1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Ferraro F, Merlino A, Gil J, Pérez-Silanes S, Corvo I, Cabrera M. Flavonoid-Quinoxaline Hybrid Compounds as Cathepsin Inhibitors Against Fascioliasis. ChemMedChem 2024; 19:e202400305. [PMID: 38871654 DOI: 10.1002/cmdc.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Fasciola hepatica is a parasitic trematode that infects livestock animals and humans, causing significant health and economic burdens worldwide. The extensive use of anthelmintic drugs has led to the emergence of resistant parasite strains, posing a threat to treatment success. The complex life cycle of the liver fluke, coupled with limited funding and research interest, have hindered progress in drug discovery. Our group has been working in drug development against this parasite using cathepsin proteases as molecular targets, finding promising compound candidates with in vitro and in vivo efficacy. Here, we evaluated hybrid molecules that combine two chemotypes, chalcones and quinoxaline 1,4-di- N-oxides, previously found to inhibit F. hepatica cathepsin Ls and tested their in vitro activity with the isolated targets and the parasites in culture. These molecules proved to be good cathepsin inhibitors and to kill the juvenile parasites at micromolar concentrations. Also, we performed molecular docking studies to analyze the compounds-cathepsins interface, finding that the best inhibitors interact at the active site cleft and contact the catalytic dyad and residues belonging to the substrate binding pockets. We conclude that the hybrid compounds constitute promising scaffolds for the further development of new fasciolicidal compounds.
Collapse
Affiliation(s)
- Florencia Ferraro
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| | - Alicia Merlino
- Laboratorio de Química Teórica y Computacional, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Facultad de Veterinaria, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| | - Silvia Pérez-Silanes
- ISTUN Institute of Tropical Health, Department of Pharmaceutical Sciences, Universidad de Navarra, IdiSNA (Navarra Institute for Health Research), Campus Universitario, 31009, Pamplona, Spain
| | - Ileana Corvo
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| | - Mauricio Cabrera
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Ruta 3 km 363, Paysandú, 60000, Uruguay
| |
Collapse
|
3
|
Hanna REB, Brennan GP, Robinson MW, Kajugu PE, Quinn JM. Fasciola gigantica: Ultrastructural localisation of neoblast recruitment in somatic tissues during growth and development in the hepatic parenchyma of experimentally infected mice. Vet Parasitol 2024; 330:110244. [PMID: 38964116 DOI: 10.1016/j.vetpar.2024.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Application of 'omics' technology, and advances in in vitro methods for studying the growth of Fasciola hepatica, have highlighted the central role of migrating neoblasts in driving forward development and differentiation towards the adult-like form. Neoblast populations present molecular heterogeneity, morphological variation and changes associated with recruitment of these stem cells into their final tissue locations. However, terminal differentiation towards function, has received much less attention than has been the case for the free-living Platyhelminths. An actively replicating neoblast population, comprising cells with heterochromatic nuclei consistent with regulation of gene expression, has been identified in the parenchyma of juvenile Fasciola gigantica migrating in the liver of experimentally infected mice. In some of these cells, early cytoplasmic differentiation towards myocyte function was noted. Neoblasts have also been identified close to, and incorporated in, the subtegumental zone, the gastrodermis and the excretory ducts. In these locations, progressive morphological differentiation towards terminal function has been described. This includes the appearance of specific progenitors of type-1, type-2 and type-3 tegumental cells, the latter possibly contributing to tegumental spine development. 'Cryptic' surface molecular differentiation is postulated to account for recognition and 'docking' of migrating neoblasts with their final site for terminal differentiation.
Collapse
Affiliation(s)
- R E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, United Kingdom.
| | - G P Brennan
- School of Biological Sciences, The Queen's University of Belfast, Belfast BT9 7BL, United Kingdom
| | - M W Robinson
- School of Biological Sciences, The Queen's University of Belfast, Belfast BT9 7BL, United Kingdom
| | - P-E Kajugu
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, United Kingdom
| | - J M Quinn
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, United Kingdom
| |
Collapse
|
4
|
Naidich A, Gutierrez AM, Camicia F. Molecular characterization of EcCLP1, a new putative cathepsin L protease from Echinococcus canadensis. Parasite 2024; 31:39. [PMID: 38995112 PMCID: PMC11242924 DOI: 10.1051/parasite/2024036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Echinococcus granulosus sensu lato is a platyhelminth parasite and the etiological cause of cystic echinococcosis (CE), a zoonotic and neglected disease that infects animals and humans worldwide. As a part of the biological arsenal of the parasite, cathepsin L proteases are a group of proteins that are believed to be essential for parasite penetration, immune evasion, and establishment in the tissues of the host. In this work, we have cloned and sequenced a new putative cathepsin L protease from Echinococcus canadensis (EcCLP1). The bioinformatic analysis suggests that EcCLP1 could be synthesized as a zymogen and activated after proteolytic cleavage. The multiple sequence alignment with other cathepsin proteases reveals important functional conserved features like a conserved active site, an N-linked glycosylation residue, a catalytic triad, an oxyanion hole, and three putative disulfide bonds. The phylogenetic analysis suggests that EcCLP1 could indeed be a cathepsin L cysteine protease from clade 1 as it grouped with cathepsins from other species in this clade. Modeling studies suggest that EcCLP1 has two domains forming a cleft where the active site is located and an occluding role for the propeptide. The transcriptomic analysis reveals different levels of cathepsin transcript expression along the different stages of the parasite life cycle. The whole-mount immunohistochemistry shows an interesting superficial punctate pattern of staining which suggests a secretory pattern of expression. The putative cathepsin L protease characterized here may represent an interesting tool for diagnostic purposes, vaccine design, or a new pharmacological target for antiparasitic intervention.
Collapse
Affiliation(s)
- Ariel Naidich
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr Carlos G. Malbrán", Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
| | - Ariana M Gutierrez
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr Carlos G. Malbrán", Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
| | - Federico Camicia
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr Carlos G. Malbrán", Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina - Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires (UBA), José E. Uriburu 950, 5to piso, 1114 Buenos Aires, Argentina
| |
Collapse
|
5
|
Liu RD, Meng XY, Li CL, Lin XZ, Xu QY, Xu H, Long SR, Cui J, Wang ZQ. Trichinella spiralis cathepsin L damages the tight junctions of intestinal epithelial cells and mediates larval invasion. PLoS Negl Trop Dis 2023; 17:e0011816. [PMID: 38048314 PMCID: PMC10721182 DOI: 10.1371/journal.pntd.0011816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/14/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Cathepsin L, a lysosomal enzyme, participates in diverse physiological processes. Recombinant Trichinella spiralis cathepsin L domains (rTsCatL2) exhibited natural cysteine protease activity and hydrolyzed host immunoglobulin and extracellular matrix proteins in vitro, but its functions in larval invasion are unknown. The aim of this study was to explore its functions in T. spiralis invasion of the host's intestinal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS RNAi significantly suppressed the expression of TsCatL mRNA and protein with TsCatL specific siRNA-302. T. spiralis larval invasion of Caco-2 cells was reduced by 39.87% and 38.36%, respectively, when anti-TsCatL2 serum and siRNA-302 were used. Mice challenged with siRNA-302-treated muscle larvae (ML) exhibited a substantial reduction in intestinal infective larvae, adult worm, and ML burden compared to the PBS group, with reductions of 44.37%, 47.57%, and 57.06%, respectively. The development and fecundity of the females from the mice infected with siRNA-302-treated ML was significantly inhibited. After incubation of rTsCatL2 with Caco-2 cells, immunofluorescence test showed that the rTsCatL2 gradually entered into the cells, altered the localization of cellular tight junction proteins (claudin 1, occludin and zo-1), adhesion junction protein (e-cadherin) and extracellular matrix protein (laminin), and intercellular junctions were lost. Western blot showed a 58.65% reduction in claudin 1 expression in Caco-2 cells treated with rTsCatL2. Co-IP showed that rTsCatL2 interacted with laminin and collagen I but not with claudin 1, e-cadherin, occludin and fibronectin in Caco-2 cells. Moreover, rTsCatL2 disrupted the intestinal epithelial barrier by inducing cellular autophagy. CONCLUSIONS rTsCatL2 disrupts the intestinal epithelial barrier and facilitates T. spiralis larval invasion.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Xiang Yu Meng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Chen Le Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Xin Zhi Lin
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Qiu Yi Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Han Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
6
|
Barakat AZ, Abdel-Aty AM, Ibrahim MK, Salah HA, Hegazy UM, Azouz RAM, Bassuiny RI, Shaapan RM, Mohamed SA. Purification and characterization of cysteine protease of Sarcocystis fusiformis from infected Egyptian water buffaloes. Sci Rep 2023; 13:16123. [PMID: 37752241 PMCID: PMC10522634 DOI: 10.1038/s41598-023-43147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
Sarcocystis spp. infects water buffaloes (Bubalus bubalis) causing sarcocystosis. In the present study, Sarcocystis fusiformis was recognized in Egyptian water buffaloes based on histological observation and molecular analysis of internal transcribed spacer 1 (ITS1), 18S ribosomal RNA (18S rRNA) and cytochrome c oxidase subunit I (COX-1) gene fragments. Chemotherapy and vaccines against Sarcocystis spp. could potentially target proteases because they may play a crucial role in the infection. Cysteine proteases are multifunctional enzymes involved in vital metabolic processes. However, the involvement of proteases in S. fusiform infection has not yet been characterized. Here, the purification and study on some biochemical properties of protease isolated from cysts of S. fusiform were carried out. Protease with a molecular weight of 100 kDa was purified. LC-MS/MS analyzed the protein sequence of purified protease and the data suggested that the enzyme might be related to the cysteine protease. The purified protease exhibited maximum activity at pH 6 and a temperature of 50 °C. The Michaelis-Menten constant (Km), the maximum velocity (Vmax), and the turnover number (Kcat) were determined. The complete inhibition effect of cysteine inhibitors indicated that the purified enzyme is a cysteine protease. The results suggested that S. fusiform proteolytic enzyme may be necessary for parasite survival in water buffaloes by digesting host tissues. Therefore, cysteine protease could be a suitable target for vaccinations.
Collapse
Affiliation(s)
- Amal Z Barakat
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Marwa K Ibrahim
- Department of Microbial Biotechnology, National Research Centre, Dokki, Cairo, Egypt
| | - Hala A Salah
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Usama M Hegazy
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Rasha A M Azouz
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Raafat M Shaapan
- Zoonotic Disease Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
7
|
Serrat J, Torres-Valle M, López-García M, Becerro-Recio D, Siles-Lucas M, González-Miguel J. Molecular Characterization of the Interplay between Fasciola hepatica Juveniles and Laminin as a Mechanism to Adhere to and Break through the Host Intestinal Wall. Int J Mol Sci 2023; 24:8165. [PMID: 37175870 PMCID: PMC10179147 DOI: 10.3390/ijms24098165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Fasciola hepatica is the main causative agent of fasciolosis, a zoonotic parasitic disease of growing public health concern. F. hepatica metacercariae are ingested by the host and excyst in the intestine, thereby releasing the newly excysted juveniles (FhNEJ), which traverse the gut wall and migrate towards the biliary ducts. Since blocking F. hepatica development is challenging after crossing of the intestinal wall, targeting this first step of migration might result in increased therapeutic success. The intestinal extracellular matrix (ECM) is constituted by a network of structural proteins, including laminin (LM) and fibronectin (FN), that provide mechanical support while acting as physical barrier against intestinal pathogens. Here, we employed ELISA and immunofluorescent assays to test for the presence of LM- and FN-binding proteins on a tegument-enriched antigenic fraction of FhNEJ, and further determined their identity by two-dimensional electrophoresis coupled to mass spectrometry. Additionally, we performed enzymatic assays that revealed for the first time the capability of the juvenile-specific cathepsin L3 to degrade LM, and that LM degradation by FhNEJ proteins is further potentiated in the presence of host plasminogen. Finally, a proteomic analysis showed that the interaction with LM triggers protein changes in FhNEJ that may be relevant for parasite growth and adaptation inside the mammalian host. Altogether, our study provides valuable insights into the molecular interplay between FhNEJ and the intestinal ECM, which may lead to the identification of targetable candidates for the development of more effective control strategies against fasciolosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain; (J.S.); (M.T.-V.); (M.L.-G.); (D.B.-R.); (M.S.-L.)
