1
|
Asemahegn G, Hailu T, Ayehu A. Prevalence of Plasmodium and Soil-Transmitted Helminth Coinfection and Associated Factors among Malaria-Suspected Patients Attending Shewa Robit Health Center, North-Central Ethiopia. Am J Trop Med Hyg 2024; 111:333-340. [PMID: 38889734 PMCID: PMC11310633 DOI: 10.4269/ajtmh.24-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/06/2024] [Indexed: 06/20/2024] Open
Abstract
Plasmodium and soil-transmitted helminth (STH) coinfection is a major public health problem in developing countries. Its prevalence and associated factors are poorly addressed in the available research. Therefore, this study aimed to assess Plasmodium-STH coinfection prevalence and associated factors among malaria-suspected patients attending Shewa Robit Health Center, north-central Ethiopia. A cross-sectional study was conducted among 379 malaria-suspected patients attending Shewa Robit Health Center from April to May 2023. Stool and blood samples were collected from each participant. Plasmodium and STHs were detected from blood and stool samples by using blood film and the Kato-Katz method, respectively. Data were entered into Epi Info version 7 and analyzed by SPSS version 26. Descriptive statistics were used to compute Plasmodium-STH coinfection. Logistic regression was used to identify associated factors. Variables with a P-value <0.05 were considered statistically significant. Among the study participants, 27.9%, 20.3%, and 13.4% were positive for Plasmodium, STHs, and Plasmodium-STH coinfection, respectively. The prevalence of Plasmodium-Ascaris lumbricoides coinfection was high (7.6%). Unavailability of insecticide-treated bed nets (ITNs), improper use of ITNs, absence of indoor residual spraying, presence of stagnant water, and previous malaria infection were significantly associated (P <0.01) with Plasmodium infection. Being illiterate, using an unimproved latrine, having an untrimmed fingernail, and practicing open defecation were also significantly associated (P <0.03), with STH infection. Being male, illiterate, and living in rural areas were significantly associated (P <0.03) with Plasmodium-STH coinfection. The prevalence of Plasmodium-STH coinfection was high in malaria-endemic areas. Therefore, malaria-suspected cases should be checked for STH infection.
Collapse
Affiliation(s)
- Geletaw Asemahegn
- Mehal Meda General Hospital, North Shewa Zone, Amhara National Regional Health Bureau, Ethiopia
| | - Tadesse Hailu
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Animen Ayehu
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
2
|
Davenport K, Liu J, Sarquis J, Beall M, Montoya A, Drexel J, Denis T, Toste R, Traversa D, Miró G. Performance of a point-of-care test for the detection of anti-Leishmania infantum antibodies is associated with immunofluorescent antibody titer and clinical stage of leishmaniosis in dogs from endemic regions. Vet Parasitol Reg Stud Reports 2024; 53:101061. [PMID: 39025539 DOI: 10.1016/j.vprsr.2024.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024]
Abstract
Canine leishmaniosis (CanL) is caused by the protozoal parasite Leishmania infantum, which is transmitted by sand flies in warm climates across the world. Because dogs are considered a primary domestic reservoir for the parasite that causes leishmaniosis in humans, it is important from a One Health perspective that CanL be properly managed. In endemic regions, CanL is a common differential diagnosis in sick dogs because the clinical signs and clinicopathological disorders of the disease are non-specific, variable, and may overlap those of other common conditions. Diagnosis is based on the presence of compatible clinical signs, laboratory abnormalities, and confirmation by serological and parasitological evidence of infection. Here, we describe the performance of a point-of-care (POC) immunoassay that uses recombinant antigens to detect canine anti- L. infantum antibodies in a convenience sample set from a diagnostic laboratory, a group of canine patients with clinical staging, and in apparently healthy dogs from endemic areas. An immunofluorescence antibody test (IFAT) was used as the semiquantitative reference method. In the convenience sample set with high IFAT titers (≥ 1:800), the POC immunoassay demonstrated perfect agreement with IFAT (100%; 90/90). Using samples from dogs staged as either LeishVet Stage 2 or 3 or LeishVet Stage 1, positive agreement of the POC immunoassay with the IFAT was 98.8% (82/83) and 83.8% (31/37), respectively. The negative agreement with IFAT was 98.9% (272/275) in apparently healthy dogs from endemic areas of Greece and Italy. Since the performance of the POC immunoassay was associated with IFAT titer and clinical stage of CanL, the test may help veterinarians when determining if CanL is likely responsible for a patient's clinical picture or when evaluating an apparently healthy patient prior to vaccination.
Collapse
Affiliation(s)
| | - Joe Liu
- IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, ME 04092, USA.
| | | | - Melissa Beall
- IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, ME 04092, USA.
| | - Ana Montoya
- Universidad Complutense, 28040 Madrid, Spain.
| | - Jan Drexel
- IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, ME 04092, USA.
| | - Tori Denis
- IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, ME 04092, USA.
| | - Ryan Toste
- IDEXX Laboratories, Inc., 1 IDEXX Drive, Westbrook, ME 04092, USA.
| | | | | |
Collapse
|
3
|
Adu DK, Nate Z, Alake J, Ike BW, Mahlalela MC, Mohite SB, Mokoena S, Chauhan R, Karpoormath R. Rapid and label-free A2 peptide epitope decorated CoFe 2O 4-C60 nanocomposite-based electrochemical immunosensor for detecting Visceral Leishmaniasis. Bioelectrochemistry 2024; 157:108662. [PMID: 38342074 DOI: 10.1016/j.bioelechem.2024.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Diagnosis of Visceral Leishmaniasis is challenging due to the shared clinical features with malaria, typhoid, and tuberculosis. A CoFe2O4-C60 nanocomposite-based immunosensor decorated with a sensitive A2 peptide antigen was fabricated to detect anti-A2 antibodies for application in visceral leishmaniasis diagnosis. The flame-synthesised nanocomposite was characterised using Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy and electrochemical impedance spectroscopy (EIS) techniques. N terminated specific A2 peptide epitope antigen (NH2-QSVGPLSVGP-OH) was synthesised and characterised by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectroscopy (LC-MS). Using EDC/NHS, A2 peptide antigen (Apg) was immobilised on the CoFe2O4-C60-modified electrode. The performance of the immunosensor, Apg-CoFe2O4-C60NP/GCE, was evaluated by testing its ability to detect varying concentrations of anti-A2 antibody solution in PBS and spiked serum with 1 mM [Fe(CN)6]3-/4- in 0.01 M PBS (pH 7.4) as supporting electrolyte. using differential pulse voltammetry. The immunosensor showed excellent reproducibility and a linear range of 10-10-10-1 µg/mL, with an experimental detection limit of 30.34 fg/mL. These results suggest that the fabricated sensor has great potential as a tool for diagnosing visceral leishmaniasis.
Collapse
Affiliation(s)
- Darko Kwabena Adu
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Zondi Nate
- Chemistry Department, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville 7530, South Africa
| | - John Alake
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Blessing Wisdom Ike
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mavela Cleopus Mahlalela
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Sithabile Mokoena
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Ruchika Chauhan
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| |
Collapse
|
4
|
Silva KA, Ribeiro AJ, Gandra IB, Resende CAA, da Silva Lopes L, Couto CAP, de Araujo Freire V, Barcelos ICS, Pereira SP, Xavier SR, da Paz MC, Giunchetti RC, Chávez-Fumagalli MA, Gonçalves AAM, Coelho EAF, Galdino AS. A Review on the use of Synthetic and Recombinant Antigens for the Immunodiagnosis of Tegumentary Leishmaniasis. Curr Med Chem 2024; 31:4763-4780. [PMID: 38509682 PMCID: PMC11348456 DOI: 10.2174/0109298673298705240311114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Improving the diagnostic technology used to detect tegumentary leishmaniasis (TL) is essential in view of it being a widespread, often neglected tropical disease, with cases reported from the Southern United States to Northern Argentina. Recombinant proteins, recombinant multiepitope proteins, and synthetic peptides have been extensively researched and used in disease diagnosis. One of the benefits of applying these antigens is a measurable increase in sensitivity and specificity, which improves test accuracy. The present review aims to describe the use of these antigens and their diagnostic effectiveness. With that in mind, a bibliographic survey was conducted on the PudMed platform using the search terms "tegumentary leishmaniasis" AND "diagno", revealing that recombinant proteins have been described and evaluated for their value in TL diagnosis since the 1990s. However, there was a spike in the number of publications using all of the antigens between 2013 and 2022, confirming an expansion in research efforts to improve diagnosis. Moreover, all of the studies involving different antigens had promising results, including improved sensitivity and specificity. These data recognize the importance of doing research with new technologies focused on developing quick, more effective diagnostic kits as early diagnosis facilitates treatment.
Collapse
Affiliation(s)
- Kamila Alves Silva
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Anna Júlia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Isadora Braga Gandra
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Carlos Ananias Aparecido Resende
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Lucas da Silva Lopes
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Carolina Alves Petit Couto
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Verônica de Araujo Freire
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Isabelle Caroline Santos Barcelos
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Sabrina Paula Pereira
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Sandra Rodrigues Xavier
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Mariana Campos da Paz
- Laboratório de Bioativos e Nanobiotecnologia, Universidade Federal de São João Del-Rei, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brasil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Ana Alice Maia Gonçalves
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brasil
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| |
Collapse
|
5
|
Pagniez J, Petitdidier E, Parra-Zuleta O, Pissarra J, Bras-Gonçalves R. A systematic review of peptide-based serological tests for the diagnosis of leishmaniasis. Parasite 2023; 30:10. [PMID: 37010451 PMCID: PMC10069404 DOI: 10.1051/parasite/2023011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/06/2023] [Indexed: 04/04/2023] Open
Abstract
Serological methods should meet the needs of leishmaniasis diagnosis due to their high sensitivity and specificity, economical and adaptable rapid diagnostic test format, and ease of use. Currently, the performances of serological diagnostic tests, despite improvements with recombinant proteins, vary greatly depending on the clinical form of leishmaniasis and the endemic area. Peptide-based serological tests are promising as they could compensate for antigenic variability and improve performance, independently of Leishmania species and subspecies circulating in the endemic areas. The objective of this systematic review was to inventory all studies published from 2002 to 2022 that evaluate synthetic peptides for serological diagnosis of human leishmaniases and also to highlight the performance (e.g., sensitivity and specificity) of each peptide reported in these studies. All clinical forms of leishmaniasis, visceral and tegumentary, and all Leishmania species responsible for these diseases were considered. Following PRISMA statement recommendations, 1,405 studies were identified but only 22 articles met the selection criteria and were included in this systematic review. These original research articles described 77 different peptides, of which several have promising performance for visceral or tegumentary leishmaniasis diagnosis. This review highlights the importance of and growing interest in synthetic peptides used for serological diagnosis of leishmaniases, and their performances compared to some widely used tests with recombinant proteins.
Collapse
Affiliation(s)
- Julie Pagniez
- UMR177 INTERTRYP 911 avenue Agropolis B.P. 64501 34394 Montpellier France
| | - Elodie Petitdidier
- UMR177 INTERTRYP 911 avenue Agropolis B.P. 64501 34394 Montpellier France
| | | | - Joana Pissarra
- UMR177 INTERTRYP 911 avenue Agropolis B.P. 64501 34394 Montpellier France
| | | |
Collapse
|
6
|
Aguilar-Montes de Oca S, Montes-de-Oca-Jiménez R, Carlos Vázquez-Chagoyán J, Barbabosa-Pliego A, Eliana Rivadeneira-Barreiro P, C. Zambrano-Rodríguez P. The Use of Peptides in Veterinary Serodiagnosis of Infectious Diseases: A Review. Vet Sci 2022; 9:vetsci9100561. [PMID: 36288174 PMCID: PMC9610506 DOI: 10.3390/vetsci9100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Peptides constitute an alternative and interesting option to develop treatments, vaccines, and diagnostic tools as they demonstrate their scope in several health aspects; as proof of this, commercial peptides for humans and animals are available on the market and used daily. This review aimed to know the role of peptides in the field of veterinary diagnosis, and include peptide-based enzyme-linked immunosorbent assay (pELISA), lateral flow devices, and peptide latex agglutination tests that have been developed to detect several pathogens including viruses and bacteria of health and production relevance in domestic animals. Studies in cattle, small ruminants, dogs, cats, poultry, horses, and even aquatic organisms were reviewed. Different studies showed good levels of sensitivity and specificity against their target, moreover, comparisons with commercial kits and official tests were performed which allowed appraising their performance. Chemical synthesis, recombinant DNA technology, and enzymatic synthesis were reviewed as well as their advantages and drawbacks. In addition, we discussed the intrinsic limitations such as the small size or affinity to polystyrene membrane and mention several strategies to overcome these problems. The use of peptides will increase in the coming years and their utility for diagnostic purposes in animals must be evaluated.
