1
|
Saha A, Pushpa, Moitra S, Basak D, Brahma S, Mondal D, Molla SH, Samadder A, Nandi S. Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis. Curr Med Chem 2024; 31:2135-2169. [PMID: 37340748 DOI: 10.2174/0929867330666230619160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs. INTRODUCTION This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition. METHODS A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic. RESULTS Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies. CONCLUSION Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.
Collapse
Affiliation(s)
- Aloke Saha
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Pushpa
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Susmita Moitra
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Deblina Basak
- Endocrinology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sayandeep Brahma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Dipu Mondal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
2
|
Dos Santos Nascimento IJ, Albino SL, da Silva Menezes KJ, de Azevedo Teotônio Cavalcanti M, de Oliveira MS, Mali SN, de Moura RO. Targeting SmCB1: Perspectives and Insights to Design Antischistosomal Drugs. Curr Med Chem 2024; 31:2264-2284. [PMID: 37921174 DOI: 10.2174/0109298673255826231011114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 11/04/2023]
Abstract
Neglected tropical diseases (NTDs) are prevalent in tropical and subtropical countries, and schistosomiasis is among the most relevant diseases worldwide. In addition, one of the two biggest problems in developing drugs against this disease is related to drug resistance, which promotes the demand to develop new drug candidates for this purpose. Thus, one of the drug targets most explored, Schistosoma mansoni Cathepsin B1 (SmCB1 or Sm31), provides new opportunities in drug development due to its essential functions for the parasite's survival. In this way, here, the latest developments in drug design studies targeting SmCB1 were approached, focusing on the most promising analogs of nitrile, vinyl sulphones, and peptidomimetics. Thus, it was shown that despite being a disease known since ancient times, it remains prevalent throughout the world, with high mortality rates. The therapeutic arsenal of antischistosomal drugs (ASD) consists only of praziquantel, which is widely used for this purpose and has several advantages, such as efficacy and safety. However, it has limitations, such as the impossibility of acting on the immature worm and exploring new targets to overcome these limitations. SmCB1 shows its potential as a cysteine protease with a catalytic triad consisting of Cys100, His270, and Asn290. Thus, design studies of new inhibitors focus on their catalytic mechanism for designing new analogs. In fact, nitrile and sulfonamide analogs show the most significant potential in drug development, showing that these chemical groups can be better exploited in drug discovery against schistosomiasis. We hope this manuscript guides the authors in searching for promising new antischistosomal drugs.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Pharmacy Department, Cesmac University Center, Maceió, 57051-160, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Sonaly Lima Albino
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | - Karla Joane da Silva Menezes
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Mozaniel Santana de Oliveira
- Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, Museu Paraense Emílio Goeldi, 1901, Belém, 66077-530, PA Brazil
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga East, Mumbai, 400019, India
| | - Ricardo Olimpio de Moura
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
3
|
de Almeida GC, de Oliveira GB, da Silva Monte Z, Costa ÉCS, da Silva Falcão EP, Scotti L, Scotti MT, Oliveira Silva R, Pereira VRA, da Silva ED, Junior PAS, de Andrade Cavalcante MK, de Melo SJ. Structure-based design, optimization of lead, synthesis, and biological evaluation of compounds active against Trypanosoma cruzi. Chem Biol Drug Des 2023; 102:843-856. [PMID: 37455325 DOI: 10.1111/cbdd.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/18/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Chagas' disease affects approximately eight million people throughout the world, especially the poorest individuals. The protozoan that causes this disease-Trypanosoma cruzi-has the enzyme cruzipain, which is the main therapeutic target. As no available medications have satisfactory effectiveness and safety, it is of fundamental importance to design and synthesize novel analogues that are more active and selective. In the present study, molecular docking and the in silico prediction of ADMET properties were used as strategies to optimize the trypanocidal activity of the pyrimidine compound ZN3F based on interactions with the target site in cruzipain. From the computational results, eight 4-amino-5-carbonitrile-pyrimidine analogues were proposed, synthesized (5a-f and 7g-h) and, tested in vitro on the trypomastigote form of the Tulahuen strain of T. cruzi. The in silico study showed that the designed analogues bond favorably to important amino acid residues of the active site in cruzipain. An in vitro evaluation of cytotoxicity was performed on L929 mammal cell lines. All derivatives inhibited the Tulahuen strain of T. cruzi and also exhibited lower toxicity to L929 cells. The 5e product, in particular, proved to be a potent, selective (IC50 = 2.79 ± 0.00 μM, selectivity index = 31.3) inhibitor of T. cruzi. The present results indicated the effectiveness of drugs based on the structure of the receptor, revealing the potential trypanocidal of pyrimidines. This study also provides information on molecular aspects for the inhibition of cruzipain.
Collapse
Affiliation(s)
- Gleybson Correia de Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Gerliny Bezerra de Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Zenaide da Silva Monte
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Érick Caique Santos Costa
- Postgraduate Program in Biological Sciences, Department of Biosciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | | | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Ricardo Oliveira Silva
- Department of Fundamental Chemistry, Center for Exact and Natural Sciences, Federal University of Pernambuco, Av. Journalist Anibal Fernandes, Recife, Brazil
| | - Valéria Rêgo Alves Pereira
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Elis Dionisio da Silva
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Policarpo Ademar Sales Junior
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Marton Kaique de Andrade Cavalcante
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Sebastião José de Melo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
- Postgraduate Program in Biological Sciences, Department of Biosciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| |
Collapse
|
4
|
Santos VC, Leite PG, Santos LH, Pascutti PG, Kolb P, Machado FS, Ferreira RS. Structure-based discovery of novel cruzain inhibitors with distinct trypanocidal activity profiles. Eur J Med Chem 2023; 257:115498. [PMID: 37290182 DOI: 10.1016/j.ejmech.2023.115498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
Over 110 years after the first formal description of Chagas disease, the trypanocidal drugs thus far available have limited efficacy and several side effects. This encourages the search for novel treatments that inhibit T. cruzi targets. One of the most studied anti-T. cruzi targets is the cysteine protease cruzain; it is associated with metacyclogenesis, replication, and invasion of the host cells. We used computational techniques to identify novel molecular scaffolds that act as cruzain inhibitors. First, with a docking-based virtual screening, we identified compound 8, a competitive cruzain inhibitor with a Ki of 4.6 μM. Then, aided by molecular dynamics simulations, cheminformatics, and docking, we identified the analog compound 22 with a Ki of 27 μM. Surprisingly, despite sharing the same isoquinoline scaffold, compound 8 presented higher trypanocidal activity against the epimastigote forms, while compound 22, against the trypomastigotes and amastigotes. Taken together, compounds 8 and 22 represent a promising scaffold for further development of trypanocidal compounds as drug candidates for treating Chagas disease.
Collapse
Affiliation(s)
- Viviane Corrêa Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Paulo Gaio Leite
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Lucianna Helene Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, CEP 21944-970, Brazil
| | - Peter Kolb
- Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Fabiana Simão Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
5
|
Jasinski G, Salas-Sarduy E, Vega D, Fabian L, Florencia Martini M, Moglioni AG. Design, synthesis and biological evaluation of novel thiosemicarbazones as cruzipain inhibitors. Eur J Med Chem 2023; 254:115345. [PMID: 37054562 DOI: 10.1016/j.ejmech.2023.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Based on the activity of 23 TSCs on CZ taken from the literature, we have developed a QSAR model for predicting the activity of TSCs. New TSCs were designed and then tested against CZP, resulting in inhibitors with IC50 values in the nanomolar range. The modelling of the corresponding TSC-CZ complexes by molecular docking and QM/QM ONIOM refinement indicates a binding mode compatible with what was expected for active TSCs, according to a geometry-based theoretical model previously developed by our research group. Kinetic experiments on CZP suggest that the new TSCs act by a mechanism that involves the formation of a reversible covalent adduct with slow association and dissociation kinetics. These results demonstrate the strong inhibitory effect of the new TSCs and the benefit of the combined use of QSAR and molecular modelling techniques in the design of new and potent CZ/CZP inhibitors.
