID: 27589852 DOI: 10.1007/s00284-016-1130-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
In this work, we have described the expression of ecto-ATPDase on the external surface of Leishmania donovani. This enzyme has the ability to hydrolyze extracellular ATP. There is a low level of ATP hydrolysis in the absence of divalent cation 2.5 ± 0.51 nM Pi 107 cells/h which shows the divalent cation-dependent activity of this enzyme in the intact parasite. However, MgCl2 stimulated the ATP hydrolysis to a greater extent compared with CaCl2 and ZnCl2. This activity was also observed when replaced by MnCl2. The Mg-dependent ecto-ATPase activity was 46.58 ± 6.248 nM Pi 107 cells/h. The apparent K m for ATP was 5.76 mM. Since Leishmania also possesses acid phosphatase activity and to discard the possibility that the observed ATP hydrolysis was due to acid phosphatase, the effect of pH was examined. In the pH range 6.0-9.0, in which the cells were viable, the phosphatase activity decreased while ATPase activity increased. To show that the observed ATP hydrolysis was not due to phosphatase or nucleotidase activity, certain inhibitors for these enzymes were tested. Vandate and NaF inhibited the phosphatase activity; Ammonium molybdate inhibited 5'-nucleotidase activity, but these inhibitors did not inhibit the observed ATP hydrolysis. However, when ADP was used as a substrate, there was no inhibition of ATP hydrolysis showing the possibility of ATP diphosphohydrolase activity. To confirm that this Mg-dependent ATPase activity is an ecto-ATPase activity, we used an impermeable inhibitor, 4,4'-diisothiocyanostilbene 2,-2'-disulfonic acid, as well as suramin, an antagonist of P2-purinoceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg2+-dependent ATPase activity in a dose-dependent manner. The presence of L. donovani E-NTPDase activity was demonstrated using antibodies against NTPDase by Western blotting and flow cytometry. The presence of Mg2+-dependent ATP diphosphohydrolase activity on the surface of L. donovani modulates the nucleotide concentration and protects the parasite from the lytic effects of the nucleotides mainly ATP. Ecto-ATPDase from L. donovani may be further characterized as a good antigen and as a target for immunodiagnosis and drug development, respectively.
Collapse
|
33
|
Ponce NE, Sanmarco LM, Eberhardt N, García MC, Rivarola HW, Cano RC, Aoki MP. CD73 Inhibition Shifts Cardiac Macrophage Polarization toward a Microbicidal Phenotype and Ameliorates the Outcome of Experimental Chagas Cardiomyopathy. THE JOURNAL OF IMMUNOLOGY 2016; 197:814-23. [PMID: 27335499 DOI: 10.4049/jimmunol.1600371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
Abstract
Increasing evidence demonstrates that generation of extracellular adenosine from ATP, which is hydrolyzed by the CD39/CD73 enzyme pair, attenuates the inflammatory response and deactivates macrophage antimicrobial mechanisms. Although CD73 is emerging as a critical pathway and therapeutic target in cardiovascular disorders, the involvement of this ectonucleotidase during myocardial infection has not been explored. Using a murine model of infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy, we observed a sudden switch from the classical M1 macrophage (microbicidal) phenotype toward an alternative M2 (repairing/anti-inflammatory) phenotype that occurred within the myocardium very shortly after BALB/c mice infection. The observed shift in M1/M2 rate correlated with the cardiac cytokine milieu. Considering that parasite persistence within myocardium is a necessary and sufficient condition for the development of the chronic myocarditis, we hypothesized that CD73 activity may counteract cardiac macrophage microbicidal polarization, rendering the local immune response less effective. In fact, a transient treatment with a specific CD73 inhibitor (adenosine 5'-α,β-methylene-diphosphate) enhanced the microbicidal M1 subset predominance, diminished IL-4- and IL-10-producing CD4(+) T cells, promoted a proinflammatory cytokine milieu, and reduced parasite load within the myocardium during the acute phase. As a direct consequence of these events, there was a reduction in serum levels of creatine kinase muscle-brain isoenzyme, a myocardial-specific injury marker, and an improvement in the electrocardiographic characteristics during the chronic phase. Our results demonstrate that this purinergic system drives the myocardial immune response postinfection and harbors a promising potential as a therapeutic target.
