1
|
Stachowski TR, Fischer M. FLEXR-MSA: electron-density map comparisons of sequence-diverse structures. IUCRJ 2025; 12:245-254. [PMID: 40014007 DOI: 10.1107/s2052252525001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Proteins with near-identical sequences often share similar static structures. Yet, comparing crystal structures is limited or even biased by what has been included or omitted in the deposited model. Information about unique dynamics is often hidden in electron-density maps. Currently, automatic map comparisons are limited to sequence-identical structures. To overcome this limitation, we developed FLEXR-MSA, which enables unbiased electron-density map comparisons of sequence-diverse structures by coupling multiple sequence alignment (MSA) with electron-density sampling. FLEXR-MSA generates visualizations that pinpoint low-occupancy features on the residue level and chart them across the protein surface to reveal global changes. To exemplify the utility of this tool, we probed electron densities for protein-wide alternative conformations of HSP90 across four human isoforms and other homologs. Our analysis demonstrates that FLEXR-MSA can reveal hidden differences among HSP90 variants bound to clinically important ligands. Integrating this new functionality into the FLEXR suite of tools links the comparison of conformational landscapes hidden in electron-density maps to the building of multi-conformer models that reveal structural/functional differences that might be of interest when designing selective ligands.
Collapse
Affiliation(s)
- Timothy R Stachowski
- Department of Chemical Biology and Therapeutics, MS 1000, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, MS 1000, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Carlson DL, Kowalewski M, Bodoor K, Lietzan AD, Hughes PF, Gooden D, Loiselle DR, Alcorta D, Dingman Z, Mueller EA, Irnov I, Modla S, Chaya T, Caplan J, Embers M, Miller JC, Jacobs-Wagner C, Redinbo MR, Spector N, Haystead TAJ. Targeting Borrelia burgdorferi HtpG with a berserker molecule, a strategy for anti-microbial development. Cell Chem Biol 2024; 31:465-476.e12. [PMID: 37918401 DOI: 10.1016/j.chembiol.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables HS-291 to sterilize Borrelia cultures by causing oxidation of HtpG, and a discrete subset of proteins in proximity to the chaperone. This caused irreversible nucleoid collapse and membrane blebbing. Tethering verteporfin to the HtpG inhibitor was essential, since free verteporfin was not retained by Borrelia in contrast to HS-291. For this reason, we liken HS-291 to a berserker, wreaking havoc upon the pathogen's biology once selectively absorbed and activated. This strategy expands the druggable pathogenic genome and offsets antibiotic resistance by targeting non-essential proteins.
Collapse
Affiliation(s)
- Dave L Carlson
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Mark Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 3(rd) Floor, Genetic Medicine Building, Chapel Hill, NC 27599, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, 385 South Columbia Street, Chapel Hill, NC 27599, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David Gooden
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David Alcorta
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Zoey Dingman
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Elizabeth A Mueller
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Irnov Irnov
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Shannon Modla
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Tim Chaya
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Jeffrey Caplan
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Monica Embers
- Department of Microbiology and Immunology, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Jennifer C Miller
- Galaxy Diagnostics, Inc, P.O. Box 14346 7020 Kit Creek Road, Ste 130, Research Triangle Park, Raliegh, NC 27709, USA
| | - Christine Jacobs-Wagner
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA; Biology Department, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA; Howard Hughes Medical Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 3(rd) Floor, Genetic Medicine Building, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, 4350 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599-3290, USA.
| | - Neil Spector
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA.
| |
Collapse
|
3
|
Rouges C, Asad M, Laurent AD, Marchand P, Le Pape P. Is the C-Terminal Domain an Effective and Selective Target for the Design of Hsp90 Inhibitors against Candida Yeast? Microorganisms 2023; 11:2837. [PMID: 38137982 PMCID: PMC10745388 DOI: 10.3390/microorganisms11122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Improving the armamentarium to treat invasive candidiasis has become necessary to overcome drug resistance and the lack of alternative therapy. In the pathogenic fungus Candida albicans, the 90-kDa Heat-Shock Protein (Hsp90) has been described as a major regulator of virulence and resistance, offering a promising target. Some human Hsp90 inhibitors have shown activity against Candida spp. in vitro, but host toxicity has limited their use as antifungal drugs. The conservation of Hsp90 across all species leads to selectivity issues. To assess the potential of Hsp90 as a druggable antifungal target, the activity of nine structurally unrelated Hsp90 inhibitors with different binding domains was evaluated against a panel of Candida clinical isolates. The Hsp90 sequences from human and yeast species were aligned. Despite the degree of similarity between human and yeast N-terminal domain residues, the in vitro activities measured for the inhibitors interacting with this domain were not reproducible against all Candida species. Moreover, the inhibitors binding to the C-terminal domain (CTD) did not show any antifungal activity, with the exception of one of them. Given the greater sequence divergence in this domain, the identification of selective CTD inhibitors of fungal Hsp90 could be a promising strategy for the development of innovative antifungal drugs.