Collapse
Affiliation(s)
- Gabriel Jasinski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química Medicinal, Buenos Aires, C1113AAD, Argentina; CONICET-Universidad de Buenos Aires, Instituto de la Química y el Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, 1113, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde" (IIBIO), CONICET, San Martín, Buenos Aires, 1650, Argentina; Escuela de Bio y Nanotecnología (EByN), Universidad Nacional de San Martín (UNSAM), San Martín, Buenos Aires, 1650, Argentina
| | - Daniel Vega
- Departamento de Física de la Materia Condensada, GIyA, CAC, CNEA, Buenos Aires, B1650KNA, Argentina; Escuela de Ciencia y Tecnología, UNSAM, San Martín, Buenos Aires, B1650KNA, Argentina
| | - Lucas Fabian
- CONICET-Universidad de Buenos Aires, Instituto de la Química y el Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, 1113, Argentina
| | - M Florencia Martini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química Medicinal, Buenos Aires, C1113AAD, Argentina; CONICET-Universidad de Buenos Aires, Instituto de la Química y el Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, 1113, Argentina
| | - Albertina G Moglioni
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química Medicinal, Buenos Aires, C1113AAD, Argentina; CONICET-Universidad de Buenos Aires, Instituto de la Química y el Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, 1113, Argentina.
| |
Collapse
|
6
|
Screening the Pathogen Box to Discover and Characterize New Cruzain and TbrCatL Inhibitors. Pathogens 2023; 12:pathogens12020251. [PMID: 36839523 PMCID: PMC9967275 DOI: 10.3390/pathogens12020251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Chagas disease and Human African Trypanosomiasis, caused by Trypanosoma cruzi and T. brucei, respectively, pose relevant health challenges throughout the world, placing 65 to 70 million people at risk each. Given the limited efficacy and severe side effects associated with current chemotherapy, new drugs are urgently needed for both diseases. Here, we report the screening of the Pathogen Box collection against cruzain and TbrCatL, validated targets for Chagas disease and Human African Trypanosomiasis, respectively. Enzymatic assays were applied to screen 400 compounds, validate hits, determine IC50 values and, when possible, mechanisms of inhibition. In this case, 12 initial hits were obtained and ten were prioritized for follow-up. IC50 values were obtained for six of them (hit rate = 1.5%) and ranged from 0.46 ± 0.03 to 27 ± 3 µM. MMV687246 was found to be a mixed inhibitor of cruzain (Ki = 57 ± 6 µM) while MMV688179 was found to be a competitive inhibitor of cruzain with a nanomolar potency (Ki = 165 ± 63 nM). A putative binding mode for MMV688179 was obtained by docking. The six hits discovered against cruzain and TbrCatL are of great interest for further optimization by the medicinal chemistry community.
Collapse
|
7
|
Moreira VP, da Silva Mela MF, dos Anjos LR, Saraiva LF, Arenas Velásquez AM, Kalaba P, Fabisiková A, Clementino LDC, Aufy M, Studenik C, Gajic N, Prado-Roller A, Magalhães A, Zehl M, Figueiredo ID, Baviera AM, Cilli EM, Graminha MAS, Lubec G, Gonzalez ERP. Novel Selective and Low-Toxic Inhibitor of LmCPB2.8ΔCTE (CPB) One Important Cysteine Protease for Leishmania Virulence. Biomolecules 2022; 12:1903. [PMID: 36551331 PMCID: PMC9775234 DOI: 10.3390/biom12121903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis is a highly prevalent, yet neglected disease caused by protozoan parasites of the genus Leishmania. In the search for newer, safer, and more effective antileishmanial compounds, we herein present a study of the mode of action in addition to a detailed structural and biological characterization of LQOF-G6 [N-benzoyl-N'-benzyl-N″-(4-tertbutylphenyl)guanidine]. X-ray crystallography and extensive NMR experiments revealed that LQOF-G6 nearly exclusively adopts the Z conformation stabilized by an intramolecular hydrogen bond. The investigated guanidine showed selective inhibitory activity on Leishmania major cysteine protease LmCPB2.8ΔCTE (CPB) with ~73% inhibition and an IC50-CPB of 6.0 µM. This compound did not show any activity against the mammalian homologues cathepsin L and B. LQOF-G6 has been found to be nontoxic toward both organs and several cell lines, and no signs of hepatotoxicity or nephrotoxicity were observed from the analysis of biochemical clinical plasma markers in the treated mice. Docking simulations and experimental NMR measurements showed a clear contribution of the conformational parameters to the strength of the binding in the active site of the enzyme, and thus fit the differences in the inhibition values of LQOF-G6 compared to the other guanidines. Furthermore, the resulting data render LQOF-G6 suitable for further development as an antileishmanial drug.
Collapse
Affiliation(s)
- Vitor Partite Moreira
- Fine Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-080, Brazil
| | | | - Luana Ribeiro dos Anjos
- Fine Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-080, Brazil
| | - Leonardo Figueiredo Saraiva
- Laboratory of Luminescence in Materials and Sensors, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-560, Brazil
| | | | - Predrag Kalaba
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Josef Holaubek Platz 2, UZAII, 1090 Vienna, Austria
| | - Anna Fabisiková
- Mass Spectrometry Centre, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | | | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef Holaubek Platz 2, UZAII (2D 259), 1090 Vienna, Austria
| | - Christian Studenik
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef Holaubek Platz 2, UZAII (2D 259), 1090 Vienna, Austria
| | - Natalie Gajic
- Centre for X-ray Structure Analysis, Faculty of Chemistry, University of Vienna, Währinger Straße 40-42, 1090 Vienna, Austria
| | - Alexander Prado-Roller
- Centre for X-ray Structure Analysis, Faculty of Chemistry, University of Vienna, Währinger Straße 40-42, 1090 Vienna, Austria
| | - Alvicler Magalhães
- Department of Organic Chemistry, Chemistry School, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Martin Zehl
- Mass Spectrometry Centre, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | | | - Amanda Martins Baviera
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, Brazil
| | - Marcia A. S. Graminha
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Eduardo R. Perez Gonzalez
- Fine Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-080, Brazil
| |
Collapse
|
8
|
Lemke C, Jílková A, Ferber D, Braune A, On A, Johe P, Zíková A, Schirmeister T, Mareš M, Horn M, Gütschow M. Two Tags in One Probe: Combining Fluorescence- and Biotin-based Detection of the Trypanosomal Cysteine Protease Rhodesain. Chemistry 2022; 28:e202201636. [PMID: 35852812 PMCID: PMC9826439 DOI: 10.1002/chem.202201636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 01/11/2023]
Abstract
Rhodesain is the major cysteine protease of the protozoan parasite Trypanosoma brucei and a therapeutic target for sleeping sickness, a fatal neglected tropical disease. We designed, synthesized and characterized a bimodal activity-based probe that binds to and inactivates rhodesain. This probe exhibited an irreversible mode of action and extraordinary potency for the target protease with a kinac /Ki value of 37,000 M-1 s-1 . Two reporter tags, a fluorescent coumarin moiety and a biotin affinity label, were incorporated into the probe and enabled highly sensitive detection of rhodesain in a complex proteome by in-gel fluorescence and on-blot chemiluminescence. Furthermore, the probe was employed for microseparation and quantification of rhodesain and for inhibitor screening using a competition assay. The developed bimodal rhodesain probe represents a new proteomic tool for studying Trypanosoma pathobiochemistry and antitrypanosomal drug discovery.
Collapse
Affiliation(s)
- Carina Lemke
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Adéla Jílková
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo n. 216610PragueCzech Republic
| | - Dominic Ferber
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Annett Braune
- Research Group Intestinal MicrobiologyGerman Institute of Human Nutrition Potsdam-RehbrueckeArthur-Scheunert-Allee 114–11614558NuthetalGermany
| | - Anja On
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Patrick Johe
- Institute of Pharmaceutical and Biomedical Sciences (IPBS)Johannes Gutenberg University of MainzStaudingerweg 555128MainzGermany
| | - Alena Zíková
- Biology Centre CASInstitute of ParasitologyUniversity of South BohemiaFaculty of ScienceBranišovská 1160/3137005České BudějoviceCzech Republic
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences (IPBS)Johannes Gutenberg University of MainzStaudingerweg 555128MainzGermany
| | - Michael Mareš
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo n. 216610PragueCzech Republic
| | - Martin Horn
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo n. 216610PragueCzech Republic
| | - Michael Gütschow
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
9
|
Ahmadi R, Emami S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur J Med Chem 2022; 234:114255. [DOI: 10.1016/j.ejmech.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
|
10
|
Santos EDS, Silva DKC, dos Reis BPZC, Barreto BC, Cardoso CMA, Ribeiro dos Santos R, Meira CS, Soares MBP. Immunomodulation for the Treatment of Chronic Chagas Disease Cardiomyopathy: A New Approach to an Old Enemy. Front Cell Infect Microbiol 2021; 11:765879. [PMID: 34869068 PMCID: PMC8633308 DOI: 10.3389/fcimb.2021.765879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Chagas disease is a parasitic infection caused by the intracellular protozoan Trypanosoma cruzi. Chronic Chagas cardiomyopathy (CCC) is the most severe manifestation of the disease, developed by approximately 20-40% of patients and characterized by occurrence of arrhythmias, heart failure and death. Despite having more than 100 years of discovery, Chagas disease remains without an effective treatment, especially for patients with CCC. Since the pathogenesis of CCC depends on a parasite-driven systemic inflammatory profile that leads to cardiac tissue damage, the use of immunomodulators has become a rational alternative for the treatment of CCC. In this context, different classes of drugs, cell therapies with dendritic cells or stem cells and gene therapy have shown potential to modulate systemic inflammation and myocarditis in CCC models. Based on that, the present review provides an overview of current reports regarding the use of immunomodulatory agents in treatment of CCC, bringing the challenges and future directions in this field.