| |
Collapse
|
8
|
Caña-Bozada V, Robinson MW, Hernández-Mena DI, Morales-Serna FN. Exploring Evolutionary Relationships within Neodermata Using Putative Orthologous Groups of Proteins, with Emphasis on Peptidases. Trop Med Infect Dis 2023; 8:tropicalmed8010059. [PMID: 36668966 PMCID: PMC9860727 DOI: 10.3390/tropicalmed8010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
The phylogenetic relationships within Neodermata were examined based on putative orthologous groups of proteins (OGPs) from 11 species of Monogenea, Trematoda, and Cestoda. The dataset included OGPs from BUSCO and OMA. Additionally, peptidases were identified and evaluated as phylogenetic markers. Phylogenies were inferred using the maximum likelihood method. A network analysis and a hierarchical grouping analysis of the principal components (HCPC) of orthologous groups of peptidases were performed. The phylogenetic analyses showed the monopisthocotylean monogeneans as the sister-group of cestodes, and the polyopisthocotylean monogeneans as the sister-group of trematodes. However, the sister-group relationship between Monopisthocotylea and Cestoda was not statistically well supported. The network analysis and HCPC also showed a cluster formed by polyopisthocotyleans and trematodes. The present study supports the non-monophyly of Monogenea. An analysis of mutation rates indicated that secreted peptidases and inhibitors, and those with multiple copies, are under positive selection pressure, which could explain the expansion of some families such as C01, C19, I02, and S01. Whilst not definitive, our study presents another point of view in the discussion of the evolution of Neodermata, and we hope that our data drive further discussion and debate on this intriguing topic.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Mexico
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - David I. Hernández-Mena
- Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Mérida, Mérida 97310, Mexico
| | - Francisco N. Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Mexico
- Correspondence:
| |
Collapse
|
9
|
Exploiting Comparative Omics to Understand the Pathogenic and Virulence-Associated Protease: Anti-Protease Relationships in the Zoonotic Parasites Fasciola hepatica and Fasciola gigantica. Genes (Basel) 2022; 13:genes13101854. [PMID: 36292739 PMCID: PMC9601652 DOI: 10.3390/genes13101854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The helminth parasites, Fasciola hepatica and Fasciola gigantica, are the causative agents of fasciolosis, a global and economically important disease of people and their livestock. Proteases are pivotal to an array of biological processes related to parasitism (development, feeding, immune evasion, virulence) and therefore their action requires strict regulation by parasite anti-proteases (protease inhibitors). By interrogating the current publicly available Fasciola spp. large sequencing datasets, including several genome assemblies and life cycle stage-specific transcriptome and proteome datasets, we reveal the complex profile and structure of proteases and anti-proteases families operating at various stages of the parasite's life cycle. Moreover, we have discovered distinct profiles of peptidases and their cognate inhibitors expressed by the parasite stages in the intermediate snail host, reflecting the different environmental niches in which they move, develop and extract nutrients. Comparative genomics revealed a similar cohort of peptidase inhibitors in F. hepatica and F. gigantica but a surprisingly reduced number of cathepsin peptidases genes in the F. gigantica genome assemblies. Chromosomal location of the F. gigantica genes provides new insights into the evolution of these gene families, and critical data for the future analysis and interrogation of Fasciola spp. hybrids spreading throughout the Asian and African continents.
Collapse
|
10
|
Becerro-Recio D, Serrat J, López-García M, Sotillo J, Simón F, González-Miguel J, Siles-Lucas M. Proteomics coupled with in vitro model to study the early crosstalk occurring between newly excysted juveniles of Fasciola hepatica and host intestinal cells. PLoS Negl Trop Dis 2022; 16:e0010811. [PMID: 36223411 PMCID: PMC9555655 DOI: 10.1371/journal.pntd.0010811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Fasciolosis caused by the trematode Fasciola hepatica is a zoonotic neglected disease affecting animals and humans worldwide. Infection occurs upon ingestion of aquatic plants or water contaminated with metacercariae. These release the newly excysted juveniles (FhNEJ) in the host duodenum, where they establish contact with the epithelium and cross the intestinal barrier to reach the peritoneum within 2-3 h after infection. Juveniles crawl up the peritoneum towards the liver, and migrate through the hepatic tissue before reaching their definitive location inside the major biliary ducts, where they mature into adult worms. Fasciolosis is treated with triclabendazole, although resistant isolates of the parasite are increasingly being reported. This, together with the limited efficacy of the assayed vaccines against this infection, poses fasciolosis as a veterinary and human health problem of growing concern. In this context, the study of early host-parasite interactions is of paramount importance for the definition of new targets for the treatment and prevention of fasciolosis. Here, we develop a new in vitro model that replicates the first interaction between FhNEJ and mouse primary small intestinal epithelial cells (MPSIEC). FhNEJ and MPSIEC were co-incubated for 3 h and protein extracts (tegument and soma of FhNEJ and membrane and cytosol of MPSIEC) were subjected to quantitative SWATH-MS proteomics and compared to respective controls (MPSIEC and FhNEJ left alone for 3h in culture medium) to evaluate protein expression changes in both the parasite and the host. Results show that the interaction between FhNEJ and MPSIEC triggers a rapid protein expression change of FhNEJ in response to the host epithelial barrier, including cathepsins L3 and L4 and several immunoregulatory proteins. Regarding MPSIEC, stimulation with FhNEJ results in alterations in the protein profile related to immunomodulation and cell-cell interactions, together with a drastic reduction in the expression of proteins linked with ribosome function. The molecules identified in this model of early host-parasite interactions could help define new tools against fasciolosis.
Collapse
Affiliation(s)
- David Becerro-Recio
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Judit Serrat
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Marta López-García
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier González-Miguel
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
- * E-mail: (JG-M); (MS-L)
| | - Mar Siles-Lucas
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- * E-mail: (JG-M); (MS-L)
| |
Collapse
|
11
|
Collett CF, Phillips HC, Fisher M, Smith S, Fenn C, Goodwin P, Morphew RM, Brophy PM. Fasciola hepatica Cathepsin L Zymogens: Immuno-Proteomic Evidence for Highly Immunogenic Zymogen-Specific Conformational Epitopes to Support Diagnostics Development. J Proteome Res 2022; 21:1997-2010. [PMID: 35849550 PMCID: PMC9361350 DOI: 10.1021/acs.jproteome.2c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fasciola hepatica, the common liver fluke and causative agent of zoonotic fasciolosis, impacts on food security with global economic losses of over $3.2 BN per annum through deterioration of animal health, productivity losses, and livestock death and is also re-emerging as a foodborne human disease. Cathepsin proteases present a major vaccine and diagnostic target of the F. hepatica excretory/secretory (ES) proteome, but utilization in diagnostics of the highly antigenic zymogen stage of these proteins is surprisingly yet to be fully exploited. Following an immuno-proteomic investigation of recombinant and native procathepsins ((r)FhpCL1), including mass spectrometric analyses (DOI: 10.6019/PXD030293), and using counterpart polyclonal antibodies to a recombinant mutant procathepsin L (anti-rFhΔpCL1), we have confirmed recombinant and native cathepsin L zymogens contain conserved, highly antigenic epitopes that are conformationally dependent. Furthermore, using diagnostic platforms, including pilot serum and fecal antigen capture enzyme-linked immunosorbent assay (ELISA) tests, the diagnostic capacities of cathepsin L zymogens were assessed and validated, offering promising efficacy as markers of infection and for monitoring treatment efficacy.
Collapse
Affiliation(s)
- Clare F Collett
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Helen C Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Maggie Fisher
- Ridgeway Research Ltd., Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, U.K
| | - Sian Smith
- Ridgeway Research Ltd., Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, U.K
| | - Caroline Fenn
- Ridgeway Research Ltd., Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, U.K
| | - Phil Goodwin
- Bio-Check UK, Spectrum House, Llys Edmund Prys, St. Asaph Business Park, St. Asaph, Denbighshire LL17 0LJ, U.K
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| |
Collapse
|
12
|
Liu RD, Meng XY, Li CL, Long SR, Cui J, Wang ZQ. Molecular characterization and determination of the biochemical properties of cathepsin L of Trichinella spiralis. Vet Res 2022; 53:48. [PMID: 35739604 PMCID: PMC9229914 DOI: 10.1186/s13567-022-01065-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Cathepsin L is an important cysteine protease, but its function in T. spiralis remains unclear. The aim of this research was to explore the biological characteristics of T. spiralis cathepsin L (TsCatL) and its role in T. spiralis-host interactions. Bioinformatic analysis revealed the presence of the cysteine protease active site residues Gln, Cys, His and Asn in mature TsCatL, as well as specific motifs of cathepsin L similar to ERFNIN and GYLND in the prepeptide of TsCatL. Molecular docking of mature TsCatL and E64 revealed hydrophobic effects and hydrogen bonding interactions. Two domains of TsCatL (TsCatL2) were cloned and expressed, and recombinant TsCatL2 (rTsCatL2) was autocatalytically cleaved under acidic conditions to form mature TsCatL. TsCatL was transcribed and expressed in larvae and adults and located in the stichosome, gut and embryo. Enzyme kinetic tests showed that rTsCatL2 degraded the substrate Z-Phe-Arg-AMC under acidic conditions, which was inhibited by E64 and PMSF and enhanced by EDTA, L-cysteine and DTT. The kinetic parameters of rTsCatL2 were a Km value of 48.82 μM and Vmax of 374.4 nM/min at pH 4.5, 37 °C and 5 mM DTT. In addition, it was shown that rTsCatL2 degraded haemoglobin, serum albumin, immunoglobulins (mouse IgG, human IgG and IgM) and extracellular matrix components (fibronectin, collagen I and laminin). The proteolytic activity of rTsCatL2 was host specific and significantly inhibited by E64. rTsCatL2 possesses the natural activity of a sulfhydryl-containing cysteine protease, and TsCatL is an important digestive enzyme that seems to be important for the nutrient acquisition, immune evasion and invasion of Trichinella in the host.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Yu Meng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Le Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Avalon N, Nafie J, De Marco Verissimo C, Warrensford LC, Dietrick SG, Pittman AR, Young RM, Kearns FL, Smalley T, Binning JM, Dalton JP, Johnson MP, Woodcock HL, Allcock AL, Baker BJ. Tuaimenal A, a Meroterpene from the Irish Deep-Sea Soft Coral Duva florida, Displays Inhibition of the SARS-CoV-2 3CLpro Enzyme. JOURNAL OF NATURAL PRODUCTS 2022; 85:1315-1323. [PMID: 35549259 PMCID: PMC9127705 DOI: 10.1021/acs.jnatprod.2c00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 06/15/2023]
Abstract
Cold water benthic environments are a prolific source of structurally diverse molecules with a range of bioactivities against human disease. Specimens of a previously chemically unexplored soft coral, Duva florida, were collected during a deep-sea cruise that sampled marine invertebrates along the Irish continental margin in 2018. Tuaimenal A (1), a cyclized merosesquiterpenoid representing a new carbon scaffold with a highly substituted chromene core, was discovered through exploration of the soft coral secondary metabolome via NMR-guided fractionation. The absolute configuration was determined through vibrational circular dichroism. Functional biochemical assays and in silico docking experiments found tuaimenal A selectively inhibits the viral main protease (3CLpro) of SARS-CoV-2.