Collapse
Affiliation(s)
- Célia Rouges
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| | - Mohammad Asad
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Adèle D. Laurent
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Pascal Marchand
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| | - Patrice Le Pape
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| |
Collapse
|
4
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
5
|
Tassone G, Mazzorana M, Pozzi C. Structural Basis of Parasitic HSP90 ATPase Inhibition by Small Molecules. Pharmaceuticals (Basel) 2022; 15:1341. [PMID: 36355513 PMCID: PMC9692773 DOI: 10.3390/ph15111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2024] Open
Abstract
Protozoan parasites are responsible for several harmful and widespread human diseases that cause high morbidity and mortality. Currently available treatments have serious limitations due to poor efficiency, strong adverse effects, and high cost. Hence, the identification of new targets and the development of specific drug therapies against parasitic diseases are urgent needs. Heat shock protein 90 (HSP90) is an ATP-dependent molecular chaperone that plays a key role in parasite survival during the various differentiation stages, spread over the vector insect and the human host, which they undergo during their life cycle. The N-terminal domain (NTD) of HSP90, containing the main determinants for ATPase activity, represents the most druggable domain for inhibitor targeting. The molecules investigated on parasite HSP90 are mainly developed from known inhibitors of the human counterpart, and they have strong limitations due to selectivity issues, accounting for the high conservation of the ATP-binding site between the parasite and human proteins. The current review highlights the recent structural progress made to support the rational design of new molecules able to effectively block the chaperone activity of parasite HSP90.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Mazzorana
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
6
|
Jamabo M, Bentley SJ, Macucule-Tinga P, Tembo P, Edkins AL, Boshoff A. In silico analysis of the HSP90 chaperone system from the African trypanosome, Trypanosoma brucei. Front Mol Biosci 2022; 9:947078. [PMID: 36213128 PMCID: PMC9538636 DOI: 10.3389/fmolb.2022.947078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei (T. brucei) and spread by the tsetse fly in sub-Saharan Africa. The trypanosome relies on heat shock proteins for survival in the insect vector and mammalian host. Heat shock protein 90 (HSP90) plays a crucial role in the stress response at the cellular level. Inhibition of its interactions with chaperones and co-chaperones is being explored as a potential therapeutic target for numerous diseases. This study provides an in silico overview of HSP90 and its co-chaperones in both T. brucei brucei and T. brucei gambiense in relation to human and other trypanosomal species, including non-parasitic Bodo saltans and the insect infecting Crithidia fasciculata. A structural analysis of T. brucei HSP90 revealed differences in the orientation of the linker and C-terminal domain in comparison to human HSP90. Phylogenetic analysis displayed the T. brucei HSP90 proteins clustering into three distinct groups based on subcellular localizations, namely, cytosol, mitochondria, and endoplasmic reticulum. Syntenic analysis of cytosolic HSP90 genes revealed that T. b. brucei encoded for 10 tandem copies, while T. b. gambiense encoded for three tandem copies; Leishmania major (L. major) had the highest gene copy number with 17 tandem copies. The updated information on HSP90 from recently published proteomics on T. brucei was examined for different life cycle stages and subcellular localizations. The results show a difference between T. b. brucei and T. b. gambiense with T. b. brucei encoding a total of twelve putative HSP90 genes, while T. b. gambiense encodes five HSP90 genes. Eighteen putative co-chaperones were identified with one notable absence being cell division cycle 37 (Cdc37). These results provide an updated framework on approaching HSP90 and its interactions as drug targets in the African trypanosome.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | | | | | - Praise Tembo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Adrienne Lesley Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- *Correspondence: Aileen Boshoff,
| |
Collapse
|
7
|