Collapse
Affiliation(s)
- Emanuelle de Souza Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
| | | | | | - Breno Cardim Barreto
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | | | - Ricardo Ribeiro dos Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - Cássio Santana Meira
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| |
Collapse
|
11
|
Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorg Med Chem 2021; 46:116365. [PMID: 34419821 DOI: 10.1016/j.bmc.2021.116365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.
Collapse
|
12
|
Santos VC, Oliveira AER, Campos ACB, Reis-Cunha JL, Bartholomeu DC, Teixeira SMR, Lima APCA, Ferreira RS. The gene repertoire of the main cysteine protease of Trypanosoma cruzi, cruzipain, reveals four sub-types with distinct active sites. Sci Rep 2021; 11:18231. [PMID: 34521898 PMCID: PMC8440672 DOI: 10.1038/s41598-021-97490-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cruzipains are the main papain-like cysteine proteases of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Encoded by a multigenic family, previous studies have estimated the presence of dozens of copies spread over multiple chromosomes in different parasite strains. Here, we describe the complete gene repertoire of cruzipain in three parasite strains, their genomic organization, and expression pattern throughout the parasite life cycle. Furthermore, we have analyzed primary sequence variations among distinct family members as well as structural differences between the main groups of cruzipains. Based on phylogenetic inferences and residue positions crucial for enzyme function and specificity, we propose the classification of cruzipains into two families (I and II), whose genes are distributed in two or three separate clusters in the parasite genome, according with the strain. Family I comprises nearly identical copies to the previously characterized cruzipain 1/cruzain, whereas Family II encompasses three structurally distinct sub-types, named cruzipain 2, cruzipain 3, and cruzipain 4. RNA-seq data derived from the CL Brener strain indicates that Family I genes are mainly expressed by epimastigotes, whereas trypomastigotes mainly express Family II genes. Significant differences in the active sites among the enzyme sub-types were also identified, which may play a role in their substrate selectivity and impact their inhibition by small molecules.
Collapse
Affiliation(s)
- Viviane Corrêa Santos
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Antonio Edson Rocha Oliveira
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil ,grid.11899.380000 0004 1937 0722Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Augusto César Broilo Campos
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - João Luís Reis-Cunha
- grid.8430.f0000 0001 2181 4888Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil ,grid.8430.f0000 0001 2181 4888Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | | | - Santuza Maria Ribeiro Teixeira
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ana Paula C. A. Lima
- grid.8536.80000 0001 2294 473XInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Barbosa da Silva E, Rocha DA, Fortes IS, Yang W, Monti L, Siqueira-Neto JL, Caffrey CR, McKerrow J, Andrade SF, Ferreira RS. Structure-Based Optimization of Quinazolines as Cruzain and TbrCATL Inhibitors. J Med Chem 2021; 64:13054-13071. [PMID: 34461718 DOI: 10.1021/acs.jmedchem.1c01151] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cysteine proteases, cruzain and TbrCATL (rhodesain), are therapeutic targets for Chagas disease and Human African Trypanosomiasis, respectively. Among the known inhibitors for these proteases, we have described N4-benzyl-N2-phenylquinazoline-2,4-diamine (compound 7 in the original publication, 1a in this study), as a competitive cruzain inhibitor (Ki = 1.4 μM). Here, we describe the synthesis and biological evaluation of 22 analogs of 1a, containing modifications in the quinazoline core, and in the substituents in positions 2 and 4 of this ring. The analogs demonstrate low micromolar inhibition of the target proteases and cidal activity against Trypanosoma cruzi with up to two log selectivity indices in counterscreens with myoblasts. Fourteen compounds were active against Trypanosoma brucei at low to mid micromolar concentrations. During the optimization of 1a, structure-based design and prediction of physicochemical properties were employed to maintain potency against the enzymes while removing colloidal aggregator characteristics observed for some molecules in this series.
Collapse
Affiliation(s)
- Elany Barbosa da Silva
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Débora A Rocha
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Wenqian Yang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Jair L Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - James McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Graduate Program in Agricultural and Environmental Microbiology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Rafaela S Ferreira
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
14
|
Li L, Chenna BC, Yang KS, Cole TR, Goodall ZT, Giardini M, Moghadamchargari Z, Hernandez EA, Gomez J, Calvet CM, Bernatchez JA, Mellott DM, Zhu J, Rademacher A, Thomas D, Blankenship LR, Drelich A, Laganowsky A, Tseng CTK, Liu WR, Wand AJ, Cruz-Reyes J, Siqueira-Neto JL, Meek TD. Self-Masked Aldehyde Inhibitors: A Novel Strategy for Inhibiting Cysteine Proteases. J Med Chem 2021; 64:11267-11287. [PMID: 34288674 PMCID: PMC10504874 DOI: 10.1021/acs.jmedchem.1c00628] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Bala C Chenna
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Kai S Yang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Taylor R Cole
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Zachary T Goodall
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Miriam Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Zahra Moghadamchargari
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Elizabeth A Hernandez
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jana Gomez
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Claudia M Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Drake M Mellott
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jiyun Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Andrew Rademacher
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Lauren R Blankenship
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555, United States
| | - Wenshe R Liu
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - A Joshua Wand
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Francisco AF, Jayawardhana S, Olmo F, Lewis MD, Wilkinson SR, Taylor MC, Kelly JM. Challenges in Chagas Disease Drug Development. Molecules 2020; 25:E2799. [PMID: 32560454 PMCID: PMC7355550 DOI: 10.3390/molecules25122799] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi causes Chagas disease, an important public health problem throughout Latin America. Current therapeutic options are characterised by limited efficacy, long treatment regimens and frequent toxic side-effects. Advances in this area have been compromised by gaps in our knowledge of disease pathogenesis, parasite biology and drug activity. Nevertheless, several factors have come together to create a more optimistic scenario. Drug-based research has become more systematic, with increased collaborations between the academic and commercial sectors, often within the framework of not-for-profit consortia. High-throughput screening of compound libraries is being widely applied, and new technical advances are helping to streamline the drug development pipeline. In addition, drug repurposing and optimisation of current treatment regimens, informed by laboratory research, are providing a basis for new clinical trials. Here, we will provide an overview of the current status of Chagas disease drug development, highlight those areas where progress can be expected, and describe how fundamental research is helping to underpin the process.
Collapse
Affiliation(s)
- Amanda F. Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Shane R. Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road, London E1 4NS, UK;
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| |
Collapse
|
16
|
Synthesis of new N,S-acetal analogs derived from juglone with cytotoxic activity against Trypanossoma cruzi. J Bioenerg Biomembr 2020; 52:199-213. [PMID: 32418003 DOI: 10.1007/s10863-020-09834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
A series of 11 new N,S-acetal juglone derivatives were synthesized and evaluated against T. cruzi epimastigote forms. These compounds were obtained in good to moderate yields using a microwave irradiation protocol. Among all compounds, two N,S-acetal analogs, showed significant trypanocidal activity. Notably, one compound 11g exhibited selectivity index 10-fold higher than the reference drug benznidazole for epimastigote. The compound 11h was more effective for amastigote forms. Both prototypes exhibited S.I. higher than the benznidazole description. Thus, both compounds proving to be useful candidate molecules to further studies in infected animals.
Collapse
|
17
|
Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 2020; 25:668-688. [PMID: 32006468 PMCID: PMC7102522 DOI: 10.1016/j.drudis.2020.01.015] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 11/25/2022]
Abstract
Human coronaviruses (CoVs) are enveloped viruses with a positive-sense single-stranded RNA genome. Currently, six human CoVs have been reported including human coronavirus 229E (HCoV-229E), OC43 (HCoV-OC43), NL63 (HCoV-NL63), HKU1 (HCoV-HKU1), severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), and MiddleEast respiratory syndrome (MERS) coronavirus (MERS-CoV). They cause moderate to severe respiratory and intestinal infections in humans. In this review, we focus on recent advances in the research and development of small-molecule anti-human coronavirus therapies targeting different stages of the CoV life cycle.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| | | | - Manoj Manickam
- Department of Chemistry, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
18
|
Chenna BC, Li L, Mellott DM, Zhai X, Siqueira-Neto JL, Calvet Alvarez C, Bernatchez JA, Desormeaux E, Alvarez Hernandez E, Gomez J, McKerrow JH, Cruz-Reyes J, Meek TD. Peptidomimetic Vinyl Heterocyclic Inhibitors of Cruzain Effect Antitrypanosomal Activity. J Med Chem 2020; 63:3298-3316. [PMID: 32125159 DOI: 10.1021/acs.jmedchem.9b02078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cruzain, an essential cysteine protease of the parasitic protozoan, Trypanosoma cruzi, is an important drug target for Chagas disease. We describe here a new series of reversible but time-dependent inhibitors of cruzain, composed of a dipeptide scaffold appended to vinyl heterocycles meant to provide replacements for the irreversible reactive "warheads" of vinyl sulfone inactivators of cruzain. Peptidomimetic vinyl heterocyclic inhibitors (PVHIs) containing Cbz-Phe-Phe/homoPhe scaffolds with vinyl-2-pyrimidine, vinyl-2-pyridine, and vinyl-2-(N-methyl)-pyridine groups conferred reversible, time-dependent inhibition of cruzain (Ki* = 0.1-0.4 μM). These cruzain inhibitors exhibited moderate to excellent selectivity versus human cathepsins B, L, and S and showed no apparent toxicity to human cells but were effective in cell cultures of Trypanosoma brucei brucei (EC50 = 1-15 μM) and eliminated T. cruzi in infected murine cardiomyoblasts (EC50 = 5-8 μM). PVHIs represent a new class of cruzain inhibitors that could progress to viable candidate compounds to treat Chagas disease and human sleeping sickness.