Collapse
Affiliation(s)
- Nicole
E. Avalon
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jordan Nafie
- BioTools,
Inc., Jupiter, Florida 33458, United
States
| | - Carolina De Marco Verissimo
- Molecular
Parasitology Laboratory (MPL), Centre for One Health and Ryan Institute,
School of Natural Science, National University
of Ireland Galway, H91 TK33 Galway, Republic of
Ireland
| | - Luke C. Warrensford
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Sarah G. Dietrick
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Amanda R. Pittman
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ryan M. Young
- School
of Natural Sciences and Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Republic of Ireland
| | - Fiona L. Kearns
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Tracess Smalley
- Department
of Molecular Oncology, H. Lee Moffitt Cancer
Center and Research Institute, Tampa, Florida 33612, United States
| | - Jennifer M. Binning
- Department
of Molecular Oncology, H. Lee Moffitt Cancer
Center and Research Institute, Tampa, Florida 33612, United States
| | - John P. Dalton
- Molecular
Parasitology Laboratory (MPL), Centre for One Health and Ryan Institute,
School of Natural Science, National University
of Ireland Galway, H91 TK33 Galway, Republic of
Ireland
| | - Mark P. Johnson
- School
of Natural Sciences and Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Republic of Ireland
| | - H. Lee Woodcock
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - A. Louise Allcock
- School
of Natural Sciences and Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Republic of Ireland
| | - Bill J. Baker
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
14
|
Cwiklinski K, Drysdale O, López Corrales J, Corripio-Miyar Y, De Marco Verissimo C, Jewhurst H, Smith D, Lalor R, McNeilly TN, Dalton JP. Targeting Secreted Protease/Anti-Protease Balance as a Vaccine Strategy against the Helminth Fasciola hepatica. Vaccines (Basel) 2022; 10:155. [PMID: 35214614 PMCID: PMC8878381 DOI: 10.3390/vaccines10020155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
The liver fluke Fasciola hepatica is an economically important global pathogen of humans and their livestock. To facilitate host invasion and migration, F. hepatica secretes an abundance of cathepsin peptidases but prevents excessive damage to both parasite and host tissues by co-secreting regulatory peptidase inhibitors, cystatins/stefins and Kunitz-type inhibitors. Here, we report a vaccine strategy aimed at disrupting the parasite's protease/anti-protease balance by targeting these key inhibitors. Our vaccine cocktail containing three recombinant stefins (rFhStf-1, rFhStf-2, rFhStf-3) and a Kunitz-type inhibitor (rFhKT1) formulated in adjuvant Montanide 61VG was assessed in two independent sheep trials. While fluke burden was not reduced in either trial, in Trial 1 the vaccinated animals showed significantly greater weight gain (p < 0.05) relative to the non-vaccinated control group. In both trials we observed a significant reduction in egg viability (36-42%). Multivariate regression analyses showed vaccination and increased levels of IgG2 antibodies specific for the F. hepatica peptidase inhibitors were positive indicators for increased weight gain and levels of haemoglobin within the normal range at 16 weeks post-infection (wpi; p < 0.05). These studies point to the potential of targeting peptidase inhibitors as vaccine cocktails for fasciolosis control in sheep.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Orla Drysdale
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
| | - Yolanda Corripio-Miyar
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - David Smith
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
| | - Tom N. McNeilly
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - John P. Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| |
Collapse
|
15
|
Lalor R, Cwiklinski K, Calvani NED, Dorey A, Hamon S, Corrales JL, Dalton JP, De Marco Verissimo C. Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola Gigantica that cause the zoonosis Fasciolosis. Virulence 2021; 12:2839-2867. [PMID: 34696693 PMCID: PMC8632118 DOI: 10.1080/21505594.2021.1996520] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite’s excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke’s survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.
Collapse
Affiliation(s)
- Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
16
|
Bennett APS, Robinson MW. Trematode Proteomics: Recent Advances and Future Directions. Pathogens 2021; 10:348. [PMID: 33809501 PMCID: PMC7998542 DOI: 10.3390/pathogens10030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Trematodes cause disease in millions of people worldwide, but the absence of commercial vaccines has led to an over-reliance on a handful of monotherapies to control infections. Since drug-resistant fluke populations are emerging, a deeper understanding of parasite biology and host interactions is required to identify new drug targets and immunogenic vaccine candidates. Mass spectrometry-based proteomics represents a key tool to that end. Recent studies have capitalised on the wider availability of annotated helminth genomes to achieve greater coverage of trematode proteomes and discover new aspects of the host-parasite relationship. This review focusses on these latest advances. These include how the protein components of fluke extracellular vesicles have given insight into their biogenesis and cellular interactions. In addition, how the integration of transcriptome/proteome datasets has revealed that the expression and secretion of selected families of liver fluke virulence factors and immunomodulators are regulated in accordance with parasite development and migration within the mammalian host. Furthermore, we discuss the use of immunoproteomics as a tool to identify vaccine candidates associated with protective antibody responses. Finally, we highlight how established and emerging technologies, such as laser microdissection and single-cell proteomics, could be exploited to resolve the protein profiles of discrete trematode tissues or cell types which, in combination with functional tools, could pinpoint optimal targets for fluke control.
Collapse
Affiliation(s)
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK;
| |
Collapse
|
17
|
Design of a Peptide-Carrier Vaccine Based on the Highly Immunogenic Fasciola hepatica Leucine Aminopeptidase. Methods Mol Biol 2021; 2137:191-204. [PMID: 32399930 DOI: 10.1007/978-1-0716-0475-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Many studies have shown that the degree of organization and repetitiveness of an antigen correlates with its efficiency to induce a B-cell response and production of neutralizing antibodies. Here we describe the design of a chimeric protein based on the hexamer form of the highly immunogenic Fasciola hepatica leucine aminopeptidase as a carrier system of small peptides with potential use as a multiepitope vaccine.
Collapse
|
18
|
Cwiklinski K, Robinson MW, Donnelly S, Dalton JP. Complementary transcriptomic and proteomic analyses reveal the cellular and molecular processes that drive growth and development of Fasciola hepatica in the host liver. BMC Genomics 2021; 22:46. [PMID: 33430759 PMCID: PMC7797711 DOI: 10.1186/s12864-020-07326-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background The major pathogenesis associated with Fasciola hepatica infection results from the extensive tissue damage caused by the tunnelling and feeding activity of immature flukes during their migration, growth and development in the liver. This is compounded by the pathology caused by host innate and adaptive immune responses that struggle to simultaneously counter infection and repair tissue damage. Results Complementary transcriptomic and proteomic approaches defined the F. hepatica factors associated with their migration in the liver, and the resulting immune-pathogenesis. Immature liver-stage flukes express ~ 8000 transcripts that are enriched for transcription and translation processes reflective of intensive protein production and signal transduction pathways. Key pathways that regulate neoblast/pluripotent cells, including the PI3K-Akt signalling pathway, are particularly dominant and emphasise the importance of neoblast-like cells for the parasite’s rapid development. The liver-stage parasites display different secretome profiles, reflecting their distinct niche within the host, and supports the view that cathepsin peptidases, cathepsin peptidase inhibitors, saposins and leucine aminopeptidases play a central role in the parasite’s destructive migration, and digestion of host tissue and blood. Immature flukes are also primed for countering immune attack by secreting immunomodulating fatty acid binding proteins (FABP) and helminth defence molecules (FhHDM). Combined with published host microarray data, our results suggest that considerable immune cell infiltration and subsequent fibrosis of the liver tissue exacerbates oxidative stress within parenchyma that compels the expression of a range of antioxidant molecules within both host and parasite. Conclusions The migration of immature F. hepatica parasites within the liver is associated with an increase in protein production, expression of signalling pathways and neoblast proliferation that drive their rapid growth and development. The secretion of a defined set of molecules, particularly cathepsin L peptidases, peptidase-inhibitors, saponins, immune-regulators and antioxidants allow the parasite to negotiate the liver micro-environment, immune attack and increasing levels of oxidative stress. This data contributes to the growing F. hepatica -omics information that can be exploited to understand parasite development more fully and for the design of novel control strategies to prevent host liver tissue destruction and pathology.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,The School of Life Sciences, University of Technology, Sydney, Australia
| | - John P Dalton
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
19
|
Pritsch IC, Tikhonova IG, Jewhurst HL, Drysdale O, Cwiklinski K, Molento MB, Dalton JP, Verissimo CDM. Regulation of the Fasciola hepatica newly excysted juvenile cathepsin L3 (FhCL3) by its propeptide: a proposed 'clamp-like' mechanism of binding and inhibition. BMC Mol Cell Biol 2020; 21:90. [PMID: 33287692 PMCID: PMC7720491 DOI: 10.1186/s12860-020-00335-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/26/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The zoonotic worm parasite Fasciola hepatica secretes an abundance of cathepsin L peptidases that are associated with virulence, invasiveness, feeding and migration. The peptidases are produced as inactive zymogens that activate at low pH by autocatalytic removal of their N-terminal pro-domain or propeptide. Propeptides bind to their cognate enzyme with high specificity. Little is known, however, about the mechanism by which the propeptide of FhCL3, a cathepsin L peptidase secreted by the infective newly excysted juveniles (NEJs), regulates the inhibition and activation of the mature enzyme before it is secreted into host tissues. RESULTS Immunolocalisation/immunoblotting studies show that the FhCL3 zymogen is produced and secreted by gastrodermal cells of the NEJs gut. A recombinant propeptide of FhCL3 (ppFhCL3) was shown to be a highly potent and selective inhibitor of native and recombinant F. hepatica FhCL3 peptidase, and other members of the cathepsin L family; inhibition constant (Ki) values obtained for FhCL1, FhCL2 and FhCL3 were 0.04 nM, 0.004 nM and < 0.002 nM, respectively. These values are at least 1000-fold lower than those Ki obtained for human cathepsin L (HsCL) and human cathepsin K (HsCK) demonstrating the selectivity of the ppFhCL3 for parasite cathepsins L. By exploiting 3-D structural data we identified key molecular interactions in the specific binding between the ppFhCL3 and FhCL3 mature domain. Using recombinant variants of ppFhCL3 we demonstrated the critical importance of a pair of propeptide residues (Tyr46Lys47) for the interaction with the propeptide binding loop (PBL) of the mature enzyme and other residues (Leu66 and Glu68) that allow the propeptide to block the active site. CONCLUSIONS The FhCL3 peptidase involved in host invasion by F. hepatica is produced as a zymogen in the NEJs gut. Regulation of its activation involves specific binding sites within the propeptide that are interdependent and act as a "clamp-like" mechanism of inhibition. These interactions are disrupted by the low pH of the NEJs gut to initiate autocatalytic activation. Our enzyme kinetics data demonstrates high potency and selectivity of the ppFhCL3 for its cognate FhCL3 enzyme, information that could be utilised to design inhibitors of parasite cathepsin L peptidases.
Collapse
Affiliation(s)
- Izanara C Pritsch
- Department of Basic Pathology, Federal University of Parana, Curitiba, 81531-970, Brazil.,School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Heather L Jewhurst
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Orla Drysdale
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Krystyna Cwiklinski
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Marcelo B Molento
- Department of Basic Pathology, Federal University of Parana, Curitiba, 81531-970, Brazil.,Department of Veterinary Medicine, Federal University of Parana, Curitiba, Paraná, Brazil
| | - John P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Carolina De M Verissimo
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK. .,Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
20
|
González-Miguel J, Becerro-Recio D, Siles-Lucas M. Insights into Fasciola hepatica Juveniles: Crossing the Fasciolosis Rubicon. Trends Parasitol 2020; 37:35-47. [PMID: 33067132 DOI: 10.1016/j.pt.2020.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Unraveling the molecular interactions governing the first contact between parasite and host tissues is of paramount importance to the development of effective control strategies against parasites. In fasciolosis, a foodborne trematodiasis caused mainly by Fasciola hepatica, these early interactions occur between the juvenile worm and the host intestinal wall a few hours after ingestion of metacercariae, the infectious stage of the parasite. However, research on these early events is still scarce and the majority of studies have focused on the adult worm. Here, we review current knowledge on the biology and biochemistry of F. hepatica juveniles and their molecular relationships with the host tissues and identify the research needs and gaps to be covered in the future.