Collapse
Affiliation(s)
- Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Liliana Maria Sanmarco
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Natalia Eberhardt
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mónica Cristina García
- Departamento de Farmacia, Facultad de Ciencias Químicas, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Héctor Walter Rivarola
- Facultad de Ciencias Médicas, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; and
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; Facultad de Ciencias Químicas, UA Área de Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la salud-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Católica de Córdoba, Córdoba 5000, Argentina
| | - Maria Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina;
| |
Collapse
|
34
|
Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, Marugán-Hernández V, García-Lunar P, Hemphill A, Ortega-Mora LM. The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress. Parasit Vectors 2016; 9:352. [PMID: 27329357 PMCID: PMC4915099 DOI: 10.1186/s13071-016-1620-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Background NTPases (also NTPDases) are enzymes with apyrase activity. They are widely distributed among eukaryotes, and also among members of the family Sarcocystidae. In Toxoplasma gondii, the TgNTPase accumulates in the dense granules, and has been commonly associated with the strain virulence. In the closely related Neospora caninum, the NcNTPase lacks nucleoside diphosphate hydrolase activity and appears to be more abundant in virulent isolates, indicating that it may contribute to the pathogenicity of neosporosis. However, so far no additional information on NcNTPase has been provided. Methods Herein, the NcNTPase coding sequences were analysed by different in silico and de novo sequencing approaches. A comparative analysis of NcNTPase and NcGRA7 in terms of protein dynamics, secretion, phosphorylation, and mRNA expression profiles during the tachyzoite lytic cycle was also carried out. Moreover, NcNTPase immunolocalization was analysed by confocal microscopy techniques over a set number of time-points. Results We describe the presence of three different loci containing three copies of the NcNTPase within the Nc-Liv genome, and report the existence of up to four different NcNTPase alleles in Nc-Liv. We also provide evidence for the occurrence of diverse protein species of the NcNTPase by two-dimensional gel electrophoresis. Both NcNTPase and NcGRA7 were similarly up-regulated and secreted during the egress and/or early invasion phases, and were phosphorylated. However, its secretion was not affected by the addition of calcium modulators such as A23187 and ethanol. NcNTPase and NcGRA7 localized in dense granules and parasitophorous vacuole membrane throughout the lytic cycle, although differed in their inmunolocalization during early invasion and egress. Conclusions The present study reveals the complexity of the NcNTPase loci in N. caninum. We hypothesize that the expression of different isoforms of the NcNTPase protein could contribute to parasite virulence. Our findings showed regulation of expression, secretion and phosphorylation of NcNTPase suggesting a potential role for progression through the tachyzoites lytic cycle. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1620-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iván Pastor-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Virginia Marugán-Hernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Paula García-Lunar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland
| | - Luis M Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
35
|
Magalhães L, de Oliveira AHC, de Souza Vasconcellos R, Mariotini-Moura C, de Cássia Firmino R, Fietto JLR, Cardoso CL. Label-free assay based on immobilized capillary enzyme reactor of Leishmania infantum nucleoside triphosphate diphosphohydrolase (LicNTPDase-2-ICER-LC/UV). J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1008:98-107. [PMID: 26638034 DOI: 10.1016/j.jchromb.2015.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
Nucleoside triphosphate diphosphohydrolase (NTPDase) is an enzyme belonging to the apyrase family that participates in the hydrolysis of the nucleosides di- and triphosphate to the corresponding nucleoside monophosphate. This enzyme underlies the virulence of parasites such as Leishmania. Recently, an NTPDase from Leishmania infantum (LicNTPDase-2) was cloned and expressed and has been considered as a new drug target for the treatment of leishmaniasis. With the intent of developing label-free online screening methodologies, LicNTPDase-2 was covalently immobilized onto a fused silica capillary tube in the present study to create an immobilized capillary enzyme reactor (ICER) based on LicNTPDase-2 (LicNTPDase-2-ICER). To perform the activity assays, a multidimensional chromatographic method was developed employing the LicNTPDase-2-ICER in the first dimension, and an analytical Ascentis C8 column was used in the second dimension to provide analytical separation of the substrates and products. The validated LicNTPDase-2-ICER method provided the following kinetic parameters of the immobilized enzyme: KM of 2.2 and 1.8mmolL(-1) for the ADP and ATP substrates, respectively. Suramin (1mmolL(-1)) was also shown to inhibit 32.9% of the enzymatic activity. The developed method is applicable to kinetic studies and enables the recognition of the ligands. Furthermore, a comparison of the values of LicNTPDase-2-ICER with those obtained with an LC method using free enzyme in solution showed that LicNTPDase-2-ICER-LC/UV was an accurate and reproducible method that enabled automated measurements for the rapid screening of ligands.
