1
|
Kuleš J, Bujanić M, Rubić I, Šimonji K, Konjević D. A Comprehensive Multi-Omics Study of Serum Alterations in Red Deer Infected by the Liver Fluke Fascioloides magna. Pathogens 2024; 13:922. [PMID: 39599475 PMCID: PMC11597349 DOI: 10.3390/pathogens13110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Liver fluke infections are acknowledged as diseases with global prevalence and significant implications for both veterinary and public health. The large American liver fluke, Fascioloides magna, is a significant non-native parasite introduced to Europe, threatening the survival of local wildlife populations. The aim of this study was to analyze differences in the serum proteome and metabolome between F. magna-infected and control red deer. Serum samples from red deer were collected immediately following regular hunting operations, including 10 samples with confirmed F. magna infection and 10 samples from healthy red deer. A proteomics analysis of the serum samples was performed using a tandem mass tag (TMT)-based quantitative approach, and a metabolomics analysis of the serum was performed using an untargeted mass spectrometry-based metabolomics approach. A knowledge-driven approach was applied to integrate omics data. Our findings demonstrated that infection with liver fluke was associated with changes in amino acid metabolism, energy metabolism, lipid metabolism, inflammatory host response, and related biochemical pathways. This study offers a comprehensive overview of the serum proteome and metabolome in response to F. magna infection in red deer, unveiling new potential targets for future research. The identification of proteins, metabolites, and related biological pathways enhances our understanding of host-parasite interactions and may improve current tools for more effective liver fluke control.
Collapse
Affiliation(s)
- Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miljenko Bujanić
- Educational Center for Game Management I/3 “Črnovšćak”, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivana Rubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.R.); (K.Š.)
| | - Karol Šimonji
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.R.); (K.Š.)
| | - Dean Konjević
- Department of Veterinary Economics and Epidemiology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Li J, Jiang J, Zhu Y, Zhang Y, Zhu J, Ming Y. Metabolomics analysis of patients with Schistosoma japonicum infection based on UPLC-MS method. Parasit Vectors 2024; 17:350. [PMID: 39164750 PMCID: PMC11334362 DOI: 10.1186/s13071-024-06429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Schistosomiasis is still one of the most serious parasitic diseases. Evidence showed that the metabolite profile in serum can potentially act as a marker for parasitic disease diagnosis and evaluate disease progression and prognosis. However, the serum metabolome in patients with Schistosoma japonicum infection is not well defined. In this study, we investigated the metabolite profiles of patients with chronic and with advanced S. japonicum infection. METHODS The sera of 33 chronic S. japonicum patients, 15 patients with advanced schistosomiasis and 17 healthy volunteers were collected. Samples were extracted for metabolites and analyzed with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). RESULTS We observed significant differences in metabolite profiles in positive and negative ion modes between patients with advanced and chronic S. japonicum infection. In patients with chronic S. japonicum infection, 199 metabolites were significantly upregulated while 207 metabolites were downregulated in advanced infection. These differential metabolites were mainly concentrated in steroid hormone biosynthesis, cholesterol metabolism and bile secretion pathways. We also found that certain bile acid levels were significantly upregulated in the progression from chronic to advanced S. japonicum infection. In receiver operator characteristic (ROC) analysis, we identified three metabolites with area under the curve (AUC) > 0.8, including glycocholic (GCA), glycochenodeoxycholate (GCDCA) and taurochenodeoxycholic acid (TCDCA) concentrated in cholesterol metabolism, biliary secretion and primary bile acid biosynthesis. CONCLUSIONS This study provides evidence that GCA, GCDCA and TCDCA can potentially act as novel metabolite biomarkers to distinguish patients in different stages of S. japonicum infection. This study will contribute to the understanding of the metabolite mechanisms of the transition from chronic to advanced S. japonicum infection, although more studies are needed to validate this potential role and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Junhui Li
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Jie Jiang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Yi Zhu
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Yu Zhang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Jiang Zhu
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Yingzi Ming
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Wan J, Ding J, Zhang X, Hu X, Chen R, Han S. Exploration of the Amino Acid Metabolic Profiling and Pathway in Clonorchis sinensis-Infected Rats Revealed by the Targeted Metabolomic Analysis. Vector Borne Zoonotic Dis 2024; 24:428-438. [PMID: 38574253 DOI: 10.1089/vbz.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Background: Clonorchiasis remains a serious public health problem. However, the molecular mechanism underlying clonorchiasis remains largely unknown. Amino acid (AA) metabolism plays key roles in protein synthesis and energy sources, and improves immunity in pathological conditions. Therefore, this study aimed to explore the AA profiles of spleen in clonorchiasis and speculate the interaction between the host and parasite. Methods: Here targeted ultrahigh performance liquid chromatography multiple reaction monitoring mass spectrometry was applied to discover the AA profiles in spleen of rats infected with Clonorchis sinensis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was performed to characterize the dysregulated metabolic pathways. Results: Pathway analysis revealed that phenylalanine, tyrosine, and tryptophan biosynthesis and β-alanine metabolism were significantly altered in clonorchiasis. There were no significant correlations between 14 significant differential AAs and interleukin (IL)-1β. Although arginine, asparagine, histidine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were positively correlated with IL-6, IL-10, tumor necrosis factor (TNF)-α as well as aspartate aminotransferase and alanine aminotransferase; β-alanine and 4-hydroxyproline were negatively correlated with IL-6, IL-10, and TNF-α. Conclusion: This study reveals the dysregulation of AA metabolism in clonorchiasis and provides a useful insight of metabolic mechanisms at the molecular level.
Collapse
Affiliation(s)
- Jie Wan
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xinyi Hu
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Jiangnan University Medical Center, Wuxi, China
| | - Su Han
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
- Department of Parasitology, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Stark KA, Rinaldi G, Costain A, Clare S, Tolley C, Almeida A, McCarthy C, Harcourt K, Brandt C, Lawley TD, Berriman M, MacDonald AS, Forde-Thomas JE, Hulme BJ, Hoffmann KF, Cantacessi C, Cortés A. Gut microbiota and immune profiling of microbiota-humanised versus wildtype mouse models of hepatointestinal schistosomiasis. Anim Microbiome 2024; 6:36. [PMID: 38918824 PMCID: PMC11201864 DOI: 10.1186/s42523-024-00318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Mounting evidence of the occurrence of direct and indirect interactions between the human blood fluke, Schistosoma mansoni, and the gut microbiota of rodent models raises questions on the potential role(s) of the latter in the pathophysiology of hepatointestinal schistosomiasis. However, substantial differences in both the composition and function between the gut microbiota of laboratory rodents and that of humans hinders an in-depth understanding of the significance of such interactions for human schistosomiasis. Taking advantage of the availability of a human microbiota-associated mouse model (HMA), we have previously highlighted differences in infection-associated changes in gut microbiota composition between HMA and wildtype (WT) mice. To further explore the dynamics of schistosome-microbiota relationships in HMA mice, in this study we (i) characterize qualitative and quantitative changes in gut microbiota composition of a distinct line of HMA mice (D2 HMA) infected with S. mansoni prior to and following the onset of parasite egg production; (ii) profile local and systemic immune responses against the parasite in HMA as well as WT mice and (iii) assess levels of faecal inflammatory markers and occult blood as indirect measures of gut tissue damage. We show that patent S. mansoni infection is associated with reduced bacterial alpha diversity in the gut of D2 HMA mice, alongside expansion of hydrogen sulphide-producing bacteria. Similar systemic humoral responses against S. mansoni in WT and D2 HMA mice, as well as levels of faecal lipocalin and markers of alternatively activated macrophages, suggest that these are independent of baseline gut microbiota composition. Qualitative comparative analyses between faecal microbial profiles of S. mansoni-infected WT and distinct lines of HMA mice reveal that, while infection-induced alterations of the gut microbiota composition are highly dependent on the baseline flora, bile acid composition and metabolism may represent key elements of schistosome-microbiota interactions through the gut-liver axis.
Collapse
Affiliation(s)
- K A Stark
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - G Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - A Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - S Clare
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - C Tolley
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - A Almeida
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - C McCarthy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - K Harcourt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - C Brandt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - T D Lawley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - M Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - A S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J E Forde-Thomas
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - B J Hulme
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - K F Hoffmann
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - C Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - A Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
| |
Collapse
|
5
|
Hong A, Umar A, Chen H, Yu Z, Huang J. Advances in the study of the interaction between schistosome infections and the host's intestinal microorganisms. Parasit Vectors 2024; 17:185. [PMID: 38600604 PMCID: PMC11007984 DOI: 10.1186/s13071-024-06245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Schistosomiasis, also called bilharziasis, is a neglected tropical disease induced by schistosomes that infects hundreds of millions of people worldwide. In the life cycle of schistosomiasis, eggs are regarded as the main pathogenic factor, causing granuloma formation in the tissues and organs of hosts, which can cause severe gastrointestinal and liver granulomatous immune responses and irreversible fibrosis. Increasing evidence suggests that the gut microbiome influences the progression of schistosomiasis and plays a central role in liver disease via the gut-liver axis. When used as pharmaceutical supplements or adjunctive therapy, probiotics have shown promising results in preventing, mitigating, and even treating schistosomiasis. This review elucidates the potential mechanisms of this three-way parasite-host-microbiome interaction by summarizing schistosome-mediated intestinal flora disorders, local immune changes, and host metabolic changes, and elaborates the important role of the gut microbiome in liver disease after schistosome infection through the gut-liver axis. Understanding the mechanisms behind this interaction may aid in the discovery of probiotics as novel therapeutic targets and sustainable control strategies for schistosomiasis.
Collapse
Affiliation(s)
- Ao Hong
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Ghezellou P, von Bülow V, Luh D, Badin E, Albuquerque W, Roderfeld M, Roeb E, Grevelding CG, Spengler B. Schistosoma mansoni infection induces hepatic metallothionein and S100 protein expression alongside metabolic dysfunction in hamsters. PNAS NEXUS 2024; 3:pgae104. [PMID: 38562583 PMCID: PMC10983833 DOI: 10.1093/pnasnexus/pgae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Schistosomiasis, a widespread neglected tropical disease, presents a complex and multifaceted clinical-pathological profile. Using hamsters as final hosts, we dissected molecular events following Schistosoma mansoni infection in the liver-the organ most severely affected in schistosomiasis patients. Employing tandem mass tag-based proteomics, we studied alterations in the liver proteins in response to various infection modes and genders. We examined livers from female and male hamsters that were: noninfected (control), infected with either unisexual S. mansoni cercariae (single-sex) or both sexes (bisex). The infection induced up-regulation of proteins associated with immune response, cytoskeletal reorganization, and apoptotic signaling. Notably, S. mansoni egg deposition led to the down-regulation of liver factors linked to energy supply and metabolic processes. Gender-specific responses were observed, with male hamsters showing higher susceptibility, supported by more differentially expressed proteins than found in females. Of note, metallothionein-2 and S100a6 proteins exhibited substantial up-regulation in livers of both genders, suggesting their pivotal roles in the liver's injury response. Immunohistochemistry and real-time-qPCR confirmed strong up-regulation of metallothionein-2 expression in the cytoplasm and nucleus upon the infection. Similar findings were seen for S100a6, which localized around granulomas and portal tracts. We also observed perturbations in metabolic pathways, including down-regulation of enzymes involved in xenobiotic biotransformation, cellular energy metabolism, and lipid modulation. Furthermore, lipidomic analyses through liquid chromatography-tandem mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging identified extensive alterations, notably in cardiolipin and triacylglycerols, suggesting specific roles of lipids during pathogenesis. These findings provide unprecedented insights into the hepatic response to S. mansoni infection, shedding light on the complexity of liver pathology in this disease.