Collapse
Affiliation(s)
- Saúl Aguilar-Montes de Oca
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca 50200, CP, Mexico
| | - Roberto Montes-de-Oca-Jiménez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca 50200, CP, Mexico
- Correspondence:
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca 50200, CP, Mexico
| | - Alberto Barbabosa-Pliego
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca 50200, CP, Mexico
| | | | - Pablo C. Zambrano-Rodríguez
- Departamento de Veterinaria, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| |
Collapse
|
7
|
Galvani NC, Machado AS, Lage DP, Freitas CS, Vale DL, de Oliveira D, Ludolf F, Ramos FF, Fernandes BB, Luiz GP, Mendonça DVC, Oliveira-da-Silva JA, Reis TAR, Tavares GSV, Chaves AT, Guimarães NS, Tupinambás U, Cota GF, Humbert MV, Martins VT, Christodoulides M, Coelho EAF, Machado-de-Ávila RA. ChimLeish, a new recombinant chimeric protein evaluated as a diagnostic and prognostic marker for visceral leishmaniasis and human immunodeficiency virus coinfection. Parasitol Res 2021; 120:4037-4047. [PMID: 34664113 PMCID: PMC8523347 DOI: 10.1007/s00436-021-07342-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease of global importance caused by parasites of the genus Leishmania, and coinfection with human immunodeficiency virus (HIV) is common in countries where both diseases are endemic. In particular, widely used immunological tests for VL diagnosis have impaired sensitivity (Se) and specificity (Sp) in VL/HIV coinfected patients and there is also cross-reactivity with other endemic diseases, e.g., Chagas disease, malaria, and tuberculosis. To develop new antigens to improve the diagnosis of VL and VL/HIV coinfection, we predicted eight specific B-cell epitopes of four Leishmania infantum antigens and constructed a recombinant polypeptide chimera antigen called ChimLeish. A serological panel of 195 serum samples was used to compare the diagnostic capabilities of ChimLeish alongside the individual synthetic peptides. ChimLeish reacted with sera from all VL and VL/HIV coinfected patients [Se = 100%; Sp = 100%; area under the curve (AUC) = 1.0]. Peptides showed lower reactivities (Se = 76.8 to 99.2%; Sp = 67.1 to 95.7%; AUC between 0.87 and 0.98) as did a L. infantum antigenic preparation used as an antigen control (Se = 56.8%; Sp = 69.5%: AUC = 0.45). Notably, ChimLeish demonstrated a significant reduction (p < 0.05) of anti-ChimLeish antibodies after treatment and cure of a small number of patients. Although only a limited serological panel was tested, preliminary data suggest that ChimLeish should be evaluated in larger sample studies for the diagnosis of VL and VL/HIV coinfection.
Collapse
Affiliation(s)
- Nathalia C Galvani
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Amanda S Machado
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Daniela P Lage
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Camila S Freitas
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Danniele L Vale
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Daysiane de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, 88806-000, Brazil
| | - Fernanda Ludolf
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Fernanda F Ramos
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Bruna B Fernandes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, 88806-000, Brazil
| | - Gabriel P Luiz
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, 88806-000, Brazil
| | - Débora V C Mendonça
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - João A Oliveira-da-Silva
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Thiago A R Reis
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Grasiele S V Tavares
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Ana T Chaves
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Nathalia S Guimarães
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Unaí Tupinambás
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Gláucia F Cota
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Maria V Humbert
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, England, UK
| | - Vívian T Martins
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, England, UK
| | - Eduardo A F Coelho
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil.
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, 88806-000, Brazil
| |
Collapse
|
8
|
Ramos FF, Tavares GSV, Ludolf F, Machado AS, Santos TTO, Gonçalves IAP, Dias ACS, Alves PT, Fraga VG, Bandeira RS, Oliveira-da-Silva JA, Reis TAR, Lage DP, Martins VT, Freitas CS, Chaves AT, Guimarães NS, Chávez-Fumagalli MA, Tupinambás U, Rocha MOC, Cota GF, Fujiwara RT, Bueno LL, Goulart LR, Coelho EAF. Diagnostic application of sensitive and specific phage-exposed epitopes for visceral leishmaniasis and human immunodeficiency virus coinfection. Parasitology 2021; 148:1706-1714. [PMID: 35060464 PMCID: PMC11010164 DOI: 10.1017/s0031182021001505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/05/2022]
Abstract
The diagnosis of visceral leishmaniasis (VL) has improved with the search of novel antigens; however, their performance is limited when samples from VL/human immunodeficiency virus (HIV)-coinfected patients are tested. In this context, studies conducted to identify more suitable antigens to detect both VL and VL/HIC coinfection cases should be performed. In the current study, phage display was performed using serum samples from healthy subjects and VL, HIV-infected and VL/HIV-coinfected patients; aiming to identify novel phage-exposed epitopes to be evaluated with this diagnostic purpose. Nine non-repetitive and valid sequences were identified, synthetized and tested as peptides in enzyme-linked immunosorbent assay experiments. Results showed that three (Pep2, Pep3 and Pep4) peptides showed excellent performance to diagnose VL and VL/HIV coinfection, with 100% sensitivity and specificity values. The other peptides showed sensitivity varying from 50.9 to 80.0%, as well as specificity ranging from 60.0 to 95.6%. Pep2, Pep3 and Pep4 also showed a potential prognostic effect, since specific serological reactivity was significantly decreased after patient treatment. Bioinformatics assays indicated that Leishmania trypanothione reductase protein was predicted to contain these three conformational epitopes. In conclusion, data suggest that Pep2, Pep3 and Pep4 could be tested for the diagnosis of VL and VL/HIV coinfection.
Collapse
Affiliation(s)
- Fernanda F. Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Grasiele S. V. Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Amanda S. Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Thaís T. O. Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Isabela A. P. Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Ana C. S. Dias
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902Uberlândia, Minas Gerais, Brazil
| | - Patrícia T. Alves
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902Uberlândia, Minas Gerais, Brazil
| | - Vanessa G. Fraga
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902Uberlândia, Minas Gerais, Brazil
| | - Raquel S. Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - João A. Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Thiago A. R. Reis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Daniela P. Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Vívian T. Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Camila S. Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Ana T. Chaves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Nathalia S. Guimarães
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | | | - Unaí Tupinambás
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Manoel O. C. Rocha
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
| | - Gláucia F. Cota
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Fujiwara
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte31270-901, Minas Gerais, Brazil
| | - Lílian L. Bueno
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte31270-901, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902Uberlândia, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA95616, USA
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte30130-100, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte31270-901, Minas Gerais, Brazil
| |
Collapse
|
9
|
Selim A, Shoulah S, Abdelhady A, Alouffi A, Alraey Y, Al-Salem WS. Seroprevalence and Risk Factors Associated with Canine Leishmaniasis in Egypt. Vet Sci 2021; 8:vetsci8100236. [PMID: 34679066 PMCID: PMC8541007 DOI: 10.3390/vetsci8100236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Canine leishmaniasis (CanL) is caused by Leishmania infantum (L. infantum) that is transmitted by sand fly vectors with dogs acting as the main reservoir. METHODS The present study aimed to determine the seroprevalence of CanL in dogs from Egypt and assessed the associated risk factors. The study was conducted from 2019 to 2020 in five governorates situated in Northern Egypt. Serum samples from 450 asymptomatic dogs were serologically examined by use of enzyme-linked immunosorbent assay (ELISA). RESULTS Overall, the seroprevalence rate of CanL was 21.3% and the highest rates were observed in Cairo and Giza governorates. The univariable analysis revealed that the seropositivity of CanL was strongly related to the dogs' ages, length of hair, absence of veterinary care or application of insecticides, and the type of floor of their shelters. The risk factors that were found to be associated with CanL in exposed dogs were: age group 2-4 years old (OR = 12, 95% CI: 1.6-92.3); short hair (OR = 2.07, 95% CI: 1.2-3.6); absence of veterinary care (OR = 2.7, 95% CI: 1.3-5.8); no application of insecticides (OR = 3.09, 95% CI: 1.5-6.5) and their residence in a shelter with an earthen floor (OR = 1.42, 95% CI: 0.7-2.9). CONCLUSIONS Based on the present results, CanL is present in Egyptian dogs and this increases the possibility of transmission by sand fly to humans with whom they have contact. Consequently, an efficient monitoring programme and effective control measures are important to reduce the risk of infection.
Collapse
Affiliation(s)
- Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence:
| | - Salma Shoulah
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Abdelhamed Abdelhady
- Department of Parasitology and Animal Diseases, National Research Center, Giza 8655, Egypt;
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
- Chair Vaccines Research of Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia;
| | - Waleed S. Al-Salem
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
- Minister of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia
| |
Collapse
|
10
|
Akhtardanesh B, Mostafavi M, Khedri J, Fakhri A, Sharifi I, Shahraki MK. Seroepidemiology of visceral leishmaniasis among free-roaming dogs and children in Zahedan city, southeast of Iran, 2018-2020. Microb Pathog 2021; 161:105234. [PMID: 34653543 DOI: 10.1016/j.micpath.2021.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Mediterranean visceral leishmaniasis (VL) or kala-azar is an endemic zoonotic disease in Iran. Domestic dogs are the primary reservoir host and source of VL infection. The high-risk populations are children and immune-deficient adults. OBJECTIVE Based on the lack of published reports about the VL in Sistan and Baluchestan province in the southeast of Iran, this study aimed to assess the seroprevalence of diseae in free-roaming dogs and children under 12 years old using indirect fluorescent antibody (IFA) test. METHODS This cross-sectional study was performed between 2018 and 2020 in Zahedan city, Sistan, and Baluchestan province. Blood samples were taken from 400 children under 12 years old with a fever history accompanied by at least another specific clinical presentation. In the same period, blood samples were collected from 150 stray dogs. Demographic characteristics and clinical manifestations in both humans and dogs were recorded. The IFA test examined all blood samples for the detection of anti-Leishmania infantum antibodies. RESULTS Overall, the IFA test results were positive in 8 dogs (5.33%). Only two seropositive dogs (25%) showed obvious clinical symptoms. There was a significant correlation between the positive cases, clinical signs (P = 0.046), and age (P = 0.037) in infected dogs. None of the collected sera from 400 febrile children were positive. CONCLUSION According to the present finding, it seems that VL is not endemic in Zahedan city, Sistan, and Baluchestan province, but the domestic cycle of L. infantum has been established in this area. Further investigations would be needed to estimate the status of VL infection in wild canines as a secondary potential reservoir host. Furthermore, periodic monitoring of disease must not be neglected.
Collapse
Affiliation(s)
- Baharak Akhtardanesh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran; Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Khedri
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ayoob Fakhri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Khoshsima Shahraki
- Department of Parasitology and Mycology, School of Medicine, Zabol University of Medical Science, Zabol, Iran
| |
Collapse
|
11
|
Siqueira WF, Viana AG, Reis Cunha JL, Rosa LM, Bueno LL, Bartholomeu DC, Cardoso MS, Fujiwara RT. The increased presence of repetitive motifs in the KDDR-plus recombinant protein, a kinesin-derived antigen from Leishmania infantum, improves the diagnostic performance of serological tests for human and canine visceral leishmaniasis. PLoS Negl Trop Dis 2021; 15:e0009759. [PMID: 34534217 PMCID: PMC8480608 DOI: 10.1371/journal.pntd.0009759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/29/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Visceral leishmaniasis (VL) is caused by protozoa belonging to the Leishmania donovani complex and is considered the most serious and fatal form among the different types of leishmaniasis, if not early diagnosed and treated. Among the measures of disease control stand out the management of infected dogs and the early diagnosis and appropriate treatment of human cases. Several antigens have been characterized for use in the VL diagnosis, among them are the recombinant kinesin-derived antigens from L. infantum, as rK39 and rKDDR. The main difference between these antigens is the size of the non-repetitive kinesin region and the number of repetitions of the 39 amino acid degenerate motif (6.5 and 8.5 repeats in rK39 and rKDDR, respectively). This repetitive region has a high antigenicity score. To evaluate the effect of increasing the number of repeats on diagnostic performance, we designed the rKDDR-plus antigen, containing 15.3 repeats of the 39 amino acid degenerate motif, besides the absence of the non-repetitive portion from L. infantum kinesin. Its performance was evaluated by enzyme-linked immunosorbent assay (ELISA) and rapid immunochromatographic test (ICT), and compared with the kinesin-derived antigens (rKDDR and rK39). In ELISA with human sera, all recombinant antigens had a sensitivity of 98%, whereas the specificity for rKDDR-plus, rKDDR and rK39 was 100%, 96% and 71%, respectively. When evaluated canine sera, the ELISA sensitivity was 97% for all antigens, and the specificity for rKDDR-plus, rKDDR and rK39 was 98%, 91% and 83%, respectively. Evaluation of the ICT/rKDDR-plus, using human sera, showed greater diagnostic sensitivity (90%) and specificity (100%), when compared to the IT LEISH (79% and 98%, respectively), which is based on the rK39 antigen. These results suggest that the increased presence of repetitive motifs in the rKDDR-plus protein improves the diagnostic performance of serological tests by increasing the specificity and accuracy of the diagnosis.