Tassone G, Mazzorana M, Mangani S, Petricci E, Cini E, Giannini G, Pozzi C, Maramai S. Structural Characterization of Human Heat Shock Protein 90 N-Terminal Domain and Its Variants K112R and K112A in Complex with a Potent 1,2,3-Triazole-Based Inhibitor. Int J Mol Sci 2022; 23:ijms23169458. [PMID: 36012721 PMCID: PMC9409116 DOI: 10.3390/ijms23169458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that stabilizes client proteins in a folded and functional state. It is composed of two identical and symmetrical subunits and each monomer consists of three domains, the N-terminal (NTD), the middle (MD), and the C-terminal domain (CTD). Since the chaperone activity requires ATP hydrolysis, molecules able to occupy the ATP-binding pocket in the NTD act as Hsp90 inhibitors, leading to client protein degradation and cell death. Therefore, human Hsp90 represents a validated target for developing new anticancer drugs. Since protozoan parasites use their Hsp90 to trigger important transitions between different stages of their life cycle, this protein also represents a profitable target in anti-parasite drug discovery. Nevertheless, the development of molecules able to selectively target the ATP-binding site of protozoan Hsp90 is challenging due to the high homology with the human Hsp90 NTD (hHsp90-NTD). In a previous work, a series of potent Hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold was developed. The most promising inhibitor of the series, JMC31, showed potent Hsp90 binding and antiproliferative activity in NCI-H460 cells in the low-nanomolar range. In this work, we present the structural characterization of hHsp90-NTD in complex with JMC31 through X-ray crystallography. In addition, to elucidate the role of residue 112 on the ligand binding and its exploitability for the development of selective inhibitors, we investigated the crystal structures of hHsp90-NTD variants (K112R and K112A) in complex with JMC31.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Marco Mazzorana
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Correspondence: (M.M.); (C.P.); Tel.: +44-01235-778643 (M.M.); +39-0577-232132 (C.P.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Elena Cini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | | | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
- Correspondence: (M.M.); (C.P.); Tel.: +44-01235-778643 (M.M.); +39-0577-232132 (C.P.)
| | - Samuele Maramai
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
8
|
Hsp90 in Human Diseases: Molecular Mechanisms to Therapeutic Approaches. Cells 2022; 11:cells11060976. [PMID: 35326427 PMCID: PMC8946885 DOI: 10.3390/cells11060976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The maturation of hemeprotein dictates that they incorporate heme and become active, but knowledge of this essential cellular process remains incomplete. Studies on chaperon Hsp90 has revealed that it drives functional heme maturation of inducible nitric oxide synthase (iNOS), soluble guanylate cyclase (sGC) hemoglobin (Hb) and myoglobin (Mb) along with other proteins including GAPDH, while globin heme maturations also need an active sGC. In all these cases, Hsp90 interacts with the heme-free or apo-protein and then drives the heme maturation by an ATP dependent process before dissociating from the heme-replete proteins, suggesting that it is a key player in such heme-insertion processes. As the studies on globin maturation also need an active sGC, it connects the globin maturation to the NO-sGC (Nitric oxide-sGC) signal pathway, thereby constituting a novel NO-sGC-Globin axis. Since many aggressive cancer cells make Hbβ/Mb to survive, the dependence of the globin maturation of cancer cells places the NO-sGC signal pathway in a new light for therapeutic intervention. Given the ATPase function of Hsp90 in heme-maturation of client hemeproteins, Hsp90 inhibitors often cause serious side effects and this can encourage the alternate use of sGC activators/stimulators in combination with specific Hsp90 inhibitors for better therapeutic intervention.
Collapse
|
9
|
Cytosolic and Mitochondrial Hsp90 in Cytokinesis, Mitochondrial DNA Replication, and Drug Action in Trypanosoma brucei. Antimicrob Agents Chemother 2021; 65:e0063221. [PMID: 34424040 DOI: 10.1128/aac.00632-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma brucei subspecies cause African sleeping sickness in humans, an infection that is commonly fatal if not treated, and available therapies are limited. Previous studies have shown that heat shock protein 90 (Hsp90) inhibitors have potent and vivid activity against bloodstream-form trypanosomes. Hsp90s are phylogenetically conserved and essential catalysts that function at the crux of cell biology, where they ensure the proper folding of proteins and their assembly into multicomponent complexes. To assess the specificity of Hsp90 inhibitors and further define the role of Hsp90s in African trypanosomes, we used RNA interference (RNAi) to knock down cytosolic and mitochondrial Hsp90s (HSP83 and HSP84, respectively). Loss of either protein led to cell death, but the phenotypes were distinctly different. Depletion of cytosolic HSP83 closely mimicked the consequences of chemically depleting Hsp90 activity with inhibitor 17-AAG. In these cells, cytokinesis was severely disrupted, and segregation of the kinetoplast (the massive mitochondrial DNA structure unique to this family of eukaryotic pathogens) was impaired, leading to cells with abnormal kinetoplast DNA (kDNA) structures. Quite differently, knockdown of mitochondrial HSP84 did not impair cytokinesis but halted the initiation of new kDNA synthesis, generating cells without kDNA. These findings highlight the central role of Hsp90s in chaperoning cell cycle regulators in trypanosomes, reveal their unique function in kinetoplast replication, and reinforce their specificity and value as drug targets.