Collapse
Affiliation(s)
- Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Verena von Bülow
- Department of Gastroenterology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - David Luh
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Elisa Badin
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Wendell Albuquerque
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
7
|
Kameni M, Musaigwa F, Kamguia LM, Kamdem SD, Mbanya G, Lamberton PHL, Komguep Nono J. Harnessing Schistosoma-associated metabolite changes in the human host to identify biomarkers of infection and morbidity: Where are we and what should we do next? PLoS Negl Trop Dis 2024; 18:e0012009. [PMID: 38512811 PMCID: PMC10956858 DOI: 10.1371/journal.pntd.0012009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Schistosomiasis is the second most widespread parasitic disease affecting humans. A key component of today's infection control measures is the diagnosis and monitoring of infection, informing individual- and community-level treatment. However, newly acquired infections and/or low parasite burden are still difficult to diagnose reliably. Furthermore, even though the pathological consequence of schistosome egg sequestration in host tissues is well described, the evidence linking egg burden to morbidity is increasingly challenged, making it inadequate for pathology monitoring. In the last decades, omics-based instruments and methods have been developed, adjusted, and applied in parasitic research. In particular, the profiling of the most reliable determinants of phenotypes, metabolites by metabolomics, emerged as a powerful boost in the understanding of basic interactions within the human host during infection. As such, the fine detection of host metabolites produced upon exposure to parasites such as Schistosoma spp. and the ensuing progression of the disease are believed to enable the identification of Schistosoma spp. potential biomarkers of infection and associated pathology. However, attempts to provide such a comprehensive understanding of the alterations of the human metabolome during schistosomiasis are rare, limited in their design when performed, and mostly inconclusive. In this review, we aimed to briefly summarize the most robust advances in knowledge on the changes in host metabolic profile during Schistosoma infections and provide recommendations for approaches to optimize the identification of metabolomic signatures of human schistosomiasis.
Collapse
Affiliation(s)
- Mireille Kameni
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Department of Microbiology and Parasitology, University of Bamenda, Bambili, North-West Region, Cameroon
| | - Fungai Musaigwa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Leonel Meyo Kamguia
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Severin Donald Kamdem
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Gladice Mbanya
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Poppy H. L. Lamberton
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Justin Komguep Nono
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Sengupta A, Ghosh S, Sharma S, Sonawat HM. Early Perturbations in Red Blood Cells in Response to Murine Malarial Parasite Infection: Proof-of-Concept 1H NMR Metabolomic Study. Life (Basel) 2023; 13:1684. [PMID: 37629541 PMCID: PMC10455252 DOI: 10.3390/life13081684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The major focus of metabolomics research has been confined to the readily available biofluids-urine and blood serum. However, red blood cells (RBCs) are also readily available, and may be a source of a wealth of information on vertebrates. However, the comprehensive metabolomic characterization of RBCs is minimal although they exhibit perturbations in various physiological states. RBCs act as the host of malarial parasites during the symptomatic stage. Thus, understanding the changes in RBC metabolism during infection is crucial for a better understanding of disease progression. METHODS The metabolome of normal RBCs obtained from Swiss mice was investigated using 1H NMR spectroscopy. Several 1 and 2-dimensional 1H NMR experiments were employed for this purpose. The information from this study was used to investigate the changes in the RBC metabolome during the early stage of infection (~1% infected RBCs) by Plasmodium bergheii ANKA. RESULTS We identified over 40 metabolites in RBCs. Several of these metabolites were quantitated using 1H NMR spectroscopy. The results indicate changes in the choline/membrane components and other metabolites during the early stage of malaria. CONCLUSIONS The paper reports the comprehensive characterization of the metabolome of mouse RBCs. Changes during the early stage of malarial infection suggest significant metabolic alteration, even at low parasite content (~1%). GENERAL SIGNIFICANCE This study should be of use in maximizing the amount of information available from metabolomic experiments on the cellular components of blood. The technique can be directly applied to real-time investigation of infectious diseases that target RBCs.
Collapse
Affiliation(s)
- Arjun Sengupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; (S.G.); (H.M.S.)
| | - Soumita Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; (S.G.); (H.M.S.)
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India;
| | - Haripalsingh M. Sonawat
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; (S.G.); (H.M.S.)
| |
Collapse
|
9
|
Yeshi K, Ruscher R, Loukas A, Wangchuk P. Immunomodulatory and biological properties of helminth-derived small molecules: Potential applications in diagnostics and therapeutics. FRONTIERS IN PARASITOLOGY 2022; 1:984152. [PMID: 39816468 PMCID: PMC11731824 DOI: 10.3389/fpara.2022.984152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2025]
Abstract
Parasitic helminths secrete and excrete a vast array of molecules known to help skew or suppress the host's immune response, thereby establishing a niche for sustained parasite maintenance. Indeed, the immunomodulatory potency of helminths is attributed mainly to excretory/secretory products (ESPs). The ESPs of helminths and the identified small molecules (SM) are reported to have diverse biological and pharmacological properties. The available literature reports only limited metabolites, and the identity of many metabolites remains unknown due to limitations in the identification protocols and helminth-specific compound libraries. Many metabolites are known to be involved in host-parasite interactions and pathogenicity. For example, fatty acids (e.g., stearic acid) detected in the infective stages of helminths are known to have a role in host interaction through facilitating successful penetration and migration inside the host. Moreover, excreted/secreted SM detected in helminth species are found to possess various biological properties, including anti-inflammatory activities, suggesting their potential in developing immunomodulatory drugs. For example, helminths-derived somatic tissue extracts and whole crude ESPs showed anti-inflammatory properties by inhibiting the secretion of proinflammatory cytokines from human peripheral blood mononuclear cells and suppressing the pathology in chemically-induced experimental mice model of colitis. Unlike bigger molecules like proteins, SM are ideal candidates for drug development since they are small structures, malleable, and lack immunogenicity. Future studies should strive toward identifying unknown SM and isolating the under-explored niche of helminth metabolites using the latest metabolomics technologies and associated software, which hold potential keys for finding new diagnostics and novel therapeutics.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
| | | | | | | |
Collapse
|
10
|
Dos Reis LFC, Cerdeira CD, Gagliano GS, de Figueiredo ABT, Ferreira JH, Castro AP, Souza RLM, Marques MJ. Alternate-day fasting, a high-sucrose/caloric diet and praziquantel treatment influence biochemical and behavioral parameters during Schistosoma mansoni infection in male BALB/c mice. Exp Parasitol 2022; 240:108316. [PMID: 35787384 DOI: 10.1016/j.exppara.2022.108316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Schistosoma mansoni-induced granulomas result in severe damage to the host's liver, as well as neurological and metabolic disorders. We evaluated the biochemical and behavioral changes during schistosomiasis under three diet protocols: ad libitum (AL), alternate-day fasting (ADF) and a high-sucrose/caloric diet (HSD). Healthy male BALB/c mice were divided into noninfected, matched infected and infected/treated [praziquantel (PZQ)] groups. Caloric intake and energy efficiency coefficients associated with diets were measured. Behavioral (exploratory and locomotor) and biochemical (glucose, triglycerides, total cholesterol, AST, ALT, ALP, and γ-GT) tests and histological analysis were performed. Fifteen weeks postinfection, HSD and PZQ promoted weight gain, with higher caloric consumption than ADF (p < 0.05), reflecting serum glucose levels and lipid profiles. HSD and PZQ prevented liver dysfunction (AST and ALT) and significantly prevented increases in granuloma area (p < 0.05). HSD and PZQ also significantly improved mouse physical performance in exploratory and locomotor behavior (p < 0.05), reversing the impaired motivation caused by infection. These findings showed that ADF worsened the course of S. mansoni infection, while HSD and PZQ, even with synergistic effects, prevented and/or attenuated biochemical and behavioral impairment from infection.
Collapse
Affiliation(s)
- Luis F C Dos Reis
- Department of Structural Biology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil
| | - Cláudio D Cerdeira
- Department of Biochemistry, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil.
| | - Guilherme S Gagliano
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, UNIFAL-MG, Alfenas, Minas Gerais (MG), Brazil
| | - Ana B T de Figueiredo
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil
| | - Juliana H Ferreira
- Department of Physiology, University of Sao Paulo, São Paulo (SP), Brazil
| | - Aline P Castro
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil
| | - Raquel L M Souza
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil
| | - Marcos J Marques
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais (MG), Brazil
| |
Collapse
|
11
|
Haonon O, Liu Z, Dangtakot R, Pinlaor P, Puapairoj A, Cha'on U, Intuyod K, Pongking T, Chantawong C, Sengthong C, Chaidee A, Onsurathum S, Li JV, Pinlaor S. Opisthorchis viverrini infection induces metabolic disturbances in hamsters fed with high fat/high fructose diets: implications for liver and kidney pathologies. J Nutr Biochem 2022; 107:109053. [DOI: 10.1016/j.jnutbio.2022.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
|
12
|
Rodrigues ML, da Luz TPSR, Pereira CLD, Batista AD, Domingues ALC, Silva RO, Lopes EP. Assessment of periportal fibrosis in Schistosomiasis mansoni patients by proton nuclear magnetic resonance-based metabonomics models. World J Hepatol 2022; 14:719-728. [PMID: 35646266 PMCID: PMC9099102 DOI: 10.4254/wjh.v14.i4.719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/20/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The evaluation of periportal fibrosis (PPF) is essential for a prognostic assessment of patients with Schistosomiasis mansoni. The WHO Niamey Protocol defines patterns of fibrosis from abdominal ultrasonography, 1H-nuclear magnetic resonance (NMR)-based metabonomics has been employed to assess liver fibrosis in some diseases. AIM To build 1H-NMR-based metabonomics models (MM) to discriminate mild from significant periportal PPF and identify differences in the metabolite profiles. METHODS A prospective cross-sectional study was performed on schistosomiasis patients at a University Hospital in Northeastern Brazil. We evaluated 41 serum samples from 10 patients with mild PPF (C Niamey pattern) and 31 patients with significant PPF (D/E/F Niamey patterns). MM were built using partial least squares-discriminant analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) formalisms. RESULTS PLS-DA and OPLS-DA resulted in discrimination between mild and significant PPF groups with R2 and Q2 values of 0.80 and 0.38 and 0.72 and 0.42 for each model, respectively. The OPLS-DA model presented accuracy, sensitivity, and specificity values of 92.7%, 90.3%, and 100% to discriminate significant PPF. The metabolites identified as responsible by discrimination were: N-acetylglucosamines, alanine, glycolaldehyde, carbohydrates, and valine. CONCLUSION MMs discriminated mild from significant PPF patterns in patients with Schistosomiasis mansoni through identification of differences in serum metabolites profiles.