Collapse
Affiliation(s)
- Williane Fernanda Siqueira
- Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Agostinho Gonçalves Viana
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Luís Reis Cunha
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leticia Mansur Rosa
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lilian Lacerda Bueno
- Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Castanheira Bartholomeu
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Santos Cardoso
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Machado AS, Ramos FF, Oliveira-da-Silva JA, Santos TTO, Ludolf F, Tavares GSV, Costa LE, Lage DP, Steiner BT, Chaves AT, Chávez-Fumagalli MA, de Magalhães-Soares DF, Silveira JAG, Napoles KMN, Tupinambás U, Duarte MC, Machado-de-Ávila RA, Bueno LL, Fujiwara RT, Moreira RLF, Rocha MOC, Caligiorne RB, Coelho EAF. A Leishmania infantum hypothetical protein evaluated as a recombinant protein and specific B-cell epitope for the serodiagnosis and prognosis of visceral leishmaniasis. Acta Trop 2020; 203:105318. [PMID: 31870709 DOI: 10.1016/j.actatropica.2019.105318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 11/19/2022]
Abstract
The serodiagnosis of visceral leishmaniasis (VL) presents problems related to the sensitivity and/or specificity of the tests. In this context, more refined antigens should be identified and applied for the improvement of disease diagnosis. In the present study, DNA with an encoding of a Leishmania infantum hypothetical protein, LiHyC, was cloned, and the recombinant protein was expressed, purified, and evaluated for the serodiagnosis of canine and human VL. In addition, a specific B-cell epitope present in the LiHyC sequence was predicted; the peptide was both synthetized and evaluated in the ELISA experiments. For comparison, commercial diagnostic kits were used against positive (VL hosts) and negative (healthy hosts) samples. Results showed that the recombinant protein (rLiHyC) and synthetic peptide (PeptC) were highly sensitive and specific to diagnose canine and human VL, with 100% sensitivity and specificity, while no false-positive or false-negative result was detected. When the DPP® CVL kit was used to identify canine samples, 44 and 52 of the 60 L. infantum-infected animals, without or with clinical signals of disease, respectively, were identified, while eight and four samples were considered as false-negatives, respectively. For human VL, an IT LEISH® kit was used, and 33 of the 40 VL patients were identified, while seven samples were considered to be false-negatives. Post-therapeutic serological follow-up testing sera samples from treated and untreated VL patients showed a significant drop in the anti-PeptC and anti-rLiHyC antibody levels, thus suggesting the feasibility to use the recombinant protein and/or synthetic peptide in future studies as diagnostic and/or prognostic markers for VL.
Collapse
Affiliation(s)
- Amanda S Machado
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte. Rua Domingos Vieira, 590, Santa Efigênia, 30150-240, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Thaís T O Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Bethina T Steiner
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, 88806-000 Santa Catarina, Brazil
| | - Ana T Chaves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Danielle F de Magalhães-Soares
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Julia A G Silveira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Karina M N Napoles
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Unaí Tupinambás
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, 88806-000 Santa Catarina, Brazil
| | - Lílian L Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ricardo T Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ricardo L F Moreira
- Fundação Hospitalar do Estado de Minas Gerais, Hospital Eduardo de Menezes, Belo Horizonte, Minas Gerais 30622-020, Brazil
| | - Manoel O C Rocha
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil
| | - Rachel B Caligiorne
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte. Rua Domingos Vieira, 590, Santa Efigênia, 30150-240, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30130-100, Brazil.
| |
Collapse
|
13
|
Chaouch M, Aoun K, Ben Othman S, Ben Abid M, Ben Sghaier I, Bouratbine A, Ben Abderrazak S. Development and Assessment of Leishmania major and Leishmania tropica Specific Loop-Mediated Isothermal Amplification Assays for the Diagnosis of Cutaneous Leishmaniasis in Tunisia. Am J Trop Med Hyg 2020; 101:101-107. [PMID: 31094311 DOI: 10.4269/ajtmh.19-0097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cutaneous leishmaniasis (CL) remains one of the world's most prevalent neglected diseases, particularly in developing countries. Identification of the involved Leishmania species is an important step in the diagnosis and case management process. In this study, we tested simple, rapid, and highly sensitive loop-mediated isothermal amplification (LAMP) assays for Leishmania DNA species-specific detection from cutaneous lesions. Two LAMP assays, targeting cysteine protease B (cpb) gene, were developed to detect and identify Leishmania major and Leishmania tropica species. Loop-mediated isothermal amplification specificity was examined using DNA samples from other Leishmania species and Trypanosoma species. No cross-reactions were detected. The developed LAMP assays exhibited sensitivity with a detection limit of 20 fg and 200 fg for L. major and L. tropica, respectively. Both tests were applied on clinical samples of CL suspected patients living in endemic Tunisian regions and compared with kinetoplast DNA quantitative PCR (qPCR), microscopic, and conventional cpb-based polymerase chain reaction (PCR) assays. Our LAMP tests were able to discriminate between L. major and L. tropica species and showed a sensitivity of 84% and a specificity of 100%. However, when compared with the performance of the diagnostic tests with latent class analysis (LCA), our LAMP assays show a sensitivity of 100%. These assays can be used as a first-line molecular test for early diagnosis and prompt management of CL cases in public health programs.
Collapse
Affiliation(s)
- Melek Chaouch
- Laboratory of Bioinformatics, Biomathematics and Biostatistics LR 16 IPT 09, Institut Pasteur de Tunis, Tunis, Tunisia.,Laboratory of Medical Parasitology, Biotechnology and Biomolecules LR 11 IPT 06, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Karim Aoun
- Laboratory of Parasitology and Mycology, Institut Pasteur de Tunis, Tunis, Tunisia.,Laboratory of Medical Parasitology, Biotechnology and Biomolecules LR 11 IPT 06, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Souad Ben Othman
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules LR 11 IPT 06, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Meriem Ben Abid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules LR 11 IPT 06, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ines Ben Sghaier
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules LR 11 IPT 06, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Aida Bouratbine
- Laboratory of Parasitology and Mycology, Institut Pasteur de Tunis, Tunis, Tunisia.,Laboratory of Medical Parasitology, Biotechnology and Biomolecules LR 11 IPT 06, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Souha Ben Abderrazak
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules LR 11 IPT 06, Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
14
|
Oliveira-da-Silva JA, Machado AS, Ramos FF, Tavares GSV, Lage DP, Ludolf F, Steiner BT, Reis TAR, Santos TTO, Costa LE, Martins VT, Galvani NC, Chaves AT, Oliveira JS, Chávez-Fumagalli MA, de Magalhães-Soares DF, Duarte MC, Menezes-Souza D, Silveira JAG, Moreira RLF, Machado-de-Ávila RA, Tupinambás U, Gonçalves DU, Coelho EAF. Evaluation of Leishmania infantum pyridoxal kinase protein for the diagnosis of human and canine visceral leishmaniasis. Immunol Lett 2020; 220:11-20. [PMID: 31981576 DOI: 10.1016/j.imlet.2020.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 12/27/2022]
Abstract
Visceral leishmaniasis (VL) is a highly neglected disease that is present in several countries worldwide. Present-day treatments against this disease are unsuitable, mainly due to the toxicity and/or high cost of drugs. In addition, the development of vaccines is still insufficient. In this scenario, a prompt VL diagnosis was deemed necessary, although sensitivity and/or specificity values of the tests have been. In this context, new antigenic candidates should be identified to be employed in a more precise diagnosis of canine and human VL. In this light, the present study evaluated the diagnostic efficacy of the Leishmania infantum pyridoxal kinase (PK) protein, applied in its recombinant version (rPK). In addition, one specific B-cell epitope derived of the PK sequence was predicted, synthetized, and evaluated as diagnostic marker. Results in ELISA tests showed that the antigens were highly sensitive to VL identification in dogs and human sera, presenting a low reactivity with VL-related disease samples. The recombinant A2 (rA2) protein and L. infantum antigenic preparation (SLA), used as controls, also proved to be highly sensitive in detecting symptomatic cases, although a low sensitivity was found when asymptomatic sera were analyzed. High cross-reactivity was also found when these antigens were evaluated against VL-related disease samples. The post-therapeutic serological follow-up showed that anti-rPK and anti-peptide IgG antibody levels decreased in significant levels after treatment. By contrast, the presence of high levels of the anti-rA2 and anti-SLA antibodies was still detected after therapy. In conclusion, rPK and its specific B-cell epitope should be considered for future studies as a diagnostic marker for canine and human VL.
Collapse
Affiliation(s)
- João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil; Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte. Rua Domingos Vieira, 590, Santa Efigênia, 30150-240, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Bethina T Steiner
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, 88806-000, Santa Catarina, Brazil
| | - Thiago A R Reis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Thaís T O Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Nathália C Galvani
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Ana T Chaves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Jamil S Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | | | - Danielle F de Magalhães-Soares
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Julia A G Silveira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Ricardo L F Moreira
- Fundação Hospitalar do Estado de Minas Gerais, Hospital Eduardo de Menezes, Belo Horizonte, 30622-020, Minas Gerais, Brazil
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, 88806-000, Santa Catarina, Brazil
| | - Unaí Tupinambás
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Denise U Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Kühne V, Rezaei Z, Pitzinger P, Büscher P. Systematic review on antigens for serodiagnosis of visceral leishmaniasis, with a focus on East Africa. PLoS Negl Trop Dis 2019; 13:e0007658. [PMID: 31415564 PMCID: PMC6711545 DOI: 10.1371/journal.pntd.0007658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/27/2019] [Accepted: 07/24/2019] [Indexed: 11/26/2022] Open
Abstract
Background Accurate and accessible diagnosis is key for the control of visceral leishmaniasis (VL). Yet, current diagnostic tests for VL have severe limitations: they are invasive or not suitable as point of care (POC) test or their performance is suboptimal in East Africa. We analysed the antigens in the VL serodiagnostics development pipeline to identify shortcomings and to propose strategies in the development of an alternative POC test for VL in East Africa. Objectives The objective of this study was to identify and to analyse all antigens for VL serodiagnosis that have been published before 2018 in order to identify candidates and gaps in the pipeline for a new POC test in East Africa. Methods A systematic literature search was performed on PubMed for original research articles on Leishmania-specific antigens for antibody detection of VL in humans. From each article, the following information was extracted: the antigen name, test format and characteristics, its reported sensitivity and specificity and study cohort specifications. Results One hundred and seven articles containing information about 96 tests based on 89 different antigens were included in this study. Eighty six of these tests, comprising 80 antigens, were evaluated in phase I and II studies only. Only 20 antigens, all of which are native, contain a carbohydrate and/or lipid moiety. Twenty-four antigens, of which 7 are non-native, are composed of antigen mixtures. Nineteen tests, comprising 18 antigens, have been evaluated on East African specimens, of which only 2 (rK28 based immunochromatographic test and intact promastigote based indirect fluorescent antibody technique) consistently showed sensitivities above 94 and specificities above 97% in a phase III study and one in a phase II study (dot blot with SLA). Only rK28 is a non-native mixture of antigens which we consider suitable for further evaluation and implementation. Conclusions The development pipeline for an alternative serodiagnostic test for VL is almost empty. Most antigens are not sufficiently evaluated. Non-protein antigens and antigen mixtures are being neglected. We propose to expand the evaluation of existing antigen candidates and to investigate the diagnostic potential of defined non-native carbohydrate and lipid antigens for VL serodiagnosis in East Africa. Visceral leishmaniasis is a potentially fatal disease that affects more than 20 000 people every year. Its diagnosis is difficult since the clinical symptoms are not specific and the existing diagnostic tests are not useful in limited resource countries or they a not accurate enough in East Africa. In this review we performed a systematic search of the published literature to analyse the potential candidate antigens in the pipeline for a new antibody detection test in East Africa. We found 96 tests based on 89 antigens. Eighty six of these tests were evaluated in a study design that is insufficient (phase I and II) to make conclusions on their performance in clinical practice. We found that the candidate antigens either lacked carbohydrate or lipid structures or are based on single antigens as opposed to mixtures or are extracted from the causative parasite itself, making them expensive and prone to variations. Considering that the most widely used diagnostic test does not detect all cases of visceral leishmaniasis in East Africa, we analysed how many of the candidate antigens were tested on East African specimens: We found that only 2 tests (rK28 based immunochromatographic test and the intact promastigote based indirect fluorescent antibody technique) that were tested in a phase III study and only one (dot blot with SLA) that was tested in a phase II study performed well according to our criteria. Due to the antigen characteristics we consider only the rK28 based test as suitable for further evaluation and implementation.