Collapse
|
10
|
Zhang N, Jiang N, Yu L, Guan T, Sang X, Feng Y, Chen R, Chen Q. Protein Lactylation Critically Regulates Energy Metabolism in the Protozoan Parasite Trypanosoma brucei. Front Cell Dev Biol 2021; 9:719720. [PMID: 34722503 PMCID: PMC8551762 DOI: 10.3389/fcell.2021.719720] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Lysine lactylation has been recognized as a novel post-translational modification occurring on histones. However, lactylation in non-histone proteins, especially in proteins of early branching organisms, is not well understood. Energy metabolism and the histone repertoire in the early diverging protozoan parasite Trypanosoma brucei, the causative agent of African trypanosomiasis, markedly diverge from those of conventional eukaryotes. Here, we present the first exhaustive proteome-wide investigation of lactylated sites in T. brucei. We identified 387 lysine-lactylated sites in 257 proteins of various cellular localizations and biological functions. Further, we revealed that glucose metabolism critically regulates protein lactylation in T. brucei although the parasite lacks lactate dehydrogenase. However, unlike mammals, increasing the glucose concentration reduced the level of lactate, and protein lactylation decreased in T. brucei via a unique lactate production pathway. In addition to providing a valuable resource, these foregoing data reveal the regulatory roles of protein lactylation of trypanosomes in energy metabolism and gene expression.
Collapse
Affiliation(s)
- Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Liying Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Tiandong Guan
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
11
|
Mavrova AT, Dimov S, Yancheva D, Rangelov M, Wesselinova D, Naydenova E. New C2- and N3-Modified Thieno[2,3-d]Pyrimidine Conjugates with Cytotoxicity in the Nanomolar Range. Anticancer Agents Med Chem 2021; 22:1201-1212. [PMID: 34315388 DOI: 10.2174/1871520621666210727130227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
AIMS The aim of the current study was to develop and explore a series of new cytotoxic agents based on the conjugation between the thieno[2,3-d]pyrimidine moiety and a second pharmacophore at the C2 or N3 position. BACKGROUND As the thieno[2,3-d]pyrimidine core is a bioisostere of the 4-anilinoquinazoline, various new thienopyrimidine derivatives were synthesized by modifying the structure of the clinically used anticancer quinazoline EGFR inhibitors of the first generation - gefitinib, and second generation - dacomitinib and canertinib. It was reported that some thieno[2,3-d]pyrimidine derivatives showed improved EGFR inhibitory activity. On the other hand, the benzimidazole heterocycle is present as a pharmacophore unit in the structure of many clinically used chemotherapeutic agents. Some 2-aminobenzimidazole derivatives, possessing anticancer activity, demonstrated EGFR inhibition and the benzimidazole derivative EGF816 is currently in the second phase of clinical trials. OBJECTIVE The objectives of the study were design of a novel series thieno[2,3-d]pyrimidines, synthesis of the compounds and investigation of their effects towards human cancer HT-29, MDA-MB-231, HeLa, HepG2 and to normal human Lep3 cell lines. (American Type Culture Collection, ATCC, Rockville, MD, USA) Methods: The synthetic protocol implemented cyclocondensation of 2-amino-thiophenes and nitriles in inert medium, aza-Michael addition to benzimidazole derivatives and nucleophylic substitution at the N3 place. MTS test was used in order to establish the cytotoxicity of the tested compounds. SAR analysis and in silico assessment of the inhibitory potential towards human oncogenic V599EB-Raf were performed using Molinspiration tool and Molecular Operating environment software. RESULTS The MTS test data showed that almost all studied thieno[2,3-d]pyirimidines (9-13, 21-22 and 25) manifest high inhibiting effect on the cell proliferation at nanomolar concentrations, whereat compounds 9 (IC50 = 130 nM) and 10 (IC50 = 261 nM) containing amino acid moiety, and 21 (IC50 = 108 nM) possesing two thienopyrimidine moieties attached to a 1,3-disubstituted benzimidazole linker, revealed many times lower toxicity against Lep3 cells compared to the cancer cells. Thienopyrimidines 11-13 possessed high selectivity against HeLa cells. Compound 13 showed high inhibitory activity against MDA-MB-231 and HepG2, with IC50 1.44 nM and 1.11 nM respectively. To outline the possible biological target of the studied coumpounds, their potential to interact with human oncogenic V599EB-Raf was explored by a docking study. As a result, it was suggested that the benzimidazolyl and glycyl fragments could enhance the binding ability of the new compounds by increasing the number of hydrogen bond acceptors and by stabilizing the inactive form of the enzyme. CONCLUSION The thienopyrimidines tested in vitro towards human cancer HT-29, MDA-MB-231, HeLa, HepG2 and normal human Lep3 cell lines demonstrated cytotoxicity in nanomolar range. It was established that compounds 9, 10 and 21 showed many times lower toxicity against normal Lep3 cells that can provide a high selectivity towards all four cancer cell lines at small concentrations. Based on the analysis of the structure-activity relationship, the observed trends in the cytotoxicity could be related to the lipophilicity and the topological polar surface area of the tested compounds. The docking study on the potential of the new thieno[2,3-d]pyrimidine-4-ones to interact with mutant V599EB-Raf showed that the compounds might be able to stabilize the enzyme in its inactive form.