Collapse
Affiliation(s)
- Milena Lima Rodrigues
- Programa de Pós-Graduação em Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | | | - Caroline Louise Diniz Pereira
- Programa de Pós-Graduação em Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Andrea Dória Batista
- Hospital das Clínicas, Departamento de Medicina Clínica, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Ana Lúcia Coutinho Domingues
- Programa de Pós-Graduação em Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Hospital das Clínicas, Departamento de Medicina Clínica, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Ricardo Oliveira Silva
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife 50670-740, Pernambuco, Brazil
| | - Edmundo Pessoa Lopes
- Programa de Pós-Graduação em Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Hospital das Clínicas, Departamento de Medicina Clínica, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| |
Collapse
|
13
|
Osakunor DNM, Ishida K, Lamanna OK, Rossi M, Dwomoh L, Hsieh MH. Host tissue proteomics reveal insights into the molecular basis of Schistosoma haematobium-induced bladder pathology. PLoS Negl Trop Dis 2022; 16:e0010176. [PMID: 35167594 PMCID: PMC8846513 DOI: 10.1371/journal.pntd.0010176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
Urogenital schistosomiasis remains a major public health concern worldwide. In response to egg deposition, the host bladder undergoes gross and molecular morphological changes relevant for disease manifestation. However, limited mechanistic studies to date imply that the molecular mechanisms underlying pathology are not well-defined. We leveraged a mouse model of urogenital schistosomiasis to perform for the first time, proteome profiling of the early molecular events that occur in the bladder after exposure to S. haematobium eggs, and to elucidate the protein pathways involved in urogenital schistosomiasis-induced pathology. Purified S. haematobium eggs or control vehicle were microinjected into the bladder walls of mice. Mice were sacrificed seven days post-injection and bladder proteins isolated and processed for proteome profiling using mass spectrometry. We demonstrate that biological processes including carcinogenesis, immune and inflammatory responses, increased protein translation or turnover, oxidative stress responses, reduced cell adhesion and epithelial barrier integrity, and increased glucose metabolism were significantly enriched in S. haematobium infection. S. haematobium egg deposition in the bladder results in significant changes in proteins and pathways that play a role in pathology. Our findings highlight the potential bladder protein indicators for host-parasite interplay and provide new insights into the complex dynamics of pathology and characteristic bladder tissue changes in urogenital schistosomiasis. The findings will be relevant for development of improved interventions for disease control.
Collapse
Affiliation(s)
- Derick N. M. Osakunor
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
| | - Kenji Ishida
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
| | - Olivia K. Lamanna
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
| | - Mario Rossi
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Louis Dwomoh
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael H. Hsieh
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
- Departments of Urology, Department of Pediatrics, and Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
14
|
Ndolo SM, Zachariah M, Molefi L, Phaladze N, Sichilongo KF. Mass spectrometry based metabolomics for small molecule metabolites mining and confirmation as potential biomarkers for schistosomiasis - case of the Okavango Delta communities in Botswana. Expert Rev Proteomics 2021; 19:61-71. [PMID: 34846232 DOI: 10.1080/14789450.2021.2012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Metabolomics for identifying schistosomiasis biomarkers in noninvasive samples at various infection stages is being actively explored. The literature on the traditional detection of schistosomiasis in human specimens is well documented. However, state-of-the-art technologies based on mass spectrometry have simplified the use of biomarkers for diagnostics. This review examines methods currently in use for the metabolomics of small molecules using separation science and mass spectrometry. AREA COVERED This article highlights the evolution of traditional diagnostic methods for schistosomiasis based on inter alia microscopy, immunology, and polymerase chain reaction. An exhaustive literature search of metabolite mining, focusing on separation science and mass spectrometry, is presented. A comparative analysis of mass spectrometry methods was undertaken, including a projection for the future. EXPERT COMMENTARY Mass spectrometry metabolomics for schistosomiasis will lead to biomarker discovery for noninvasive human samples. These biomarkers, together with those from other neglected tropical diseases, such as malaria and sleeping sickness, could be incorporated as arrays on a single biosensor chip and inserted into smartphones, in order to improve surveillance, monitoring, and management.
Collapse
Affiliation(s)
- Sedireng M Ndolo
- College of Open Schooling, Botswana Open University, Gaborone Regional Campus, Gaborone, Botswana
| | - Matshediso Zachariah
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Lebotse Molefi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Nthabiseng Phaladze
- School of Nursing, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Kwenga F Sichilongo
- Chemistry Department, Faculty of Science, University of Botswana, Gaborone, Botswana
| |
Collapse
|
15
|
Namulondo J, Mulindwa J, Nyangiri OA, Egesa M, Noyes H, Matovu E. Gene expression changes in mammalian hosts during schistosomiasis: a review. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13312.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis affects over 250 million people worldwide with an estimated mortality of more than 200,000 deaths per year in sub-Saharan Africa. Efforts to control schistosomiasis in the affected areas have mainly relied on mass administration of praziquantel, which kills adult but not immature worms of all Schistosoma species. Mammalian hosts respond differently to Schistosoma infection with some being more susceptible than others, which is associated with risk factors such as sociodemographic, epidemiological, immunological and/or genetic. Host genetic factors play a major role in influencing molecular processes in response to schistosomiasis as shown in gene expression studies. These studies highlight gene profiles expressed at different time points of infection using model animals. Immune function related genes; cytokines (Th1 and Th17) are upregulated earlier in infection and Th2 upregulated later indicating a mixed Th1/Th2 response. However, Th1 response has been shown to be sustained in S. japonicum infection. Immune mediators such as matrix metalloproteinases (Mmps) and tissue inhibitors of matrix metalloproteinases (Timps) are expressed later in the infection and these are linked to wound healing and fibrosis. Downregulation of metabolic associated genes is recorded in later stages of infection. Most mammalian host gene expression studies have been done using rodent models, with fewer in larger hosts such as bovines and humans. The majority of these studies have focused on S. japonicum infections and less on S. haematobium and S. mansoni infections (the two species that cause most global infections). The few human schistosomiasis gene expression studies so far have focused on S. japonicum and S. haematobium infections and none on S. mansoni, as far as we are aware. This highlights a paucity of gene expression data in humans, specifically with S. mansoni infection. This data is important to understand the disease pathology, identify biomarkers, diagnostics and possible drug targets.
Collapse
|
16
|
Haonon O, Liu Z, Dangtakot R, Intuyod K, Pinlaor P, Puapairoj A, Cha'on U, Sengthong C, Pongking T, Onsurathum S, Yingklang M, Phetcharaburanin J, Li JV, Pinlaor S. Opisthorchis viverrini Infection Induces Metabolic and Fecal Microbial Disturbances in Association with Liver and Kidney Pathologies in Hamsters. J Proteome Res 2021; 20:3940-3951. [PMID: 34270897 DOI: 10.1021/acs.jproteome.1c00246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Opisthorchis viverrini (Ov) infection causes hepatobiliary diseases and is a major risk factor for cholangiocarcinoma. While several omics approaches have been employed to understand the pathogenesis of opisthorchiasis, effects of Ov infection on the host systemic metabolism and fecal microbiota have not been fully explored. Here, we used a 1H NMR spectroscopy-based metabolic phenotyping approach to investigate Ov infection-induced metabolic disturbances at both the acute (1 month postinfection, 1 mpi) and chronic (4 mpi) stages in hamsters. A total of 22, 3, and 4 metabolites were found to be significantly different in the liver, serum, and urine, respectively, between Ov+ and Ov- groups. Elevated levels of hepatic amino acids and tricarboxylic acid (TCA)-cycle intermediates (fumarate and malate) were co-observed with liver injury in acute infection, whereas fibrosis-associated metabolites (e.g., glycine and glutamate) increased at the chronic infection stage. Lower levels of lipid signals ((CH2)n and CH2CH2CO) and higher levels of lysine and scyllo-inositol were observed in serum from Ov+ hamsters at 1 mpi compared to Ov- controls. Urinary levels of phenylacetylglycine (a host-bacterial cometabolite) and tauro-β-muricholic acid were higher in the Ov+ group, which coexisted with hepatic and mild kidney fibrosis. Furthermore, Ov+ animals showed higher relative abundances of fecal Methanobrevibacter (Archaea), Akkermansia, and Burkholderia-Paraburkholderia compared to the noninfected controls. In conclusion, along with liver and kidney pathologies, O. viverrini infection resulted in hepatic and mild renal pathologies, disturbed hepatic amino acid metabolism and the TCA cycle, and induced changes in the fecal microbial composition and urinary host-microbial cometabolism. This study provides the initial step toward an understanding of local and systemic metabolic responses of the host to O. viverrini infection.
Collapse
Affiliation(s)
- Ornuma Haonon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Rungtiwa Dangtakot
- Faculty of Medical Technology, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Pinlaor
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anucha Puapairoj
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ubon Cha'on
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatchawan Sengthong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thatsanapong Pongking
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand.,Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sudarat Onsurathum
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Manachai Yingklang
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
17
|
Yang X, Ding W, Qian X, Jiang P, Chen Q, Zhang X, Lu Y, Wu J, Sun F, Pan Z, Li X, Pan W. Schistosoma japonicum Infection Leads to the Reprogramming of Glucose and Lipid Metabolism in the Colon of Mice. Front Vet Sci 2021; 8:645807. [PMID: 33791356 PMCID: PMC8006365 DOI: 10.3389/fvets.2021.645807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
The deposition of Schistosoma japonicum (S. japonicum) eggs commonly induces inflammation, fibrosis, hyperplasia, ulceration, and polyposis in the colon, which poses a serious threat to human health. However, the underlying mechanism is largely neglected. Recently, the disorder of glucose and lipid metabolism was reported to participate in the liver fibrosis induced by the parasite, which provides a novel clue for studying the underlying mechanism of the intestinal pathology of the disease. This study focused on the metabolic reprogramming profiles of glucose and lipid in the colon of mice infected by S. japonicum. We found that S. japonicum infection shortened the colonic length, impaired intestinal integrity, induced egg-granuloma formation, and increased colonic inflammation. The expression of key enzymes involved in the pathways regulating glucose and lipid metabolism was upregulated in the colon of infected mice. Conversely, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and its downstream signaling targets were significantly inhibited after infection. In line with these results, in vitro stimulation with soluble egg antigens (SEA) downregulated the expression of PTEN in CT-26 cells and induced metabolic alterations similar to that observed under in vivo results. Moreover, PTEN over-expression prevented the reprogramming of glucose and lipid metabolism induced by SEA in CT-26 cells. Overall, the present study showed that S. japonicum infection induces the reprogramming of glucose and lipid metabolism in the colon of mice, and PTEN may play a vital role in mediating this metabolic reprogramming. These findings provide a novel insight into the pathogenicity of S. japonicum in hosts.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Weimin Ding
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Xinyu Qian
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Jiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Qingqing Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Xin Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Yang Lu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Jiacheng Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Zhihua Pan
- National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Osakunor DNM, Mduluza T, Osei-Hyiaman D, Burgess K, Woolhouse MEJ, Mutapi F. Schistosoma haematobium infection is associated with alterations in energy and purine-related metabolism in preschool-aged children. PLoS Negl Trop Dis 2020; 14:e0008866. [PMID: 33315875 PMCID: PMC7735607 DOI: 10.1371/journal.pntd.0008866] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
Helminths are parasitic worms that infect over a billion people worldwide. The pathological consequences from infection are due in part, to parasite-induced changes in host metabolic pathways. Here, we analyse the changes in host metabolic profiles, in response to the first Schistosoma haematobium infection and treatment in Zimbabwean children. A cohort of 83 schistosome-negative children (2-5 years old) as determined by parasitological examination, guardian interviews and examination of medical records, was recruited at baseline. Children were followed up after three months for parasitological diagnosis of their first S. haematobium infection, by detection of parasite eggs excreted in urine. Children positive for infection were treated with the antihelminthic drug praziquantel, and treatment efficacy checked three months after treatment. Blood samples were taken at each time point, and capillary electrophoresis mass spectrometry in conjunction with multivariate analysis were used to compare the change in serum metabolite profiles in schistosome-infected versus uninfected children. Following baseline at the three-month follow up, 11 children had become infected with S. haematobium (incidence = 13.3%). Our results showed that infection with S. haematobium was associated with significant increases (>2-fold) in discriminatory metabolites, linked primarily with energy (G6P, 3-PG, AMP, ADP) and purine (AMP, ADP) metabolism. These observed changes were commensurate with schistosome infection intensity, and levels of the affected metabolites were reduced following treatment, albeit not significantly. This study demonstrates that early infection with S. haematobium is associated with alterations in host energy and purine metabolism. Taken together, these changes are consistent with parasite-related clinical manifestations of malnutrition, poor growth and poor physical and cognitive performance observed in schistosome-infected children.