Collapse
Affiliation(s)
- Vera Kühne
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| | - Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Pitzinger
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
16
|
Medkour H, Davoust B, Dulieu F, Maurizi L, Lamour T, Marié JL, Mediannikov O. Potential animal reservoirs (dogs and bats) of human visceral leishmaniasis due to Leishmania infantum in French Guiana. PLoS Negl Trop Dis 2019; 13:e0007456. [PMID: 31216270 PMCID: PMC6602241 DOI: 10.1371/journal.pntd.0007456] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/01/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
In French Guiana, cutaneous leishmaniasis is highly endemic, whereas no autochthonous case of visceral leishmaniasis have been reported so far. However, due to its proximity to Brazil which is highly endemic for visceral leishmaniasis, and the high transboundary population flow, an epidemiological challenge could arise at any time. As an overseas department and region and the largest outermost region of the European Union, epidemiological surveillance of visceral leishmaniasis is of great importance. Our study aimed to investigate the presence of Leishmania spp. in domestic (dogs) and sylvatic (bats) animals from French Guiana. Over the 2008-2018 period, samples from 349 animals were collected. They included blood from 179 autochthonous dogs and 59 bats, spleen samples from 33 bats and, blood from 78 military working dogs (MWD) collected before their departure from continental France and at the end of their four-month stay in French Guiana. Samples were screened using real-time polymerase chain reaction (qPCR) assays targeting Leishmania DNA followed by sequencing of 18S rRNA, kDNA and ITS2 genes. L. infantum was detected in 2.3% (8/349) of animals with 1.7% (3/179) of autochthonous dogs, 5.1% (4/78) of MWD returning from French Guiana, whereas they were negative before their departure. One of them dates back to 2012. All these dogs were positive for serological tests. In addition, L. infantum DNA was detectable in one bat spleen sample, belonging to Carollia perspicillata species. We report here for the first time an infection with L. infantum in dogs and bat from French Guiana. Our results suggest the existence of potential reservoir and transmission cycle for visceral leishmaniasis, at least since 2012, which was unknown in this territory until now. Further studies are needed to determine how these animals were infected and which vectors are involved in the transmission in this area.
Collapse
Affiliation(s)
- Hacène Medkour
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée-Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée-Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Animal Epidemiology Working Group of the Military Health Service, Marseille, France
| | | | | | | | - Jean-Lou Marié
- Animal Epidemiology Working Group of the Military Health Service, Marseille, France
- French Army Health Service, Paris, France
| | - Oleg Mediannikov
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée-Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
17
|
Leishmania infantum β-Tubulin Identified by Reverse Engineering Technology through Phage Display Applied as Theranostic Marker for Human Visceral Leishmaniasis. Int J Mol Sci 2019; 20:ijms20081812. [PMID: 31013713 PMCID: PMC6514782 DOI: 10.3390/ijms20081812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022] Open
Abstract
Two Leishmania infantum mimotopes (B10 and C01) identified by phage display showed to be antigenic and immunogenic for visceral (VL) and tegumentary (TL) leishmaniasis; however, their biological targets in the parasites have not been identified. The aim of the present study was to investigate the native antigens expressing both mimotopes, and to use them in distinct immunological assays. For this, a subtractive phage display technology was used, where a combinatorial library of single-chain variable fragments (scFv) was employed and the most reactive monoclonal antibodies for each target were captured, being the target antigens identified by mass spectrometry. Results in immunoblotting and immunoprecipitation assays showed that both monoclonal scFvs antibodies identified the β-tubulin protein as the target antigen in L. infantum. To validate these findings, the recombinant protein was cloned, purified and tested for the serodiagnosis of human leishmaniasis, and its immunogenicity was evaluated in PBMC derived from healthy subjects and treated or untreated VL patients. Results showed high diagnostic efficacy, as well as the development of a specific Th1 immune response in the cell cultures, since higher IFN-γ and lower IL-10 production was found.
Collapse
|
18
|
Alves-Silva MV, Nico D, de Luca PM, Palatnik de-Sousa CB. The F1F3 Recombinant Chimera of Leishmania donovani-Nucleoside Hydrolase (NH36) and Its Epitopes Induce Cross-Protection Against Leishmania (V.) braziliensis Infection in Mice. Front Immunol 2019; 10:724. [PMID: 31024556 PMCID: PMC6465647 DOI: 10.3389/fimmu.2019.00724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Leishmania (V.) braziliensis is the etiological agent of Cutaneous (CL) and Mucocutaneous leishmaniasis (ML) in the New World. CL can be more benign but ML can be severe and disfiguring. Immunity to these diseases include hypersensitivity, an enhanced inflammatory response with strong IFN-γ and TNF-α secretion. Additionally, the production of IL-10 which down modulates the immune response is reduced. The Nucleoside hydrolase (NH36) of Leishmania (L.) donovani is the main antigen of the Leishmune veterinary vaccine and its F3 domain induces a CD4+ T cell-mediated protection against L. (L.) infantum chagasi infection. Prevention of L. (L.) amazonensis infection requires in contrast an additional CD8+ T cell mediated response induced by the F1 domain. Consequently, the F1F3 recombinant chimera, which contains both domains cloned in tandem, optimized the vaccine efficacy against L. (L.) amazonensis mouse infection. We compared the efficacies of NH36, F1, F3, and the FIF3 chimera against L. (V.) braziliensis mouse infection. The F1F3 chimera increased the NH36 specific IgA and response before and after infection and the IgG and IgG3 levels after challenge. It also induced a 49% stronger intradermal response to leishmanial antigen (IDR) than NH36 that was positively correlated to the levels of IFN-γ and TNF-α, IgG, IgG2a, IgG2b, and IgG3 anti-NH36 antibodies. However, stronger Th1 responses with elevated IFN-γ/IL-10 and TNF-α/IL-10 ratios were promoted by the F3 and F1 vaccines and detected in infected controls while the F1F3 chimera promoted the highest IL-10 secretion, which reduced the pathological Th1 response, and characterized the induction of a mixed and/or T-cell regulatory response. We identified the epitopes responsible for these immune responses. The F3 vaccine induced the earliest immunity and after challenge, the F1F3 chimera promoted the highest CD4+ and CD8+ cytokine-secreting T cell responses, and the predominant frequencies of multifunctional CD4+ and CD8+IL-2+TNF-α+IFN-γ+ T cells. Also as observed against L. (L.) amazonensis infection, the F1F3 chimera showed the strongest reduction of the ear lesions sizes induced by L. (V.) braziliensis. Our results confirm the potential use of the F1F3 chimera in a multi-species cross-protective vaccine against L. (V.) braziliensis.
Collapse
Affiliation(s)
- Marcus Vinícius Alves-Silva
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dirlei Nico
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Melo de Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Clarisa B Palatnik de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Salles BC, Dias DS, Steiner BT, Lage DP, Ramos FF, Ribeiro PA, Santos TT, Lima MP, Costa LE, Chaves AT, Chávez-Fumagalli MA, Fujiwaraa RT, Buenoa LL, Caligiorne RB, de Magalhães-Soares DF, Silveira JA, Machado-de-Ávila RA, Gonçalves DU, Coelho EA. Potential application of small myristoylated protein-3 evaluated as recombinant antigen and a synthetic peptide containing its linear B-cell epitope for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Immunobiology 2019; 224:163-171. [DOI: 10.1016/j.imbio.2018.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
|
20
|
Shey RA, Ghogomu SM, Njume FN, Gainkam LOT, Poelvoorde P, Mutesa L, Robert A, Humblet P, Munyampundu JP, Kamgno J, Lelubre C, Vanhamme L, Souopgui J. Prediction and validation of the structural features of Ov58GPCR, an immunogenic determinant of Onchocerca volvulus. PLoS One 2018; 13:e0202915. [PMID: 30256790 PMCID: PMC6157839 DOI: 10.1371/journal.pone.0202915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/11/2018] [Indexed: 11/18/2022] Open
Abstract
Onchocerciasis is a severely debilitating yet neglected tropical disease (NTD) that creates social stigma, generates and perpetuates poverty, and leads ultimately in some cases to irreversible unilateral or bilateral blindness if untreated. Consequently, the disease is a major impediment to socioeconomic development. Many control programs have been launched for the disease with moderate successes achieved. This mitigated hit is partially due to the lingering need for reliable, non-invasive and easily applicable tools for mapping endemic regions and post-elimination surveillance. In this work, bioinformatics analyses combined with immunological assays were applied in a bid to develop potential tools for diagnosis and assessing the success of drug treatment programs. We report that (i) the O. volvulus antigen, Ov58GPCR is a G-protein coupled receptor (GPCR) conserved in related nematodes, (ii) synthetic peptides predicted to be in the extracellular domain (ECD) of Ov58GPCR are indeed immunogenic epitopes in actively-infected individuals, (iii) synthetic peptide cocktails discriminate between actively-infected individuals, treated individuals and healthy African controls, (iv) polyclonal antibodies against one of the peptides or against the bacterially-expressed ECD reacted specifically with the native antigen of O. volvulus total and surface extracts, (v) Ov58GPCR is transcribed in both larvae and adult parasite stages, (vi) IgG and IgE responses to the recombinant ECD decline with ivermectin treatment. All these findings suggest that the extracellular domain and synthetic peptides of Ov58GPCR, as well as the specific immune response generated could be harnessed in the context of disease diagnosis and surveillance.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Lea Olive Tchouate Gainkam
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Annie Robert
- Faculté de santé publique, Institut de recherche expérimentale et clinique, Pôle d'épidémiologie et biostatistique, Université Catholique de Louvain, Clos Chapelle-aux-champs, Woluwe-Saint-Lambert, Belgium
| | - Perrine Humblet
- École de santé publique, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Jean-Pierre Munyampundu
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Joseph Kamgno
- Department of Epidemiology, Centre for research on filariasis and other tropical diseases, (CRFilMT), Yaoundé, Cameroon
| | - Christophe Lelubre
- Laboratoire de Médecine Expérimentale, Université Libre de Bruxelles (ULB) - Unité 222, CHU Charleroi (Hôpital André Vésale), Montigny-Le-Tilleul, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
| |
Collapse
|
21
|
Nico D, Martins Almeida F, Maria Motta J, Soares dos Santos Cardoso F, Freire-de-Lima CG, Freire-de-Lima L, de Luca PM, Maria Blanco Martinez A, Morrot A, Palatnik-de-Sousa CB. NH36 and F3 Antigen-Primed Dendritic Cells Show Preserved Migrating Capabilities and CCR7 Expression and F3 Is Effective in Immunotherapy of Visceral Leishmaniasis. Front Immunol 2018; 9:967. [PMID: 29867949 PMCID: PMC5949526 DOI: 10.3389/fimmu.2018.00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/18/2018] [Indexed: 01/23/2023] Open
Abstract
Physical contact between dendritic cells (DCs) and T cell lymphocytes is necessary to trigger the immune cell response. CCL19 and CCL21 chemokines bind to the CCR7 receptor of mature DCs, and of T cells and regulate DCs migration to the white pulp (wp) of the spleen, where they encounter lymphocytes. In visceral leishmaniasis (VL), cellular immunosuppression is mediated by impaired DC migration due to the decreased chemokine secretion by endothelium and to the reduced DCs CCR7 expression. The Leishmania (L.) donovani nucleoside hydrolase NH36 and its C-terminal domain, the F3 peptide are prominent antigens in the generation of preventive immunity to VL. We assessed whether these vaccines could prevent the migrating defect of DCs by restoring the expression of CCR7 receptors. C57Bl6 mice were vaccinated with NH36 and F3 and challenged with L. (L.) infantum chagasi. The F3 vaccine induced a 100% of survival and a long-lasting immune protection with an earlier CD4+Th1 response, with secretion of higher IFN-γ and TNF-α/IL-10 ratios, and higher frequencies of CD4+ T cells secreting IL-2+, TNF-α+, or IFN-γ+, or a combination of two or the three cytokines (IL-2+TNF-α+IFN-γ+). The CD8+ T cell response was promoted earlier by the NH36-vaccine, and later by the F3-vaccine. Maximal number of F3-primed DCs migrated in vitro in response to CCL19 and showed a high expression of CCR7 receptors (26.06%). Anti-CCR7 antibody treatment inhibited DCs migration in vitro (90%) and increased parasite load in vivo. When transferred into 28-day-infected mice, only 8% of DCs from infected, 59% of DCs from NH36-vaccinated, and 84% of DCs from F3-vaccinated mice migrated to the wp. Consequently, immunotherapy of infected mice with F3-primed DCs only, promoted increases in corporal weight and reductions of spleen and liver parasite loads and relative weights. Our findings indicate that vaccination with F3-vaccine preserves the maturation, migration properties and CCR7 expression of DCs, which are essential processes for the generation of cell-mediated immunity. The F3 vaccine is more potent in reversing the migration defect that occurs in VL and, therefore, more efficient in immunotherapy of VL.