Collapse
Affiliation(s)
- Bala C Chenna
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Linfeng Li
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Drake M Mellott
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Xiang Zhai
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Claudia Calvet Alvarez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Emily Desormeaux
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Elizabeth Alvarez Hernandez
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Jana Gomez
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - James H McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jorge Cruz-Reyes
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Thomas D Meek
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Vieira RP, Santos VC, Ferreira RS. Structure-based Approaches Targeting Parasite Cysteine Proteases. Curr Med Chem 2019; 26:4435-4453. [PMID: 28799498 DOI: 10.2174/0929867324666170810165302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022]
Abstract
Cysteine proteases are essential hydrolytic enzymes present in the majority of organisms, including viruses and unicellular parasites. Despite the high sequence identity displayed among these proteins, specific structural features across different species grant distinct functions to these biomolecules, frequently related to pathological conditions. Consequently, their relevance as promising targets for potential specific inhibitors has been highlighted and occasionally validated in recent decades. In this review, we discuss the recent outcomes of structure-based campaigns aiming the discovery of new inhibitor prototypes against cruzain and falcipain, as alternative therapeutic tools for Chagas disease and malaria treatments, respectively. Computational and synthetic approaches have been combined on hit optimization strategies and are also discussed herein. These rationales are extended to additional tropical infectious and neglected pathologies, such as schistosomiasis, leishmaniasis and babesiosis, and also to Alzheimer's Disease, a widespread neurodegenerative disease poorly managed by currently available drugs and recently linked to particular physiopathological roles of human cysteine proteases.
Collapse
Affiliation(s)
- Rafael Pinto Vieira
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.,CAPES Foundation, Ministry of Education of Brazil, 70040-020 Brasília, DF, Brazil
| | - Viviane Corrêa Santos
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
20
|
Barbosa da Silva E, Dall E, Briza P, Brandstetter H, Ferreira RS. Cruzain structures: apocruzain and cruzain bound to S-methyl thiomethanesulfonate and implications for drug design. Acta Crystallogr F Struct Biol Commun 2019; 75:419-427. [PMID: 31204688 PMCID: PMC6572096 DOI: 10.1107/s2053230x19006320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/03/2019] [Indexed: 11/10/2022] Open
Abstract
Chagas disease, which is caused by Trypanosoma cruzi, affects more than six million people worldwide. Cruzain is the major cysteine protease involved in the survival of this parasite. Here, the expression, purification and crystallization of this enzyme are reported. The cruzain crystals diffracted to 1.2 Å resolution, yielding two novel cruzain structures: apocruzain and cruzain bound to the reversible covalent inhibitor S-methyl thiomethanesulfonate. Mass-spectrometric experiments confirmed the presence of a methylthiol group attached to the catalytic cysteine. Comparison of these structures with previously published structures indicates the rigidity of the cruzain structure. These results provide further structural information about the enzyme and may help in new in silico studies to identify or optimize novel prototypes of cruzain inhibitors.
Collapse
Affiliation(s)
- Elany Barbosa da Silva
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elfriede Dall
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
21
|
Quilles JC, Tezuka DY, Lopes CD, Ribeiro FL, Laughton CA, de Albuquerque S, Montanari CA, Leitão A. Dipeptidyl nitrile derivatives have cytostatic effects against Leishmania spp. promastigotes. Exp Parasitol 2019; 200:84-91. [PMID: 30954455 DOI: 10.1016/j.exppara.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/14/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022]
Abstract
Cysteine proteases are involved in critical cell processes to the protozoa from Leishmania genus, and their inhibition is a therapeutic alternative to treat the disease. In this work, derivatives of dipeptidyl nitriles acting as reversible covalent inhibitors of cysteine proteases were studied as cytostatic agents. The proteolytic activity inside the living and lysed parasite cells was quantified using a selective substrate for cysteine proteases (Z-FR-MCA) from Leishmania amazonensis and L. infantum. The overall proteolytic activity of intact cells and even cell extracts was only marginally affected at high concentrations, with the observation of cytostatic activity and cell cycle arrest of promastigotes. However, the cytotoxic effects were only observed for infected J774 macrophages, which impaired further analysis of the amastigote infection. Therefore, the proteolytic inhibition in intact L. amazonensis and L. infantum promastigotes had no relationship to the cytostatic activity, which emphasizes that these dipeptidyl nitriles act through another mechanism of action.
Collapse
Affiliation(s)
- José C Quilles
- Medicinal Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, São Carlos, SP, 13.566-590, Brazil.
| | - Daiane Y Tezuka
- Medicinal Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, São Carlos, SP, 13.566-590, Brazil; Programa de Pós-graduação em Bioengenharia, University of São Paulo (USP), Av. Trabalhador São-carlense, 400, São Carlos, SP, Brazil.
| | - Carla D Lopes
- Medicinal Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, São Carlos, SP, 13.566-590, Brazil; Programa de Pós-graduação em Bioengenharia, University of São Paulo (USP), Av. Trabalhador São-carlense, 400, São Carlos, SP, Brazil.
| | - Fernanda L Ribeiro
- Medicinal Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, São Carlos, SP, 13.566-590, Brazil.
| | - Charles A Laughton
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Sérgio de Albuquerque
- Laboratório de Parasitologia, Falculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Ribeirão Preto, SP, Brazil.
| | - Carlos A Montanari
- Medicinal Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, São Carlos, SP, 13.566-590, Brazil.
| | - Andrei Leitão
- Medicinal Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, São Carlos, SP, 13.566-590, Brazil.
| |
Collapse
|
22
|
Santos LH, Waldner BJ, Fuchs JE, Pereira GAN, Liedl KR, Caffarena ER, Ferreira RS. Understanding Structure–Activity Relationships for Trypanosomal Cysteine Protease Inhibitors by Simulations and Free Energy Calculations. J Chem Inf Model 2018; 59:137-148. [DOI: 10.1021/acs.jcim.8b00557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lucianna H. Santos
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360, Brazil
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Birgit J. Waldner
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 82, Innsbruck, Tyrol 6020, Austria
| | - Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 82, Innsbruck, Tyrol 6020, Austria
| | - Glaécia A. N. Pereira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF Brazil
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 82, Innsbruck, Tyrol 6020, Austria
| | - Ernesto R. Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Rafaela S. Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
23
|
Rocha DA, Silva EB, Fortes IS, Lopes MS, Ferreira RS, Andrade SF. Synthesis and structure-activity relationship studies of cruzain and rhodesain inhibitors. Eur J Med Chem 2018; 157:1426-1459. [DOI: 10.1016/j.ejmech.2018.08.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
|
24
|
Siqueira-Neto JL, Debnath A, McCall LI, Bernatchez JA, Ndao M, Reed SL, Rosenthal PJ. Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis 2018; 12:e0006512. [PMID: 30138453 PMCID: PMC6107107 DOI: 10.1371/journal.pntd.0006512] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cysteine proteases (CPs) play key roles in the pathogenesis of protozoan parasites, including cell/tissue penetration, hydrolysis of host or parasite proteins, autophagy, and evasion or modulation of the host immune response, making them attractive chemotherapeutic and vaccine targets. This review highlights current knowledge on clan CA cysteine proteases, the best-characterized group of cysteine proteases, from 7 protozoan organisms causing human diseases with significant impact: Entamoeba histolytica, Leishmania species (sp.), Trypanosoma brucei, T. cruzi, Cryptosporidium sp., Plasmodium sp., and Toxoplasma gondii. Clan CA proteases from three organisms (T. brucei, T. cruzi, and Plasmodium sp.) are well characterized as druggable targets based on in vitro and in vivo models. A number of candidate inhibitors are under development. CPs from these organisms and from other protozoan parasites should be further characterized to improve our understanding of their biological functions and identify novel targets for chemotherapy.
Collapse
Affiliation(s)
- Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Laura-Isobel McCall
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jean A. Bernatchez
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Momar Ndao
- National Reference Centre for Parasitology, The Research Institute of the McGill University Health Center, Montreal, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sharon L. Reed
- Departments of Pathology and Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
25
|
Martins LC, Torres PHM, de Oliveira RB, Pascutti PG, Cino EA, Ferreira RS. Investigation of the binding mode of a novel cruzain inhibitor by docking, molecular dynamics, ab initio and MM/PBSA calculations. J Comput Aided Mol Des 2018; 32:591-605. [PMID: 29564808 DOI: 10.1007/s10822-018-0112-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/14/2018] [Indexed: 12/24/2022]
Abstract
Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC50 = 15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure-activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.