Collapse
Affiliation(s)
- Derick N. M. Osakunor
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
- * E-mail:
| | - Takafira Mduluza
- Biochemistry Department, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Douglas Osei-Hyiaman
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- Metabolomics Research Division, Human Metabolome Technologies Inc., Tsuruoka, Yamagata, Japan
- Department of Systems Neurophysiology, Graduate School of Medical & Dental Science, Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Karl Burgess
- Centre for Synthetic and Systems Biology, University of Edinburgh, CH Waddington Building, King’s Buildings, Edinburgh, United Kingdom
| | - Mark E. J. Woolhouse
- Usher Institute, University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Hu Y, Chen J, Xu Y, Zhou H, Huang P, Ma Y, Gao M, Cheng S, Zhou H, Lv Z. Alterations of Gut Microbiome and Metabolite Profiling in Mice Infected by Schistosoma japonicum. Front Immunol 2020; 11:569727. [PMID: 33162984 PMCID: PMC7580221 DOI: 10.3389/fimmu.2020.569727] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum (S. japonicum) is one of the etiological agents of schistosomiasis, a widespread zoonotic parasitic disease. However, the mechanism of the balanced co-existence between the host immune system and S. japonicum as well as their complex interaction remains unclear. In this study, 16S rRNA gene sequencing, combined with metagenomic sequencing approach as well as ultraperformance liquid chromatography–mass spectrometry metabolic profiling, was applied to demonstrate changes in the gut microbiome community structure during schistosomiasis progression, the functional interactions between the gut bacteria and S. japonicum infection in BALB/c mice, and the dynamic metabolite changes of the host. The results showed that both gut microbiome and the metabolites were significantly altered at different time points after the infection. Decrease in richness and diversity as well as differed composition of the gut microbiota was observed in the infected status when compared with the uninfected status. At the phylum level, the gut microbial communities in all samples were dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Deferribacteres, while at the genus level, Lactobacillus, Lachnospiraceae NK4A136 group, Bacteroides, Staphylococcus, and Alloprevotella were the most abundant. After exposure, Roseburia, and Ruminococcaceae UCG-014 decreased, while Staphylococcus, Alistipes, and Parabacteroides increased, which could raise the risk of infections. Furthermore, LEfSe demonstrated several bacterial taxa that could discriminate between each time point of S. japonicum infection. Besides that, metagenomic analysis illuminated that the AMP-activated protein kinase (AMPK) signaling pathway and the chemokine signaling pathway were significantly perturbed after the infection. Phosphatidylcholine and colfosceril palmitate in serum as well as xanthurenic acid, naphthalenesulfonic acid, and pimelylcarnitine in urine might be metabolic biomarkers due to their promising diagnostic potential at the early stage of the infection. Alterations of glycerophospholipid and purine metabolism were also discovered in the infection. The present study might provide further understanding of the mechanisms during schistosome infection in aspects of gut microbiome and metabolites, and facilitate the discovery of new targets for early diagnosis and prognostic purposes. Further validations of potential biomarkers in human populations are necessary, and the exploration of interactions among S. japonicum, gut microbiome, and metabolites is to be deepened in the future.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiansong Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Yiyue Xu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Hongli Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ping Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yubin Ma
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Minzhao Gao
- Department of Gastroenterology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shaoyun Cheng
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Haiyun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Zhang X, Hu X, Chen R, Sun B, Gao Y, Duan S, Liu L, Han S. Perturbations of Metabolomic Profiling of Spleen From Rats Infected With Clonorchis sinensis Determined by LC-MS/MS Method. Front Mol Biosci 2020; 7:561641. [PMID: 33134312 PMCID: PMC7574862 DOI: 10.3389/fmolb.2020.561641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
Clonorchiasis is an important zoonotic parasitic disease worldwide. In view of the fact that parasite infection affects host metabolism, and there is an intricate relationship between metabolism and immunity. Metabolic analysis of the spleen could be helpful for understanding the pathophysiological mechanisms in clonorchiasis. A non-targeted ultra high performance liquid tandem chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF MS) approach was employed to investigate the metabolic profiles of spleen in rats at 4 and 8 weeks post infection with Clonorchis sinensis (C. sinensis). Then a targeted ultra-high performance liquid chromatography multiple reaction monitoring mass spectrometry (UHPLC-MRM-MS/MS) approach was used to further quantify amino acid metabolism. Multivariate data analysis methods, such as principal components analysis and orthogonal partial least squares discriminant analysis, were used to identify differential metabolites. Finally, a total of 396 and 242 significant differential metabolites were identified in ESI+ and ESI− modes, respectively. These metabolites included amino acids, nucleotides, carboxylic acids, lipids and carbohydrates. There were 38 significantly different metabolites shared in the two infected groups compared with the control group through the Venn diagram. The metabolic pathways analysis revealed that pyrimidine metabolism, aminoacyl-tRNA biosynthesis, purine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis were significantly enriched in differential metabolites, which was speculated to be related to the disease progression of clonorchiasis. Furthermore, 15 amino acids screened using untargeted profiling can be accurately quantified and identifed by targeted metabolomics during clonrochiasis. These results preliminarily revealed the perturbations of spleen metabolism in clonorchiasis. Meanwhile, this present study supplied new insights into the molecular mechanisms of host-parasite interactions.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xinyi Hu
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Beibei Sun
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Yannan Gao
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Shanshan Duan
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Su Han
- Department of Parasitology, Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Huang Y, Wu Q, Zhao L, Xiong C, Xu Y, Dong X, Wen Y, Cao J. UHPLC-MS-Based Metabolomics Analysis Reveals the Process of Schistosomiasis in Mice. Front Microbiol 2020; 11:1517. [PMID: 32760365 PMCID: PMC7371968 DOI: 10.3389/fmicb.2020.01517] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolomics, as an emerging technology, has been demonstrated to be a very powerful tool in the study of the host metabolic responses to infections by parasites. Schistosomiasis is a parasitic infection caused by schistosoma worm via the direct contact with the water containing cercaria, among which Schistosoma japonicum (S. japonicum) is endemic in Asia. In order to characterize the schistosome-induced changes in the host metabolism and further to develop the strategy for early diagnosis of schistosomiasis, we performed comprehensive LC-MS-based metabolomics analysis of serum from mice infected by S. japonicum for 5 weeks. With the developed diagnosis strategy based on our metabolomics data, we were able to successfully detect schistosomiasis at the first week post-infection, which was 3 weeks earlier than "gold standard" methods and 2 weeks earlier than the methods based on 1H NMR spectroscopy. Our metabolomics study revealed that S. japonicum infection induced the metabolic changes involved in a variety of metabolic pathways including amino acid metabolism, DNA and RNA biosynthesis, phospholipid metabolism, depression of energy metabolism, glucose uptake and metabolism, and disruption of gut microbiota metabolism. In addition, we identified seventeen specific metabolites whose down-regulated profiles were closely correlated with the time-course of schistosomiasis progression and can also be used as an indicator for the worm-burdens. Interestingly, the decrease of these seventeen metabolites was particularly remarkable at the first week post-infection. Thus, our findings on mechanisms of host-parasite interaction during the disease process pave the way for the development of an early diagnosis tool and provide more insightful understandings of the potential metabolic process associated with schistosomiasis in mice. Furthermore, the diagnosis strategy developed in this work is cost-effective and is superior to other currently used diagnosis methods.
Collapse
Affiliation(s)
- Yuzheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
- Institute of Translation Medicine, Shanghai University, Shanghai, China
| | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Kokova D, Verhoeven A, Perina EA, Ivanov VV, Knyazeva EM, Saltykova IV, Mayboroda OA. Plasma metabolomics of the time resolved response to Opisthorchis felineus infection in an animal model (golden hamster, Mesocricetus auratus). PLoS Negl Trop Dis 2020; 14:e0008015. [PMID: 31978047 PMCID: PMC7002010 DOI: 10.1371/journal.pntd.0008015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/05/2020] [Accepted: 12/24/2019] [Indexed: 01/15/2023] Open
Abstract
Background Opisthorchiasis is a hepatobiliary disease caused by flukes of the trematode family Opisthorchiidae. Opisthorchiasis can lead to severe hepatobiliary morbidity and is classified as a carcinogenic agent. Here we investigate the time-resolved metabolic response to Opisthorchis felineus infection in an animal model. Methodology Thirty golden hamsters were divided in three groups: severe infection (50 metacercariae/hamster), mild infection (15 metacercariae/hamster) and uninfected (vehicle-PBS) groups. Each group consisted of equal number of male and female animals. Plasma samples were collected one day before the infection and then every two weeks up to week 22 after infection. The samples were subjected to 1H Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate statistical modelling. Principal findings The time-resolved study of the metabolic response to Opisthorchis infection in plasma in the main lines agrees with our previous report on urine data. The response reaches its peak around the 4th week of infection and stabilizes after the 10th week. Yet, unlike the urinary data there is no strong effect of the gender in the data and the intensity of infection is presented in the first two principal components of the PCA model. The main trends of the metabolic response to the infection in blood plasma are the transient depletion of essential amino acids and an increase in lipoprotein and cholesterol concentrations. Conclusions The time resolved metabolic signature of Opisthorchis infection in the hamster’s plasma shows a coherent shift in amino acids and lipid metabolism. Our work provides insight into the metabolic basis of the host response on the helminth infection. Opisthorchiasis is a parasitic infection caused by liver flukes of the Opisthorchiidae family. The liver fluke infection triggers development of hepatobiliary pathologies such as chronic forms of cholecystitis, cholangitis, pancreatitis, and cholelithiasis and increases the risk of intrahepatic cholangiocarcinoma. This manuscript is the second part of our outgoing project dedicated to a comprehensive description of the metabolic response to opisthorchiasis (more specifically Opisthorchis felineus) in an animal model. We show that the metabolic response in blood plasma is unfolding according to the same scenario as in urine, reaching its peak at the 4th week and stabilizing after the 10th week post-infection. Yet, unlike the response described in urine, the observed metabolic response in plasma is less gender specific. Moreover, the biochemical basis of the detected response in blood plasma is restricted to the remodeling of the lipid metabolism and the transient depletion of essential amino acids. Together with our first manuscript this report forms the first systematic description of the metabolic response on opisthorchiasis in an animal model using two easily accessible biofluids. Thus, this contribution provides novel results and fills an information gap still existing in the analytically driven characterization of the “Siberian liver fluke”, Opisthorchis felineus.