Collapse
Affiliation(s)
- Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Programa de Pós Graduação em Anatomia Patológica, HUCFF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Graduação de Histologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Maria Motta
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Celio Geraldo Freire-de-Lima
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Melo de Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Programa de Pós Graduação em Anatomia Patológica, HUCFF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Rio de Janeiro, Brazil
- Centro de Pesquisas em Tuberculose, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarisa Beatriz Palatnik-de-Sousa
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
22
|
SARKARI B, REZAEI Z, MOHEBALI M. Immunodiagnosis of Visceral Leishmaniasis: Current Status and Challenges: A Review Article. IRANIAN JOURNAL OF PARASITOLOGY 2018; 13:331-341. [PMID: 30483323 PMCID: PMC6243177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Diagnosis of Visceral Leishmaniasis (VL) is still challenging. This review highlighted current status and challenges in the serological diagnosis of VL. Furthermore, the drawback of currently available serological tests and the most recent advancement in the designing and application of these assays for the diagnosis of VL are addressed. METHODS All the published literature cited within PubMed, ISI Web of Science, Google Scholar, Scopus, and IranMedex, regarding the immunodiagnosis of VL in human were sought from 2000 till Mar 2017. The search terms were "visceral leishmaniasis", or "kala-azar" subsequently combined with the search terms "diagnosis", "serodiagnosis", "human", "serological", "antigen detection" or "antibody detection". Data were extracted from literature which fulfilled our eligibility criteria. RESULTS Direct agglutination test (DAT) and rk39 dipstick have made a great improvement in the serological diagnosis of VL. Besides, other kinesin-related protein including K26, K28, and KE16 provided promisingly diagnostic accuracy in the diagnosis of VL. The Latex Agglutination Test for the diagnosis of VL (KAtex), with moderate sensitivity but high specificity, made a substantial contribution to the field. Moreover, a range of protein antigens has recently been detected in the urine of VL patients with encouraging diagnostic value. CONCLUSION The suboptimal diagnostic accuracy of the currently available serological assays for the diagnosis of human VL necessitates further research and development in this field. Outcomes of immunodiagnostic tests based on recombinant antigens are favorable. These proteins might be the most appropriate antigens to be further evaluated and utilized for the diagnosis of human VL.
Collapse
Affiliation(s)
- Bahador SARKARI
- Dept. of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran, Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence
| | - Zahra REZAEI
- Dept. of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi MOHEBALI
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Garde E, Ramírez L, Corvo L, Solana JC, Martín ME, González VM, Gómez-Nieto C, Barral A, Barral-Netto M, Requena JM, Iborra S, Soto M. Analysis of the Antigenic and Prophylactic Properties of the Leishmania Translation Initiation Factors eIF2 and eIF2B in Natural and Experimental Leishmaniasis. Front Cell Infect Microbiol 2018; 8:112. [PMID: 29675401 PMCID: PMC5895769 DOI: 10.3389/fcimb.2018.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 02/05/2023] Open
Abstract
Different members of intracellular protein families are recognized by the immune system of the vertebrate host infected by parasites of the genus Leishmania. Here, we have analyzed the antigenic and immunogenic properties of the Leishmania eIF2 and eIF2B translation initiation factors. An in silico search in Leishmania infantum sequence databases allowed the identification of the genes encoding the α, β, and γ subunits and the α, β, and δ subunits of the putative Leishmania orthologs of the eukaryotic initiation factors F2 (LieIF2) or F2B (LieIF2B), respectively. The antigenicity of these factors was analyzed by ELISA using recombinant versions of the different subunits. Antibodies against the different LieIF2 and LieIF2B subunits were found in the sera from human and canine visceral leishmaniasis patients, and also in the sera from hamsters experimentally infected with L. infantum. In L. infantum (BALB/c) and Leishmania major (BALB/c or C57BL/6) challenged mice, a moderate humoral response against these protein factors was detected. Remarkably, these proteins elicited an IL-10 production by splenocytes derived from infected mice independently of the Leishmania species employed for experimental challenge. When DNA vaccines based on the expression of the LieIF2 or LieIF2B subunit encoding genes were administered in mice, an antigen-specific secretion of IFN-γ and IL-10 cytokines was observed. Furthermore, a partial protection against murine CL development due to L. major infection was generated in the vaccinated mice. Also, in this work we show that the LieIF2α subunit and the LieIF2Bβ and δ subunits have the capacity to stimulate IL-10 secretion by spleen cells from naïve mice. B-lymphocytes were identified as the major producers of this anti-inflammatory cytokine. Taking into account the data found in this study, it may be hypothesized that these proteins act as virulence factors implicated in the induction of humoral responses as well as in the production of the down-regulatory IL-10 cytokine, favoring a pathological outcome. Therefore, these proteins might be considered markers of disease.
Collapse
Affiliation(s)
- Esther Garde
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Ramírez
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Corvo
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José C. Solana
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - M. Elena Martín
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Víctor M. González
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carlos Gómez-Nieto
- Parasitology Unit, LeishmanCeres Laboratory, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil
| | - José M. Requena
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Health Research Institute (imas12), Ciudad Universitaria, Madrid, Spain
- *Correspondence: Salvador Iborra
| | - Manuel Soto
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Manuel Soto
| |
Collapse
|
24
|
Mucci J, Carmona SJ, Volcovich R, Altcheh J, Bracamonte E, Marco JD, Nielsen M, Buscaglia CA, Agüero F. Next-generation ELISA diagnostic assay for Chagas Disease based on the combination of short peptidic epitopes. PLoS Negl Trop Dis 2017; 11:e0005972. [PMID: 28991925 PMCID: PMC5648266 DOI: 10.1371/journal.pntd.0005972] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/19/2017] [Accepted: 09/18/2017] [Indexed: 01/22/2023] Open
Abstract
Chagas Disease, caused by the protozoan Trypanosoma cruzi, is a major health and economic problem in Latin America for which no vaccine or appropriate drugs for large-scale public health interventions are yet available. Accurate diagnosis is essential for the early identification and follow up of vector-borne cases and to prevent transmission of the disease by way of blood transfusions and organ transplantation. Diagnosis is routinely performed using serological methods, some of which require the production of parasite lysates, parasite antigenic fractions or purified recombinant antigens. Although available serological tests give satisfactory results, the production of reliable reagents remains laborious and expensive. Short peptides spanning linear B-cell epitopes have proven ideal serodiagnostic reagents in a wide range of diseases. Recently, we have conducted a large-scale screening of T. cruzi linear B-cell epitopes using high-density peptide chips, leading to the identification of several hundred novel sequence signatures associated to chronic Chagas Disease. Here, we performed a serological assessment of 27 selected epitopes and of their use in a novel multipeptide-based diagnostic method. A combination of 7 of these peptides were finally evaluated in ELISA format against a panel of 199 sera samples (Chagas-positive and negative, including sera from Leishmaniasis-positive subjects). The multipeptide formulation displayed a high diagnostic performance, with a sensitivity of 96.3% and a specificity of 99.15%. Therefore, the use of synthetic peptides as diagnostic tools are an attractive alternative in Chagas’ disease diagnosis. Chagas disease, caused by the parasite Trypanosoma cruzi, is a life-long and debilitating illness of major significance throughout Latin America, and an emergent threat to global public health. Diagnostic tests are key tools to support disease surveillance, and to ultimately help stop transmission of the parasite. However currently available diagnostic methods have several limitations. Identification of novel biomarkers with improved diagnostic characteristics is a main priority. Recently, we conducted a large-scale screening looking for new T. cruzi antigens using short peptides displayed on a solid support at high-density. This led to the identification of several hundred novel antigenic epitopes. In this work we validated the serodiagnostic performance of 27 of these against an extended panel of human serum samples. Based on this analysis, we developed a proof-of-principle multiplex diagnostic kit by combining different validated reactive peptides. Overall, our data support the applicability of high-density peptide microarrays for the rapid identification and mapping epitopes that could be readily translated into novel and useful tools for diagnosis of Chagas disease.
Collapse
Affiliation(s)
- Juan Mucci
- Instituto de Investigaciones Biotecnológicas (IIB)–Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Santiago J. Carmona
- Instituto de Investigaciones Biotecnológicas (IIB)–Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Romina Volcovich
- Servicio de Parasitología y Chagas, Hospital de Niños Ricardo Gutierrez, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jaime Altcheh
- Servicio de Parasitología y Chagas, Hospital de Niños Ricardo Gutierrez, Ciudad Autónoma de Buenos Aires, Argentina
| | - Estefanía Bracamonte
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta (UNSa)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Jorge D. Marco
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta (UNSa)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas (IIB)–Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Department of Bio and Health Informatics, Technical University of Denmark, DK Lyngby, Denmark
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas (IIB)–Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB)–Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
25
|
Carrillo E, Fernandez L, Ibarra-Meneses AV, Santos MLB, Nico D, de Luca PM, Correa CB, de Almeida RP, Moreno J, Palatnik-de-Sousa CB. F1 Domain of the Leishmania (Leishmania) donovani Nucleoside Hydrolase Promotes a Th1 Response in Leishmania (Leishmania) infantum Cured Patients and in Asymptomatic Individuals Living in an Endemic Area of Leishmaniasis. Front Immunol 2017; 8:750. [PMID: 28747911 PMCID: PMC5506215 DOI: 10.3389/fimmu.2017.00750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023] Open
Abstract
The Leishmania (Leishmania) donovani nucleoside hydrolase NH36 is the main antigen of the Leishmune® vaccine and one of the promising candidates for vaccination against visceral leishmaniasis. The antigenicity of the N-terminal (F1), the central (F2), or the C-terminal recombinant domain (F3) of NH36 was evaluated using peripheral blood mononuclear cells (PBMC) from individuals infected with L. (L.) infantum from an endemic area of visceral leishmaniasis of Spain. Both NH36 and F1 domains significantly increased the PBMC proliferation stimulation index of cured patients and infected asymptomatic individuals compared to healthy controls. Moreover, F1 induced a 19% higher proliferative response than NH36 in asymptomatic exposed subjects. In addition, in patients cured from visceral leishmaniasis, proliferation in response to NH36 and F1 was accompanied by a significant increase of IFN-γ and TNF-α secretion, which was 42-43% higher, in response to F1 than to NH36. The interleukin 17 (IL-17) secretion was stronger in asymptomatic subjects, in response to F1, as well as in cured cutaneous leishmaniasis after NH36 stimulation. While no IL-10 secretion was determined by F1, a granzyme B increase was detected in supernatants from cured patients after stimulation with either NH36 or F1. These data demonstrate that F1 is the domain of NH36 that induces a recall cellular response in individuals with acquired resistance to the infection by L. (L.) infantum. In addition, F1 and NH36 discriminated the IgG3 humoral response in patients with active visceral leishmaniasis due to L. (L.) donovani (Ethiopia) and L. (L.) infantum (Spain) from that of endemic and non-endemic area controls. NH36 showed higher reactivity with sera from L. (L.) donovani-infected individuals, indicating species specificity. We conclude that the F1 domain, previously characterized as an inducer of the Th1 and Th17 responses in cured/exposed patients infected with L. (L.) infantum chagasi, may also be involved in the generation of a protective response against L. (L.) infantum and represents a potential vaccine candidate for the control of human leishmaniasis alone, or in combination with other HLA epitopes/antigens.
Collapse
Affiliation(s)
- Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Fernandez
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Victoria Ibarra-Meneses
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Micheli L. B. Santos
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Dirlei Nico
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula M. de Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Roque Pacheco de Almeida
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo, Brazil
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Clarisa B. Palatnik-de-Sousa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
26
|
Mendes TM, Roma EH, Costal-Oliveira F, Dhom-Lemos LDC, Toledo-Machado CM, Bruna-Romero O, Bartholomeu DC, Fujiwara RT, Chávez-Olórtegui C. Epitope mapping of recombinant Leishmania donovani virulence factor A2 (recLdVFA2) and canine leishmaniasis diagnosis using a derived synthetic bi-epitope. PLoS Negl Trop Dis 2017; 11:e0005562. [PMID: 28557986 PMCID: PMC5466330 DOI: 10.1371/journal.pntd.0005562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/09/2017] [Accepted: 04/11/2017] [Indexed: 11/18/2022] Open
Abstract
Background Leishmaniasis is one of the most important zoonotic diseases spread in Latin America. Since many species are involved in dog infection with different clinical manifestations, the development of specific diagnostic tests is mandatory for more accurate disease control and vaccine strategies. Methodology/Principal findings Seventy-five 15-mer peptides covering the sequence of recombinant Leishmania donovani virulence factor A2 (recLdVFA2) protein were prepared by Spot synthesis. Membrane-bound peptides immunoreactivity with sera from dogs immunized with recLdVFA2 and with a specific anti-recLdVFA2 monoclonal antibody allowed mapping of continuous B-cell epitopes. Five epitopes corresponding to the N-terminal region of recLdVFA2 (MKIRSVRPLVVLLVC, RSVRPLVVLLVCVAA, RPLVVLLVCVAAVLA, VVLLVCVAAVLALSA and LVCVAAVLALSASAE, region 1–28) and one located within the repetitive units (PLSVGPQAVGLSVG, regions 67–81 and 122–135) were identified. A 34-mer recLdVFA2-derived bi-epitope containing the sequence MKIRSVRPLVVLLVC linked to PLSVGPQAVGLSVG by a Gly-Gly spacer was chemically synthesized in its soluble form. The synthetic bi-epitope was used as antigen to coat ELISA plates and assayed with dog sera for in vitro diagnosis of canine visceral leishmaniasis (CVL). The assay proved to be highly sensitive (98%) and specific (99%). Conclusions/Significance Our work suggests that synthetic peptide-based ELISA strategy may be useful for the development of a sensitive and highly specific serodiagnosis for CVL or other parasitic diseases. Leishmaniasis is a neglected tropical disease being among the six endemic prioritized diseases in the world. Visceral leishmaniasis (VL) is caused by Leishmania infantum and represents a serious public health problem in Brazil. Dogs are the main source of infection in the urban area and, in Brazil, the main strategies of the Visceral Leishmaniasis Control Program are directed to control the canine reservoir (serological survey and euthanasia of dogs which present reactive serum). In general, diagnosis of canine visceral leishmaniasis (CVL) has been presented as a problem for Brazilian public health services. The issue should be attributed mainly to the following factors: 1- range of similar clinical signs observed in other infectious diseases that affect dogs; 2- large percentage of asymptomatic or oligosymptomatic dogs; 3- nonspecific histopathological changes; 4- nonexistence of a diagnostic test 100% specific and sensitive. In this work, we developed a synthetic bi-epitope peptide as an antigen for immunodiagnostic ELISA to detect CVL. The biepitope used for ELISA assay accurately distinguish (98% sensitivity and 99% specificity) CVL dogs sera from non-infected dogs sera.