Collapse
Affiliation(s)
- Anelia Ts Mavrova
- University of Chemical Technology and Metallurgy, Department of Organic Synthesis, 8 Kliment Ohridski Blvd., 1756 Sofia. Bulgaria
| | - Stefan Dimov
- University of Chemical Technology and Metallurgy, Department of Organic Synthesis, 8 Kliment Ohridski Blvd., 1756 Sofia. Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., build. 9, 1113 Sofia. Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., build. 9, 1113 Sofia. Bulgaria
| | - Diana Wesselinova
- Institute of General and Comparative Pathology, Bulgarian Academy of Science, Acad. G. Bonchev Str., build. 25, 1113 Sofia. Bulgaria
| | - Emilia Naydenova
- University of Chemical Technology and Metallurgy, Department of Organic Synthesis, 8 Kliment Ohridski Blvd., 1756 Sofia. Bulgaria
| |
Collapse
|
12
|
Yu Y, Li J, Wang W, Wang T, Qi W, Zheng X, Duan L, Chen J, Li S, Han X, Zhang W, Duan L. Transcriptome analysis uncovers the key pathways and candidate genes related to the treatment of Echinococcus granulosus protoscoleces with the repurposed drug pyronaridine. BMC Genomics 2021; 22:534. [PMID: 34256697 PMCID: PMC8276484 DOI: 10.1186/s12864-021-07875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cystic echinococcosis (CE) is a life-threatening zoonosis caused by the larval form of Echinococcus granulosus tapeworm. Our previous study showed that an approved drug pyronaridine (PND) is highly effective against CE, both in vitro and in an animal model. To identify possible target genes, transcriptome analysis was performed with E. granulosus sensu stricto protoscoleces treated with PND. Results A total of 1,321 genes were differentially expressed in protoscoleces treated with PND, including 541 upregulated and 780 downregulated genes. Gene ontology and KEGG analyses revealed that the spliceosome, mitogen-activated protein kinase (MAPK) pathway and ATP-binding cassette (ABC) transporters were the top three enriched pathways. Western blot analysis showed that PND treatment resulted in a dose-dependent increase in protein expression levels of EgMKK1 (MKK3/6-like) and EgMKK2 (MEK1/2-like), two members of MAPK cascades. Interestingly, several heat shock protein (HSP) genes were greatly downregulated including stress-inducible HSPs and their constitutive cognates, and some of them belong to Echinococcus-specific expansion of HSP70. Conclusions PND has a great impact on the spliceosome, MAPK pathway and ABC transporters, which may underline the mechanisms by which PND kills E. granulosus protoscoleces. In addition, PND downregulates HSPs expression, suggesting a close relationship between the drug and HSPs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07875-w.
Collapse
Affiliation(s)
- Yingfang Yu
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Weisi Wang
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Tian Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Wenjing Qi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Xueting Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Lei Duan
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Jiaxu Chen
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Shizhu Li
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Xiumin Han
- Qinghai Provincial People's Hospital, 810007, Xining, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China.
| | - Liping Duan
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China. .,Qinghai Provincial People's Hospital, 810007, Xining, China.
| |
Collapse
|
13
|
Martinez-Peinado N, Martori C, Cortes-Serra N, Sherman J, Rodriguez A, Gascon J, Alberola J, Pinazo MJ, Rodriguez-Cortes A, Alonso-Padilla J. Anti- Trypanosoma cruzi Activity of Metabolism Modifier Compounds. Int J Mol Sci 2021; 22:ijms22020688. [PMID: 33445756 PMCID: PMC7828178 DOI: 10.3390/ijms22020688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects over 6 million people worldwide. Development of new drugs to treat this disease remains a priority since those currently available have variable efficacy and frequent adverse effects, especially during the long regimens required for treating the chronic stage of the disease. T. cruzi modulates the host cell-metabolism to accommodate the cell cytosol into a favorable growth environment and acquire nutrients for its multiplication. In this study we evaluated the specific anti-T. cruzi activity of nine bio-energetic modulator compounds. Notably, we identified that 17-DMAG, which targets the ATP-binding site of heat shock protein 90 (Hsp90), has a very high (sub-micromolar range) selective inhibition of the parasite growth. This inhibitory effect was also highly potent (IC50 = 0.27 μmol L-1) against the amastigote intracellular replicative stage of the parasite. Moreover, molecular docking results suggest that 17-DMAG may bind T. cruzi Hsp90 homologue Hsp83 with good affinity. Evaluation in a mouse model of chronic T. cruzi infection did not show parasite growth inhibition, highlighting the difficulties encountered when going from in vitro assays onto preclinical drug developmental stages.