Collapse
Affiliation(s)
- Javier González-Miguel
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - David Becerro-Recio
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Mar Siles-Lucas
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| |
Collapse
|
21
|
De Marco Verissimo C, Jewhurst HL, Tikhonova IG, Urbanus RT, Maule AG, Dalton JP, Cwiklinski K. Fasciola hepatica serine protease inhibitor family (serpins): Purposely crafted for regulating host proteases. PLoS Negl Trop Dis 2020; 14:e0008510. [PMID: 32760059 PMCID: PMC7437470 DOI: 10.1371/journal.pntd.0008510] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Serine protease inhibitors (serpins) regulate proteolytic events within diverse biological processes, including digestion, coagulation, inflammation and immune responses. The presence of serpins in Fasciola hepatica excretory-secretory products indicates that the parasite exploits these to regulate proteases encountered during its development within vertebrate hosts. Interrogation of the F. hepatica genome identified a multi-gene serpin family of seven members that has expanded by gene duplication and divergence to create an array of inhibitors with distinct specificities. We investigated the molecular properties and functions of two representatives, FhSrp1 and FhSrp2, highly expressed in the invasive newly excysted juvenile (NEJ). Consistent with marked differences in the reactive centre loop (RCL) that executes inhibitor-protease complexing, the two recombinant F. hepatica serpins displayed distinct inhibitory profiles against an array of mammalian serine proteases. In particular, rFhSrp1 efficiently inhibited kallikrein (Ki = 40 nM) whilst rFhSrp2 was a highly potent inhibitor of chymotrypsin (Ki = 0.07 nM). FhSrp1 and FhSrp2 are both expressed on the NEJ surface, predominantly around the oral and ventral suckers, suggesting that these inhibitors protect the parasites from the harmful proteolytic effects of host proteases, such as chymotrypsin, during invasion. Furthermore, the unusual inhibition of kallikrein suggests that rFhSrp1 modulates host responses such as inflammation and vascular permeability by interfering with the kallikrein-kinin system. A vaccine combination of rFhSrp1 and rFhSrp2 formulated in the adjuvant Montanide ISA 206VG elicited modest but non-significant protection against a challenge infection in a rat model, but did induce some protection against liver pathogenesis when compared to a control group and a group vaccinated with two well-studied vaccine candidates, F. hepatica cathepsin L2 and L3. This work highlights the importance of F. hepatica serpins to regulate host responses that enables parasite survival during infection and, coupled with the vaccine data, encourages future vaccine trials in ruminants. Serpins are protease inhibitors that regulate various biological processes, including digestion, blood coagulation, inflammation and immune responses. The liver fluke, Fasciola hepatica, produces an array of inhibitors to regulate proteolytic enzymes they encounter during development within the mammalian host. In this study, we identified seven different serpins that have evolved to inhibit a range of host proteases. In particular, we characterized two representatives, FhSrp1 and FhSrp2, that we found highly expressed on the surface of the invasive newly excysted juvenile (NEJ), suggesting that they protect the parasites from harmful proteolytic effects during invasion. Contrasting inhibitory profiles were observed; while recombinant FhSrp1 inhibited kallikrein, recombinant FhSrp2 was a highly potent inhibitor of chymotrypsin. The unusual inhibition of kallikrein suggests that rFhSrp1 influences host responses such as inflammation and vascular permeability by interfering with the kallikrein-kinin system. Conversely, chymotrypsin is typically inhibited by trematode-specific serpins, implying a conserved mechanism to regulate digestive enzymes. The ability of the liver fluke serpin family to inhibit such an array of proteases highlights the importance of these inhibitors in parasite-host interactions and encourages future investigations of serpins as candidate anti-parasite vaccine targets for the control of fasciolosis in ruminants.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| | - Heather L. Jewhurst
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Irina G. Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, United Kingdom
| | - Rolf T. Urbanus
- Thrombosis and Hemostasis Laboratory, Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Aaron G. Maule
- Microbe & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - John P. Dalton
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
22
|
Pandey T, Ghosh A, Todur VN, Rajendran V, Kalita P, Kalita J, Shukla R, Chetri PB, Shukla H, Sonkar A, Lyngdoh DL, Singh R, Khan H, Nongkhlaw J, Das KC, Tripathi T. Draft Genome of the Liver Fluke Fasciola gigantica. ACS OMEGA 2020; 5:11084-11091. [PMID: 32455229 PMCID: PMC7241025 DOI: 10.1021/acsomega.0c00980] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/23/2020] [Indexed: 05/22/2023]
Abstract
Fascioliasis, a neglected foodborne disease caused by liver flukes (genus Fasciola), affects more than 200 million people worldwide. Despite technological advances, little is known about the molecular biology and biochemistry of these flukes. We present the draft genome of Fasciola gigantica for the first time. The assembled draft genome has a size of ∼1.04 Gb with an N50 and N90 of 129 and 149 kb, respectively. A total of 20 858 genes were predicted. The de novo repeats identified in the draft genome were 46.85%. The pathway included all of the genes of glycolysis, Krebs cycle, and fatty acid metabolism but lacked the key genes of the fatty acid biosynthesis pathway. This indicates that the fatty acid required for survival of the fluke may be acquired from the host bile. It may be hypothesized that the relatively larger F. gigantica genome did not evolve through genome duplications but rather is interspersed with many repetitive elements. The genomic information will provide a comprehensive resource to facilitate the development of novel interventions for fascioliasis control.
Collapse
Affiliation(s)
- Tripti Pandey
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Arpita Ghosh
- Eurofins
Genomics India Pvt. Ltd., Doddanekkundi, Bengaluru 560048, India
| | - Vivek N. Todur
- Eurofins
Genomics India Pvt. Ltd., Doddanekkundi, Bengaluru 560048, India
| | - Vijayakumar Rajendran
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Parismita Kalita
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Jupitara Kalita
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Rohit Shukla
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Purna B. Chetri
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Harish Shukla
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Amit Sonkar
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Denzelle Lee Lyngdoh
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Radhika Singh
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Heena Khan
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Joplin Nongkhlaw
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Kanhu Charan Das
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
23
|
Kim TK, Tirloni L, Pinto AFM, Diedrich JK, Moresco JJ, Yates JR, da Silva Vaz I, Mulenga A. Time-resolved proteomic profile of Amblyomma americanum tick saliva during feeding. PLoS Negl Trop Dis 2020; 14:e0007758. [PMID: 32049966 PMCID: PMC7041860 DOI: 10.1371/journal.pntd.0007758] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/25/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Amblyomma americanum ticks transmit more than a third of human tick-borne disease (TBD) agents in the United States. Tick saliva proteins are critical to success of ticks as vectors of TBD agents, and thus might serve as targets in tick antigen-based vaccines to prevent TBD infections. We describe a systems biology approach to identify, by LC-MS/MS, saliva proteins (tick = 1182, rabbit = 335) that A. americanum ticks likely inject into the host every 24 h during the first 8 days of feeding, and towards the end of feeding. Searching against entries in GenBank grouped tick and rabbit proteins into 27 and 25 functional categories. Aside from housekeeping-like proteins, majority of tick saliva proteins belong to the tick-specific (no homology to non-tick organisms: 32%), protease inhibitors (13%), proteases (8%), glycine-rich proteins (6%) and lipocalins (4%) categories. Global secretion dynamics analysis suggests that majority (74%) of proteins in this study are associated with regulating initial tick feeding functions and transmission of pathogens as they are secreted within 24–48 h of tick attachment. Comparative analysis of the A. americanum tick saliva proteome to five other tick saliva proteomes identified 284 conserved tick saliva proteins: we speculate that these regulate critical tick feeding functions and might serve as tick vaccine antigens. We discuss our findings in the context of understanding A. americanum tick feeding physiology as a means through which we can find effective targets for a vaccine against tick feeding. The lone star tick, Amblyomma americanum, is a medically important species in US that transmits 5 of the 16 reported tick-borne disease agents. Most recently, bites of this tick were associated with red meat allergies in humans. Vaccination of animals against tick feeding has been shown to be a sustainable and an effective alternative to current acaricide based tick control method which has several limitations. The pre-requisite to tick vaccine development is to understand the molecular basis of tick feeding physiology. Toward this goal, this study has identified proteins that A. americanum ticks inject into the host at different phases of its feeding cycle. This data set has identified proteins that A. americanum inject into the host within 24–48 h of feeding before it starts to transmit pathogens. Of high importance, we identified 284 proteins that are present in saliva of other tick species, which we suspect regulate important role(s) in tick feeding success and might represent rich source target antigens for a tick vaccine. Overall, this study provides a foundation to understand the molecular mechanisms regulating tick feeding physiology.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio F. M. Pinto
- Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, Californai, United States of America
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James J. Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Choi YJ, Fontenla S, Fischer PU, Le TH, Costábile A, Blair D, Brindley PJ, Tort JF, Cabada MM, Mitreva M. Adaptive Radiation of the Flukes of the Family Fasciolidae Inferred from Genome-Wide Comparisons of Key Species. Mol Biol Evol 2020; 37:84-99. [PMID: 31501870 DOI: 10.1093/molbev/msz204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver and intestinal flukes of the family Fasciolidae cause zoonotic food-borne infections that impact both agriculture and human health throughout the world. Their evolutionary history and the genetic basis underlying their phenotypic and ecological diversity are not well understood. To close that knowledge gap, we compared the whole genomes of Fasciola hepatica, Fasciola gigantica, and Fasciolopsis buski and determined that the split between Fasciolopsis and Fasciola took place ∼90 Ma in the late Cretaceous period, and that between 65 and 50 Ma an intermediate host switch and a shift from intestinal to hepatic habitats occurred in the Fasciola lineage. The rapid climatic and ecological changes occurring during this period may have contributed to the adaptive radiation of these flukes. Expansion of cathepsins, fatty-acid-binding proteins, protein disulfide-isomerases, and molecular chaperones in the genus Fasciola highlights the significance of excretory-secretory proteins in these liver-dwelling flukes. Fasciola hepatica and Fasciola gigantica diverged ∼5 Ma near the Miocene-Pliocene boundary that coincides with reduced faunal exchange between Africa and Eurasia. Severe decrease in the effective population size ∼10 ka in Fasciola is consistent with a founder effect associated with its recent global spread through ruminant domestication. G-protein-coupled receptors may have key roles in adaptation of physiology and behavior to new ecological niches. This study has provided novel insights about the genome evolution of these important pathogens, has generated genomic resources to enable development of improved interventions and diagnosis, and has laid a solid foundation for genomic epidemiology to trace drug resistance and to aid surveillance.
Collapse
Affiliation(s)
- Young-Jun Choi
- McDonnell Genome Institute at Washington University in St. Louis, St. Louis, MO
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Peter U Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Thanh Hoa Le
- Immunology Department, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Alicia Costábile
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - David Blair
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miguel M Cabada
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX
| | - Makedonka Mitreva
- McDonnell Genome Institute at Washington University in St. Louis, St. Louis, MO.,Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
25
|
Ferraro F, Merlino A, Gil J, Cerecetto H, Corvo I, Cabrera M. Cathepsin L Inhibitors with Activity against the Liver Fluke Identified From a Focus Library of Quinoxaline 1,4-di- N-Oxide Derivatives. Molecules 2019; 24:molecules24132348. [PMID: 31247891 PMCID: PMC6651555 DOI: 10.3390/molecules24132348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Infections caused by Fasciola species are widely distributed in cattle and sheep causing significant economic losses, and are emerging as human zoonosis with increasing reports of human cases, especially in children in endemic areas. The current treatment is chemotherapeutic, triclabendazole being the drug of preference since it is active against all parasite stages. Due to the emergence of resistance in several countries, the discovery of new chemical entities with fasciolicidal activity is urgently needed. In our continuous search for new fasciolicide compounds, we identified and characterized six quinoxaline 1,4-di-N-oxide derivatives from our in-house library. We selected them from a screening of novel inhibitors against FhCL1 and FhCL3 proteases, two essential enzymes secreted by juvenile and adult flukes. We report compounds C7, C17, C18, C19, C23, and C24 with an IC50 of less than 10 µM in at least one cathepsin. We studied their binding kinetics in vitro and their enzyme-ligand interactions in silico by molecular docking and molecular dynamic (MD) simulations. These compounds readily kill newly excysted juveniles in vitro and have low cytotoxicity in a Hep-G2 cell line and bovine spermatozoa. Our findings are valuable for the development of new chemotherapeutic approaches against fascioliasis, and other pathologies involving cysteine proteases.
Collapse
Affiliation(s)
- Florencia Ferraro
- Laboratorio de I + D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Alicia Merlino
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Facultad de Veterinaria, Universidad de la República, Paysandú 60000, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica & Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Ileana Corvo
- Laboratorio de I + D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay.
| | - Mauricio Cabrera
- Laboratorio de I + D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay.
| |
Collapse
|
26
|
Celias DP, Corvo I, Silvane L, Tort JF, Chiapello LS, Fresno M, Arranz A, Motrán CC, Cervi L. Cathepsin L3 From Fasciola hepatica Induces NLRP3 Inflammasome Alternative Activation in Murine Dendritic Cells. Front Immunol 2019; 10:552. [PMID: 30967874 PMCID: PMC6438957 DOI: 10.3389/fimmu.2019.00552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
The production of IL-1-family cytokines such as IL-1β and IL-18 is finely regulated by inflammasome activation after the recognition of pathogens associated molecular pattern (PAMPs) and danger associated molecular patterns (DAMPs). However, little is known about the helminth-derived molecules capable of activating the inflammasome. In the case of the helminth trematode Fasciola hepatica, the secretion of different cathepsin L cysteine peptidases (FhCL) is crucial for the parasite survival. Among these enzymes, cathepsin L3 (FhCL3) is expressed mainly in the juvenile or invasive stage. The ability of FhCL3 to digest collagen has demonstrated to be critical for intestinal tissue invasion during juvenile larvae migration. However, there is no information about the interaction of FhCL3 with the immune system. It has been shown here that FhCL3 induces a non-canonical inflammasome activation in dendritic cells (DCs), leading to IL-1β and IL-18 production without a previous microbial priming. Interestingly, this activation was depending on the cysteine protease activity of FhCL3 and the NLRP3 receptor, but independent of caspase activation. We also show that FhCL3 is internalized by DCs, promoting pro-IL-1β cleavage to its mature and biologically active form IL-1β, which is released to the extracellular environment. The FhCL3-induced NLRP3 inflammasome activation conditions DCs to promote a singular adaptive immune response, characterized by increased production of IFN-γ and IL-13. These data reveal an unexpected ability of FhCL3, a helminth-derived molecule, to activate the NLRP3 inflammasome, which is independent of the classical mechanism involving caspase activation.