Collapse
Affiliation(s)
- Thais Melo Mendes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte—Minas Gerais, Brazil
| | - Eric Henrique Roma
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte—Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte—Minas Gerais, Brazil
| | | | | | - Oscar Bruna-Romero
- Departamento de Microbiologia, Imunologia e Parasitologia, CCB, UFSC, Florianópolis–Santa Catarian, Brazil
| | | | - Ricardo Toshio Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte—Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte—Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
27
|
Duarte MC, Lage DP, Martins VT, Costa LE, Salles BCS, Carvalho AMRS, de Oliveira Santos TT, Dias DS, Ribeiro PAF, Chávez-Fumagalli MA, Machado-de-Ávila RA, Roatt BM, Menezes-Souza D, de Magalhães-Soares DF, Ferraz Coelho EA. Performance of Leishmania braziliensis enolase protein for the serodiagnosis of canine and human visceral leishmaniosis. Vet Parasitol 2017; 238:77-81. [PMID: 28385540 DOI: 10.1016/j.vetpar.2017.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
In the present study, Leishmania braziliensis enolase was cloned and the recombinant protein (rEnolase) was evaluated for the serodiagnosis of canine and human visceral leishmaniosis (VL). For the canine VL diagnosis, this study examined serum samples of Leishmania infantum-infected dogs, from non-infected animals living in endemic or non-endemic areas of leishmaniosis, as well as those from Leish-Tec®-vaccinated dogs and Trypanosoma cruzi or Ehrlichia canis experimentally infected animals. For the human VL diagnosis, this study analyzed serum samples from VL patients, from non-infected subjects living in endemic or non-endemic areas of leishmaniosis, as well as those from T. cruzi-infected patients. In the results, an indirect ELISA method using rEnolase showed diagnostic sensitivity and specificity values of 100% and 98.57%, respectively, for canine VL serodiagnosis, and of 100% and 97.87%, respectively, for human VL diagnosis. These results showed rEnolase with an improved diagnostic performance when compared to the recombinant A2 protein, the crude soluble Leishmania antigenic preparation, and the recombinant K39-based immunochromatographic test. In conclusion, preliminary results suggest that the detection of antibodies against rEnolase improves the serodiagnosis of human and canine visceral leishmaniosis.
Collapse
Affiliation(s)
- Mariana Costa Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Vívian Tamietti Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Lourena Emanuele Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Beatriz Cristina Silveira Salles
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | | | - Thaís Teodoro de Oliveira Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Daniel Silva Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Patrícia Aparecida Fernandes Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, 88806-000 Santa Catarina, Brazil
| | - Bruno Mendes Roatt
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Danielle Ferreira de Magalhães-Soares
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| |
Collapse
|
28
|
Synthetic Peptides as Potential Antigens for Cutaneous Leishmaniosis Diagnosis. J Immunol Res 2017; 2017:5871043. [PMID: 28367456 PMCID: PMC5359444 DOI: 10.1155/2017/5871043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/20/2016] [Accepted: 12/08/2016] [Indexed: 11/29/2022] Open
Abstract
This work's goal was to research new candidate antigens for cutaneous leishmaniosis (CL). In order to reach the goal, we used random peptide phage display libraries screened using antibodies from Leishmania braziliensis patients. After selection, three peptides (P1, P2, and P3) were synthesized using Fmoc chemistry. The peptides individually or a mixture of them (MIX) was subsequently emulsified in complete and incomplete Freund's adjuvant and injected subcutaneously in golden hamsters. Sera from the hamsters administered with P1 presented antibodies that recognized proteins between 76 and 150 kDa from L. braziliensis. Sera from hamsters which had peptides P2 and P3, as well as the MIX, administered presented antibodies that recognized proteins between 52 and 76 kDa of L. braziliensis. The research on the similarity of the peptides' sequences in protein databases showed that they match a 63 kDa glycoprotein. The three peptides and the MIX were recognized by the sera from CL patients by immunoassay approach (ELISA). The peptides' MIX showed the best performance (79% sensitivity) followed by the P1 (72% sensitivity), and the AS presented 91% sensitivity. These results show a new route for discovering molecules for diagnosis or for immunoprotection against leishmaniosis.
Collapse
|
29
|
Alves-Silva MV, Nico D, Morrot A, Palatnik M, Palatnik-de-Sousa CB. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection. Front Immunol 2017; 8:100. [PMID: 28280494 PMCID: PMC5322207 DOI: 10.3389/fimmu.2017.00100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/20/2017] [Indexed: 12/23/2022] Open
Abstract
The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably, the YPPEFKTKL epitope shows high amino acid identity with a multipotent PADRE sequence and stimulates simultaneously the CD4+, CD8+ T cell, and a probable T regulatory response. With this approach, we advanced in the design of a NH36 polytope vaccine capable of inducing cross-protection to cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Marcus Vinícius Alves-Silva
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dirlei Nico
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunologia Integrada, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Palatnik
- Programa de Pós-Graduação em Clínica Médica, Faculdade de Medicina-Hospital Universitario Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarisa B. Palatnik-de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Farahmand M, Khalaj V, Mohebali M, Khalili G, Naderi S, Ghaffarinejad P, Nahrevanian H. Comparison of recombinant A2-ELISA with rKE16 dipstick and direct agglutination tests for diagnosis of visceral leishmaniasis in dogs in Northwestern Iran. Rev Soc Bras Med Trop 2016; 48:188-93. [PMID: 25992934 DOI: 10.1590/0037-8682-0285-2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/30/2015] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Various methods are used for the diagnosis of visceral leishmaniasis (VL), such as microscopic examination, culture and inoculation of laboratory animals; however, serological assays are commonly used for the detection of antibodies in serum samples with a wide range of specificity and sensitivity. METHODS The purpose of this study was to compare three serological methods, including rA2-ELISA, the recombinant KE16 (rKE16) dipstick test and the direct agglutination test (DAT), for the detection of antibodies against VL antigens. The assays utilized 350 statistically based random serum samples from domestic dogs with clinical symptoms as well as samples from asymptomatic and healthy dogs from rural and urban areas of the Meshkinshahr district, northwestern Iran. RESULTS Samples were assessed, and the following positive rates were obtained: 11.5% by rKE16, 26.9% by DAT and 49.8% by ELISA. The sensitivity among symptomatic dogs was 32.4% with rKE16, 100% with DAT and 52.9% with ELISA. Conversely, rA2-ELISA was less specific for asymptomatic dogs, at 46.5%, compared with DAT, at 88.9%. CONCLUSIONS This study recommends rA2-ELISA as a parallel assay combined with DAT to detect VL infection among dogs. Further evaluations should be performed to develop an inexpensive and reliable serologic test for the detection of Leishmania infantum among infected dogs.
Collapse
Affiliation(s)
- Mahin Farahmand
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Mohebali
- Department of Parasitology, Institute of Public Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghader Khalili
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sanaz Naderi
- Science and Research Branch of Kurdestan, Islamic Azad University, Sanandaj, Iran
| | | | | |
Collapse
|
31
|
Evaluation of two recombinant Leishmania proteins identified by an immunoproteomic approach as tools for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Vet Parasitol 2016; 215:63-71. [DOI: 10.1016/j.vetpar.2015.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 01/01/2023]
|
32
|
Jusi MMG, Oliveira TMFDS, Nakaghi ACH, André MR, Machado RZ. Expression of a recombinant protein, A2 family, from Leishmania infantum (Jaboticabal strain) and its evaluation in Canine Visceral Leishmaniasis serological test. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2015; 24:309-16. [DOI: 10.1590/s1984-29612015060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to express a recombinant A2 family protein of Leishmania chagasi, Jaboticabal strain; test this protein as an antigen in serological assays; and investigate its antigenicity and immunogenicity. A protein coded by an allele of the A2 gene isolated from L. chagasi was expressed in three different strains of Escherichia coli. We used 29 sera samples from Leishmune-vaccinated dogs, 482 sera samples from dogs from endemic areas (positive controls), and 170 sera samples from dogs from non-endemic areas (negative controls) in ELISA tests using soluble Leishmaniaantigen (SLA) and His-A2 as antigen. Expressed proteins showed, by western blotting, the expression of an 11 KDa protein. Sixty-three percent (303/482) of the samples from endemic areas were positive by ELISA His-A2, whereas 93.1% (27/29) of Leishmune®-vaccinated animals were negative by His-A2-ELISA. Anti-A2 antibodies from mice inoculated with the A2 protein were detected in slides containing amastigote forms, but not in slides containing promastigote forms. The A2 recombinant protein from L. chagasi may be a useful tool in the diagnosis of CVL, and further tests regarding the infection stage and the specie of parasite at which the dogs are sampled should provide a better understanding of our results.
Collapse
|
33
|
Martins VT, Duarte MC, Chávez-Fumagalli MA, Menezes-Souza D, Coelho CSP, de Magalhães-Soares DF, Fernandes AP, Soto M, Tavares CAP, Coelho EAF. A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the serodiagnosis of, and as a vaccine candidate against, visceral leishmaniasis. Parasit Vectors 2015; 8:363. [PMID: 26160291 PMCID: PMC4501199 DOI: 10.1186/s13071-015-0964-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND LiHyV is an antigenic hypothetical protein present in both promastigote and amastigote stages of Leishmania infantum, which was recently identified by an immunoproteomic approach. A recombinant version of this protein (rLiHyV) was evaluated as a diagnostic marker for canine VL (CVL). In addition, the prophylactic efficacy of the rLiHyV protein, and two of its CD8(+) T cell epitopes, has been analyzed in a murine model of visceral leishmaniasis (VL). METHODS Initially, the rLiHyV protein was evaluated by an ELISA technique for the serodiagnosis of CVL. Secondly, vaccines composed of the recombinant protein and both chemically synthesized peptides, combined with saponin as an adjuvant; were administered subcutaneously into BALB/c mice. The cellular and humoral responses generated by vaccination were evaluated. In addition, the parasite burden and immune response were studied 10 weeks after L. infantum infection. RESULTS The rLiHyV protein was recognized by antibodies of VL dogs. No cross-reactivity was obtained with sera from dogs vaccinated with a Brazilian commercial vaccine, with sera from animals infected with Trypanosoma cruzi, Babesia canis and Ehrlichia canis, or those from non-infected animals living in an endemic area for leishmaniasis. After challenge with L. infantum, spleen cells of BALB/c mice vaccinated with rLiHyV/saponin stimulated with parasite antigens showed a higher production of IFN-γ, IL-12 and GM-CSF, than the same cells obtained from mice vaccinated with the individual peptides, or mice from control (inoculated with saline or saponin) groups. This Th1-type cellular response observed in rLiHyV/saponin vaccinated mice was accompanied by the induction of parasite-specific IgG2a isotype antibodies. Animals immunized with rLiHyV/saponin showed significant reductions in the parasite burden in the liver, spleen, bone marrow and in the lymph nodes draining the paws relative to control mice. CONCLUSIONS The present study showed for the first time that the L. infantum LiHyV protein could be considered as a vaccine candidate against L. infantum infection, as well as a diagnostic marker for CVL.