Collapse
Affiliation(s)
- Luana Magalhães
- Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | | | - Raphael de Souza Vasconcellos
- Departamento de Bioquímica e Biologia Molecular-Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil; Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INBEQMeDI), São Carlos, São Paulo, Brazil
| | - Christiane Mariotini-Moura
- Departamento de Bioquímica e Biologia Molecular-Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil; Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INBEQMeDI), São Carlos, São Paulo, Brazil
| | - Rafaela de Cássia Firmino
- Departamento de Bioquímica e Biologia Molecular-Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquímica e Biologia Molecular-Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil; Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INBEQMeDI), São Carlos, São Paulo, Brazil
| | - Carmen Lúcia Cardoso
- Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
36
|
Concomitant Benznidazole and Suramin Chemotherapy in Mice Infected with a Virulent Strain of Trypanosoma cruzi. Antimicrob Agents Chemother 2015; 59:5999-6006. [PMID: 26169419 DOI: 10.1128/aac.00779-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/09/2015] [Indexed: 12/22/2022] Open
Abstract
Although suramin (Sur) is suggested as a potential drug candidate in the management of Chagas disease, this issue has not been objectively tested. In this study, we examined the applicability of concomitant treatment with benznidazole (Bz) and suramin in mice infected with a virulent strain of Trypanosoma cruzi. Eighty 12-week-old male C57BL/6 mice were equally randomized in eight groups: (i) noninfected mice (negative control) and mice infected with T. cruzi Y strain receiving (ii) no treatment (positive control), (iii) Bz, 100 mg/kg of body weight per day, (iv) Sur, 20 mg/kg/day, and (v to viii) Sur, 20 mg/kg/day, combined with Bz, 100, 50, 25, or 5 mg/kg/day. Bz was administered by gavage, and Sur was administered intraperitoneally. Sur dramatically increased the parasitemia, cardiac content of parasite DNA, inflammation, oxidative tissue damage, and mortality. In response to high parasitic load in cardiac tissue, Sur stimulated the immune system in a manner typical of the acute phase of Chagas disease, increasing tissue levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and inducing a preferential IgG2a anti-T. cruzi serum pattern. When Sur and Bz were combined, the infection severity was attenuated, showing a dose-dependent Bz response. Sur therapy had a more harmful effect on the host than on the parasite and reduced the efficacy of Bz against T. cruzi infection. Considering that Sur drastically reinforced the infection evolution, potentiating the inflammatory process and the severity of cardiac lesions, the in vivo findings contradicted the in vitro anti-T. cruzi potential described for this drug.
Collapse
|
37
|
Kinetic and biochemical characterization of Trypanosoma evansi nucleoside triphosphate diphosphohydrolase. Exp Parasitol 2015; 153:98-104. [DOI: 10.1016/j.exppara.2015.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/17/2022]
|
38
|
E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) of Leishmania amazonensis inhibits macrophage activation. Microbes Infect 2015; 17:295-303. [DOI: 10.1016/j.micinf.2014.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022]
|
39
|
Sansom FM, Ralton JE, Sernee MF, Cohen AM, Hooker DJ, Hartland EL, Naderer T, McConville MJ. Golgi-located NTPDase1 of Leishmania major is required for lipophosphoglycan elongation and normal lesion development whereas secreted NTPDase2 is dispensable for virulence. PLoS Negl Trop Dis 2014; 8:e3402. [PMID: 25521752 PMCID: PMC4270689 DOI: 10.1371/journal.pntd.0003402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/10/2014] [Indexed: 12/27/2022] Open
Abstract
Parasitic protozoa, such as Leishmania species, are thought to express a number of surface and secreted nucleoside triphosphate diphosphohydrolases (NTPDases) which hydrolyze a broad range of nucleoside tri- and diphosphates. However, the functional significance of NTPDases in parasite virulence is poorly defined. The Leishmania major genome was found to contain two putative NTPDases, termed LmNTPDase1 and 2, with predicted NTPDase catalytic domains and either an N-terminal signal sequence and/or transmembrane domain, respectively. Expression of both proteins as C-terminal GFP fusion proteins revealed that LmNTPDase1 was exclusively targeted to the Golgi apparatus, while LmNTPDase2 was predominantly secreted. An L. major LmNTPDase1 null mutant displayed increased sensitivity to serum complement lysis and exhibited a lag in lesion development when infections in susceptible BALB/c mice were initiated with promastigotes, but not with the obligate intracellular amastigote stage. This phenotype is characteristic of L. major strains lacking lipophosphoglycan (LPG), the major surface glycoconjugate of promastigote stages. Biochemical studies showed that the L. major NTPDase1 null mutant synthesized normal levels of LPG that was structurally identical to wild type LPG, with the exception of having shorter phosphoglycan chains. These data suggest that the Golgi-localized NTPase1 is involved in regulating the normal sugar-nucleotide dependent elongation of LPG and assembly of protective surface glycocalyx. In contrast, deletion of the gene encoding LmNTPDase2 had no measurable impact on parasite virulence in BALB/c mice. These data suggest that the Leishmania major NTPDase enzymes have potentially important roles in the insect stage, but only play a transient or non-major role in pathogenesis in the mammalian host. Nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes expressed in many eukaryotes, ranging from single-celled parasites to mammals. In mammals, NTPDases can have an immunomodulatory role, while in pathogenic protists cell-surface and secreted NTPDases are thought to be important virulence factors, although this has never been explicitly tested. In this study we have investigated the function of two NTPDases, termed LmNTPDase1 and LmNTPDase2, in Leishmania major parasites. We show that LmNTPDase 1 and LmNTPDase 2 are differentially targeted to the Golgi apparatus and secreted, respectively. A Leishmania major mutant lacking the Golgi LmNTPDase1 exhibited a delayed capacity to induce lesions in susceptible mice when promastigote (insect) stages were used to initiate infection, but not when amastigote (mammalian-infective) stages were used. Loss of promastigote infectivity in the LmNTPDase1 null mutant was associated with the synthesis and surface expression of lipophosphoglycan (LPG), with shorter glycan chains and increased sensitivity to complement-mediated lysis. In contrast, a null mutant lacking the secreted LmNTPDase2 did not exhibit any difference in virulence. Our results suggest that Leishmania major NTPDases have specific roles in regulating Golgi glycosylation pathways, and nucleoside salvage pathways in the insect stages, but do not appear to be required for virulence of the mammalian-infective stages.