Collapse
Affiliation(s)
- Luan Carvalho Martins
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil.,Laboratório de Química Farmacêutica, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Pedro Henrique Monteiro Torres
- Programa de Computação Científica, Fundação Oswaldo Cruz - FIOCRUZ, Av. Brasil, 4365, Rio de Janeiro, RJ, CEP 21040-900, Brazil
| | - Renata Barbosa de Oliveira
- Laboratório de Química Farmacêutica, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, CEP 21944-970, Brazil
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
26
|
Sales Junior PA, Molina I, Fonseca Murta SM, Sánchez-Montalvá A, Salvador F, Corrêa-Oliveira R, Carneiro CM. Experimental and Clinical Treatment of Chagas Disease: A Review. Am J Trop Med Hyg 2017; 97:1289-1303. [PMID: 29016289 PMCID: PMC5817734 DOI: 10.4269/ajtmh.16-0761] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/24/2017] [Indexed: 01/16/2023] Open
Abstract
Chagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi that infects a broad range of triatomines and mammalian species, including man. It afflicts 8 million people in Latin America, and its incidence is increasing in nonendemic countries owing to rising international immigration and nonvectorial transmission routes such as blood donation. Since the 1960s, the only drugs available for the clinical treatment of this infection have been benznidazole (BZ) and nifurtimox (NFX). Treatment with these trypanocidal drugs is recommended in both the acute and chronic phases of CD. These drugs have low cure rates mainly during the chronic phase, in addition both drugs present side effects that may result in the interruption of the treatment. Thus, more efficient and better-tolerated new drugs or pharmaceutical formulations containing BZ or NFX are urgently needed. Here, we review the drugs currently used for CD chemotherapy, ongoing clinical assays, and most-promising new experimental drugs. In addition, the mechanism of action of the commercially available drugs, NFX and BZ, the biodistribution of the latter, and the potential for novel formulations of BZ based on nanotechnology are discussed. Taken together, the literature emphasizes the urgent need for new therapies for acute and chronic CD.
Collapse
Affiliation(s)
| | - Israel Molina
- Infectious Diseases Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Adrián Sánchez-Montalvá
- Infectious Diseases Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Fernando Salvador
- Infectious Diseases Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Rodrigo Corrêa-Oliveira
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
27
|
Orlowski GM, Sharma S, Colbert JD, Bogyo M, Robertson SA, Kataoka H, Chan FK, Rock KL. Frontline Science: Multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL-1β activation. J Leukoc Biol 2017; 102:7-17. [PMID: 28087651 PMCID: PMC6608057 DOI: 10.1189/jlb.3hi0316-152r] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Sterile particles cause several chronic, inflammatory diseases, characterized by repeating cycles of particle phagocytosis and inflammatory cell death. Recent studies have proposed that these processes are driven by the NLRP3 inflammasome, a platform activated by phagocytosed particles, which controls both caspase-1-dependent cell death (pyroptosis) and mature IL-1β secretion. After phagocytosis, particles can disrupt lysosomes, and inhibitor studies have suggested that the resulting release of a lysosomal protease-cathepsin B-into the cytosol somehow activates NLRP3. However, using primary murine macrophages, we found that particle-induced cell death occurs independent of NLRP3/caspase-1 and depends instead on multiple, redundant cathepsins. In contrast, nigericin, a soluble activator of NLRP3 inflammasomes, induced cell death that was dependent on the NLRP3. Interestingly, nigericin-induced cell death depended partly on a single cathepsin, cathepsin X. By inhibiting or silencing multiple cathepsins in macrophages, several key proinflammatory events induced by sterile particles are blocked, including cell death, pro-IL-1β production, and IL-1β secretion. These data suggest that cathepsins might be potential therapeutic targets in particulate-mediated inflammatory disease. In support of this concept, we find that a broad-spectrum cathepsin inhibitor can suppress particle-induced IL-1-dependent peritonitis.
Collapse
Affiliation(s)
- Gregory M Orlowski
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shruti Sharma
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA; and
| | - Stephanie A Robertson
- Sandler Center for Drug Discovery, University of California, San Francisco, California, USA
| | - Hiroshi Kataoka
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Francis K Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
28
|
Hernández González JE, Hernández Alvarez L, Pascutti PG, Valiente PA. Predicting binding modes of reversible peptide-based inhibitors of falcipain-2 consistent with structure-activity relationships. Proteins 2017; 85:1666-1683. [DOI: 10.1002/prot.25322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Física; Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho; Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto São Paulo CEP 15054-000 Brazil
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana; Calle 25 No. 455, entre J e I, Vedado, Plaza de la Revolución La Habana CP 10400 Cuba
| | - Lilian Hernández Alvarez
- Departamento de Física; Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho; Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto São Paulo CEP 15054-000 Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Dinâmica e Modelagem Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão; Rio de Janeiro CEP 21941-902 Brazil
| | - Pedro A. Valiente
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana; Calle 25 No. 455, entre J e I, Vedado, Plaza de la Revolución La Habana CP 10400 Cuba
| |
Collapse
|
29
|
Tolbert MK, Brand MD, Gould EN. In vitro effects of cysteine protease inhibitors on Trichomonas foetus-induced cytopathic changes in porcine intestinal epithelial cells. Am J Vet Res 2017; 77:890-7. [PMID: 27463553 DOI: 10.2460/ajvr.77.8.890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effects of specific cysteine protease (CP) inhibitors on cytopathic changes to porcine intestinal epithelial cells induced by Tritrichomonas foetus isolated from naturally infected cats. SAMPLE T foetus isolates from 4 naturally infected cats and nontransformed porcine intestinal epithelial cells. PROCEDURES T foetus isolates were treated with or without 0.1 to 1.0mM of the CP inhibitors antipain, cystatin, leupeptin, and chymostatin and the vinyl sulfone inhibitors WRR-483 and K11777. In-gel gelatin zymography was performed to evaluate the effects of these inhibitors on CP activity of T foetus isolates. Each treated or untreated isolate was also cocultured with monolayers of porcine intestinal epithelial cells for 24 hours, and cytopathic effects of T foetus were evaluated by light microscopy and crystal violet spectrophotometry. RESULTS Results of in-gel gelatin zymography suggested an ability of WRR-483, K11777, and cystatin to target specific zones of CP activity of the T foetus isolates. These inhibitors had no effect on T foetus growth, and the cytopathic changes to the intestinal epithelium induced by all 4 T foetus isolates were significantly inhibited. CONCLUSIONS AND CLINICAL RELEVANCE This study revealed that certain protease inhibitors were capable of inhibiting regions of CP activity (which has been suggested to cause intestinal cell damage in cats) in T foetus organisms and of ameliorating T foetus-induced cytopathic changes to porcine intestinal epithelium in vitro. Although additional research is needed, these inhibitors might be useful in the treatment of cats with trichomonosis.
Collapse
|
30
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
31
|
Rodriguez JB, Falcone BN, Szajnman SH. Detection and treatment ofTrypanosoma cruzi: a patent review (2011-2015). Expert Opin Ther Pat 2016; 26:993-1015. [DOI: 10.1080/13543776.2016.1209487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016. [PMID: 26868298 DOI: 10.1038/nrd201537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, 307 Euston Road, London NW1 3AD, UK
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 128442, Jeddah - 21362, Kingdom of Saudi Arabia
| | - David S C Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
33
|
Abstract
INTRODUCTION Chagas disease is a chronic infection associated with long-term morbidity. Increased funding and advocacy for drug discovery for neglected diseases have prompted the introduction of several important technological advances, and Chagas disease is among the neglected conditions that has mostly benefited from technological developments. A number of screening campaigns, and the development of new and improved in vitro and in vivo assays, has led to advances in the field of drug discovery. AREAS COVERED This review highlights the major advances in Chagas disease drug screening, and how these are being used not only to discover novel chemical entities and drug candidates, but also increase our knowledge about the disease and the parasite. Different methodologies used for compound screening and prioritization are discussed, as well as novel techniques for the investigation of these targets. The molecular mechanism of action is also discussed. EXPERT OPINION Technological advances have been executed with scientific rigour for the development of new in vitro cell-based assays and in vivo animal models, to bring about novel and better drugs for Chagas disease, as well as to increase our understanding of what are the necessary properties for a compound to be successful in the clinic. The gained knowledge, combined with new exciting approaches toward target deconvolution, will help identifying new targets for Chagas disease chemotherapy in the future.