Collapse
Affiliation(s)
- Daiana Pamela Celias
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Ileana Corvo
- Laboratorio de Investigación y Desarrollo de Moléculas Bioactivas, CENUR Litoral Norte - Sede Paysandú, Universidad de la República, Paysandú, Uruguay
| | - Leonardo Silvane
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - José Francisco Tort
- Departmento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Silvina Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain
| | - Alicia Arranz
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain
| | - Claudia Cristina Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| |
Collapse
|
27
|
Cwiklinski K, Donnelly S, Drysdale O, Jewhurst H, Smith D, De Marco Verissimo C, Pritsch IC, O'Neill S, Dalton JP, Robinson MW. The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. ADVANCES IN PARASITOLOGY 2019; 104:113-164. [PMID: 31030768 DOI: 10.1016/bs.apar.2019.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fasciolosis caused by trematode parasites of the genus Fasciola is a global disease of livestock, particularly cattle, sheep, water buffalo and goats. It is also a major human zoonosis with reports suggesting that 2.4-17 million people are infected worldwide, and 91.1 million people currently living at risk of infection. A unique feature of these worms is their reliance on a family of developmentally-regulated papain-like cysteine peptidases, termed cathepsins. These proteolytic enzymes play central roles in virulence, infection, tissue migration and modulation of host innate and adaptive immune responses. The availability of a Fasciola hepatica genome, and the exploitation of transcriptomic and proteomic technologies to probe parasite growth and development, has enlightened our understanding of the cathepsin-like cysteine peptidases. Here, we clarify the structure of the cathepsin-like cysteine peptidase families and, in this context, review the phylogenetics, structure, biochemistry and function of these enzymes in the host-parasite relationship.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sheila Donnelly
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; The School of Life Sciences, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| | - Orla Drysdale
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Heather Jewhurst
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - David Smith
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | - Izanara C Pritsch
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Sandra O'Neill
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - John P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
28
|
Caffrey CR, Goupil L, Rebello KM, Dalton JP, Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Negl Trop Dis 2018; 12:e0005840. [PMID: 30138310 PMCID: PMC6107103 DOI: 10.1371/journal.pntd.0005840] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We briefly review cysteine proteases (orthologs of mammalian cathepsins B, L, F, and C) that are expressed in flatworm and nematode parasites. Emphasis is placed on enzyme activities that have been functionally characterized, are associated with the parasite gut, and putatively contribute to degrading host proteins to absorbable nutrients [1–4]. Often, gut proteases are expressed as multigene families, as is the case with Fasciola [5] and Haemonchus [6], presumably expanding the range of substrates that can be degraded, not least during parasite migration through host tissues [5]. The application of the free-living planarian and Caenorhabditis elegans as investigative models for parasite cysteine proteases is discussed. Finally, because of their central nutritive contribution, targeting the component gut proteases with small-molecule chemical inhibitors and understanding their utility as vaccine candidates are active areas of research [7].
Collapse
Affiliation(s)
- Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Louise Goupil
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Biology, University of San Francisco, San Francisco, California, United States of America
| | - Karina M. Rebello
- Laboratório de Toxinologia and Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - John P. Dalton
- School of Biological Sciences, Medical Biology Centre, Queen´s University Belfast, Belfast, United Kingdom
| | - David Smith
- School of Biological Sciences, Medical Biology Centre, Queen´s University Belfast, Belfast, United Kingdom
| |
Collapse
|
29
|
Jedličková L, Dvořáková H, Dvořák J, Kašný M, Ulrychová L, Vorel J, Žárský V, Mikeš L. Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp. Parasit Vectors 2018; 11:142. [PMID: 29510760 PMCID: PMC5840727 DOI: 10.1186/s13071-018-2666-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/22/2018] [Indexed: 01/30/2023] Open
Abstract
Background Cysteine peptidases of clan CA, family C1 account for a major part of proteolytic activity in the haematophagous monogenean Eudiplozoon nipponicum. The full spectrum of cysteine cathepsins is, however, unknown and their particular biochemical properties, tissue localisation, and involvement in parasite-host relationships are yet to be explored. Methods Sequences of cathepsins L and B (EnCL and EnCB) were mined from E. nipponicum transcriptome and analysed bioinformatically. Genes encoding two EnCLs and one EnCB were cloned and recombinant proteins produced in vitro. The enzymes were purified by chromatography and their activity towards selected substrates was characterised. Antibodies and specific RNA probes were employed for localisation of the enzymes/transcripts in tissues of E. nipponicum adults. Results Transcriptomic analysis revealed a set of ten distinct transcripts that encode EnCLs. The enzymes are significantly variable in their active sites, specifically the S2 subsites responsible for interaction with substrates. Some of them display unusual structural features that resemble cathepsins B and S. Two recombinant EnCLs had different pH activity profiles against both synthetic and macromolecular substrates, and were able to hydrolyse blood proteins and collagen I. They were localised in the haematin cells of the worm’s digestive tract and in gut lumen. The EnCB showed similarity with cathepsin B2 of Schistosoma mansoni. It displays molecular features typical of cathepsins B, including an occluding loop responsible for its exopeptidase activity. Although the EnCB hydrolysed haemoglobin in vitro, it was localised in the vitelline cells of the parasite and not the digestive tract. Conclusions To our knowledge, this study represents the first complex bioinformatic and biochemical characterisation of cysteine peptidases in a monogenean. Eudiplozoon nipponicum adults express a variety of CLs, which are the most abundant peptidases in the worms. The properties and localisation of the two heterologously expressed EnCLs indicate a central role in the (partially extracellular?) digestion of host blood proteins. High variability of substrate-binding sites in the set of EnCLs suggests specific adaptation to a range of biological processes that require proteolysis. Surprisingly, a single cathepsin B is expressed by the parasite and it is not involved in digestion, but probably in vitellogenesis. Electronic supplementary material The online version of this article (10.1186/s13071-018-2666-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| | - Hana Dvořáková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jan Dvořák
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.,Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Martin Kašný
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Lenka Ulrychová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, Průmyslová 595, Vestec, 25250, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| |
Collapse
|
30
|
Mebius MM, Op Heij JMJ, Tielens AGM, de Groot PG, Urbanus RT, van Hellemond JJ. Fibrinogen and fibrin are novel substrates for Fasciola hepatica cathepsin L peptidases. Mol Biochem Parasitol 2018; 221:10-13. [PMID: 29414671 DOI: 10.1016/j.molbiopara.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Cathepsin peptidases form a major component of the secreted proteins of the blood-feeding trematodes Fasciola hepatica and Schistosoma mansoni. These peptidases fulfill many functions, from facilitating infection to feeding and immune evasion. In this study, we examined the Fasciola cathepsin L peptidases FhCL1, FhCL2, and FhCL3 and the schistosomal cathepsin peptidases SmCB1 and SmCL3 for their anticoagulant properties. Although no direct anticoagulant effect of these peptidases was observed, we discovered that cathepsin peptidases from Fasciola, but not from Schistosoma, were able to degrade purified fibrinogen, with FhCL1 having the highest fibrinogenolytic activity. Additionally, FhCL1 and FhCL2 both efficiently degraded fibrin. The lack of a direct anticoagulant or fibrinolytic effect of these peptidases is explained by their inhibition by plasma components. However, within the parasite gut, high concentrations of these peptidases could induce an anticoagulant environment, facilitating blood-feeding for extended periods.
Collapse
Affiliation(s)
- Mirjam M Mebius
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jody M J Op Heij
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Biochemistry and Cell Biology, Faculty Veterinary Medicine, Utrecht University, The Netherlands
| | - Philip G de Groot
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolf T Urbanus
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Mekonnen GG, Pearson M, Loukas A, Sotillo J. Extracellular vesicles from parasitic helminths and their potential utility as vaccines. Expert Rev Vaccines 2018; 17:197-205. [PMID: 29353519 DOI: 10.1080/14760584.2018.1431125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helminths are multicellular parasites affecting nearly three billion people worldwide. To orchestrate a parasitic existence, helminths secrete different molecules, either in soluble form or contained within extracellular vesicles (EVs). EVs are secreted by most cell types and organisms, and have varied roles in intercellular communication, including immune modulation and pathogenesis. AREAS COVERED In this review, we describe the nucleic acid and proteomic composition of EVs from helminths, with a focus on the protein vaccine candidates present on the EV surface membrane, and discuss the potential utility of helminth EVs and their constituent proteins in the fight against helminth infections. EXPERT COMMENTARY A significant number of proteins present in helminth-secreted EVs are known vaccine candidates. The characterization of helminth EV proteomes will shed light on host-pathogen interactions, facilitate the discovery of new diagnostic biomarkers, and provide a novel approach for the development of new control measures against helminth infections.
Collapse
Affiliation(s)
- Gebeyaw Getnet Mekonnen
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia.,b Department of Medical Parasitology , School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar , Gondar , Ethiopia
| | - Mark Pearson
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Alex Loukas
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Javier Sotillo
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| |
Collapse
|
32
|
Cwiklinski K, Jewhurst H, McVeigh P, Barbour T, Maule AG, Tort J, O'Neill SM, Robinson MW, Donnelly S, Dalton JP. Infection by the Helminth Parasite Fasciola hepatica Requires Rapid Regulation of Metabolic, Virulence, and Invasive Factors to Adjust to Its Mammalian Host. Mol Cell Proteomics 2018; 17:792-809. [PMID: 29321187 PMCID: PMC5880117 DOI: 10.1074/mcp.ra117.000445] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
The parasite Fasciola hepatica infects a broad range of mammals with
impunity. Following ingestion of parasites (metacercariae) by the host, newly
excysted juveniles (NEJ) emerge from their cysts, rapidly penetrate the duodenal wall
and migrate to the liver. Successful infection takes just a few hours and involves
negotiating hurdles presented by host macromolecules, tissues and micro-environments,
as well as the immune system. Here, transcriptome and proteome analysis of ex
vivo F. hepatica metacercariae and NEJ reveal the rapidity and multitude
of metabolic and developmental alterations that take place in order for the parasite
to establish infection. We found that metacercariae despite being encased in a cyst
are metabolically active, and primed for infection. Following excystment, NEJ expend
vital energy stores and rapidly adjust their metabolic pathways to cope with their
new and increasingly anaerobic environment. Temperature increases induce neoblast
proliferation and the remarkable up-regulation of genes associated with growth and
development. Cysteine proteases synthesized by gastrodermal cells are secreted to
facilitate invasion and tissue degradation, and tegumental transporters, such as
aquaporins, are varied to deal with osmotic/salinity changes. Major proteins of the
total NEJ secretome include proteases, protease inhibitors and anti-oxidants, and an
array of immunomodulators that likely disarm host innate immune effector cells. Thus,
the challenges of infection by F. hepatica parasites are met by
rapid metabolic and physiological adjustments that expedite tissue invasion and
immune evasion; these changes facilitate parasite growth, development and maturation.
Our molecular analysis of the critical processes involved in host invasion has
identified key targets for future drug and vaccine strategies directed at preventing
parasite infection.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK;
| | - Heather Jewhurst
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Paul McVeigh
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Tara Barbour
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Aaron G Maule
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jose Tort
- ¶Departamento de Genética, Facultad de Medicina, Universidad de la República, Uruguay
| | | | - Mark W Robinson
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- **The i3 Institute and School of Medical and Molecular Biosciences, University of Technology, Sydney, Australia
| | - John P Dalton
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
33
|
Monteiro KM, Lorenzatto KR, de Lima JC, Dos Santos GB, Förster S, Paludo GP, Carvalho PC, Brehm K, Ferreira HB. Comparative proteomics of hydatid fluids from two Echinococcus multilocularis isolates. J Proteomics 2017; 162:40-51. [PMID: 28442449 DOI: 10.1016/j.jprot.2017.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
The hydatid fluid (HF) that fills Echinococcus multilocularis metacestode vesicles is a complex mixture of proteins from both parasite and host origin. Here, a LC-MS/MS approach was used to compare the HF composition of E. multilocularis H95 and G8065 isolates (EmH95 and EmG8065, respectively), which present differences in terms of growth and fertility. Overall, 446 unique proteins were identified, 392 of which (88%) were from parasite origin and 54 from culture medium. At least 256 of parasite proteins were sample exclusive, and 82 of the 136 shared proteins presented differential abundance between E. multilocularis isolates. The parasite's protein repertoires in EmH95 and EmG8065 HF samples presented qualitative and quantitative differences involving antigens, signaling proteins, proteolytic enzymes, protease inhibitors and chaperones, highlighting intraspecific singularities that could be correlated to biological features of each isolate. The repertoire of medium proteins found in the HF was also differential between isolates, and the relevance of the HF exogenous protein content for the parasite's biology is discussed. The repertoires of identified proteins also provided potential molecular markers for important biological features, such as parasite growth rate and fertility, as well potential protein targets for the development of novel diagnostic and treatment strategies for alveolar echinococcosis. BIOLOGICAL SIGNIFICANCE E. multilocularis metacestode infection of mammal hosts involve complex interactions mediated by excretory/secretory (ES) products. The hydatid fluid (HF) that fills the E. multilocularis metacestode vesicles contains complex repertoires of parasite ES products and host proteins that mediate important molecular interactions determinant for parasite survival and development, and, consequently, to the infection outcome. HF has been also extensively reported as the main source of proteins for the immunodiagnosis of echinococcosis. The performed proteomic analysis provided a comprehensive profiling of the HF protein composition of two E. multilocularis isolates. This allowed us to identify proteins of both parasite and exogenous (medium) origin, many of which present significant differential abundances between parasite isolates and may correlate to their differential biological features, including fertility and growth rate.