Collapse
Affiliation(s)
- Fiona M. Sansom
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Julie E. Ralton
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - M. Fleur Sernee
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Alice M. Cohen
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - David J. Hooker
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Leishmania infantum ecto-nucleoside triphosphate diphosphohydrolase-2 is an apyrase involved in macrophage infection and expressed in infected dogs. PLoS Negl Trop Dis 2014; 8:e3309. [PMID: 25393008 PMCID: PMC4230930 DOI: 10.1371/journal.pntd.0003309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/02/2014] [Indexed: 01/30/2023] Open
Abstract
Background Visceral leishmaniasis is an important tropical disease, and Leishmania infantum chagasi (synonym of Leishmania infantum) is the main pathogenic agent of visceral leishmaniasis in the New World. Recently, ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) were identified as enablers of infection and virulence factors in many pathogens. Two putative E-NTPDases (∼70 kDa and ∼45 kDa) have been found in the L. infantum genome. Here, we studied the ∼45 kDa E-NTPDase from L. infantum chagasi to describe its natural occurrence, biochemical characteristics and influence on macrophage infection. Methodology/Principal Findings We used live L. infantum chagasi to demonstrate its natural ecto-nucleotidase activity. We then isolated, cloned and expressed recombinant rLicNTPDase-2 in bacterial system. The recombinant rLicNTPDase-2 hydrolyzed a wide variety of triphosphate and diphosphate nucleotides (GTP> GDP = UDP> ADP> UTP = ATP) in the presence of calcium or magnesium. In addition, rLicNTPDase-2 showed stable activity over a pH range of 6.0 to 9.0 and was partially inhibited by ARL67156 and suramin. Microscopic analyses revealed the presence of this protein on cell surfaces, vesicles, flagellae, flagellar pockets, kinetoplasts, mitochondria and nuclei. The blockade of E-NTPDases using antibodies and competition led to lower levels of parasite adhesion and infection of macrophages. Furthermore, immunohistochemistry showed the expression of E-NTPDases in amastigotes in the lymph nodes of naturally infected dogs from an area of endemic visceral leishmaniasis. Conclusions/Significance In this work, we cloned, expressed and characterized the NTPDase-2 from L. infantum chagasi and demonstrated that it functions as a genuine enzyme from the E-NTPDase/CD39 family. We showed that E-NTPDases are present on the surface of promastigotes and in other intracellular locations. We showed, for the first time, the broad expression of LicNTPDases in naturally infected dogs. Additionally, the blockade of NTPDases led to lower levels of in vitro adhesion and infection, suggesting that these proteins are possible targets for rational drug design. Visceral leishmaniasis is a dangerous and important, but neglected, tropical disease that affects millions of people, mainly in underdeveloped and developing countries. Presently, there are no vaccines against Leishmaniasis, and the few drugs with which the disease is treated have low efficacy and high side effects. The pathogenic agent of this disease in the New World is Leishmania infantum chagasi. In this work, we studied a protein from this parasite named ENTPDase-2. We expressed it in a bacterial system, purified it and characterized it as a genuine nucleotidase of the ENTPDase family. This protein seems to be localized at the surface of the parasite and in other intracellular locations. ENTPDase seems to facilitate in vitro infection because its blockade leads to lower levels of infection of macrophages. In addition, the protein is found in naturally infected dogs. A previous study demonstrated that ENTPDase-2 from L. infantum chagasi is a good antigen for immunodiagnosis of canine visceral leishmaniasis. We have now studied this protein in greater depth and suggest that it may be a good target for drug development.