Collapse
Affiliation(s)
- Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.); (M.-J.P.)
| | - Clara Martori
- Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (C.M.); (J.A.)
| | - Nuria Cortes-Serra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.); (M.-J.P.)
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA; (J.S.); (A.R.)
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA; (J.S.); (A.R.)
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.); (M.-J.P.)
| | - Jordi Alberola
- Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (C.M.); (J.A.)
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.); (M.-J.P.)
| | - Alheli Rodriguez-Cortes
- Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (C.M.); (J.A.)
- Correspondence: (A.R.-C.); (J.A.-P.); Tel.: +34-935812062 (A.R.-C.); +34-932275400 (J.A.-P.)
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.); (M.-J.P.)
- Correspondence: (A.R.-C.); (J.A.-P.); Tel.: +34-935812062 (A.R.-C.); +34-932275400 (J.A.-P.)
| |
Collapse
|
14
|
Batista FAH, Ramos SL, Tassone G, Leitão A, Montanari CA, Botta M, Mori M, Borges JC. Discovery of small molecule inhibitors of Leishmania braziliensis Hsp90 chaperone. J Enzyme Inhib Med Chem 2020; 35:639-649. [PMID: 32048531 PMCID: PMC7034072 DOI: 10.1080/14756366.2020.1726342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by the protozoa Leishmania ssp. Environmental differences found by the parasites in the vector and the host are translated into cellular stress, leading to the production of heat shock proteins (Hsp). These are molecular chaperones involved in the folding of nascent proteins as well as in the regulation of gene expression, signalling events and proteostasis. Since Leishmania spp. use Hsp90 to trigger important transitions between their different stages of the life cycle, this protein family becomes a profitable target in anti-parasite drug discovery. In this work, we implemented a multidisciplinary strategy coupling molecular modelling with in vitro assays to identify small molecules able to inhibit Hsp90 from L. braziliensis (LbHsp90). Overall, we identified some compounds able to kill the promastigote form of the L. braziliensis, and to inhibit LbHsp90 ATPase activity.
Collapse
Affiliation(s)
- Fernanda A H Batista
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, Brazil
| | - Sérgio L Ramos
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, Brazil
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Andrei Leitão
- Medicinal Chemistry Group (NEQUIMED), IQSC-USP, University of São Paulo, São Carlos, Brazil
| | - Carlos A Montanari
- Medicinal Chemistry Group (NEQUIMED), IQSC-USP, University of São Paulo, São Carlos, Brazil
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Siena, Italy.,Lead Discovery Siena S.r., Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Júlio C Borges
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, Brazil
| |
Collapse
|
15
|
Zininga T, Shonhai A. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. Int J Mol Sci 2019; 20:E5930. [PMID: 31775392 PMCID: PMC6929125 DOI: 10.3390/ijms20235930] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Obligate protozoan parasites of the kinetoplastids and apicomplexa infect human cells to complete their life cycles. Some of the members of these groups of parasites develop in at least two systems, the human host and the insect vector. Survival under the varied physiological conditions associated with the human host and in the arthropod vectors requires the parasites to modulate their metabolic complement in order to meet the prevailing conditions. One of the key features of these parasites essential for their survival and host infectivity is timely expression of various proteins. Even more importantly is the need to keep their proteome functional by maintaining its functional capabilities in the wake of physiological changes and host immune responses. For this reason, molecular chaperones (also called heat shock proteins)-whose role is to facilitate proteostasis-play an important role in the survival of these parasites. Heat shock protein 90 (Hsp90) and Hsp70 are prominent molecular chaperones that are generally induced in response to physiological stress. Both Hsp90 and Hsp70 members are functionally regulated by nucleotides. In addition, Hsp70 and Hsp90 cooperate to facilitate folding of some key proteins implicated in cellular development. In addition, Hsp90 and Hsp70 individually interact with other accessory proteins (co-chaperones) that regulate their functions. The dependency of these proteins on nucleotide for their chaperone function presents an Achille's heel, as inhibitors that mimic ATP are amongst potential therapeutic agents targeting their function in