Collapse
Affiliation(s)
- Vivian T Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Daniel Menezes-Souza
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | - Danielle F de Magalhães-Soares
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Carlos A P Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Laboratório de Biotecnologia Aplicada ao Estudo das Leishmanioses, Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
34
|
Immunodiagnosis of canine visceral leishmaniasis using mimotope peptides selected from phage displayed combinatorial libraries. BIOMED RESEARCH INTERNATIONAL 2015; 2015:401509. [PMID: 25710003 PMCID: PMC4325972 DOI: 10.1155/2015/401509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/27/2014] [Accepted: 01/11/2015] [Indexed: 11/30/2022]
Abstract
ELISA and RIFI are currently used for serodiagnosis of canine visceral leishmaniasis (CVL). The accuracy of these tests is controversial in endemic areas where canine infections by Trypanosoma cruzi may occur. We evaluated the usefulness of synthetic peptides that were selected through phage display technique in the serodiagnosis of CVL. Peptides were chosen based on their ability to bind to IgGs purified from infected dogs pooled sera. We selected three phage clones that reacted only with those IgGs. Peptides were synthesized, polymerized with glutaraldehyde, and used as antigens in ELISA assays. Each individual peptide or a mix of them was reactive with infected dogs serum. The assay was highly sensitive and specific when compared to soluble Leishmania antigen that showed cross-reactivity with anti-T. cruzi IgGs. Our results demonstrate that phage display technique is useful for selection of peptides that may represent valuable synthetic antigens for an improved serodiagnosis of CVL.
Collapse
|
35
|
de Oliveira IQ, Silva RA, Sucupira MV, da Silva ED, Reis AB, Grimaldi G, Fraga DBM, Veras PST. Multi-antigen print immunoassay (MAPIA)-based evaluation of novel recombinant Leishmania infantum antigens for the serodiagnosis of canine visceral leishmaniasis. Parasit Vectors 2015; 8:45. [PMID: 25616448 PMCID: PMC4318189 DOI: 10.1186/s13071-015-0651-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/11/2015] [Indexed: 11/12/2022] Open
Abstract
Background Domestic dogs are the principal reservoir hosts of Leishmania infantum in regions where visceral leishmaniasis (VL) is endemic. Although serologic methods are frequently used for the screening of infected dogs, antibody-based tests require further assessment, due to lack of sensitivity and specificity. In this study, we employed a multi-antigen printing immunoassay (MAPIA) to compare the antibody responses to novel recombinant proteins of L. infantum with the potential for the detection of canine VL. Findings MAPIA strips were prepared employing 12 recombinant proteins. Antibody reactivity to these antigens was compared using a panel of sera collected from clinically asymptomatic (n = 16) and symptomatic (n = 41) culture-positive animals. Our findings showed that the canine immune response to antigen differs between dogs and depends on infection status. Using this screening assay, when five out of the 12 antigens were combined, an overall 81% detection rate of L. infantum-infected dogs was achieved. Conclusions We conclude that MAPIA is an effective screening tool to rapidly select multiple antigens of diagnostic utility to be used in a more sensitive point of care diagnostic test such as the Dual-Path Platform (DPP) multiplex test for the rapid detection of infected dogs.
Collapse
Affiliation(s)
- Isaac Queiroz de Oliveira
- Laboratório de Patologia e Biointervenção, Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121 (Candeal), Salvador, BA, Brazil.
| | - Rodrigo Araujo Silva
- Laboratório de Patologia e Biointervenção, Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121 (Candeal), Salvador, BA, Brazil.
| | - Michel Vergne Sucupira
- Laboratório de Tecnologia Diagnóstica, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| | - Edmilson Domingos da Silva
- Laboratório de Tecnologia Diagnóstica, Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| | - Alexandre Barbosa Reis
- Instituto de Ciência e Tecnologia de Doenças Tropicais, INCT-DT, Salvador, BA, Brazil. .,Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| | - Gabriel Grimaldi
- Laboratório de Patologia e Biointervenção, Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121 (Candeal), Salvador, BA, Brazil.
| | - Deborah Bittencourt Mothé Fraga
- Laboratório de Patologia e Biointervenção, Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121 (Candeal), Salvador, BA, Brazil. .,Instituto de Ciência e Tecnologia de Doenças Tropicais, INCT-DT, Salvador, BA, Brazil. .,Departamento de Medicina Veterinária Preventiva e Produção Animal, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador, BA, Brazil.
| | - Patrícia Sampaio Tavares Veras
- Laboratório de Patologia e Biointervenção, Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121 (Candeal), Salvador, BA, Brazil. .,Instituto de Ciência e Tecnologia de Doenças Tropicais, INCT-DT, Salvador, BA, Brazil.
| |
Collapse
|
36
|
An overview on Leishmania vaccines: A narrative review article. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2015; 6:1-7. [PMID: 25992245 PMCID: PMC4405679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/10/2014] [Indexed: 10/31/2022]
Abstract
Leishmaniasis is one of the major health problems and categorized as a class I disease (emerging and uncontrolled) by World Health Organization (WHO), causing highly significant morbidity and mortality. Indeed, more than 350 million individuals are at risk of Leishmania infection, and about 1.6 million new cases occur causing more than 50 thousands death annually. Because of the severe toxicity and drug resistance, present chemotherapy regimen against diverse forms of Leishmania infections is not totally worthwhile. However, sound immunity due to natural infection, implies that vigor cellular immunity against Leishmania parasites, via their live, attenuated or killed forms, can be developed in dogs and humans. Moreover, genetically conserved antigens (in most of Leishmania species), and components of sand fly saliva confer potential immunogenic molecules for Leishmania vaccination. Vaccines successes in animal studies and some clinical trials clearly justify more researches and investments illuminating opportunities in suitable vaccine designation.
Collapse
|
37
|
Nico D, Gomes DC, Palatnik-de-Sousa I, Morrot A, Palatnik M, Palatnik-de-Sousa CB. Leishmania donovani Nucleoside Hydrolase Terminal Domains in Cross-Protective Immunotherapy Against Leishmania amazonensis Murine Infection. Front Immunol 2014; 5:273. [PMID: 24966857 PMCID: PMC4052736 DOI: 10.3389/fimmu.2014.00273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/27/2014] [Indexed: 11/13/2022] Open
Abstract
Nucleoside hydrolases of the Leishmania genus are vital enzymes for the replication of the DNA and conserved phylogenetic markers of the parasites. Leishmania donovani nucleoside hydrolase (NH36) induced a main CD4(+) T cell driven protective response against L. chagasi infection in mice which is directed against its C-terminal domain. In this study, we used the three recombinant domains of NH36: N-terminal domain (F1, amino acids 1-103), central domain (F2 aminoacids 104-198), and C-terminal domain (F3 amino acids 199-314) in combination with saponin and assayed their immunotherapeutic effect on Balb/c mice previously infected with L. amazonensis. We identified that the F1 and F3 peptides determined strong cross-immunotherapeutic effects, reducing the size of footpad lesions to 48 and 64%, and the parasite load in footpads to 82.6 and 81%, respectively. The F3 peptide induced the strongest anti-NH36 antibody response and intradermal response (IDR) against L. amazonenis and a high secretion of IFN-γ and TNF-α with reduced levels of IL-10. The F1 vaccine, induced similar increases of IgG2b antibodies and IFN-γ and TNF-α levels, but no IDR and no reduction of IL-10. The multiparameter flow cytometry analysis was used to assess the immune response after immunotherapy and disclosed that the degree of the immunotherapeutic effect is predicted by the frequencies of the CD4(+) and CD8(+) T cells producing IL-2 or TNF-α or both. Total frequencies and frequencies of double-cytokine CD4 T cell producers were enhanced by F1 and F3 vaccines. Collectively, our multifunctional analysis disclosed that immunotherapeutic protection improved as the CD4 responses progressed from 1+ to 2+, in the case of the F1 and F3 vaccines, and as the CD8 responses changed qualitatively from 1+ to 3+, mainly in the case of the F1 vaccine, providing new correlates of immunotherapeutic protection against cutaneous leishmaniasis in mice based on T-helper TH1 and CD8(+) mediated immune responses.
Collapse
Affiliation(s)
- Dirlei Nico
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele Crespo Gomes
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iam Palatnik-de-Sousa
- Programa de Pós Graduação em Metrologia, Laboratório de Biometrologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Palatnik
- Programa de Pós Graduação em Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarisa Beatriz Palatnik-de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Nico D, Gomes DC, Alves-Silva MV, Freitas EO, Morrot A, Bahia D, Palatnik M, Rodrigues MM, Palatnik-de-Sousa CB. Cross-Protective Immunity to Leishmania amazonensis is Mediated by CD4+ and CD8+ Epitopes of Leishmania donovani Nucleoside Hydrolase Terminal Domains. Front Immunol 2014; 5:189. [PMID: 24822054 PMCID: PMC4013483 DOI: 10.3389/fimmu.2014.00189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
The nucleoside hydrolase (NH) of Leishmania donovani (NH36) is a phylogenetic marker of high homology among Leishmania parasites. In mice and dog vaccination, NH36 induces a CD4+ T cell-driven protective response against Leishmania chagasi infection directed against its C-terminal domain (F3). The C-terminal and N-terminal domain vaccines also decreased the footpad lesion caused by Leishmania amazonensis. We studied the basis of the crossed immune response using recombinant generated peptides covering the whole NH36 sequence and saponin for mice prophylaxis against L. amazonensis. The F1 (amino acids 1-103) and F3 peptide (amino acids 199-314) vaccines enhanced the IgG and IgG2a anti-NH36 antibodies to similar levels. The F3 vaccine induced the strongest DTH response, the highest proportions of NH36-specific CD4+ and CD8+ T cells after challenge and the highest expression of IFN-γ and TNF-α. The F1 vaccine, on the other hand, induced a weaker but significant DTH response and a mild enhancement of IFN-γ and TNF-α levels. The in vivo depletion with anti-CD4 or CD8 monoclonal antibodies disclosed that cross-protection against L. amazonensis infection was mediated by a CD4+ T cell response directed against the C-terminal domain (75% of reduction of the size of footpad lesion) followed by a CD8+ T cell response against the N-terminal domain of NH36 (57% of reduction of footpad lesions). Both vaccines were capable of inducing long-term cross-immunity. The amino acid sequence of NH36 showed 93% identity to the sequence of the NH A34480 of L. amazonensis, which also showed the presence of completely conserved predicted epitopes for CD4+ and CD8+ T cells in F1 domain, and of CD4+ epitopes differing by a single amino acid, in F1 and F3 domains. The identification of the C-terminal and N-terminal domains as the targets of the immune response to NH36 in the model of L. amazonensis infection represents a basis for the rationale development of a bivalent vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Dirlei Nico
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele Crespo Gomes
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus Vinícius Alves-Silva
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisangela Oliveira Freitas
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Palatnik
- Programa de Pós Graduação em Clínica Médica Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio M. Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Terapia Celular e Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clarisa B. Palatnik-de-Sousa
- Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Fraga DBM, da Silva ED, Pacheco LV, Borja LS, de Oliveira IQ, Coura-Vital W, Monteiro GR, Oliveira GGDS, Jerônimo SMB, Reis AB, Veras PST. A multicentric evaluation of the recombinant Leishmania infantum antigen-based immunochromatographic assay for the serodiagnosis of canine visceral leishmaniasis. Parasit Vectors 2014; 7:136. [PMID: 24684857 PMCID: PMC3972511 DOI: 10.1186/1756-3305-7-136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background Visceral leishmaniasis (VL) is a serious public health challenge in Brazil and dogs are considered to be the main urban reservoir of the causative agent. The culling of animals to control VL in some countries makes the accurate diagnosis of canine VL (CVL) essential. Recombinant antigens rLci1A and rLci2B were selected from a cDNA library of Leishmania infantum amastigotes due to their strong potential as candidates in diagnostic testing for CVL. The present multicentric study aimed to evaluate the sensitivity of a prototype test using these antigens (DPP rLci1A/rLci2B) against 154 sera obtained from symptomatic dogs within three endemic areas of VL in Brazil. The specificity was evaluated using 40 serum samples from negative dogs and dogs infected with other pathogens. Sensitivity and specificity rates of DPP rLci1A/rLci2B prototype were compared to rates from other diagnostic tests currently in use by the Brazilian Ministry of Health, including DPP®LVC, EIE®LVC. Findings DPP rLci1A/rLci2B prototype offered similar performance to that offered by DPP®LVC rapid test, as follows: sensitivity of 87% (CI 81–91) and 88% (CI 82–93) and specificity of 100% (CI 91–100) and 97% (CI 87–100), respectively for DPP rLci1A/rLci2B and DPP®LVC. When results of these two tests were considered concomitantly, sensitivity increased to 93.5% (CI 89–96). Conclusions The recombinant antigens rLci1A and rLci2B represent promising candidates for use in a multi-antigen rapid test for CVL. The inclusion of novel antigens to the DPP rLci1A/rLci2B prototype model could offer additionally enhanced sensitivity to detect animals infected by L. infantum.