Collapse
|
41
|
Csóka B, Németh ZH, Törő G, Koscsó B, Kókai E, Robson SC, Enjyoji K, Rolandelli RH, Erdélyi K, Pacher P, Haskó G. CD39 improves survival in microbial sepsis by attenuating systemic inflammation. FASEB J 2014; 29:25-36. [PMID: 25318479 DOI: 10.1096/fj.14-253567] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sepsis remains the leading cause of morbidity and mortality in critically ill patients. Excessive inflammation is a major cause of organ failure and mortality in sepsis. Ectonucleoside triphosphate diphosphohydrolase 1, ENTPDase1 (CD39) is a cell surface nucleotide-metabolizing enzyme, which degrades the extracellular purines ATP and ADP, thereby regulating purinergic receptor signaling. Although the role of purinergic receptor signaling in regulating inflammation and sepsis has been addressed previously, the role of CD39 in regulating the host's response to sepsis is unknown. We found that the CD39 mimic apyrase (250 U/kg) decreased and knockout or pharmacologic blockade with sodium polyoxotungstate (5 mg/kg; IC50 ≈ 10 μM) of CD39 increased mortality of mice with polymicrobial sepsis induced by cecal ligation and puncture. CD39 decreased inflammation, organ damage, immune cell apoptosis, and bacterial load. Use of bone marrow chimeric mice revealed that CD39 expression on myeloid cells decreases inflammation in septic mice. CD39 expression is upregulated during sepsis in mice, as well as in both murine and human macrophages stimulated with Escherichia coli. Moreover, E. coli increases CD39 promoter activity in macrophages. Altogether, these data indicate CD39 as an evolutionarily conserved inducible protective pathway during sepsis. We propose CD39 as a novel therapeutic target in the management of sepsis.
Collapse
Affiliation(s)
- Balázs Csóka
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | | | - Balázs Koscsó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | - Simon C Robson
- Department of Medicine, Gastroenterology and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Keiichi Enjyoji
- Department of Medicine, Gastroenterology and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; and
| | | | - Katalin Erdélyi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA;
| |
Collapse
|
42
|
Silva-Gomes NL, Ennes-Vidal V, Carolo JCF, Batista MM, Soeiro MN, Menna-Barreto R, Moreira OC. Nucleoside triphosphate diphosphohydrolase1 (TcNTPDase-1) gene expression is increased due to heat shock and in infective forms of Trypanosoma cruzi. Parasit Vectors 2014; 7:463. [PMID: 25287580 PMCID: PMC4210531 DOI: 10.1186/s13071-014-0463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/27/2014] [Indexed: 01/11/2023] Open
Abstract
Background Ecto-Nucleoside Triphosphate Diphosphohydrolases (Ecto-NTPDases) are enzymes that hydrolyze tri- and/or di-phosphate nucleotides. Evidences point to their participation in Trypanosoma cruzi virulence and infectivity. In this work, we evaluate TcNTPDase-1 gene expression in comparison with ecto-NTPDase activity, in order to study the role of TcNTPDase-1 in parasite virulence, infectivity and adaptation to heat shock. Findings Comparison between distinct T. cruzi isolates (Y, 3663 and 4167 strains, and Dm28c, LL014 and CL-14 clones) showed that TcNTPDase-1 expression was 7.2 ± 1.5 times higher in the Dm28c than the CL-14 avirulent clone. A remarkable expression increase was also observed in the trypomastigote and amastigote forms (22.5 ± 5.6 and 16.3 ± 3.8 times higher than epimastigotes, respectively), indicating that TcNTPDase-1 is overexpressed in T. cruzi infective forms. Moreover, heat shock and long-term cultivation also induced a significant increment on TcNTPDase-1 expression. Conclusions Our results suggest that TcNTPDase-1 plays an important role on T. cruzi infectivity and adaptation to stress conditions, such as long-term cultivation and heat shock. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0463-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natália Lins Silva-Gomes
- Laboratorio de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/ FIOCRUZ, Av. Brasil, 4365. Pavilhão Leônidas Deane, sala 209. Manguinhos, Rio de Janeiro, Brazil.
| | - Vitor Ennes-Vidal
- Laboratorio de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/ FIOCRUZ, Av. Brasil, 4365. Pavilhão Leônidas Deane, sala 209. Manguinhos, Rio de Janeiro, Brazil.
| | - Julliane Castro Ferreira Carolo
- Laboratorio de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/ FIOCRUZ, Av. Brasil, 4365. Pavilhão Leônidas Deane, sala 209. Manguinhos, Rio de Janeiro, Brazil.