Collapse
Affiliation(s)
- Karina M Monteiro
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Celular, Instituto de Biociências, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Karina R Lorenzatto
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Jeferson C de Lima
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme B Dos Santos
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Sabine Förster
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Gabriela P Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo C Carvalho
- Laboratório de Proteômica e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Celular, Instituto de Biociências, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
34
|
McNulty SN, Tort JF, Rinaldi G, Fischer K, Rosa BA, Smircich P, Fontenla S, Choi YJ, Tyagi R, Hallsworth-Pepin K, Mann VH, Kammili L, Latham PS, Dell’Oca N, Dominguez F, Carmona C, Fischer PU, Brindley PJ, Mitreva M. Genomes of Fasciola hepatica from the Americas Reveal Colonization with Neorickettsia Endobacteria Related to the Agents of Potomac Horse and Human Sennetsu Fevers. PLoS Genet 2017; 13:e1006537. [PMID: 28060841 PMCID: PMC5257007 DOI: 10.1371/journal.pgen.1006537] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/23/2017] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
Food borne trematodes (FBTs) are an assemblage of platyhelminth parasites transmitted through the food chain, four of which are recognized as neglected tropical diseases (NTDs). Fascioliasis stands out among the other NTDs due to its broad and significant impact on both human and animal health, as Fasciola sp., are also considered major pathogens of domesticated ruminants. Here we present a reference genome sequence of the common liver fluke, Fasciola hepatica isolated from sheep, complementing previously reported isolate from cattle. A total of 14,642 genes were predicted from the 1.14 GB genome of the liver fluke. Comparative genomics indicated that F. hepatica Oregon and related food-borne trematodes are metabolically less constrained than schistosomes and cestodes, taking advantage of the richer millieux offered by the hepatobiliary organs. Protease families differentially expanded between diverse trematodes may facilitate migration and survival within the heterogeneous environments and niches within the mammalian host. Surprisingly, the sequencing of Oregon and Uruguay F. hepatica isolates led to the first discovery of an endobacteria in this species. Two contigs from the F. hepatica Oregon assembly were joined to complete the 859,205 bp genome of a novel Neorickettsia endobacterium (nFh) closely related to the etiological agents of human Sennetsu and Potomac horse fevers. Immunohistochemical studies targeting a Neorickettsia surface protein found nFh in specific organs and tissues of the adult trematode including the female reproductive tract, eggs, the Mehlis' gland, seminal vesicle, and oral suckers, suggesting putative routes for fluke-to-fluke and fluke-to-host transmission. The genomes of F. hepatica and nFh will serve as a resource for further exploration of the biology of F. hepatica, and specifically its newly discovered trans-kingdom interaction with nFh and the impact of both species on disease in ruminants and humans.
Collapse
Affiliation(s)
- Samantha N. McNulty
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Jose F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Kerstin Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Young-Jun Choi
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Rahul Tyagi
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | | | - Victoria H. Mann
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Lakshmi Kammili
- Department of Pathology, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Patricia S. Latham
- Department of Pathology, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Nicolas Dell’Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Fernanda Dominguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Carlos Carmona
- Unidad de Biología Parasitaria, Instituto de Biología, Facultad de Ciencias, Instituto de Higiene, Montevideo, Uruguay
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Makedonka Mitreva
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
35
|
Li BW, McNulty SN, Rosa BA, Tyagi R, Zeng QR, Gu KZ, Weil GJ, Mitreva M. Conservation and diversification of the transcriptomes of adult Paragonimus westermani and P. skrjabini. Parasit Vectors 2016; 9:497. [PMID: 27619014 PMCID: PMC5020434 DOI: 10.1186/s13071-016-1785-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022] Open
Abstract
Background Paragonimiasis is an important and widespread neglected tropical disease. Fifteen Paragonimus species are human pathogens, but two of these, Paragonimus westermani and P. skrjabini, are responsible for the bulk of human disease. Despite their medical and economic significance, there is limited information on the gene content and expression of Paragonimus lung flukes. Results The transcriptomes of adult P. westermani and P. skrjabini were studied with deep sequencing technology. Approximately 30 million reads per species were assembled into 21,586 and 25,825 unigenes for P. westermani and P. skrjabini, respectively. Many unigenes showed homology with sequences from other food-borne trematodes, but 1,217 high-confidence Paragonimus-specific unigenes were identified. Analyses indicated that both species have the potential for aerobic and anaerobic metabolism but not de novo fatty acid biosynthesis and that they may interact with host signaling pathways. Some 12,432 P. westermani and P. skrjabini unigenes showed a clear correspondence in bi-directional sequence similarity matches. The expression of shared unigenes was mostly well correlated, but differentially expressed unigenes were identified and shown to be enriched for functions related to proteolysis for P. westermani and microtubule based motility for P. skrjabini. Conclusions The assembled transcriptomes of P. westermani and P. skrjabini, inferred proteins, and extensive functional annotations generated for this project (including identified primary sequence similarities to various species, protein domains, biological pathways, predicted proteases, molecular mimics and secreted proteins, etc.) represent a valuable resource for hypothesis driven research on these medically and economically important species. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1785-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ben-Wen Li
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha N McNulty
- The McDonnell Genome Institute at Washington University, St. Louis, MO, USA
| | - Bruce A Rosa
- The McDonnell Genome Institute at Washington University, St. Louis, MO, USA
| | - Rahul Tyagi
- The McDonnell Genome Institute at Washington University, St. Louis, MO, USA
| | - Qing Ren Zeng
- Department of Parasitology, Xiang-Ya School of Medicine, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Kong-Zhen Gu
- Department of Parasitology, Xiang-Ya School of Medicine, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Gary J Weil
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,The McDonnell Genome Institute at Washington University, St. Louis, MO, USA.
| |
Collapse
|
36
|
Fuzita FJ, Pinkse MWH, Patane JSL, Verhaert PDEM, Lopes AR. High throughput techniques to reveal the molecular physiology and evolution of digestion in spiders. BMC Genomics 2016; 17:716. [PMID: 27604083 PMCID: PMC5013568 DOI: 10.1186/s12864-016-3048-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spiders are known for their predatory efficiency and for their high capacity of digesting relatively large prey. They do this by combining both extracorporeal and intracellular digestion. Whereas many high throughput ("-omics") techniques focus on biomolecules in spider venom, so far this approach has not yet been applied to investigate the protein composition of spider midgut diverticula (MD) and digestive fluid (DF). RESULTS We here report on our investigations of both MD and DF of the spider Nephilingis (Nephilengys) cruentata through the use of next generation sequencing and shotgun proteomics. This shows that the DF is composed of a variety of hydrolases including peptidases, carbohydrases, lipases and nuclease, as well as of toxins and regulatory proteins. We detect 25 astacins in the DF. Phylogenetic analysis of the corresponding transcript(s) in Arachnida suggests that astacins have acquired an unprecedented role for extracorporeal digestion in Araneae, with different orthologs used by each family. The results of a comparative study of spiders in distinct physiological conditions allow us to propose some digestion mechanisms in this interesting animal taxon. CONCLUSION All the high throughput data allowed the demonstration that DF is a secretion originating from the MD. We identified enzymes involved in the extracellular and intracellular phases of digestion. Besides that, data analyses show a large gene duplication event in Araneae digestive process evolution, mainly of astacin genes. We were also able to identify proteins expressed and translated in the digestive system, which until now had been exclusively associated to venom glands.
Collapse
Affiliation(s)
- Felipe J Fuzita
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, 05503-000, Brazil.,Biotechnology Program, University of São Paulo, São Paulo, Brazil
| | - Martijn W H Pinkse
- Laboratory of Analytical Biotechnology and Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - José S L Patane
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Peter D E M Verhaert
- Laboratory of Analytical Biotechnology and Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands.,Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Adriana R Lopes
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, 05503-000, Brazil.
| |
Collapse
|
37
|
Moazeni M, Ahmadi A. Controversial aspects of the life cycle of Fasciola hepatica. Exp Parasitol 2016; 169:81-9. [PMID: 27475124 DOI: 10.1016/j.exppara.2016.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/29/2016] [Accepted: 07/24/2016] [Indexed: 02/08/2023]
Abstract
Fasciola hepatica is a well-known helminth parasite, with significant economic and public health importance all over the world. It has been known since more than 630 years ago and a considerable research work has been carried out on the life cycle of this important parasite. In the hepatic phase of the life cycle of F. hepatica, it is assumed that the young flukes, after about 6-7 weeks of migration in the liver parenchyma, enter into the bile ducts of the definitive hosts and become sexually mature. Even though the secretion of cysteine peptidases including cathepsin L and B proteases by F. hepatica may justify this opinion, because of several scientific reasons and based on the experimental studies conducted in different animals (reviewed in this article), the entry of parasites into the bile ducts, after their migration in the liver parenchyma seems to be doubtful. However, considering all the facts relating to the hepatic and biliary phases of the life cycle of F. hepatica, two alternative ideas are suggested: 1) some of the migrating juvenile flukes may enter into the bile ducts immediately after reaching the liver parenchyma while they are still very small, or 2) when newly excysted juvenile flukes are penetrating into the intestinal wall to reach the liver through the abdominal cavity, a number of these flukes may enter into the choleduct and reach the hepatic bile ducts, where they mature. According to the previously performed natural and experimental studies in different animals and human beings, the supporting and opposing evidences for the current opinion as well as the evidences that might justify the two new ideas are reviewed and discussed briefly. In conclusion, our present knowledge about the time and quality of the entry of F. hepaticas into the bile ducts, seems to be insufficient, therefore, there are still some dark corners and unknown aspects in this field that should be clarified.
Collapse
Affiliation(s)
- Mohammad Moazeni
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Amin Ahmadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
38
|
Ferraro F, Merlino A, dell´Oca N, Gil J, Tort JF, Gonzalez M, Cerecetto H, Cabrera M, Corvo I. Identification of Chalcones as Fasciola hepatica Cathepsin L Inhibitors Using a Comprehensive Experimental and Computational Approach. PLoS Negl Trop Dis 2016; 10:e0004834. [PMID: 27463369 PMCID: PMC4962987 DOI: 10.1371/journal.pntd.0004834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increased reports of human infections have led fasciolosis, a widespread disease of cattle and sheep caused by the liver flukes Fasciola hepatica and Fasciola gigantica, to be considered an emerging zoonotic disease. Chemotherapy is the main control measure available, and triclabendazole is the preferred drug since is effective against both juvenile and mature parasites. However, resistance to triclabendazole has been reported in several countries urging the search of new chemical entities and target molecules to control fluke infections. METHODOLOGY/PRINCIPLE FINDINGS We searched a library of forty flavonoid derivatives for inhibitors of key stage specific Fasciola hepatica cysteine proteases (FhCL3 and FhCL1). Chalcones substituted with phenyl and naphtyl groups emerged as good cathepsin L inhibitors, interacting more frequently with two putative binding sites within the active site cleft of the enzymes. One of the compounds, C34, tightly bounds to juvenile specific FhCL3 with an IC50 of 5.6 μM. We demonstrated that C34 is a slow-reversible inhibitor that interacts with the Cys-His catalytic dyad and key S2 and S3 pocket residues, determinants of the substrate specificity of this family of cysteine proteases. Interestingly, C34 induces a reduction in NEJ ability to migrate through the gut wall and a loss of motility phenotype that leads to NEJ death within a week in vitro, while it is not cytotoxic to bovine cells. CONCLUSIONS/SIGNIFICANCE Up to date there are no reports of in vitro screening for non-peptidic inhibitors of Fasciola hepatica cathepsins, while in general these are considered as the best strategy for in vivo inhibition. We have identified chalcones as novel inhibitors of the two main Cathepsins secreted by juvenile and adult liver flukes. Interestingly, one compound (C34) is highly active towards the juvenile enzyme reducing larval ability to penetrate the gut wall and decreasing NEJ´s viability in vitro. These findings open new avenues for the development of novel agents to control fluke infection and possibly other helminthic diseases.