obligate intracellular human parasites. Most of the promising small molecule inhibitors of parasitic heat shock proteins are either antibiotics or anticancer agents, whose repurposing against parasitic infections holds prospects. Both cancer cells and obligate human parasites depend upon a robust protein quality control system to ensure their survival, and hence, both employ a competent heat shock machinery to this end. Furthermore, some inhibitors that target chaperone and co-chaperone networks also offer promising prospects as antiparasitic agents. The current review highlights the progress made so far in design and application of small molecule inhibitors against obligate intracellular human parasites of the kinetoplastida and apicomplexan kingdoms.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou 0950, South Africa;
| |
Collapse
|
16
|
A docking-based structural analysis of geldanamycin-derived inhibitor binding to human or Leishmania Hsp90. Sci Rep 2019; 9:14756. [PMID: 31611575 PMCID: PMC6791876 DOI: 10.1038/s41598-019-51239-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Leishmaniasis is a neglected disease that affects millions of individuals around the world. Regardless of clinical form, treatment is based primarily on the use of pentavalent antimonials. However, such treatments are prolonged and present intense side effects, which lead to patient abandonment in many cases. The search for chemotherapeutic alternatives has become a priority. Heat Shock Protein 90 (Hsp90) inhibitors have recently come under investigation due to antiparasitic activity in Plasmodium sp., Trypanosoma sp. and Leishmania sp. Some of these inhibitors, such as geldanamycin and its analogs, 17-AAG and 17-DMAG, bind directly to Hsp90, thereby inhibiting its activity. Previous studies have demonstrated that different parasite species are more susceptible to some of these inhibitors than host cells. We hypothesized that this increased susceptibility may be due to differences in binding of Hsp90 inhibitors to Leishmania protein compared to host protein. Based on the results of the in silico approach used in the present study, we propose that geldanamycin, 17-AAG and 17-DMAG present an increased tendency to bind to the N-terminal domain of Leishmania amazonensis Hsp83 in comparison to human Hsp90. This could be partially explained by differences in intermolecular interactions between each of these inhibitors and Hsp83 or Hsp90. The present findings demonstrate potential for the use of these inhibitors in the context of anti-Leishmania therapy.
Collapse
|
17
|
de Heuvel E, Singh AK, Boronat P, Kooistra AJ, van der Meer T, Sadek P, Blaazer AR, Shaner NC, Bindels DS, Caljon G, Maes L, Sterk GJ, Siderius M, Oberholzer M, de Esch IJ, Brown DG, Leurs R. Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors (Part 2). Bioorg Med Chem 2019; 27:4013-4029. [DOI: 10.1016/j.bmc.2019.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 01/27/2023]
|
18
|
Minari K, de Azevedo ÉC, Kiraly VTR, Batista FAH, de Moraes FR, de Melo FA, Nascimento AS, Gava LM, Ramos CHI, Borges JC. Thermodynamic analysis of interactions of the Hsp90 with adenosine nucleotides: A comparative perspective. Int J Biol Macromol 2019; 130:125-138. [PMID: 30797004 DOI: 10.1016/j.ijbiomac.2019.02.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Hsp90s are key proteins in cellular homeostasis since they interact with many client proteins. Several studies indicated that Hsp90s are potential targets for treating diseases, such as cancer or malaria. It has been shown that Hsp90s from different organisms have peculiarities despite their high sequence identity. Therefore, a detailed comparative analysis of several Hsp90 proteins is relevant to the overall understanding of their activity. Accordingly, the goal of this work was to evaluate the interaction of either ADP or ATP with recombinant Hsp90s from different organisms (human α and β isoforms, Plasmodium falciparum, Leishmania braziliensis, yeast and sugarcane) by isothermal titration calorimetry. The measured thermodynamic signatures of those interactions indicated that despite the high identity among all Hsp90s, they have specific thermodynamic characteristics. Specifically, the interactions with ADP are driven by enthalpy but are opposed by entropy, whereas the interaction with ATP is driven by both enthalpy and entropy. Complimentary structural and molecular dynamics studies suggested that specific interactions with ADP that differ from those with ATP may contribute to the observed enthalpies and entropies. Altogether, the data suggest that selective inhibition may be more easily achieved using analogues of the Hsp90-ADP bound state than those of Hsp90-ATP bound state.