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Brazil.
| | - Maria Nazaré Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Brazil.
| | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Brazil.
| | - Otacilio Cruz Moreira
- Laboratorio de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/ FIOCRUZ, Av. Brasil, 4365. Pavilhão Leônidas Deane, sala 209. Manguinhos, Rio de Janeiro, Brazil.
| |
Collapse
|
43
|
Giarola NLL, Silveira TS, Inacio JDF, Vieira LP, Almeida-Amaral EE, Meyer-Fernandes JR. Leishmania amazonensis: Increase in ecto-ATPase activity and parasite burden of vinblastine-resistant protozoa. Exp Parasitol 2014; 146:25-33. [PMID: 25176449 DOI: 10.1016/j.exppara.2014.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 07/21/2014] [Accepted: 08/22/2014] [Indexed: 01/04/2023]
Abstract
Leishmania amazonensis is a protozoan parasite that induces mucocutaneous and diffuse cutaneous lesions upon infection. An important component in treatment failure is the emergence of drug-resistant parasites. It is necessary to clarify the mechanism of resistance that occurs in these parasites to develop effective drugs for leishmaniasis treatment. Promastigote forms of L. amazonensis were selected by gradually increasing concentrations of vinblastine and were maintained under continuous drug pressure (resistant cells). Vinblastine-resistant L. amazonensis proliferated similarly to control parasites. However, resistant cells showed changes in the cell shape, irregular flagella and a decrease in rhodamine 123 accumulation, which are factors associated with the development of resistance, suggesting the MDR phenotype. The Mg-dependent-ecto-ATPase, an enzyme located on cell surface of Leishmania parasites, is involved in the acquisition of purine and participates in the adhesion and infectivity process. We compared control and resistant L. amazonensis ecto-enzymatic activities. The control and resistant Leishmania ecto-ATPase activities were 16.0 ± 1.5 nmol Pi × h(-1) × 10(-7) cells and 40.0 ± 4.4 nmol Pi × h(-1) × 10(-7)cells, respectively. Interestingly, the activity of other ecto-enzymes present on the L. amazonensis cell surface, the ecto-5' and 3'-nucleotidases and ecto-phosphatase, did not increase. The level of ecto-ATPase modulation is related to the degree of resistance of the cell. Cells resistant to 10 μM and 60 μM of vinblastine have ecto-ATPase activities of 22.7 ± 0.4 nmol Pi × h(-1) × 10(-7) cells and 33.8 ± 0.8 nmol Pi × h(-1) × 10(-7)cells, respectively. In vivo experiments showed that both lesion size and parasite burden in mice infected with resistant parasites are greater than those of L. amazonensis control cells. Furthermore, our data established a relationship between the increase in ecto-ATPase activity and greater infectivity and severity of the disease caused by vinblastine-resistant L. amazonensis promastigotes. Taken together, these data suggest that ecto-enzymes could be potential therapeutic targets in the struggle against the spread of leishmaniasis, a neglected world-wide public health problem.
Collapse
Affiliation(s)
- Naira Lígia Lima Giarola
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro - UFRJ, Brazil
| | - Thaís Souza Silveira
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro IFRJ, Brazil
| | | | - Lisvane Paes Vieira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro - UFRJ, Brazil
| | | | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro - UFRJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro - UFRJ, Brazil.
| |
Collapse
|
44
|
Mariotini-Moura C, Bastos MSE, de Castro FF, Trindade ML, de Souza Vasconcellos R, Neves-do-Valle MAA, Moreira BP, de Freitas Santos R, de Oliveira CM, Cunha LCS, Souto XM, Bressan GC, Silva-Júnior A, Baqui MMA, Bahia MT, de Almeida MR, Meyer-Fernandes JR, Fietto JLR. Trypanosoma cruzi nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase-1) biochemical characterization, immunolocalization and possible role in host cell adhesion. Acta Trop 2014; 130:140-7. [PMID: 24269744 DOI: 10.1016/j.actatropica.2013.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
Abstract
Previous work has suggested that Trypanosoma cruzi diphosphohydrolase 1 (TcNTPDase-1) may be involved in the infection of mammalian cells and serve as a potential target for rational drug design. In this work, we produced recombinant TcNTPDase-1 and evaluated its nucleotidase activity, cellular localization and role in parasite adhesion to mammalian host cells. TcNTPDase-1 was able to utilize a broad range of triphosphate and diphosphate nucleosides. The enzyme's Km for ATP (0.096 mM) suggested a capability to influence the host's ATP-dependent purinergic signaling. The use of specific polyclonal antibodies allowed us to confirm the presence of TcNTPDase-1 at the surface of parasites by confocal and electron microscopy. In addition, electron microscopy revealed that TcNTPDase-1 was also found in the flagellum, flagellum insertion region, kinetoplast, nucleus and intracellular vesicles. The presence of this enzyme in the flagellum insertion region and vesicles suggests that it may have a role in nutrient acquisition, and the widespread distribution of TcNTPDase-1 within the parasite suggests that it may be involved in other biological process. Adhesion assays using anti-TcNTPDase-1 polyclonal antibodies as a blocker or purified recombinant TcNTPDase-1 as a competitor revealed that the enzyme has a role in parasite-host cell adhesion. These data open new frontiers to future studies on this specific parasite-host interaction and other unknown functions of TcNTPDase-1 related to its ubiquitous localization.