Collapse
Affiliation(s)
- Florencia Ferraro
- Laboratorio de Investigación y Desarrollo de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alicia Merlino
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás dell´Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Facultad de Veterinaria, Universidad de la República, Paysandú, Uruguay
| | - José F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mercedes Gonzalez
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Cabrera
- Laboratorio de Investigación y Desarrollo de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ileana Corvo
- Laboratorio de Investigación y Desarrollo de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
39
|
Cwiklinski K, de la Torre-Escudero E, Trelis M, Bernal D, Dufresne PJ, Brennan GP, O'Neill S, Tort J, Paterson S, Marcilla A, Dalton JP, Robinson MW. The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis. Mol Cell Proteomics 2015; 14:3258-73. [PMID: 26486420 PMCID: PMC4762619 DOI: 10.1074/mcp.m115.053934] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular “machinery” required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- From the ‡School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
| | | | - Maria Trelis
- §Área de Parasitología, Departamento de Biología Celular y Parasitología, Universitat de València, Burjassot, Valencia, Spain; ¶Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Universitat de València-Health Research Institute La Fe, Valencia, Spain
| | - Dolores Bernal
- ‖Departmento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain
| | | | - Gerard P Brennan
- From the ‡School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
| | - Sandra O'Neill
- ‡‡School of Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - Jose Tort
- §§Departmento de Genética. Facultad de Medicina, UDELAR, Montevideo, Uruguay
| | - Steve Paterson
- ¶¶Centre for Genomic Research, University of Liverpool, UK
| | - Antonio Marcilla
- §Área de Parasitología, Departamento de Biología Celular y Parasitología, Universitat de València, Burjassot, Valencia, Spain; ¶Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Universitat de València-Health Research Institute La Fe, Valencia, Spain
| | - John P Dalton
- From the ‡School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
| | - Mark W Robinson
- From the ‡School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland; ‖‖Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, UK
| |
Collapse
|
40
|
Korenč M, Lenarčič B, Novinec M. Human cathepsin L, a papain-like collagenase without proline specificity. FEBS J 2015; 282:4328-40. [PMID: 26306868 DOI: 10.1111/febs.13499] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/13/2015] [Accepted: 08/21/2015] [Indexed: 12/01/2022]
Abstract
Several members of the papain-like peptidase family have the ability to degrade collagen molecules by cleaving within the triple helix region of this difficult substrate. A common denominator of these peptidases is their ability to cleave substrates with Pro in the P2 position. In humans, cathepsin K is the best-known papain-like collagenase. Here, we investigate the collagenolytic activity of human cathepsin L, which is closely related to cathepsin K. We show that, despite lacking proline specificity, cathepsin L efficiently cleaves type I collagen within the triple helix region and produces a cleavage pattern similar to that of cathepsin K. We demonstrate that both enzymes have similar affinities for type I collagen and are able to release proteolytic fragments from insoluble collagen. Moreover, cathepsin K is only approximately fourfold more potent than cathepsin L in releasing fragments from reconstituted fibrils of FITC-labeled collagen. Replacing active site residues of cathepsin L with those from cathepsin K introduces cathepsin K-like specificity towards synthetic substrates and increases the collagenolytic activity of cathepsin L. Replacing three residues in the S2 subsite is sufficient to produce a mutant with collagenolytic activity on par with human cathepsin K. These results provide a basis for engineering collagenolytic activity into non-collagenolytic papain-like scaffolds.
Collapse
Affiliation(s)
- Matevž Korenč
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia.,Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| |
Collapse
|
41
|
Gutierrez-Sanchez MDLA, Luna-Herrera J, Trejo-Castro L, Montenegro-Cristino N, Almanza-Gonzalez A, Escobar-Gutierrez A, de la Rosa-Arana JL. Influence of levamisole and Freund's adjuvant on mouse immunisation with antigens of adults of the liver fluke Fasciola hepatica Linnaeus, 1758. Folia Parasitol (Praha) 2015; 62. [PMID: 26384366 DOI: 10.14411/fp.2015.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/21/2015] [Indexed: 11/19/2022]
Abstract
We have studied the influence of both levamisole (AL) and Freund's adjuvant (AF) on the immunisation of mice with the secretory antigens of adults of the liver fluke Fasciola hepatica Linnaeus, 1758. Total IgG antibodies were detected in all groups where the F. hepatica antigen was administered, been levels of IgG1 increased respect to IgG2a antibodies. During immunisation, IL-4 and IFN-γ were only detected in AL and AF groups, but after infection, IL-4 boosted in all groups. IFN-γ increased two fold in AF and AL groups compared to the saline solution (AS) group. Worm recovering was of 32-35% in groups administered without antigen whereas in AS, AL and AF groups recovering was of 25%, 12% and 8%, respectively. Macroscopical lesions in the liver were scarce in AL and AF groups. Our data suggest that immunisation of mice with antigens of F. hepatica enhances the immune response avoiding both liver damage and worm establishment after challenge infection. The murine model of fasciolosis has appeared to be useful to elucidate the mechanism by which the parasite modulates immune responses toward a Th2 type but also the development of Th1 type-inducing vaccines.
Collapse
Affiliation(s)
| | - Julieta Luna-Herrera
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico D. F., Mexico
| | - Lauro Trejo-Castro
- Centro Nacional de Servicios de Constatacion en Salud Animal, Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion, Morelos, Mexico
| | - Natividad Montenegro-Cristino
- Centro Nacional de Servicios de Constatacion en Salud Animal, Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion, Morelos, Mexico
| | - Alfredo Almanza-Gonzalez
- Instituto de Diagnostico y Referencia Epidemiologicos, Secretaria de Salud, Mexico D. F., Mexico
| | | | | |
Collapse
|
42
|
Meemon K, Sobhon P. Juvenile-specific cathepsin proteases in Fasciola spp.: their characteristics and vaccine efficacies. Parasitol Res 2015; 114:2807-13. [PMID: 26099239 DOI: 10.1007/s00436-015-4589-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is one of the most neglected tropical zoonotic diseases. One sustainable control strategy against these infections is the employment of vaccines that target proteins essential for parasites' invasion and nutrition acquiring processes. Cathepsin proteases are the most abundantly expressed proteins in Fasciola spp. that have been tested successfully as vaccines against fasciolosis in experimental as well as large animals because of their important roles in digestion of nutrients, invasion, and migration. Specifically, juvenile-specific cathepsin proteases are the more effective vaccines because they could block the invasion and migration of juvenile parasites whose immune evasion mechanism has not yet been fully developed. Moreover, because of high sequence similarity and identity of cathepsins from juveniles with those of adults, the vaccines can attack both the juvenile and adult stages. In this article, the characteristics and vaccine potentials of juvenile-specific cathepsins, i.e., cathepsins L and B, of Fasciola spp. were reviewed.
Collapse
Affiliation(s)
- Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand,
| | | |
Collapse
|
43
|
Hernández Alvarez L, Naranjo Feliciano D, Hernández González JE, de Oliveira Soares R, Barreto Gomes DE, Pascutti PG. Insights into the Interactions of Fasciola hepatica Cathepsin L3 with a Substrate and Potential Novel Inhibitors through In Silico Approaches. PLoS Negl Trop Dis 2015; 9:e0003759. [PMID: 25978322 PMCID: PMC4433193 DOI: 10.1371/journal.pntd.0003759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Background Fasciola hepatica is the causative agent of fascioliasis, a disease affecting grazing animals, causing economic losses in global agriculture and currently being an important human zoonosis. Overuse of chemotherapeutics against fascioliasis has increased the populations of drug resistant parasites. F. hepatica cathepsin L3 is a protease that plays important roles during the life cycle of fluke. Due to its particular collagenolytic activity it is considered an attractive target against the infective phase of F. hepatica. Methodology/Principal Findings Starting with a three dimensional model of FhCL3 we performed a structure-based design of novel inhibitors through a computational study that combined virtual screening, molecular dynamics simulations, and binding free energy (ΔGbind) calculations. Virtual screening was carried out by docking inhibitors obtained from the MYBRIDGE-HitFinder database inside FhCL3 and human cathepsin L substrate-binding sites. On the basis of dock-scores, five compounds were predicted as selective inhibitors of FhCL3. Molecular dynamic simulations were performed and, subsequently, an end-point method was employed to predict ΔGbind values. Two compounds with the best ΔGbind values (-10.68 kcal/mol and -7.16 kcal/mol), comparable to that of the positive control (-10.55 kcal/mol), were identified. A similar approach was followed to structurally and energetically characterize the interface of FhCL3 in complex with a peptidic substrate. Finally, through pair-wise and per-residue free energy decomposition we identified residues that are critical for the substrate/ligand binding and for the enzyme specificity. Conclusions/Significance The present study is the first computer-aided drug design approach against F. hepatica cathepsins. Here we predict the principal determinants of binding of FhCL3 in complex with a natural substrate by detailed energetic characterization of protease interaction surface. We also propose novel compounds as FhCL3 inhibitors. Overall, these results will foster the future rational design of new inhibitors against FhCL3, as well as other F. hepatica cathepsins. Fascioliosis is considered an emerging disease in humans, causing important losses in global agriculture through the infection of livestock animals. The outcome of resistant parasites has increased the search for new drugs which may contribute to disease control. In recent decades, Fasciola cathepsins (FhCs) have been defined as the principal virulence factors of this parasite. Despite being in the same protein family, they have different specificities and, thus, distinct roles throughout the fluke life cycle. Differences in specificity have been attributed to a few variations in the sequence of key FhCs subsites. Currently, the structure-based drug design of inhibitors against Fasciola cathepsin Ls (FhCLs) with unknown structures is possible due to the availability of the three-dimensional structure of FhCL1. Our detailed structural analysis of the major infective juvenile enzyme (FhCL3) identifies the molecular determinants for protein binding. Also, novel potential inhibitors against FhCL3 are proposed, which might reduce host invasion and penetration processes. These compounds are predicted to interact with the binding site of the enzyme, therefore they could prevent substrate processing by competitive inhibition. The structure-based drug design strategy described here will be useful for the development of new potent and selective inhibitors against other FhCs.
Collapse
Affiliation(s)
- Lilian Hernández Alvarez
- Departamento de Biología Molecular, Centro Nacional de Sanidad Agropecuaria de Cuba (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Dany Naranjo Feliciano
- Departamento de Biología Molecular, Centro Nacional de Sanidad Agropecuaria de Cuba (CENSA), San José de las Lajas, Mayabeque, Cuba
| | | | - Rosemberg de Oliveira Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, Brazil
| | - Diego Enry Barreto Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, Brazil
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
44
|
Alvarez Rojas CA, Ansell BRE, Hall RS, Gasser RB, Young ND, Jex AR, Scheerlinck JPY. Transcriptional analysis identifies key genes involved in metabolism, fibrosis/tissue repair and the immune response against Fasciola hepatica in sheep liver. Parasit Vectors 2015; 8:124. [PMID: 25885344 PMCID: PMC4382932 DOI: 10.1186/s13071-015-0715-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/04/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although fascioliasis has been relatively well studied, little is known about the molecular basis of this disease. This is particularly relevant, considering the very different response that sheep have to Fasciola hepatica relative to cattle. The acute phase of this disease is severe in sheep, whereas chronic fascioliasis is more common in cattle. METHODS To begin to explore the host-response to Fasciola in sheep and improve the understanding of the host-pathogen interactions during the parasite's migration through liver parenchyma to the bile duct, we used RNA sequencing (RNA-seq) to investigate livers from sheep infected for eight weeks compared with those from uninfected controls. RESULTS This study identified 572 and 42 genes that were up- and down-regulated, respectively, in infected livers relative to uninfected controls. Our molecular findings provide significant new insights into the mechanisms linked to metabolism, fibrosis and tissue-repair in sheep, and highlight the relative importance of specific components of immune response pathways, which appear to be driven toward a suppression of inflammation. CONCLUSIONS This study is, to our knowledge, the first detailed investigation of the transcriptomic responses in the liver tissue of any host to F. hepatica infection. It defines the involvement of specific genes associated with the host's metabolism, immune response and tissue repair/regeneration, and highlights an apparent overlapping function of many genes involved in these processes.