Collapse
Affiliation(s)
- Daria Kokova
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory of clinical metabolomics, Tomsk State University, Tomsk, Russia
- * E-mail:
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ekaterina A. Perina
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Vladimir V. Ivanov
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Elena M. Knyazeva
- School of Core Engineering Education, National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Irina V. Saltykova
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
23
|
Comparative serum metabolomics between SCID mice and BALB/c mice with or without Schistosoma japonicum infection: Clues to the abnormal growth and development of schistosome in SCID mice. Acta Trop 2019; 200:105186. [PMID: 31542371 DOI: 10.1016/j.actatropica.2019.105186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
The small blood flukes of genus Schistosoma, which cause one of the most prevalent and serious parasitic zoonosis schistosomiasis, are dependent on immune-related factors of their mammalian host to facilitate their growth and development, and the formation of granulomatous pathology caused by eggs deposited in host's liver and intestinal wall. Schistosome development is hampered in the mice lacking just T cells, and is even more heavily retarded in the severe combined immunodeficient (SCID) mice lacking both T and B lymphocytes. Nevertheless, it's still not clear about the underlying regulatory molecular mechanisms of schistosome growth and development by host's immune system. This study, therefore, detected and compared the serum metabolic profiles between the immunodeficient mice and immunocompetent mice (SCID mice vs. BALB/c mice) before and after S. japonicum infection (on the thirty-fifth day post infection using liquid chromatography-mass spectrometry (LC-MS). Totally, 705 ion features in electrospray ionization in positive-ion mode (ESI+) and 242 ion features in ESI- mode were identified, respectively. First, distinct serum metabolic profiles were identified between SCID mice and BALB/c mice without S. japonicum worms infection. Second, uniquely perturbed serum metabolites and their enriched pathways were also obtained between SCID mice and BALB/c mice after S. japonicum infection, which included differential metabolites due to both species differences and differential responses to S. japonicum infection. The metabolic pathways analysis revealed that arachidonic acid metabolism, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, alpha-linolenic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and purine metabolism were enriched based on the differential serum metabolites between SCID mice and BALB/c mice after S. japonicum infection, which was addressed to be related to the retarded growth and development of S. japonicum in SCID mice. These findings provide new clues to the underlying molecular events of host's systemic metabolic changes on the growth and development of S. japonicum worms, and also provide quite promising candidates for exploitation of drugs or vaccines against schistosome and schistosomiasis.
Collapse
|
24
|
Xu ZP, Chang H, Ni YY, Li C, Chen L, Hou M, Ji MJ. Schistosoma japonicum infection causes a reprogramming of glycolipid metabolism in the liver. Parasit Vectors 2019; 12:388. [PMID: 31375125 PMCID: PMC6679454 DOI: 10.1186/s13071-019-3621-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background Recent investigations indicate that schistosome infection is closely associated with aberrant glycolipid metabolism. However, the actual glycolipid metabolism gene expression, as well as the possible pathways that regulate glycolipid metabolism in the schistosome-infected liver, has not been extensively explored. Methods In this study, we evaluated the dynamic expression of glycolipid metabolism-associated genes and proteins in the livers from mice infected with Schistosoma japonicum at the indicated time points using real-time PCR and immunofluorescence. Then, cultures of macrophages were treated with schistosome soluble egg antigen (SEA) to detect the expression levels of genes associated with glucose and lipid metabolism in order to identify macrophages metabolic characteristics in response to these antigens. Furthermore, SEA-stimulated macrophages were co-cultures with hepatocytes and detected the effects of macrophages on the gene expression of hepatocytes metabolism. Results The expression of glycolysis-related genes (Ldha, Glut4, Pkm2, Glut1, Pfkfb3, Aldoc, HK2, Pfk) in the liver were upregulated but the gluconeogenesis gene (G6pc) was downregulated during S. japonicum infection. In addition, the mRNA levels of fatty acid (FA) oxidation-related genes (Ucp2, Atp5b, Pparg) in the liver were significantly upregulated; however, the FA synthesis genes (Fas, Acc, Scd1, Srebp1c) and lipid uptake gene (Cd36) were downregulated post-S. japonicum-infection. In consistence with these data, stimulation with SEA in vitro significantly enhanced the gene expression that involved in glycolysis and FA oxidation, but decreased genes related to gluconeogenesis, FA synthesis and lipid uptake in macrophages. The levels of phosphorylated AMPK, AKT and mTORC1 were increased in macrophages after SEA stimulation. Inhibition of phosphorylated AMPK, AKT and mTORC1 promoted SEA-treated macrophages to produce glucose. In addition, suppression of phosphorylated-AMPK, but not phosphorylated-AKT and phosphorylated-mTOR, induced the lipid accumulation in SEA-stimulated macrophages. Furthermore, SEA-treated macrophages significantly reduced the expression of Acc mRNA in hepatocytes in vitro. Conclusions These findings reveal S. japonicum infection induces dynamic changes in the expression levels of genes involved in catabolism (glucose uptake, glycolysis and fatty acid oxidation) and suppressing anabolism (glycogen synthesis) in the liver, which could occur via macrophages’ metabolic states, particularly those involved in the AMPK, AKT and mTORC1 pathways. Electronic supplementary material The online version of this article (10.1186/s13071-019-3621-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi-Peng Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Hao Chang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yang-Yue Ni
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Chen Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lin Chen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Min Hou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Min-Jun Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Jiang Z, Lin C, Liu H, Feng J, Zheng Z, Cai S. Specific biological responses following dextran-coated ultra-small superparamagnetic particles of iron oxides administration. Nanomedicine (Lond) 2019; 14:1371-1386. [PMID: 31215328 DOI: 10.2217/nnm-2018-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The potential bio-related risks of dextran-coated ultra-small superparamagnetic particles of iron oxides (D-USPIO) were assessed. Materials & methods: Metabolic responses of D-USPIO in BALB/C mice were obtained using 1H-NMR-based metabolomic strategy combined with the traditional biochemical assay. Results: The metabolomic analyses of biological fluids (plasma and urine) and organs (liver, kidney and spleen) indicated that the disturbance, impairment and recovery of the physiological functions were related to the metabolic response to D-USPIO. The correlations between the biofluids and tissue metabolomes described the specific metabolic information of D-USPIO on their in vivo transportation, absorption, biodistribution and excretion. Conclusion: Metabolomic analysis provides preliminary validation for the use of D-USPIO in clinical medicine, and the results help to understand the potential adverse effects of the similar bio-nanomaterials further serve to their synthesis optimization and biocompatibility improvement.
Collapse
Affiliation(s)
- Zhiming Jiang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma & Magnetic Resonance, Xiamen University, Xiamen 361005, PR China
| | - Chenghong Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma & Magnetic Resonance, Xiamen University, Xiamen 361005, PR China
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma & Magnetic Resonance, Xiamen University, Xiamen 361005, PR China
| | - Zhenyao Zheng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma & Magnetic Resonance, Xiamen University, Xiamen 361005, PR China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma & Magnetic Resonance, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
26
|
Nuamtanong S, Reamtong O, Phuphisut O, Chotsiri P, Malaithong P, Dekumyoy P, Adisakwattana P. Transcriptome and excretory-secretory proteome of infective-stage larvae of the nematode Gnathostoma spinigerum reveal potential immunodiagnostic targets for development. ACTA ACUST UNITED AC 2019; 26:34. [PMID: 31166909 PMCID: PMC6550564 DOI: 10.1051/parasite/2019033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
Background: Gnathostoma spinigerum is a harmful parasitic nematode that causes severe morbidity and mortality in humans and animals. Effective drugs and vaccines and reliable diagnostic methods are needed to prevent and control the associated diseases; however, the lack of genome, transcriptome, and proteome databases remains a major limitation. In this study, transcriptomic and secretomic analyses of advanced third-stage larvae of G. spinigerum (aL3Gs) were performed using next-generation sequencing, bioinformatics, and proteomics. Results: An analysis that incorporated transcriptome and bioinformatics data to predict excretory–secretory proteins (ESPs) classified 171 and 292 proteins into classical and non-classical secretory groups, respectively. Proteins with proteolytic (metalloprotease), cell signaling regulatory (i.e., kinases and phosphatase), and metabolic regulatory function (i.e., glucose and lipid metabolism) were significantly upregulated in the transcriptome and secretome. A two-dimensional (2D) immunomic analysis of aL3Gs-ESPs with G. spinigerum-infected human sera and related helminthiases suggested that the serine protease inhibitor (serpin) was a promising antigenic target for the further development of gnathostomiasis immunodiagnostic methods. Conclusions: The transcriptome and excretory–secretory proteome of aL3Gs can facilitate an understanding of the basic molecular biology of the parasite and identifying multiple associated factors, possibly promoting the discovery of novel drugs and vaccines. The 2D-immunomic analysis identified serpin, a protein secreted from aL3Gs, as an interesting candidate for immunodiagnosis that warrants immediate evaluation and validation.
Collapse
Affiliation(s)
- Supaporn Nuamtanong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Palang Chotsiri
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand
| | - Preeyarat Malaithong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
27
|
NMR metabolome of Borrelia burgdorferi in vitro and in vivo in mice. Sci Rep 2019; 9:8049. [PMID: 31142787 PMCID: PMC6541645 DOI: 10.1038/s41598-019-44540-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/20/2019] [Indexed: 12/25/2022] Open
Abstract
Lyme borreliosis (LB), caused by bacteria of the Borrelia burgdorferi sensu lato (Borrelia) species, is the most common tick-borne infection in the northern hemisphere. LB diagnostics is based on clinical evaluation of the patient and on laboratory testing, where the main method is the detection of Borrelia specific antibodies in patient samples. There are, however, shortcomings in the current serology based LB diagnostics, especially its inability to differentiate ongoing infection from a previously treated one. Identification of specific biomarkers of diseases is a growing application of metabolomics. One of the main methods of metabolomics is nuclear magnetic resonance (NMR) spectroscopy. In the present study, our aim was to analyze whether Borrelia growth in vitro and infection in vivo in mice causes specific metabolite differences, and whether NMR can be used to detect them. For this purpose, we performed NMR analyses of in vitro culture medium samples, and of serum and urine samples of Borrelia infected and control mice. The results show, that there were significant differences in the concentrations of several amino acids, energy metabolites and aromatic compounds between Borrelia culture and control media, and between infected and control mouse serum and urine samples. For example, the concentration of L-phenylalanine increases in the Borrelia growth medium and in serum of infected mice, whereas the concentrations of allantoin and trigonelline decrease in the urine of infected mice. Therefore, we conclude that Borrelia infection causes measurable metabolome differences in vitro and in Borrelia infected mouse serum and urine samples, and that these can be detected with NMR.