Collapse
Affiliation(s)
- Carolina B Moraes
- a Laboratório Nacional de Biociências (LNBio) , Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , Campinas , Brazil
| | - Caio H Franco
- a Laboratório Nacional de Biociências (LNBio) , Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , Campinas , Brazil.,b Graduate Program in Microbiology and Immunology , Universidade Federal de Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
34
|
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15:327-47. [PMID: 26868298 PMCID: PMC7097181 DOI: 10.1038/nrd.2015.37] [Citation(s) in RCA: 1166] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are examples of emerging zoonotic coronavirus infections capable of person-to-person transmission that result in large-scale epidemics with substantial effects on patient health and socioeconomic factors. Unlike patients with mild illnesses that are caused by other human-pathogenic coronaviruses, patients with SARS or MERS coronavirus infections may develop severe acute respiratory disease with multi-organ failure. The case–fatality rates of SARS and MERS are approximately 10% and 35%, respectively. Both SARS and MERS pose major clinical management challenges because there is no specific antiviral treatment that has been proven to be effective in randomized clinical trials for either infection. Substantial efforts are underway to discover new therapeutic agents for coronavirus infections. Virus-based therapies include monoclonal antibodies and antiviral peptides that target the viral spike glycoprotein, viral enzyme inhibitors, viral nucleic acid synthesis inhibitors and inhibitors of other viral structural and accessory proteins. Host-based therapies include agents that potentiate the interferon response or affect either host signalling pathways involved in viral replication or host factors utilized by coronaviruses for viral replication. The major challenges in the clinical development of novel anti-coronavirus drugs include the limited number of suitable animal models for the evaluation of potential treatments for SARS and MERS, the current absence of new SARS cases, the limited number of MERS cases — which are also predominantly geographically confined to the Middle East — as well as the lack of industrial incentives to develop antivirals for mild infections caused by other, less pathogenic coronaviruses. The continuing threat of MERS-CoV to global health 3 years after its discovery presents a golden opportunity to tackle current obstacles in the development of new anti-coronavirus drugs. A well-organized, multidisciplinary, international collaborative network consisting of clinicians, virologists and drug developers, coupled to political commitment, should be formed to carry out clinical trials using anti-coronavirus drugs that have already been shown to be safe and effective in vitro and/or in animal models, particularly lopinavir–ritonavir, interferon beta-1b and monoclonal antibodies and antiviral peptides targeting the viral spike glycoprotein.
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which are caused by coronaviruses, have attracted substantial attention owing to their high mortality rates and potential to cause epidemics. Yuen and colleagues discuss progress with treatment options for these syndromes, including virus- and host-targeted drugs, and the challenges that need to be overcome in their further development. In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, 307 Euston Road, London NW1 3AD, UK
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 128442, Jeddah - 21362, Kingdom of Saudi Arabia
| | - David S C Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
35
|
Kiemele ER, Wathier M, Bichler P, Love JA. Total Synthesis of K777: Successful Application of Transition-Metal-Catalyzed Alkyne Hydrothiolation toward the Modular Synthesis of a Potent Cysteine Protease Inhibitor. Org Lett 2016; 18:492-5. [PMID: 26811991 DOI: 10.1021/acs.orglett.5b03535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report the total synthesis of K777 and a series of analogues via alkyne hydrothiolation catalyzed by Wilkinson's complex (ClRh(PPh3)3). The alkyne hydrothiolation reactions proceeded with excellent regio- and diastereoselectivity to generate the desired E-linear vinyl sulfides in high yield. The use of Ellman's auxiliary generates the requisite propargyl amines in excellent enantiomeric excess (ee) and obviates the use of L-homophenylalanine, an expensive unnatural amino acid. The vinyl sulfone derivatives exhibit a large difference in rate toward Michael addition. Kinetic data are consistent with rate-limiting nucleophilic attack to generate the carbanion intermediate.
Collapse
Affiliation(s)
- Erica R Kiemele
- Department of Chemistry, 2036 Main Mall, The University of British Columbia , Vancouver, BC, Canada , V6T 1Z1
| | - Matthew Wathier
- Department of Chemistry, 2036 Main Mall, The University of British Columbia , Vancouver, BC, Canada , V6T 1Z1
| | - Paul Bichler
- Department of Chemistry, 2036 Main Mall, The University of British Columbia , Vancouver, BC, Canada , V6T 1Z1
| | - Jennifer A Love
- Department of Chemistry, 2036 Main Mall, The University of British Columbia , Vancouver, BC, Canada , V6T 1Z1
| |
Collapse
|
36
|
Jones BD, Tochowicz A, Tang Y, Cameron MD, McCall LI, Hirata K, Siqueira-Neto JL, Reed SL, McKerrow JH, Roush WR. Synthesis and Evaluation of Oxyguanidine Analogues of the Cysteine Protease Inhibitor WRR-483 against Cruzain. ACS Med Chem Lett 2016; 7:77-82. [PMID: 26819670 DOI: 10.1021/acsmedchemlett.5b00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022] Open
Abstract
A series of oxyguanidine analogues of the cysteine protease inhibitor WRR-483 were synthesized and evaluated against cruzain, the major cysteine protease of the protozoan parasite Trypanosoma cruzi. Kinetic analyses of these analogues indicated that they have comparable potency to previously prepared vinyl sulfone cruzain inhibitors. Co-crystal structures of the oxyguanidine analogues WRR-666 (4) and WRR-669 (7) bound to cruzain demonstrated different binding interactions with the cysteine protease, depending on the aryl moiety of the P1' inhibitor subunit. Specifically, these data demonstrate that WRR-669 is bound noncovalently in the crystal structure. This represents a rare example of noncovalent inhibition of a cysteine protease by a vinyl sulfone inhibitor.
Collapse
Affiliation(s)
- Brian D. Jones
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Anna Tochowicz
- Department
of Pathology and Sandler Center for Drug Discovery, University of California-San Francisco, 1700 Fourth Street, San
Francisco, California 94158-2250, United States
| | - Yinyan Tang
- Small
Molecule Discovery Center, University of California-San Francisco, 1700 Fourth Street, San Francisco, California 94158-2250, United States
| | - Michael D. Cameron
- Department
of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Laura-Isobel McCall
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ken Hirata
- Department
of Pathology, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jair L. Siqueira-Neto
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sharon L. Reed
- Departments
of Pathology and Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - James H. McKerrow
- Department
of Pathology and Sandler Center for Drug Discovery, University of California-San Francisco, 1700 Fourth Street, San
Francisco, California 94158-2250, United States
| | - William R. Roush
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
37
|
Orlowski GM, Colbert JD, Sharma S, Bogyo M, Robertson SA, Rock KL. Multiple Cathepsins Promote Pro-IL-1β Synthesis and NLRP3-Mediated IL-1β Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1685-97. [PMID: 26195813 PMCID: PMC4530060 DOI: 10.4049/jimmunol.1500509] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
Abstract
Sterile particles induce robust inflammatory responses that underlie the pathogenesis of diseases like silicosis, gout, and atherosclerosis. A key cytokine mediating this response is IL-1β. The generation of bioactive IL-1β by sterile particles is mediated by the NOD-like receptor containing a pyrin domain 3 (NLRP3) inflammasome, although exactly how this occurs is incompletely resolved. Prior studies have found that the cathepsin B inhibitor, Ca074Me, suppresses this response, supporting a model whereby ingested particles disrupt lysosomes and release cathepsin B into the cytosol, somehow activating NLRP3. However, reports that cathepsin B-deficient macrophages have no defect in particle-induced IL-1β generation have questioned cathepsin B's involvement. In this study, we examine the hypothesis that multiple redundant cathepsins (not just cathepsin B) mediate this process by evaluating IL-1β generation in murine macrophages, singly or multiply deficient in cathepsins B, L, C, S and X. Using an activity-based probe, we measure specific cathepsin activity in living cells, documenting compensatory changes in cathepsin-deficient cells, and Ca074Me's dose-dependent cathepsin inhibition profile is analyzed in parallel with its suppression of particle-induced IL-1β secretion. Also, we evaluate endogenous cathepsin inhibitors cystatins C and B. Surprisingly, we find that multiple redundant cathepsins, inhibited by Ca074Me and cystatins, promote pro-IL-1β synthesis, and to our knowledge, we provide the first evidence that cathepsin X plays a nonredundant role in nonparticulate NLRP3 activation. Finally, we find cathepsin inhibitors selectively block particle-induced NLRP3 activation, independently of suppressing pro-IL-1β synthesis. Altogether, we demonstrate that both small molecule and endogenous cathepsin inhibitors suppress particle-induced IL-1β secretion, implicating roles for multiple cathepsins in both pro-IL-1β synthesis and NLRP3 activation.