Collapse
|
40
|
Fernandes AP, Canavaci AMC, McCall LI, Matlashewski G. A2 and other visceralizing proteins of Leishmania: role in pathogenesis and application for vaccine development. Subcell Biochem 2014; 74:77-101. [PMID: 24264241 DOI: 10.1007/978-94-007-7305-9_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Visceral leishmaniasis is a re-emergent disease and a significant cause of morbidity worldwide. Amongst the more than 20 Leishmania species, Leishmania donovani, Leishmania infantum and more rarely Leishmania amazonensis are associated with visceral leishmaniasis. A major question in leishmaniasis research is how these species migrate to and infect visceral organs whereas other species such as Leishmania major and Leishmania braziliensis remain in the skin, causing tegumentary leishmaniasis. Here we present the more recent advances and approaches towards the identification of species-specific visceralizing factors of Leishmania, such as the A2 protein, leading to a better understanding of parasite biology. We also discuss their potential use for the development of a vaccine for visceral leishmaniasis.
Collapse
Affiliation(s)
- Ana Paula Fernandes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270901, Brazil,
| | | | | | | |
Collapse
|
41
|
Subtractive phage display selection from canine visceral leishmaniasis identifies novel epitopes that mimic Leishmania infantum antigens with potential serodiagnosis applications. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:96-106. [PMID: 24256622 DOI: 10.1128/cvi.00583-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Visceral leishmaniasis (VL) is a zoonotic disease that is endemic to Brazil, where dogs are the main domestic parasite reservoirs, and the percentages of infected dogs living in regions where canine VL (CVL) is endemic have ranged from 10% to 62%. Despite technological advances, some problems have been reported with CVL serodiagnosis. The present study describes a sequential subtractive selection through phage display technology from polyclonal antibodies of negative and positive sera that resulted in the identification of potential bacteriophage-fused peptides that were highly sensitive and specific to antibodies of CVL. A negative selection was performed in which phage clones were adhered to purified IgGs from healthy and Trypanosoma cruzi-infected dogs to eliminate cross-reactive phages. The remaining supernatant nonadhered phages were submitted to positive selection against IgG from the blood serum of dogs that were infected with Leishmania infantum. Phage clones that adhered to purified IgGs from the CVL-infected serum samples were selected. Eighteen clones were identified and their reactivities tested by a phage enzyme-linked immunosorbent assay (phage-ELISA) against the serum samples from infected dogs (n = 31) compared to those from vaccinated dogs (n = 21), experimentally infected dogs with cross-reactive parasites (n = 23), and healthy controls (n = 17). Eight clones presented sensitivity, specificity, and positive and negative predictive values of 100%, and they showed no cross-reactivity with T. cruzi- or Ehrlichia canis-infected dogs or with dogs vaccinated with two different commercial CVL vaccines in Brazil. Our study identified eight mimotopes of L. infantum antigens with 100% accuracy for CVL serodiagnosis. The use of these mimotopes by phage-ELISA proved to be an excellent assay that was reproducible, simple, fast, and inexpensive, and it can be applied in CVL-monitoring programs.
Collapse
|
42
|
Ejazi SA, Ali N. Developments in diagnosis and treatment of visceral leishmaniasis during the last decade and future prospects. Expert Rev Anti Infect Ther 2013; 11:79-98. [PMID: 23428104 DOI: 10.1586/eri.12.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human visceral leishmaniasis (VL) continues to be a life-threatening neglected tropical disease, with close to 200 million people at risk of infection globally. Epidemics and resurgence of VL are associated with negligence by the policy makers, economic decline and population movements. Control of the disease is hampered by the lack of proficient vaccination, rapid diagnosis in a field setting and severe side effects of current drug therapies. The diagnosis of VL relied largely on invasive techniques of detecting parasites in splenic and bone marrow aspirates. rK39 and PCR, despite problems related to varying sensitivities and specificities and field adaptability, respectively, are considered the best options for VL diagnosis today. No single therapy of VL currently offers satisfactory efficacy along with safety. The field of VL research only recently shifted toward actively identifying new drugs for safe and affordable treatment. Oral miltefosine and safe AmBisome along with better use of amphotericin B have been rapidly implemented in the last decade. A combination therapy will substantially reduce the required dose and duration of drug administration and reduce the chance of the development of resistance. In addition, identification of asymptomatic cases, vector control and treatment of post-kala-azar dermal leishmaniasis would allow new perspectives in VL control and management.
Collapse
Affiliation(s)
- Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
43
|
Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of Leishmania infantum in canine leishmaniasis based on cysteine protease B genes. Vet Parasitol 2013; 198:78-84. [PMID: 23972768 DOI: 10.1016/j.vetpar.2013.07.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/20/2022]
Abstract
We developed a Leishmania infantum specific LAMP assay that was carried out using a set of, six primers targeting the cysteine protease B multi copy gene of L. infantum. Our result shows that we, successfully detect the L. infantum DNA and that amplification is specific as no cross reaction was seen, with L. major, L. tropica, L. turanica, L. aethiopica, L. tarentolae, L. gerbilii, Trypanosoma cruzi or, human genomic DNA. When compared to conventional cpb based PCR, the sensitivity of LAMP assay, was higher with a detection limit of 50 fg/μl of genomic L. infantum parasite DNA. Accurate and rapid, diagnosis of canine leishmaniasis (CanL) is an important issue that allows early treatment and, prevents transmission. Our developed LAMP assay was used to evaluate occurrences of Leishmania infantum in seventy five (75) dogs from the field. Blood samples were used to perform LAMP assay, classical PCR, IFAT and microscopy that was used as gold standard. The IFAT in addition to, microscopy, are the basic techniques used for CanL diagnosis at the School of Veterinary Medicine, where we obtained our samples. Compared to molecular methods, the serology (IFAT) test shows the, best sensitivity (88.57%) with, however, a much lower specificity (52.5%) due to a relatively high, number of false-positive results (22 animals). The PCR assay shows a low sensitivity (37.14%) and, specificity around (82.5%). Our LAMP assay shows a suitable sensitivity (54%) and a good specificity, (80%), with however, positive (70%) and negative (66%) predictive values. Furthermore, the best, positive likelihood ratio (LR+) was obtained by LAMP assay (2.7). This technique presents the highest, kappa value (with a fair agreement of 0.34). Moreover, the relative stability of the reagents indicates, that LAMP may be a good alternative to a conventional PCR, especially under field conditions. Finally in, a brief cost evaluation, the LAMP assay compares favorably with other molecular diagnostic tests. This, is the first study that evaluates the L. infantum specific LAMP alongside other diagnostics tools for, CanL. Our results indicate a suitable sensitivity and specificity for the developed LAMP assay that could, has usefulness application on dogs and human L. infantum diagnosis.
Collapse
|
44
|
Sensitive and specific serodiagnosis of Leishmania infantum infection in dogs by using peptides selected from hypothetical proteins identified by an immunoproteomic approach. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:835-41. [PMID: 23554466 DOI: 10.1128/cvi.00023-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Brazil, the percentage of infected dogs living in areas where canine visceral leishmaniasis (CVL) is endemic ranges from 10 to 62%; however, the prevalence of infection in dogs is probably higher than figures reported from serological studies. In addition, problems with the occurrence of false-positive or false-negative results in the serodiagnosis of CVL have been reported. The present work analyzed the potential of synthetic peptides mapped from hypothetical proteins for improvement of the serodiagnosis of Leishmania infantum infection in dogs. From 26 identified leishmanial proteins, eight were selected, considering that no homologies between these proteins and others from trypanosomatide sequence databases were encountered. The sequences of these proteins were mapped to identify linear B-cell epitopes, and 17 peptides were synthesized and tested in enzyme-linked immunosorbent assays (ELISAs) for the serodiagnosis of L. infantum infection in dogs. Of these, three exhibited sensitivity and specificity values higher than 75% and 90%, respectively, to differentiate L. infantum-infected animals from Trypanosoma cruzi-infected animals and healthy animals. Soluble Leishmania antigen (SLA) showed poor sensitivity (4%) and specificity (36%) to differentiate L. infantum-infected dogs from healthy and T. cruzi-infected dogs. Lastly, the three selected peptides were combined in different mixtures and higher sensitivity and specificity values were obtained, even when sera from T. cruzi-infected dogs were used. The study's findings suggest that these three peptides can constitute a potential tool for more sensitive and specific serodiagnosis of L. infantum infection in dogs.
Collapse
|
45
|
Bhattacharyya T, Boelaert M, Miles MA. Comparison of visceral leishmaniasis diagnostic antigens in African and Asian Leishmania donovani reveals extensive diversity and region-specific polymorphisms. PLoS Negl Trop Dis 2013; 7:e2057. [PMID: 23469296 PMCID: PMC3585016 DOI: 10.1371/journal.pntd.0002057] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/28/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL), caused by infection with Leishmania donovani complex, remains a major public health problem in endemic regions of South Asia, East Africa, and Brazil. If untreated, symptomatic VL is usually fatal. Rapid field diagnosis relies principally on demonstration of anti-Leishmania antibodies in clinically suspect cases. The rK39 immunochromatographic rapid diagnostic test (RDT) is based on rK39, encoded by a fragment of a kinesin-related gene derived from a Brazilian L. chagasi, now recognised as L. infantum, originating from Europe. Despite its reliability in South Asia, the rK39 test is reported to have lower sensitivity in East Africa. A reason for this differential response may reside in the molecular diversity of the rK39 homologous sequences among East African L. donovani strains. METHODOLOGY/PRINCIPAL FINDINGS Coding sequences of rK39 homologues from East African L. donovani strains were amplified from genomic DNA, analysed for diversity from the rK39 sequence, and compared to South Asian sequences. East African sequences were revealed to display significant diversity from rK39. Most coding changes in the 5' half of repeats were non-conservative, with multiple substitutions involving charge changes, whereas amino acid substitutions in the 3' half of repeats were conservative. Specific polymorphisms were found between South Asian and East African strains. Diversity of HASPB1 and HASPB2 gene repeat sequences, used to flank sequences of a kinesin homologue in the synthetic antigen rK28 designed to reduce variable RDT performance, was also investigated. Non-canonical combination repeat arrangements were revealed for HASPB1 and HASPB2 gene products in strains producing unpredicted size amplicons. CONCLUSIONS/SIGNIFICANCE We demonstrate that there is extensive kinesin genetic diversity among strains in East Africa and between East Africa and South Asia, with ample scope for influencing performance of rK39 diagnostic assays. We also show the importance of targeted comparative genomics in guiding optimisation of recombinant/synthetic diagnostic antigens.
Collapse
Affiliation(s)
- Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | |
Collapse
|
46
|
Mahshid M, Baharak A, Iraj S, Sina K, Javad K, Mehdi B. Seroprevalence of canine visceral leishmaniasis in southeast of Iran. J Parasit Dis 2013; 38:218-22. [PMID: 24808656 DOI: 10.1007/s12639-012-0226-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022] Open
Abstract
Visceral leishmaniasis is an endemic disease in many parts of Iran and infected dogs constitute the main domestic reservoirs that play a key role in transmission to humans. The objective of this study was to assess the seroprevalence of canine visceral leishmaniasis (CVL) by enzyme linked immunosorbent assay (ELISA) in southeast of Iran. This survey was carried out from 2009 to 2011 in Kerman, Bam and Baft districts in Kerman province and Zabol in Sistan-Baluchestan province. Blood samples were taken from 201 dogs after complete clinical examination. Following hematological evaluation; collected sera were tested by indirect ELISA method for the presence of anti Leishmania infantum antibodies. Overall seroprevalence was 15.4 %, including 6.4, 3.5, 3 and 2.4 % in Bam, Zabol, Baft and Kerman, respectively. However, seroprevalence of disease was not significantly related to age, gender, presence of clinical signs and hematological disorders. Based to the results of the present study, CVL is endemic in southeastern Iran. Delayed diagnosis and euthanasia of potentially infectious animals may occur with an increased transmission risk to sand flies and subsequently to humans. Implementation of potent screening tests with high validity is essential for rapid detection and successful dog elimination programs in endemic parts of Iran.
Collapse
Affiliation(s)
- Mostafavi Mahshid
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Akhtardanesh Baharak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tropical and Infectious Disease Research Center, Kerman University of Medical Sciences, P.O. Box 76169133, Kerman, Iran
| | - Sharifi Iraj
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Kakooei Sina
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Khedri Javad
- Pathobiology Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Bamorovat Mehdi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
47
|
Canine leishmaniosis in the Old and New Worlds: unveiled similarities and differences. Trends Parasitol 2012; 28:531-8. [PMID: 22995719 DOI: 10.1016/j.pt.2012.08.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/19/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022]
Abstract
Canine leishmaniosis is a potentially life-threatening disease which is spreading geographically in the Old and New Worlds, where different diagnostic procedures, treatments, and control strategies are currently in place. This Opinion article outlines the similarities and differences between canine leishmaniosis in the Old and New Worlds, with emphasis on South America and Europe. Finally, it calls the attention of veterinary and public health authorities to standardize and improve practices for diagnosing, treating, and preventing the disease.
Collapse
|