Collapse
Affiliation(s)
- Cristian A Alvarez Rojas
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Ross S Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jean-Pierre Y Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
45
|
Molina-Hernández V, Mulcahy G, Pérez J, Martínez-Moreno Á, Donnelly S, O'Neill SM, Dalton JP, Cwiklinski K. Fasciola hepatica vaccine: we may not be there yet but we're on the right road. Vet Parasitol 2015; 208:101-11. [PMID: 25657086 PMCID: PMC4366043 DOI: 10.1016/j.vetpar.2015.01.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances have been made in identifying potential vaccine molecules for the control of fasciolosis in livestock but we have yet to reach the level of efficacy required for commercialisation. The pathogenesis of fasciolosis is associated with liver damage that is inflicted by migrating and feeding immature flukes as well as host inflammatory immune responses to parasite-secreted molecules and tissue damage alarm signals. Immune suppression/modulation by the parasites prevents the development of protective immune responses as evidenced by the lack of immunity observed in naturally and experimentally infected animals. In our opinion, future efforts need to focus on understanding how parasites invade and penetrate the tissues of their hosts and how they potentiate and control the ensuing immune responses, particularly in the first days of infection. Emerging 'omics' data employed in an unbiased approach are helping us understand liver fluke biology and, in parallel with new immunological data, to identify molecules that are essential to parasite development and accessible to vaccine-induced immune responses.
Collapse
Affiliation(s)
| | - Grace Mulcahy
- Veterinary Science Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Jose Pérez
- School of Veterinary Medicine, University of Cordoba, Córdoba, Spain
| | | | - Sheila Donnelly
- The i3 Institute & School of Medical and Molecular Biosciences, University of Technology, Sydney, Australia
| | | | - John P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
46
|
Systems biology studies of adult paragonimus lung flukes facilitate the identification of immunodominant parasite antigens. PLoS Negl Trop Dis 2014; 8:e3242. [PMID: 25329661 PMCID: PMC4199545 DOI: 10.1371/journal.pntd.0003242] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/04/2014] [Indexed: 01/05/2023] Open
Abstract
Background Paragonimiasis is a food-borne trematode infection acquired by eating raw or undercooked crustaceans. It is a major public health problem in the far East, but it also occurs in South Asia, Africa, and in the Americas. Paragonimus worms cause chronic lung disease with cough, fever and hemoptysis that can be confused with tuberculosis or other non-parasitic diseases. Treatment is straightforward, but diagnosis is often delayed due to a lack of reliable parasitological or serodiagnostic tests. Hence, the purpose of this study was to use a systems biology approach to identify key parasite proteins that may be useful for development of improved diagnostic tests. Methodology/Principal Findings The transcriptome of adult Paragonimus kellicotti was sequenced with Illumina technology. Raw reads were pre-processed and assembled into 78,674 unique transcripts derived from 54,622 genetic loci, and 77,123 unique protein translations were predicted. A total of 2,555 predicted proteins (from 1,863 genetic loci) were verified by mass spectrometric analysis of total worm homogenate, including 63 proteins lacking homology to previously characterized sequences. Parasite proteins encoded by 321 transcripts (227 genetic loci) were reactive with antibodies from infected patients, as demonstrated by immunoaffinity purification and high-resolution liquid chromatography-mass spectrometry. Serodiagnostic candidates were prioritized based on several criteria, especially low conservation with proteins in other trematodes. Cysteine proteases, MFP6 proteins and myoglobins were abundant among the immunoreactive proteins, and these warrant further study as diagnostic candidates. Conclusions The transcriptome, proteome and immunolome of adult P. kellicotti represent a major advance in the study of Paragonimus species. These data provide a powerful foundation for translational research to develop improved diagnostic tests. Similar integrated approaches may be useful for identifying novel targets for drugs and vaccines in the future. Paragonimiasis is a food-borne trematode infection that people acquire when they eat raw or undercooked crustaceans. Disease symptoms (including cough, fever, blood in sputum, etc.) can be similar to those observed in patients with tuberculosis or bacterial pneumonia, frequently resulting in misdiagnosis. Although the infection is relatively easy to treat, diagnosis is complicated. Available diagnostic assays rely on total parasite homogenate to facilitate the detection of Paragonimus-specific antibodies in patients. Though these blot-based assays have shown high sensitivity and specificity, they are inconvenient because total parasite homogenate is not readily available. This study used next generation genomic and proteomic methods to identify transcripts and proteins expressed in adult Paragonimus flukes. We then used sera from patients infected with P. kellicotti to isolate immunoreactive proteins, and these were analyzed by mass spectrometry. The annotated transcriptome and the associated proteome of the antibody immune response represent a significant advance in research on Paragonimus. This information will be a valuable resource for further research on Paragonimus and paragonimiasis. Thus this project illustrates the potential power of employing systems biology for translational research in parasitology.
Collapse
|
47
|
Liu S, Cai P, Piao X, Hou N, Zhou X, Wu C, Wang H, Chen Q. Expression profile of the Schistosoma japonicum degradome reveals differential protease expression patterns and potential anti-schistosomal intervention targets. PLoS Comput Biol 2014; 10:e1003856. [PMID: 25275570 PMCID: PMC4183426 DOI: 10.1371/journal.pcbi.1003856] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/12/2014] [Indexed: 12/05/2022] Open
Abstract
Blood fluke proteases play pivotal roles in the processes of invasion, nutrition acquisition, immune evasion, and other host-parasite interactions. Hundreds of genes encoding putative proteases have been identified in the recently published schistosome genomes. However, the expression profiles of these proteases in Schistosoma species have not yet been systematically analyzed. We retrieved and culled the redundant protease sequences of Schistosoma japonicum, Schistosoma mansoni, Echinococcus multilocularis, and Clonorchis sinensis from public databases utilizing bioinformatic approaches. The degradomes of the four parasitic organisms and Homo sapiens were then comparatively analyzed. A total of 262 S. japonicum protease sequences were obtained and the expression profiles generated using whole-genome microarray. Four main clusters of protease genes with different expression patterns were identified: proteases up-regulated in hepatic schistosomula and adult worms, egg-specific or predominantly expressed proteases, cercaria-specific or predominantly expressed proteases, and constantly expressed proteases. A subset of protease genes with different expression patterns were further validated using real-time quantitative PCR. The present study represents the most comprehensive analysis of a degradome in Schistosoma species to date. These results provide a firm foundation for future research on the specific function(s) of individual proteases and may help to refine anti-proteolytic strategies in blood flukes. Parasite proteases play critical roles in host-parasite interactions and thus are considered to be potential anti-schistosomal targets. Although numerous schistosome proteases have been predicted based on recently published genomes, no systematic analysis of their expression in Schistosoma species has been performed. Thus, we comparatively analyzed the degradomes of four parasitic organisms and human host, and performed whole-genome microarray analysis to analyze the expression profile of the Schistosoma japonicum degradome at four developmental stages. The expression profile generated for the S. japonicum degradome was divided into four main clusters with different expression patterns, and a subset of selected proteases were further validated using real-time quantitative PCR. Our work is the most comprehensive analysis of a degradome in Schistosoma species to date. Many protease genes were first characterized in blood flukes, and some could be treated as potential anti-schistosomal targets for intensive research in the future. The results provide a firm foundation for deep study on the specific function(s) of individual proteases or protease families in schistosomes.
Collapse
Affiliation(s)
- Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaosu Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Wang
- Department of Microbiology and Parasitology, Institute of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Zoonosis, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
48
|
Chen W, Wang X, Lv X, Tian Y, Xu Y, Mao Q, Shang M, Li X, Huang Y, Yu X. Characterization of the secreted cathepsin B cysteine proteases family of the carcinogenic liver fluke Clonorchis sinensis. Parasitol Res 2014; 113:3409-18. [PMID: 24985496 DOI: 10.1007/s00436-014-4006-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/16/2014] [Indexed: 01/15/2023]
Abstract
Clonorchis sinensis excretory/secretory products (ESP) have gained high attentions because of their potential to be vaccine candidates and drug targets in C. sinensis prevention. In this study, we extensively profiled the characteristics of four C. sinensis cathepsin B cysteine proteases (CsCB1, CsCB2, CsCB3, and CsCB4). Bioinformatics analysis showed all CsCBs contained signal peptides at the N-terminal. Functional domains and residues were found in CsCB sequences. We expressed four CsCBs and profiled immune responses followed by vaccine trials. Recombinant CsCBs could induce high IgG titers, indicating high immunogenicity of CsCB family. Additionally, ELISA results showed that both IgG1 and IgG2a levels apparently increased post-immunization with all four CsCBs, showing that combined Th1/Th2 immune responses were triggered by CsCB family. Both Real-time polymerase chain reaction (RT-PCR) and Western blotting confirmed that four CsCBs have distinct expression patterns in C. sinensis life stages. More importantly, we validated our hypothesis that CsCBs were C. sinensis excretory/secretory products. CsCBs could be recognized by C. sinensis-infected sera throughout the infection period, indicating that secreted CsCBs are immune triggers during C. sinensis infection. The protective effect was assessed by comparing the worm burden and egg per gram (EPG) between CsCB group and control group, showing that worm burden (P < 0.01) and EPG (P < 0.01) in CsCB2 and CsCB3 groups were significantly lower than in control group. In conclusion, we profiled secreted cathepsin B cysteine proteases family for the first time and demonstrated that all CsCB family were C. sinensis excretory/secretory products that may regulate host immune responses.
Collapse
Affiliation(s)
- Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Redpath SA, Fonseca NM, Perona-Wright G. Protection and pathology during parasite infection: IL-10 strikes the balance. Parasite Immunol 2014; 36:233-52. [PMID: 24666543 DOI: 10.1111/pim.12113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/18/2014] [Indexed: 12/16/2022]
Abstract
The host response to infection requires an immune response to be strong enough to control the pathogen but also restrained, to minimize immune-mediated pathology. The conflicting pressures of immune activation and immune suppression are particularly apparent in parasite infections, where co-evolution of host and pathogen has selected many different compromises between protection and pathology. Cytokine signals are critical determinants of both protective immunity and immunopathology, and, in this review, we focus on the regulatory cytokine IL-10 and its role in protozoan and helminth infections. We discuss the sources and targets of IL-10 during parasite infection, the signals that initiate and reinforce its action, and its impact on the invading parasite, on the host tissue, and on coincident immune responses.
Collapse
Affiliation(s)
- S A Redpath
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
50
|
Ran LY, Su HN, Zhou MY, Wang L, Chen XL, Xie BB, Song XY, Shi M, Qin QL, Pang X, Zhou BC, Zhang YZ, Zhang XY. Characterization of a novel subtilisin-like protease myroicolsin from deep sea bacterium Myroides profundi D25 and molecular insight into its collagenolytic mechanism. J Biol Chem 2014; 289:6041-53. [PMID: 24429289 DOI: 10.1074/jbc.m113.513861] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen is an insoluble protein that widely distributes in the extracellular matrix of marine animals. Collagen degradation is an important step in the marine nitrogen cycle. However, the mechanism of marine collagen degradation is still largely unknown. Here, a novel subtilisin-like collagenolytic protease, myroicolsin, which is secreted by the deep sea bacterium Myroides profundi D25, was purified and characterized, and its collagenolytic mechanism was studied. Myroicolsin displays low identity (<30%) to previously characterized subtilisin-like proteases, and it contains a novel domain structure. Protein truncation indicated that the Pro secretion system C-terminal sorting domain in the precursor protein is involved in the cleavage of the N-propeptide, and the linker is required for protein folding during myroicolsin maturation. The C-terminal β-jelly roll domain did not bind insoluble collagen fiber, suggesting that myroicolsin may degrade collagen without the assistance of a collagen-binding domain. Myroicolsin had broad specificity for various collagens, especially fish-insoluble collagen. The favored residue at the P1 site was basic arginine. Scanning electron microscopy and atomic force microscopy, together with biochemical analyses, confirmed that collagen fiber degradation by myroicolsin begins with the hydrolysis of proteoglycans and telopeptides in collagen fibers and fibrils. Myroicolsin showed strikingly different cleavage patterns between native and denatured collagens. A collagen degradation model of myroicolsin was proposed based on our results. Our study provides molecular insight into the collagen degradation mechanism and structural characterization of a subtilisin-like collagenolytic protease secreted by a deep sea bacterium, shedding light on the degradation mechanism of deep sea sedimentary organic nitrogen.
Collapse
Affiliation(s)
- Li-Yuan Ran
- From the State Key Laboratory of Microbial Technology
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|