Collapse
|
45
|
Freitas-Mesquita AL, Meyer-Fernandes JR. Ecto-nucleotidases and Ecto-phosphatases from Leishmania and Trypanosoma parasites. Subcell Biochem 2014; 74:217-252. [PMID: 24264248 DOI: 10.1007/978-94-007-7305-9_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ecto-enzymes can be defined as membrane-bound proteins that have their active site facing the extracellular millieu. In trypanosomatids, the physiological roles of these enzymes remain to be completed elucidated; however, many important events have already been related to them, such as the survival of parasites during their complex life cycle and the successful establishment of host infection. This chapter focuses on two remarkable classes of ecto-enzymes: ecto-nucleotidases and ecto-phosphatases, summarizing their occurrence and possible physiological roles in Leishmania and Trypanosoma genera. Ecto-nucleotidases are characterized by their ability to hydrolyze extracellular nucleotides, playing an important role in purinergic signaling. By the action of these ecto-enzymes, parasites are capable of modulating the host immune system, which leads to a successful parasite infection. Furthermore, ecto-nucleotidases are also involved in the purine salvage pathway, acting in the generation of nucleosides that are able to cross plasma membrane via specialized transporters. Another important ecto-enzyme present in a vast number of pathogenic organisms is the ecto-phosphatase. These enzymes are able to hydrolyze extracellular phosphorylated substrates, releasing free inorganic phosphate that can be internalized by the cell, crossing the plasma membrane through a Pi-transporter. Ecto-phosphatases are also involved in the invasion and survival of parasite in the host cells. Several alternative functions have been suggested for these enzymes in parasites, such as participation in their proliferation, differentiation, nutrition and protection. In this context, the present chapter provides an overview of recent discoveries related to the occurrence of ecto-nucleotidase and ecto-phosphatase activities in Leishmania and Trypanosoma parasites.
Collapse
|
46
|
Frézard F, Demicheli C, Kato KC, Reis PG, Lizarazo-Jaimes EH. Chemistry of antimony-based drugs in biological systems and studies of their mechanism of action. REV INORG CHEM 2013. [DOI: 10.1515/revic-2012-0006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractAntimonial drugs have been used for a century in the therapy of the parasitic disease leishmaniasis. Even though pentavalent antimonials are still first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of pentavalent antimonials, their metabolism and mechanism of action, are still being investigated. Previous studies suggest that pentavalent antimony acts as a prodrug which is converted to the active and more toxic trivalent antimony. Other works support the direct involvement of pentavalent antimony. Recent data indicate that thiols and ribose-containing biomolecules may mediate the pharmacological action of these drugs. Trypanothione reductase and zinc-finger proteins were identified as possible molecular targets. This review summarizes the progress achieved to date on the chemistry of antimonial drugs in biological systems.
Collapse
Affiliation(s)
- Frédéric Frézard
- 1Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Cynthia Demicheli
- 2Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Kelly C. Kato
- 1Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Priscila G. Reis
- 1Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Edgar H. Lizarazo-Jaimes
- 2Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
47
|
Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med 2013; 19:355-67. [PMID: 23601906 DOI: 10.1016/j.molmed.2013.03.005] [Citation(s) in RCA: 850] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 12/11/2022]
Abstract
The enzymatic activities of CD39 and CD73 play strategic roles in calibrating the duration, magnitude, and chemical nature of purinergic signals delivered to immune cells through the conversion of ADP/ATP to AMP and AMP to adenosine, respectively. This drives a shift from an ATP-driven proinflammatory environment to an anti-inflammatory milieu induced by adenosine. The CD39/CD73 pathway changes dynamically with the pathophysiological context in which it is embedded. It is becoming increasingly appreciated that altering this catabolic machinery can change the course or dictate the outcome of several pathophysiological events, such as AIDS, autoimmune diseases, infections, atherosclerosis, ischemia-reperfusion injury, and cancer, suggesting these ectoenzymes are novel therapeutic targets for managing a variety of disorders.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | | | | |
Collapse
|
48
|