Collapse
Affiliation(s)
- Gregory M Orlowski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shruti Sharma
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Stephanie A Robertson
- Sandler Center for Drug Discovery, University of California, San Francisco, San Francisco, CA 94158
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655;
| |
Collapse
|
38
|
Avelar LAA, Camilo CD, de Albuquerque S, Fernandes WB, Gonçalez C, Kenny PW, Leitão A, McKerrow JH, Montanari CA, Orozco EVM, Ribeiro JFR, Rocha JR, Rosini F, Saidel ME. Molecular Design, Synthesis and Trypanocidal Activity of Dipeptidyl Nitriles as Cruzain Inhibitors. PLoS Negl Trop Dis 2015; 9:e0003916. [PMID: 26173110 PMCID: PMC4501791 DOI: 10.1371/journal.pntd.0003916] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/16/2015] [Indexed: 12/01/2022] Open
Abstract
A series of compounds based on the dipeptidyl nitrile scaffold were synthesized and assayed for their inhibitory activity against the T. cruzi cysteine protease cruzain. Structure activity relationships (SARs) were established using three, eleven and twelve variations respectively at the P1, P2 and P3 positions. A Ki value of 16 nM was observed for the most potent of these inhibitors which reflects a degree of non-additivity in the SAR. An X-ray crystal structure was determined for the ligand-protein complex for the structural prototype for the series. Twenty three inhibitors were also evaluated for their anti-trypanosomal effects and an EC50 value of 28 μM was observed for the most potent of these. Although there remains scope for further optimization, the knowledge gained from this study is also transferable to the design of cruzain inhibitors based on warheads other than nitrile as well as alternative scaffolds. Chagas disease is a parasitic infection with high morbidity and mortality that is endemic in much of Latin America where it remains a serious public health problem. With increased migration, Chagas disease represents an emerging worldwide challenge and there is an urgent, unmet need for safe and effective medication. The available drugs to treat Chagas disease may be effective in the acute phase of the disease, but efficacy in the chronic phase remains controversial. They can cause serious side effects that lead sufferers to abandon treatment. Using a hypothesis-driven approach to molecular design and drawing on cysteine protease cruzain structural information, we have mapped structure-activity relationships for a dipeptidyl nitrile scaffold and demonstrated that compounds are competitive inhibitors, bind reversibly and bear trypanocidal activity. The binding mode revealed by the crystal structure of the protein-ligand complex for one of the inhibitors shows that binding involves the formation of a covalent bond between the catalytic cysteine and the nitrile carbon. As such, we believe that our study represents a valuable step in the search for new drugs for the treatment of a neglected disease that continues to affect the lives of millions of people.
Collapse
Affiliation(s)
- Leandro A. A. Avelar
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Cristian D. Camilo
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Sérgio de Albuquerque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - William B. Fernandes
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, California, United States of America
| | - Cristiana Gonçalez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Peter W. Kenny
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- * E-mail: (PWK); (CAM)
| | - Andrei Leitão
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - James H. McKerrow
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, California, United States of America
| | - Carlos A. Montanari
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- * E-mail: (PWK); (CAM)
| | - Erika V. Meñaca Orozco
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Jean F. R. Ribeiro
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Josmar R. Rocha
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Fabiana Rosini
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Marta E. Saidel
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
39
|
Martinez-Mayorga K, Byler KG, Ramirez-Hernandez AI, Terrazas-Alvares DE. Cruzain inhibitors: efforts made, current leads and a structural outlook of new hits. Drug Discov Today 2015; 20:890-8. [DOI: 10.1016/j.drudis.2015.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 12/28/2022]
|
40
|
Borbulevych OY, Plumley JA, Martin RI, Merz KM, Westerhoff LM. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1233-47. [PMID: 24816093 PMCID: PMC4014119 DOI: 10.1107/s1399004714002260] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/30/2014] [Indexed: 01/22/2023]
Abstract
Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.
Collapse
Affiliation(s)
| | - Joshua A. Plumley
- QuantumBio Inc., 2790 West College Avenue, State College, PA 16801, USA
| | - Roger I. Martin
- QuantumBio Inc., 2790 West College Avenue, State College, PA 16801, USA
| | - Kenneth M. Merz
- Quantum Theory Project, University of Florida, Gainesville, Florida USA
| | | |
Collapse
|
41
|
Ferreira RS, Dessoy MA, Pauli I, Souza ML, Krogh R, Sales AIL, Oliva G, Dias LC, Andricopulo AD. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J Med Chem 2014; 57:2380-92. [PMID: 24533839 DOI: 10.1021/jm401709b] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of cruzain inhibitors has been driven by the urgent need to develop novel and more effective drugs for the treatment of Chagas' disease. Herein, we report the lead optimization of a class of noncovalent cruzain inhibitors, starting from an inhibitor previously cocrystallized with the enzyme (K(i) = 0.8 μM). With the goal of achieving a better understanding of the structure-activity relationships, we have synthesized and evaluated a series of over 40 analogues, leading to the development of a very promising competitive inhibitor (8r, IC50 = 200 nM, K(i) = 82 nM). Investigation of the in vitro trypanocidal activity and preliminary cytotoxicity revealed the potential of the most potent cruzain inhibitors in guiding further medicinal chemistry efforts to develop drug candidates for Chagas' disease.
Collapse
Affiliation(s)
- Rafaela S Ferreira
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo , Avenida João Dagnone 1100, Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fonseca-Berzal C, Escario JA, Arán VJ, Gómez-Barrio A. Further insights into biological evaluation of new anti-Trypanosoma cruzi 5-nitroindazoles. Parasitol Res 2014; 113:1049-56. [PMID: 24435615 DOI: 10.1007/s00436-013-3740-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/23/2013] [Indexed: 11/25/2022]
Abstract
Twelve molecules from a series of 35 new 5-nitroindazole derivatives, selected from a successful primary screening on Trypanosoma cruzi epimastigotes, have been evaluated against intracellular amastigotes according to the previous results of their trypanocidal activity and unspecific cytotoxicity. 2-Benzyl-1-propyl (22), 2-benzyl-1-isopropyl (23), and 2-benzyl-1-butyl (24) 5-nitroindazolin-3-ones have inhibited the growth of amastigotes similarly to the reference drugs benznidazole and nifurtimox, inducing complete growth inhibition at concentrations lower than 8 μM (IC₅₀ < 5 μM) and accomplishing great selectivity indexes on the intracellular form of the parasite (SI > 30). Further in vivo assays were developed only for two of the most active molecules (22 and 24), reaching significant reductions in parasitemia levels (52 % and 77%, respectively) after their oral administration to infected mice. In addition, none of the mice in experimental and benznidazole groups died, unlike in the control group which is only treated with the vehicle. The trypanocidal properties found in some of the 5-nitroindazole derivatives assayed in the present work represent an interesting contribution to the urgent need for searching new antichagasic drugs.
Collapse
Affiliation(s)
- Cristina Fonseca-Berzal
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (CEI Campus Moncloa, UCM-UPM & CSIC), Pza. Ramón y Cajal s/n, 28040, Madrid, Spain,
| | | | | | | |
Collapse
|
43
|
Fanfrlík J, Brahmkshatriya PS, Řezáč J, Jílková A, Horn M, Mareš M, Hobza P, Lepšík M. Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors. J Phys Chem B 2013; 117:14973-82. [PMID: 24195769 DOI: 10.1021/jp409604n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The quantum mechanics (QM)-based scoring function that we previously developed for the description of noncovalent binding in protein-ligand complexes has been modified and extended to treat covalent binding of inhibitory ligands. The enhancements are (i) the description of the covalent bond breakage and formation using hybrid QM/semiempirical QM (QM/SQM) restrained optimizations and (ii) the addition of the new ΔG(cov)' term to the noncovalent score, describing the "free" energy difference between the covalent and noncovalent complexes. This enhanced QM-based scoring function is applied to a series of 20 vinyl sulfone-based inhibitory compounds inactivating the cysteine peptidase cathepsin B1 of the Schistosoma mansoni parasite (SmCB1). The available X-ray structure of the SmCB1 in complex with a potent vinyl sulfone inhibitor K11017 is used as a template to build the other covalently bound complexes and to model the derived noncovalent complexes. We present the correlation of the covalent score and its constituents with the experimental binding data. Four outliers are identified. They contain bulky R1' substituents structurally divergent from the template, which might induce larger protein rearrangements than could be accurately modeled. In summary, we propose a new computational approach and an optimal protocol for the rapid evaluation and prospective design of covalent inhibitors with a conserved binding mode.