Collapse
|
28
|
Twenty Years on: Metabolomics in Helminth Research. Trends Parasitol 2019; 35:282-288. [DOI: 10.1016/j.pt.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/20/2019] [Accepted: 01/29/2019] [Indexed: 11/23/2022]
|
29
|
Seferovic MD, Beamish CA, Mosser RE, Townsend SE, Pappan K, Poitout V, Aagaard KM, Gannon M. Increases in bioactive lipids accompany early metabolic changes associated with β-cell expansion in response to short-term high-fat diet. Am J Physiol Endocrinol Metab 2018; 315:E1251-E1263. [PMID: 30106624 PMCID: PMC6336958 DOI: 10.1152/ajpendo.00001.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic β-cell expansion is a highly regulated metabolic adaptation to increased somatic demands, including obesity and pregnancy; adult β cells otherwise rarely proliferate. We previously showed that high-fat diet (HFD) feeding induces mouse β-cell proliferation in less than 1 wk in the absence of insulin resistance. Here we metabolically profiled tissues from a short-term HFD β-cell expansion mouse model to identify pathways and metabolite changes associated with β-cell proliferation. Mice fed HFD vs. chow diet (CD) showed a 14.3% increase in body weight after 7 days; β-cell proliferation increased 1.75-fold without insulin resistance. Plasma from 1-wk HFD-fed mice induced β-cell proliferation ex vivo. The plasma, as well as liver, skeletal muscle, and bone, were assessed by LC and GC mass-spectrometry for global metabolite changes. Of the 1,283 metabolites detected, 159 showed significant changes [false discovery rate (FDR) < 0.1]. The majority of changes were in liver and muscle. Pathway enrichment analysis revealed key metabolic changes in steroid synthesis and lipid metabolism, including free fatty acids and other bioactive lipids. Other important enrichments included changes in the citric acid cycle and 1-carbon metabolism pathways implicated in DNA methylation. Although the minority of changes were observed in bone and plasma (<20), increased p-cresol sulfate was increased >4 fold in plasma (the largest increase in all tissues), and pantothenate (vitamin B5) decreased >2-fold. The results suggest that HFD-mediated β-cell expansion is associated with complex, global metabolite changes. The finding could be a significant insight into Type 2 diabetes pathogenesis and potential novel drug targets.
Collapse
Affiliation(s)
- Maxim D Seferovic
- Department of Obstetrics and Gynecology, Baylor College of Medicine , Houston, Texas
| | - Christine A Beamish
- Department of Surgery, Houston Methodist Hospital Research Institute , Houston, Texas
| | - Rockann E Mosser
- Department of Veterans Affairs , Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | | | | | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine , Houston, Texas
| | - Maureen Gannon
- Department of Veterans Affairs , Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
30
|
Song Y, Zhou JL, He YL, Li W, Zou L. [Link between sortase A function and cariogenicity of Streptococcus mutans: a preliminary metabolomics analysis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:360-366. [PMID: 30182561 DOI: 10.7518/hxkq.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study intends to explore the mechanism underlying the support of sortase A (SrtA) of the cariogenicity of Streptococcus mutans (S. mutans). METHODS We performed a metabonomics study based on ¹H nuclear magnetic resonance spectroscopy (NMR), in which we compared the extracellular metabolites of wild-type S. mutans UA159 with those of its SrtA-deficient strain. Metabolite differences among strains were identified using a combination of principal component analysis and orthogonality partial least square discriminant analysis. RESULTS Several differences corresponding mostly to unknown metabolites were identified. Some amino acids such as leucine and valine (δ 0.92×10⁻⁶-1.20×10⁻⁶), lactic acid ( δ1.28×10⁻⁶), oxoglutaric acid (δ 3.00×10⁻⁶), and glycine (δ 3.60×10⁻⁶) differed among strains. CONCLUSIONS This work establishes the feasibility of using ¹H NMR-based metabonomics to provide leads for research into molecular factors that promote caries. The database of microbial metabolites should be also improved in further studies.
Collapse
Affiliation(s)
- Ying Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;Dept. of Conservative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences,Chongqing 401147, China
| | - Jing-Lin Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan-Li He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Liu Y, Ye Q, Liu YL, Kang J, Chen Y, Dong WG. Schistosoma japonicum attenuates dextran sodium sulfate-induced colitis in mice via reduction of endoplasmic reticulum stress. World J Gastroenterol 2017; 23:5700-5712. [PMID: 28883695 PMCID: PMC5569284 DOI: 10.3748/wjg.v23.i31.5700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the impact of Schistosoma (S.) japonicum infection on inflammatory bowel disease by studying the effects of exposure to S. japonicum cercariae on dextran sodium sulfate (DSS)-induced colitis.
METHODS Infection was percutaneously established with 20 ± 2 cercariae of S. japonicum, and colitis was induced by administration of 3% DSS at 4 wk post infection. Weight change, colon length, histological score (HS) and disease activity index (DAI) were evaluated. Inflammatory cytokines, such as IL-2, IL-10 and IFN-γ, were tested by a cytometric bead array and real-time quantitative polymerase chain reaction (RT-PCR). Protein and mRNA levels of IRE1α, IRE1β, GRP78, CHOP, P65, P-P65, P-IκBα and IκBα in colon tissues were examined by Western blot and RT-PCR, respectively. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive cells, cleaved-caspase 3 expression and Bcl2/Bax were investigated to assess the apoptosis in colon tissues.
RESULTS Mice infected with S. japonicum cercariae were less susceptible to DSS. Mice infected with S. japonicum cercariae and treated with DSS showed decreased weight loss, longer colon, and lower HS and DAI compared with mice treated with DSS alone. A substantial decrease in Th1/Th2/Th17 response was observed after infection with S. japonicum. Endoplasmic reticulum (ER) stress and the nuclear factor-kappa B (NF-κB) pathway were reduced in mice infected with S. japonicum cercariae and treated with DSS, along with ameliorated celluar apoptosis, in contrast to mice treated with DSS alone.
CONCLUSION Exposure to S. japonicum attenuated inflammatory response in a DSS-induced colitis model. In addition to the Th1/Th2/Th17 pathway and NF-κB pathway, ER stress was shown to be involved in mitigating inflammation and decreasing apoptosis. Thus, ER stress is a new aspect in elucidating the relationship between helminth infection and inflammatory bowel disease (IBD), which may offer new therapeutic methods for IBD.
Collapse
Affiliation(s)
- Ya Liu
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qing Ye
- Department of Hospital Infection, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yu-Lan Liu
- Departments of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jian Kang
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yan Chen
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei-Guo Dong
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
32
|
Salmonella typhimurium Infection Reduces Schistosoma japonicum Worm Burden in Mice. Sci Rep 2017; 7:1349. [PMID: 28465515 PMCID: PMC5430953 DOI: 10.1038/s41598-017-00992-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/17/2017] [Indexed: 11/09/2022] Open
Abstract
Coinfection of microorganisms is a common phenomenon in humans and animals. In order to further our understanding of the progress of coinfection and the possible interaction between different pathogens, we have built a coinfection mouse model with Schistosoma japonicum and Salmonella typhimurium, and used this model to investigate the systemic metabolic and immune responses using NMR-based metabonomics and immunological techniques. Our results show that Salmonella typhimurium (ATCC14028) infection reduces the number of adult schistosomal worms and eggs, relieves symptoms of schistosomiasis and also abates the mortality of mice infected by Schistosoma japonicum. In addition, Salmonella typhimurium infection counteracts the metabolic disturbances associated with schistosomiasis, which was reflected by the reverted levels of metabolites in coinfected mice, compared with the Schistosoma japonicum infected mice. Furthermore, immune analyses also indicate that shift of the immune response to different pathogens is a result of indirect interactions between Schistosoma japonicum and Salmonella typhimurium within the host. Salmonella typhimurium infection can ameliorate Schistosoma japonicum-caused schistosomiasis in BALB/c mice, which is most likely due to inverse immune polarization. Our work provides an insight into coinfection between Schistosoma japonicum and Salmonella typhimurium, and may further contribute to the development of new tools for controlling Schistosoma japonicum-associated diseases.
Collapse
|
33
|
Antischistosomiasis Liver Fibrosis Effects of Chlorogenic Acid through IL-13/miR-21/Smad7 Signaling Interactions In Vivo and In Vitro. Antimicrob Agents Chemother 2017; 61:AAC.01347-16. [PMID: 27872076 DOI: 10.1128/aac.01347-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/17/2016] [Indexed: 12/23/2022] Open
Abstract
This study investigated the antischistosomiasis liver fibrosis effects of chlorogenic acid (CGA) on interleukin 13 (IL-13)/microRNA-21 (miR-21)/Smad7 signaling interactions in the hepatic stellate LX2 cell line and schistosome-infected mice. The transfection was based on the ability of the GV273-miR-21-enhanced green fluorescent protein (EGFP) and GV369-miR-21-EGFP lentiviral system to up- or downregulate the miR-21 gene in LX2 cells. The mRNA expression of miR-21, Smad7, and connective tissue growth factor (CTGF) and the protein expression of Smad7, CTGF, Smad1, phosphor-Smad1 (p-Smad1), Smad2, p-Smad2, Smad2/3, p-Smad2/3, transforming growth factor β (TGF-β) receptor I, and α-smooth muscle actin (α-SMA) was assayed. Pathological manifestation of hepatic tissue was assessed for the degree of liver fibrosis in animals. The results showed that CGA could inhibit the mRNA expression of miR-21, promote Smad7, and inhibit CTGF mRNA expression. Meanwhile, CGA could significantly lower the protein levels of CTGF, p-Smad1, p-Smad2, p-Smad2/3, TGF-β receptor I, and α-SMA and elevate the Smad7 protein level. In vivo, with treatment with CGA, the signaling molecules of IL-13/miR-21/Smad7 interactions were markedly regulated. CGA could also reduce the degree of liver fibrosis in pathological manifestations. In conclusion, CGA could inhibit schistosomiasis-induced hepatic fibrosis through IL-13/miR-21/Smad7 signaling interactions in LX2 cells and schistosome-infected mice and might serve as an antifibrosis agent for treating schistosomiasis liver fibrosis.
Collapse
|
34
|
Yang F, Wang Y, Xue J, Ma Q, Zhang J, Chen YF, Shang ZZ, Li QQ, Zhang SL, Zhao L. Effect of Corilagin on the miR-21/smad7/ERK signaling pathway in a schistosomiasis-induced hepatic fibrosis mouse model. Parasitol Int 2016; 65:308-15. [DOI: 10.1016/j.parint.2016.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/28/2022]
|
35
|
Wu J, Fu B, Lei H, Tang H, Wang Y. Gender differences of peripheral plasma and liver metabolic profiling in APP/PS1 transgenic AD mice. Neuroscience 2016; 332:160-9. [PMID: 27393253 DOI: 10.1016/j.neuroscience.2016.06.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment. Currently, there is less knowledge of the involvement of the peripheral biofluid/organ in AD, compared with the central nervous system. In addition, with reported high morbidity in women in particular, it has become very important to explore whether gender difference in the peripheral metabolome is associated with AD. Here, we investigated metabolic responses of both plasma and liver tissues using an APP/PS1 double mutant transgenic mouse model with NMR spectroscopy, as well as analysis from serum biochemistry and histological staining. Fatty acid composition from plasma and liver extracts was analyzed using GC-FID/MS. We found clear gender differences in AD transgenic mice when compared with their wild-type counterparts. Female AD mice displayed more intensive responses, which were highlighted by higher levels of lipids, 3-hydroxybutyrate and nucleotide-related metabolites, together with lower levels of glucose. These observations indicate that AD induces oxidative stress and impairs cellular energy metabolism in peripheral organs. Disturbances in AD male mice were milder with depletion of monounsaturated fatty acids. We also observed a higher activity of delta-6-desaturate and suppressed activity of delta-5-desaturate in female mice, whereas inhibited stearoyl-CoA-desaturase in male mice suggested that AD induced by the double mutant genes results in different fatty acids catabolism depending on gender. Our results provide metabolic clues into the peripheral biofluid/organs involved in AD, and we propose that a gender-specific scheme for AD treatment in men and women may be required.