Maia ACRG, Porcino GN, Detoni MDL, Emídio NB, Marconato DG, Faria-Pinto P, Fessel MR, Reis AB, Juliano L, Juliano MA, Marques MJ, Vasconcelos EG. An antigenic domain within a catalytically active Leishmania infantum nucleoside triphosphate diphosphohydrolase (NTPDase 1) is a target of inhibitory antibodies. Parasitol Int 2013; 62:44-52. [DOI: 10.1016/j.parint.2012.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/06/2012] [Accepted: 09/11/2012] [Indexed: 11/29/2022]
|
49
|
Trypanosoma cruzi: effects of heat shock on ecto-ATPase activity. Exp Parasitol 2013; 133:434-41. [PMID: 23295384 DOI: 10.1016/j.exppara.2012.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/31/2012] [Accepted: 12/18/2012] [Indexed: 12/28/2022]
Abstract
In this work, we demonstrate that Trypanosoma cruzi Y strain epimastigotes exhibit Mg2+-dependent ecto-ATPase activity that is stimulated by heat shock. When the epimastigotes were incubated at 37°C for 2h, the ecto-ATPase activity of the cells was 43.95±0.97 nmol Pi/h×10(7) cells, whereas the ecto-ATPase activity of cells that were not exposed to heat shock stress was 16.97±0.30 nmol Pi/h×10(7) cells. The ecto-ATPase activities of cells, that were exposed or not exposed to heat shock stress had approximately the same Km values (2.25±0.26 mM ATP and 1.55±0.23 mM ATP, respectively) and different Vmax values. The heat-shocked cells had higher Vmax values (54.38±3.07 nmol Pi/h×10(7) cells) than the cells that were not exposed to heat shock (19.38±1.76 nmol Pi/h×10(7) cells). We also observed that the ecto-phosphatase and ecto-5'nucleotidase activities of cells that had been incubated at 28°C or 37°C were the same. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat shock effect of ecto-ATPase activity on T. cruzi. The Mg2+-dependent ecto-ATPase activity from the Y strain (high virulence) was approximately 2-fold higher than that of Dm28c (a clone with low virulence). In addition, these two strains presented different responses to heat shock with regard to their ecto-ATPase activities; Y strain epimastigotes had a stimulation of 2.52-fold while the Dm28c strain had a 1.71-fold stimulation. In this context, the virulent trypomastigote form of T. cruzi, Dm28c, had an ecto-ATPase activity that was more than 7-fold higher (66.67±5.98 nmol Pi/h×10(7) cells) than that of the insect epimastigote forms (8.91±0.76 nmol Pi/h×10(7) cells). This difference increased to approximately 10-fold when both forms were subjected to heat shock stress (181.14±16.48 nmol Pi/h×10(7) cells for trypomastigotes and 16.71±1.17 nmol Pi/h×10(7) cells for epimastigotes at 37°C). The ecto-ATPase activity of a plasma membrane-enriched fraction obtained from T. cruzi epimastigotes was not increased by heat treatment, which suggested that cytoplasmic components had an influence on enzyme activation by heat shock stress.
Collapse
|
50
|
de Souza RF, dos Santos YL, de Souza Vasconcellos R, Borges-Pereira L, Caldas IS, de Almeida MR, Bahia MT, Fietto JLR. Recombinant Leishmania (Leishmania) infantum Ecto-Nucleoside Triphosphate Diphosphohydrolase NTPDase-2 as a new antigen in canine visceral leishmaniasis diagnosis. Acta Trop 2013; 125:60-6. [PMID: 23022017 DOI: 10.1016/j.actatropica.2012.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 11/24/2022]
Abstract
Canine visceral leishmaniasis is an important public health concern. In the epidemiological context of human visceral leishmaniasis, dogs are considered the main reservoir of Leishmania parasites; therefore, dogs must be epidemiologically monitored constantly in endemic areas. Furthermore, dog to human transmission has been correlated with emerging urbanization and increasing rates of leishmaniasis infection worldwide. Leishmania (Leishmania) infantum (L. chagasi) is the etiologic agent of visceral leishmaniasis in the New World. In this work, a new L. (L.) infantum (L. chagasi) recombinant antigen, named ATP diphosphohydrolase (rLic-NTPDase-2), intended for use in the immunodiagnosis of CVL was produced and validated. The extracellular domain of ATP diphosphohydrolase was cloned and expressed in the pET21b-Escherichia coli expression system. Indirect ELISA assays were used to detect the purified rLic-NTPDase-2 antigen using a standard canine sera library. This library contained CVL-positive samples, leishmaniasis-negative samples and samples from Trypanosoma cruzi-infected dogs. The results show a high sensitivity of 100% (95% CI=92.60-100.0%) and a high specificity of 100% (95% CI=86.77-100.0%), with a high degree of confidence (k=1). These findings demonstrate the potential use of this recombinant protein in immune diagnosis of canine leishmaniasis and open the possibility of its application to other diagnostic approaches, such as immunochromatography fast lateral flow assays and human leishmaniasis diagnosis.
Collapse
|