Collapse
Affiliation(s)
- Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, v.v.i., and Gilead Sciences and IOCB Research Center, Academy of Sciences of the Czech Republic , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dunny E, Doherty W, Evans P, Malthouse JPG, Nolan D, Knox AJS. Vinyl Sulfone-Based Peptidomimetics as Anti-Trypanosomal Agents: Design, Synthesis, Biological and Computational Evaluation. J Med Chem 2013; 56:6638-50. [DOI: 10.1021/jm400294w] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Elizabeth Dunny
- Centre for Synthesis
and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - William Doherty
- Centre for Synthesis
and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - Paul Evans
- Centre for Synthesis
and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - J. Paul G. Malthouse
- Conway Institute,
School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Derek Nolan
- School of Biochemistry
and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Andrew J. S. Knox
- School of Biochemistry
and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| |
Collapse
|
45
|
Wiggers HJ, Rocha JR, Fernandes WB, Sesti-Costa R, Carneiro ZA, Cheleski J, da Silva ABF, Juliano L, Cezari MHS, Silva JS, McKerrow JH, Montanari CA. Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay. PLoS Negl Trop Dis 2013; 7:e2370. [PMID: 23991231 PMCID: PMC3750009 DOI: 10.1371/journal.pntd.0002370] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (Ki) in the low micromolar range (3–60 µM) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4–80 µM), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6±0.1 µM, tenfold lower than that obtained for benznidazole, which was taken as positive control. In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE) of 0.33 kcal mol−1 atom−1 (compound Nequimed176) is highlighted as a novel non-peptidic, non-covalent cruzain inhibitor as a trypanocidal agent candidate for optimization. Chagas disease (American trypanosomiasis) is a parasitic infection that kills millions of mostly poverty-stricken people in Latin America. In recent years it has also spread to nonendemic countries – the United States, Canada, Europe, Australia and Japan – as a result of immigration. The only available drugs for its treatment were introduced more than forty years ago, have low efficacy, and cause various severe side effects. This dire public health situation has prompted us to search for new small molecules to act as drug candidates to treat Chagas disease. The T. cruzi enzyme cruzain, a key biological catalyst used by the protozoan to digest host proteins, is a validated drug target for Chagas disease. By combining in silico molecular design, X-ray crystallography and biological screening, we found a new class of non-covalent small molecules that inhibit cruzain in low micromolar concentrations.
Collapse
Affiliation(s)
- Helton J. Wiggers
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Josmar R. Rocha
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - William B. Fernandes
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- University of California San Francisco, Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Department of Pathology, San Francisco, California, United States of America
| | - Renata Sesti-Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Zumira A. Carneiro
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Cheleski
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Albérico B. F. da Silva
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria H. S. Cezari
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João S. Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - James H. McKerrow
- University of California San Francisco, Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Department of Pathology, San Francisco, California, United States of America
- * E-mail: (JHM); (CAM)
| | - Carlos A. Montanari
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- * E-mail: (JHM); (CAM)
| |
Collapse
|
46
|
Veiga-Santos P, Desoti VC, Miranda N, Ueda-Nakamura T, Dias-Filho BP, Silva SO, Cortez DAG, de Mello JCP, Nakamura CV. The natural compounds piperovatine and piperlonguminine induce autophagic cell death on Trypanosoma cruzi. Acta Trop 2013; 125:349-56. [PMID: 23228524 DOI: 10.1016/j.actatropica.2012.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023]
Abstract
The currently available treatments for Chagas disease show limited therapeutic potential and are associated with serious side effects. Our group has been attempting to find alternative drugs isolated from natural products as a potential source of pharmacological agents against Trypanosoma cruzi. Here, we demonstrate the antitrypanosomal activity of the amides piperovatine and piperlonguminine isolated from Piper ovatum against epimastigotes and intracellular amastigotes. We also investigated the mechanisms of action of these compounds on extracellular amastigote and epimastigote forms of T. cruzi. These amides showed low toxicity to LLCMK(2) mammalian cells. By using transmission and scanning electron microscopy, we observed that the compounds caused severe alterations in T. cruzi. These alterations were mainly located in plasma membrane and mitochondria. Furthermore, the study of treated parasites labeled with Rh123, PI and MDC corroborate with our TEM data. These mitochondrial dysfunctions induced by the amides might trigger biochemical alterations that lead to cell death. Altogether, our data evidence a possible autophagic process.
Collapse
Affiliation(s)
- Phercyles Veiga-Santos
- Programa de Pós-graduação em Ciências Farmacêuticas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dobish MC, Villalta F, Waterman MR, Lepesheva GI, Johnston JN. Organocatalytic, enantioselective synthesis of VNI: a robust therapeutic development platform for Chagas, a neglected tropical disease. Org Lett 2012; 14:6322-5. [PMID: 23214987 DOI: 10.1021/ol303092v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
VNI is a potent inhibitor of CYP51 and was recently shown to achieve a parasitological cure of mice infected with T. cruzi in both acute and chronic stages of infection. T. cruzi is the causative parasite of Chagas disease, a neglected tropical disease. The first enantioselective chemical synthesis of VNI (at a materials cost of less than $0.10/mg) is described. Furthermore, the key enantioselective step is performed at the 10 g scale.
Collapse
Affiliation(s)
- Mark C Dobish
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | | | | | | | |
Collapse
|
48
|
De Rycker M, O'Neill S, Joshi D, Campbell L, Gray DW, Fairlamb AH. A static-cidal assay for Trypanosoma brucei to aid hit prioritisation for progression into drug discovery programmes. PLoS Negl Trop Dis 2012; 6:e1932. [PMID: 23209868 PMCID: PMC3510075 DOI: 10.1371/journal.pntd.0001932] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022] Open
Abstract
Human African Trypanosomiasis is a vector-borne disease of sub-Saharan Africa that causes significant morbidity and mortality. Current therapies have many drawbacks, and there is an urgent need for new, better medicines. Ideally such new treatments should be fast-acting cidal agents that cure the disease in as few doses as possible. Screening assays used for hit-discovery campaigns often do not distinguish cytocidal from cytostatic compounds and further detailed follow-up experiments are required. Such studies usually do not have the throughput required to test the large numbers of hits produced in a primary high-throughput screen. Here, we present a 384-well assay that is compatible with high-throughput screening and provides an initial indication of the cidal nature of a compound. The assay produces growth curves at ten compound concentrations by assessing trypanosome counts at 4, 24 and 48 hours after compound addition. A reduction in trypanosome counts over time is used as a marker for cidal activity. The lowest concentration at which cell killing is seen is a quantitative measure for the cidal activity of the compound. We show that the assay can identify compounds that have trypanostatic activity rather than cidal activity, and importantly, that results from primary high-throughput assays can overestimate the potency of compounds significantly. This is due to biphasic growth inhibition, which remains hidden at low starting cell densities and is revealed in our static-cidal assay. The assay presented here provides an important tool to follow-up hits from high-throughput screening campaigns and avoid progression of compounds that have poor prospects due to lack of cidal activity or overestimated potency.
Collapse
Affiliation(s)
- Manu De Rycker
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom.
| | | | | | | | | | | |
Collapse
|
49
|
Molecular characterization and expression analysis of ubiquitin-activating enzyme E1 gene in Citrus reticulata. Gene 2012; 513:249-59. [PMID: 23154060 DOI: 10.1016/j.gene.2012.10.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/12/2012] [Accepted: 10/09/2012] [Indexed: 11/21/2022]
Abstract
Ubiquitin-activating enzyme E1 (UBE1) catalyzes the first step in the ubiquitination reaction, which targets a protein for degradation via a proteasome pathway. UBE1 plays an important role in metabolic processes. In this study, full-length cDNA and DNA sequences of UBE1 gene, designated CrUBE1, were obtained from 'Wuzishatangju' (self-incompatible, SI) and 'Shatangju' (self-compatible, SC) mandarins. 5 amino acids and 8 bases were different in cDNA and DNA sequences of CrUBE1 between 'Wuzishatangju' and 'Shatangju', respectively. Southern blot analysis showed that there existed only one copy of the CrUBE1 gene in genome of 'Wuzishatangju' and 'Shatangju'. The temporal and spatial expression characteristics of the CrUBE1 gene were investigated using semi-quantitative RT-PCR (SqPCR) and quantitative real-time PCR (qPCR). The expression level of the CrUBE1 gene in anthers of 'Shatangju' was approximately 10-fold higher than in anthers of 'Wuzishatangju'. The highest expression level of CrUBE1 was detected in pistils at 7days after self-pollination of 'Wuzishatangju', which was approximately 5-fold higher than at 0 h. To obtain CrUBE1 protein, the full-length cDNA of CrUBE1 genes from 'Wuzishatangju' and 'Shatangju' were successfully expressed in Pichia pastoris. Pollen germination frequency of 'Wuzishatangju' was significantly inhibited with increasing of CrUBE1 protein concentrations from 'Wuzishatangju'.
Collapse
|
50
|
Matta Guedes PM, Gutierrez FRS, Nascimento MSL, Do-Valle-Matta MA, Silva JS. Antiparasitical chemotherapy in Chagas' disease cardiomyopathy: current evidence. Trop Med Int Health 2012; 17:1057-65. [PMID: 22686518 DOI: 10.1111/j.1365-3156.2012.03025.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic chagasic cardiomyopathy affects 20% of Chagas' disease patients. At present, Chagas' disease chemotherapy uses nitrofurans, benznidazole (Rochagan®, Rodanil®, Roche) or nifurtimox (Lampit®, Bayer). Treatment during acute and recent chronic phases in childhood effects 71.5% and 57.6%, respectively, of parasitological cure. However, in clinical trials during the late chronic phase, only 5.9% of parasitological cure were achieved. This review focuses on the benefit from aetiological treatment to avoid, stop or revert myocarditis. Divergent data gathered from clinical practice are not convincing to support prescription of aetiological treatment as routine for indeterminate and cardiac chronic patients.
Collapse
Affiliation(s)
- Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| | | | | | | | | |
Collapse
|