Collapse
Affiliation(s)
- Junfang Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bin Fu
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Contemporary Anthropology, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model. Sci Rep 2016; 6:28057. [PMID: 27329570 PMCID: PMC4916411 DOI: 10.1038/srep28057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023] Open
Abstract
The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs.
Collapse
|
37
|
Wu J, Yang L, Li S, Huang P, Liu Y, Wang Y, Tang H. Metabolomics Insights into the Modulatory Effects of Long-Term Low Calorie Intake in Mice. J Proteome Res 2016; 15:2299-308. [DOI: 10.1021/acs.jproteome.6b00336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Junfang Wu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and
Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Liu Yang
- Key
Laboratory of Nutrition and Metabolism, Institute for Nutritional
Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Shoufeng Li
- Key
Laboratory of Nutrition and Metabolism, Institute for Nutritional
Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Ping Huang
- Key
Laboratory of Nutrition and Metabolism, Institute for Nutritional
Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yong Liu
- Key
Laboratory of Nutrition and Metabolism, Institute for Nutritional
Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yulan Wang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and
Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Collaborative
Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, P. R. China
| | - Huiru Tang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and
Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- State Key
Laboratory of Genetic Engineering, Collaborative Innovation Center
for Genetics and Development, Metabolomics and Systems Biology Laboratory,
School of Life Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
38
|
Canuto GAB, da Cruz PLR, Faccio AT, Klassen A, Tavares MFM. Neglected diseases prioritized in Brazil under the perspective of metabolomics: A review. Electrophoresis 2015; 36:2336-2347. [PMID: 26095472 DOI: 10.1002/elps.201500102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
This review article compiles in a critical manner literature publications regarding seven neglected diseases (ND) prioritized in Brazil (Chagas disease, dengue, leishmaniasis, leprosy, malaria, schistosomiasis, and tuberculosis) under the perspective of metabolomics. Both strategies, targeted and untargeted metabolomics, were considered in the compilation. The majority of studies focused on biomarker discovery for diagnostic purposes, and on the search of novel or alternative therapies against the ND under consideration, although temporal progression of the infection at metabolic level was also addressed. Tuberculosis, followed by schistosomiasis, malaria and leishmaniasis are the diseases that received larger attention in terms of number of publications. Dengue and leprosy were the least studied and Chagas disease received intermediate attention. NMR and HPLC-MS technologies continue to predominate among the analytical platforms of choice in the metabolomic studies of ND. A plethora of metabolites were identified in the compiled studies, with expressive predominancy of amino acids, organic acids, carbohydrates, nucleosides, lipids, fatty acids, and derivatives.
Collapse
Affiliation(s)
- Gisele A B Canuto
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Pedro L R da Cruz
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrea T Faccio
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline Klassen
- Federal University of Sao Paulo, Diadema, SP, Brazil
| | | |
Collapse
|
39
|
Ali SA, El-Regal NS, Saeed SM. Antischistosomal Activity of Two Active Constituents Isolated from the Leaves of Egyptian Medicinal Plants. Infect Dis (Lond) 2015; 8:5-16. [PMID: 26124666 PMCID: PMC4479413 DOI: 10.4137/idrt.s24342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 01/25/2023] Open
Abstract
In this paper, we investigate the role of two active constituents isolated from the leaves of Egyptian medicinal plants. D-mannitol a naturally occurring sugar isolated from the leaves Ixora undulata Roxb., and the pectin a linear chain homogalacturonan (HG) polysaccharide isolated from the leaves of Linum grandiflorum Desf. (scarlet flax). Both are evaluated for their therapeutic effect against schistosomiasis with biochemical and histochemical evaluations and compared with praziquantel, a reference drug. Biochemical studies of hepatic glucose, the glycogen content, and total serum protein were carried out, and histochemical evaluations through serum protein fractions separated by polyacrylamide gel electrophoresis with different molecular weights (260-10 kDa) were made in all groups, in addition to liver and body weight. D-mannitol and pectin show a remarkable effect in enhancing liver and kidney functions through enhancing most protein fractions in the serum of mice infected with Schistosoma mansoni. Also, the glucose and glycogen content in injured liver tissues improved, in addition liver and body weight in the infected groups. Thus they may be of therapeutic potential in the treatment hepatoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Sanaa A Ali
- Therapeutic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Nagy S El-Regal
- Therapeutic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Samar M Saeed
- Therapeutic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
40
|
Preidis GA, Hotez PJ. The newest "omics"--metagenomics and metabolomics--enter the battle against the neglected tropical diseases. PLoS Negl Trop Dis 2015; 9:e0003382. [PMID: 25675250 PMCID: PMC4326130 DOI: 10.1371/journal.pntd.0003382] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Geoffrey A. Preidis
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail:
| | - Peter J. Hotez
- National School of Tropical Medicine, Department of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
41
|
Zhu X, Lei H, Wu J, Li JV, Tang H, Wang Y. Systemic responses of BALB/c mice to Salmonella typhimurium infection. J Proteome Res 2014; 13:4436-45. [PMID: 25209111 DOI: 10.1021/pr500770x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Salmonella typhimurium is a bacterial pathogen that poses a great threat to humans and animals. In order to discover hosts' responses to S. typhimurium infection, we collected and analyzed biofluids and organ tissues from mice which had ingested S. typhimurium. We employed (1)H NMR spectroscopy coupled with multivariate data analysis and immunological techniques. The results indicate that infection leads to a severe impact on mice spleen and ileum, which are characterized by splenomegaly and edematous villi, respectively. We found that increased levels of itaconic acid were correlated with the presence of splenomegaly during infection and may play an important role in Salmonella-containing vacuole acidification. In addition, metabonomic analyses of urine displayed the development of salmonellosis in mice, which is characterized by dynamic changes in energy metabolism. Furthermore, we found that the presence of S. typhimurium activated an anti-oxidative response in infected mice. We also observed changes in the gut microbial co-metabolites (hippurate, TMAO, TMA, methylamine). This investigation sheds much needed light on the host-pathogen interactions of S. typhimurium, providing further information to deepen our understanding of the long co-evolution process between hosts and infective bacteria.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China
| | | | | | | | | | | |
Collapse
|
42
|
Shinde S, Mol M, Singh S. Regulatory networks, genes and glycerophospholipid biosynthesis pathway in schistosomiasis: a systems biology view for pharmacological intervention. Gene 2014; 550:214-22. [PMID: 25149020 DOI: 10.1016/j.gene.2014.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 11/15/2022]
Abstract
Understanding network topology through embracing the global dynamical regulation of genes in an active state space rather than traditional one-gene-one trait approach facilitates the rational drug development process. Schistosomiasis, a neglected tropical disease, has glycerophospholipids as abundant molecules present on its surface. Lack of effective clinical solutions to treat pathogens encourages us to carry out systems-level studies that could contribute to the development of an effective therapy. Development of a strategy for identifying drug targets by combined genome-scale metabolic network and essentiality analyses through in silico approaches provides tantalizing opportunity to investigate the role of protein/substrate metabolism. A genome-scale metabolic network model reconstruction represents choline-phosphate cytidyltransferase as the rate limiting enzyme and regulates the rate of phosphatidylcholine (PC) biosynthesis. The uptake of choline was regulated by choline concentration, promoting the regulation of phosphocholine synthesis. In Schistosoma, the change in developmental stage could result from the availability of choline, hampering its developmental cycle. There are no structural reports for this protein. In order to inhibit the activity of choline-phosphate cytidyltransferase (CCT), it was modeled by homology modeling using 1COZ as the template from Bacillus subtilis. The transition-state stabilization and catalytic residues were mapped as 'HXGH' and 'RTEGISTT' motif. CCT catalyzes the formation of CDP-choline from phosphocholine in which nucleotidyltransferase adds CTP to phosphocholine. The presence of phosphocholine permits the parasite to survive in an immunologically hostile environment. This feature endeavors development of an inhibitor specific for cytidyltransferase in Schistosoma. Flavonolignans were used to inhibit this activity in which hydnowightin showed the highest affinity as compared to miltefosine.
Collapse
Affiliation(s)
- Sonali Shinde
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune University Campus, Pune 411007, India
| | - Milsee Mol
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune University Campus, Pune 411007, India.
| |
Collapse
|
43
|
Zhang L, Wang Y, Xu Y, Lei H, Zhao Y, Li H, Lin X, Chen G, Tang H. Metabonomic analysis reveals efficient ameliorating effects of acupoint stimulations on the menopause-caused alterations in mammalian metabolism. Sci Rep 2014; 4:3641. [PMID: 24407431 PMCID: PMC5378040 DOI: 10.1038/srep03641] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/28/2013] [Indexed: 02/02/2023] Open
Abstract
Acupoint stimulations are effective in ameliorating symptoms of menopause which is an unavoidable ageing consequence for women. To understand the mechanistic aspects of such treatments, we systematically analyzed the effects of acupoint laser-irradiation and catgut-embedding on the ovariectomy-induced rat metabolic changes using NMR and GC-FID/MS methods. Results showed that ovariectomization (OVX) caused comprehensive metabolic changes in lipid peroxidation, glycolysis, TCA cycle, choline and amino acid metabolisms. Both acupoint laser-irradiation and catgut-embedding ameliorated the OVX-caused metabonomic changes more effectively than hormone replacement therapy (HRT) with nilestriol. Such effects of acupoint stimulations were highlighted in alleviating lipid peroxidation, restoring glucose homeostasis and partial reversion of the OVX-altered amino acid metabolism. These findings provided new insights into the menopause effects on mammalian biochemistry and beneficial effects of acupoint stimulations in comparison with HRT, demonstrating metabonomics as a powerful approach for potential applications in disease prognosis and developments of effective therapies.
Collapse
Affiliation(s)
- Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ying Zhao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huihui Li
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaosheng Lin
- Affiliated BaoAn TCM Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Guizhen Chen
- Affiliated BaoAn TCM Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Genetic Engineering, Biospectroscopy and Metabolomics, School of Life Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
44
|
Chen Y, Wu J, Tu L, Xiong X, Hu X, Huang J, Xu Z, Zhang X, Hu C, Hu X, Guo A, Wang Y, Chen H. (1)H-NMR spectroscopy revealed Mycobacterium tuberculosis caused abnormal serum metabolic profile of cattle. PLoS One 2013; 8:e74507. [PMID: 24098654 PMCID: PMC3787013 DOI: 10.1371/journal.pone.0074507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/02/2013] [Indexed: 01/17/2023] Open
Abstract
To re-evaluate virulence of Mycobacterium tuberculosis (M. tb) in cattle, we experimentally infected calves with M. tb andMycobacterium bovisvia intratracheal injection at a dose of 2.0×107 CFU and observed the animals for 33 weeks. The intradermal tuberculin test and IFN-γin vitro release assay showed that both M. tb and M. bovis induced similar responses. Immunohistochemical staining of pulmonary lymph nodes indicated that the antigen MPB83 of both M. tb and M. bovis were similarly distributed in the tissue samples. Histological examinations showed all of the infected groups exhibited neutrophil infiltration to similar extents. Although the infected cattle did not develop granulomatous inflammation, the metabolic profiles changed significantly, which were characterized by a change in energy production pathways and increased concentrations of N-acetyl glycoproteins. Glycolysis was induced in the infected cattle by decreased glucose and increased lactate content, and enhanced fatty acid β-oxidation was induced by decreased TG content, and decreased gluconeogenesis indicated by the decreased concentration of glucogenic and ketogenic amino acids promoted utilization of substances other than glucose as energy sources. In addition, an increase in acute phase reactive serum glycoproteins, together with neutrophil infiltration and increased of IL-1β production indicated an early inflammatory response before granuloma formation. In conclusion, this study indicated that both M. tb and M.bovis were virulent to cattle. Therefore, it is likely that cattle with M. tb infections would be critical to tuberculosis transmission from cattle to humans. Nuclear magnetic resonance was demonstrated to be an efficient method to systematically evaluate M. tb and M. bovi sinfection in cattle.
Collapse
Affiliation(s)
- Yingyu Chen
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junfang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Lingling Tu
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Wuhan Keqian Animal Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Xuekai Xiong
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xidan Hu
- Xinjiang Academy of Animal Husbandry and Veterinary Institute, Urumqi, Xinjiang, China
| | - Jiong Huang
- Xinjiang Academy of Animal Husbandry and Veterinary Institute, Urumqi, Xinjiang, China
| | - Zhiguang Xu
- Xinjiang Academy of Animal Husbandry and Veterinary Institute, Urumqi, Xinjiang, China
| | - Xiansong Zhang
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Aizhen Guo
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail: (AG); (YW)
| | - Yulan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
- * E-mail: (AG); (YW)
| | - Huanchun Chen
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
45
|
Li H, Wei H, Wang Y, Tang H, Wang Y. Enhanced green fluorescent protein transgenic expression in vivo is not biologically inert. J Proteome Res 2013; 12:3801-8. [PMID: 23827011 DOI: 10.1021/pr400567g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhanced green fluorescent protein (EGFP) is a widely used biological reporter. However, the effects of EGFP expression in vivo are still unclear. To investigate the effects of EGFP transgenic expression in vivo, we employed an NMR-based metabonomics method to analyze the metabonome of EGFP transgenic mice. The results show that the metabonomes of urine, liver, and kidney of the EGFP transgenic mice are different from their wild-type counterparts. The EGFP mice expressed high levels of urinary 3-ureidopropionate, which is due to the down-regulated transcriptional level of β-ureidopropionase. The expression of EGFP in vivo also affects other metabolic pathways, including nucleic acid metabolism, energy utilization, and amino acids catabolism. These findings indicate that EGFP transgenic expression is not as inert as has been considered. Our investigation provides a holistic view on the effect of EGFP expression in vivo, which is useful when EGFP is employed as a functional biological indicator. Our work also highlights the potential of a metabonomics strategy in studying the association between molecular phenotypes and gene function.
Collapse
Affiliation(s)
- Hongde Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | | | | | | | | |
Collapse
|
46
|
An Y, Xu W, Li H, Lei H, Zhang L, Hao F, Duan Y, Yan X, Zhao Y, Wu J, Wang Y, Tang H. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. J Proteome Res 2013; 12:3755-68. [PMID: 23746045 DOI: 10.1021/pr400398b] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a condition resulting from the interactions of individual biology and environmental factors causing multiple complications. To understand the system's metabolic changes associated with the obesity development and progression, we systematically analyzed the dynamic metabonomic changes induced by a high-fat diet (HFD) in multiple biological matrices of rats using NMR and GC-FID/MS techniques. Clinical chemistry and histopathological data were obtained as complementary information. We found that HFD intakes caused systematic metabolic changes in blood plasma, liver, and urine samples involving multiple metabolic pathways including glycolysis, TCA cycle, and gut microbiota functions together with the metabolisms of fatty acids, amino acids, choline, B-vitamins, purines, and pyrimidines. The HFD-induced metabolic variations were detectable in rat urine a week after HFD intake and showed clear dependence on the intake duration. B-vitamins and gut microbiota played important roles in the obesity development and progression together with changes in TCA cycle intermediates (citrate, α-ketoglutarate, succinate, and fumarate). 83-day HFD intakes caused significant metabolic alterations in rat liver highlighted with the enhancements in lipogenesis, lipid accumulation and lipid oxidation, suppression of glycolysis, up-regulation of gluconeogenesis and glycogenesis together with altered metabolisms of choline, amino acids and nucleotides. HFD intakes reduced the PUFA-to-MUFA ratio in both plasma and liver, indicating the HFD-induced oxidative stress. These findings provided essential biochemistry information about the dynamic metabolic responses to the development and progression of HFD-induced obesity. This study also demonstrated the combined metabonomic analysis of multiple biological matrices as a powerful approach for understanding the molecular basis of pathogenesis and disease progression.
Collapse
Affiliation(s)
- Yanpeng An
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Han H, Peng J, Hong Y, Zhang M, Han Y, Liu D, Fu Z, Shi Y, Xu J, Tao J, Lin J. MicroRNA expression profile in different tissues of BALB/c mice in the early phase of Schistosoma japonicum infection. Mol Biochem Parasitol 2013; 188:1-9. [PMID: 23415751 DOI: 10.1016/j.molbiopara.2013.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 11/16/2022]
Abstract
Schistosomiasis remains an important global public health problem that affects 200 million people in 76 countries. The molecular mechanisms of host-parasite interaction are complex, and in schistosome infection regulation of microRNA (miRNA) and the host micro-environment may be involved. In this study, an miRNA microarray was applied to investigate differences in miRNA expression in different tissues of mice before and 10 days post infection. In total, 220 miRNAs were detected in different tissues of the BALB/c mice before and after infection, including 8 miRNAs in liver, 8 in spleen and 28 in the lungs with up-regulated expression, and 3 miRNAs in liver, 5 in spleen and 28 in the lungs with down-regulated expression in mice 10 days post infection with schistosomes. The functions of these differentially expressed miRNAs are related mainly to the immune response, nutrient metabolism, cell differentiation, apoptosis, and signal pathways. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the differentially expressed miRNAs revealed that many important biological pathways are triggered by schistosome infection in BALB/c mice, such as the MAPK signaling pathway, insulin signaling pathway, Toll-like receptor signaling pathway and TGF-β signaling pathway.The results reveal that miRNAs may be an important regulator of schistosome-host interaction in the early phase of Schistosoma japonicum infection. The data presented here provide valuable information to increase understanding of the regulatory function of the miRNAs in the host micro-environment, as well as the mechanism of host-parasite interactions. This may be helpful in the search for potential new drugs, and for biomarkers of early S. japonicum infection applicable in the future control of schistosomiasis.
Collapse
Affiliation(s)
- Hongxiao Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dong F, Wang B, Zhang L, Tang H, Li J, Wang Y. Metabolic response to Klebsiella pneumoniae infection in an experimental rat model. PLoS One 2012; 7:e51060. [PMID: 23226457 PMCID: PMC3511377 DOI: 10.1371/journal.pone.0051060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/29/2012] [Indexed: 01/04/2023] Open
Abstract
Bacteremia, the presence of viable bacteria in the blood stream, is often associated with several clinical conditions. Bacteremia can lead to multiple organ failure if managed incorrectly, which makes providing suitable nutritional support vital for reducing bacteremia-associated mortality. In order to provide such information, we investigated the metabolic consequences of a Klebsiella pneumoniae (K. pneumoniae) infection in vivo by employing a combination of (1)H nuclear magnetic resonance spectroscopy and multivariate data analysis. K. pneumoniae was intravenously infused in rats; urine and plasma samples were collected at different time intervals. We found that K. pneumoniae-induced bacteremia stimulated glycolysis and the tricarboxylic acid cycle and also promoted oxidation of fatty acids and creatine phosphate to facilitate the energy-demanding host response. In addition, K. pneumoniae bacteremia also induced anti-endotoxin, anti-inflammatory and anti-oxidization responses in the host. Furthermore, bacteremia could cause a disturbance in the gut microbiotal functions as suggested by alterations in a range of amines and bacteria-host co-metabolites. Our results suggest that supplementation with glucose and a high-fat and choline-rich diet could ameliorate the burdens associated with bacteremia. Our research provides underlying pathological processes of bacteremia and a better understanding of the clinical and biochemical manifestations of bacteremia.
Collapse
Affiliation(s)
- Fangcong Dong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bin Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Lulu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Huiru Tang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Yulan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
49
|
Zhao XJ, Hao F, Huang C, Rantalainen M, Lei H, Tang H, Wang Y. Systems responses of rats to mequindox revealed by metabolic and transcriptomic profiling. J Proteome Res 2012; 11:4712-21. [PMID: 22845897 DOI: 10.1021/pr300533a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mequindox is used as an antibiotic drug in livestock; however, its toxicity remains largely unclear. Previously, we investigated metabolic responses of mice to mequindox exposure. In order to evaluate dependences of animal species in response to mequindox insult, we present the metabolic consequences of mequindox exposure in a rat model, by employing the combination of metabonomics and transcriptomics. Metabolic profiling of urine revealed that metabolic recovery is achieved for rats exposed to a low or moderate dose of mequindox, whereas high levels of mequindox exposure trigger liver dysfunction, causing no such recovery. We found that mequindox exposure causes suppression of the tricarboxylic acid cycle and stimulation of glycolysis, which is in contrast to a mouse model previously investigated. In addition, mequindox dosage induces promotion of β-oxidation of fatty acids, which was confirmed by elevated expressions of acox1, hsd17b2, and cpt1a in liver. Furthermore, altered levels of N-methylnicotinate, 1-methylnicotinamide, and glutathione disulfide highlighted the promotion of vitamin B3 antioxidative cycle in rats exposed to mequindox. Moreover, mequindox exposure altered levels of gut microbiotal related co-metabolites, suggesting a perturbation of the gut microflora of the host. Our work provides a comprehensive view of the toxicological effects of mequindox, which is important in the usage of mequindox in animal and human food safety.
Collapse
Affiliation(s)
- Xiu-Ju Zhao
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China
| | | | | | | | | | | | | |
Collapse
|
50
|
Li J, Huang C, Zheng D, Wang Y, Yuan Z. CcpA-Mediated Enhancement of Sugar and Amino Acid Metabolism in Lysinibacillus sphaericus by NMR-Based Metabolomics. J Proteome Res 2012; 11:4654-61. [DOI: 10.1021/pr300469v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Li
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Chongyang Huang
- Wuhan Center of
Magnetic Resonance,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s
Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Dasheng Zheng
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
| | - Yulan Wang
- Wuhan Center of
Magnetic Resonance,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s
Republic of China
| | - Zhiming Yuan
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
| |
Collapse
|