Collapse
Affiliation(s)
- Karine Minari
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13566-590, Brazil; Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Érika Chang de Azevedo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil
| | | | | | - Fábio Rogério de Moraes
- Biosciences, Languages, and Exact Sciences Institute, Multiuser Center for Biological Innovation (CMIB), São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Fernando Alves de Melo
- Biosciences, Languages, and Exact Sciences Institute, Multiuser Center for Biological Innovation (CMIB), São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | | | - Lisandra Marques Gava
- Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | | | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
19
|
Whitesell L, Robbins N, Huang DS, McLellan CA, Shekhar-Guturja T, LeBlanc EV, Nation CS, Hui R, Hutchinson A, Collins C, Chatterjee S, Trilles R, Xie JL, Krysan DJ, Lindquist S, Porco JA, Tatu U, Brown LE, Pizarro J, Cowen LE. Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nat Commun 2019; 10:402. [PMID: 30679438 PMCID: PMC6345968 DOI: 10.1038/s41467-018-08248-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
New strategies are needed to counter the escalating threat posed by drug-resistant fungi. The molecular chaperone Hsp90 affords a promising target because it supports survival, virulence and drug-resistance across diverse pathogens. Inhibitors of human Hsp90 under development as anticancer therapeutics, however, exert host toxicities that preclude their use as antifungals. Seeking a route to species-selectivity, we investigate the nucleotide-binding domain (NBD) of Hsp90 from the most common human fungal pathogen, Candida albicans. Here we report structures for this NBD alone, in complex with ADP or in complex with known Hsp90 inhibitors. Encouraged by the conformational flexibility revealed by these structures, we synthesize an inhibitor with >25-fold binding-selectivity for fungal Hsp90 NBD. Comparing co-crystals occupied by this probe vs. anticancer Hsp90 inhibitors revealed major, previously unreported conformational rearrangements. These insights and our probe's species-selectivity in culture support the feasibility of targeting Hsp90 as a promising antifungal strategy.
Collapse
Affiliation(s)
- Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - David S Huang
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | | | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Catherine S Nation
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Cathy Collins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Sharanya Chatterjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Richard Trilles
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Jinglin L Xie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Damian J Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Lauren E Brown
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Juan Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
20
|
Zhang Y, Xhaard H, Ghemtio L. Predictive classification models and targets identification for betulin derivatives as Leishmania donovani inhibitors. J Cheminform 2018; 10:40. [PMID: 30120601 PMCID: PMC6097978 DOI: 10.1186/s13321-018-0291-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/21/2018] [Indexed: 01/24/2023] Open
Abstract
Betulin derivatives have been proven effective in vitro against Leishmania donovani amastigotes, which cause visceral leishmaniasis. Identifying the molecular targets and molecular mechanisms underlying their action is a currently an unmet challenge. In the present study, we tackle this problem using computational methods to establish properties essential for activity as well as to screen betulin derivatives against potential targets. Recursive partitioning classification methods were explored to develop predictive models for 58 diverse betulin derivatives inhibitors of L. donovani amastigotes. The established models were validated on a testing set, showing excellent performance. Molecular fingerprints FCFP_6 and ALogP were extracted as the physicochemical properties most extensively involved in separating inhibitors from non-inhibitors. The potential targets of betulin derivatives inhibitors were predicted by in silico target fishing using structure-based pharmacophore searching and compound-pharmacophore-target-pathway network analysis, first on PDB and then among L. donovani homologs using a PSI-BLAST search. The essential identified proteins are all related to protein kinase family. Previous research already suggested members of the cyclin-dependent kinase family and MAP kinases as Leishmania potential drug targets. The PSI-BLAST search suggests two L. donovani proteins to be especially attractive as putative betulin target, heat shock protein 83 and membrane transporter D1.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00790, Helsinki, Finland.,Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00790, Helsinki, Finland
| | - Henri Xhaard
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00790, Helsinki, Finland.,Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00790, Helsinki, Finland
| | - Leo Ghemtio
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00790, Helsinki, Finland.
| |
Collapse
|
21
|
Meyer KJ, Caton E, Shapiro TA. Model System Identifies Kinetic Driver of Hsp90 Inhibitor Activity against African Trypanosomes and Plasmodium falciparum. Antimicrob Agents Chemother 2018; 62:e00056-18. [PMID: 29866861 PMCID: PMC6105818 DOI: 10.1128/aac.00056-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/26/2018] [Indexed: 12/21/2022] Open
Abstract
Hsp90 inhibitors, well studied in the laboratory and clinic for antitumor indications, have promising activity against protozoan pathogens, including Trypanosoma brucei which causes African sleeping sickness, and the malaria parasite, Plasmodium falciparum To progress these experimental drugs toward clinical use, we adapted an in vitro dynamic hollow-fiber system and deployed artificial pharmacokinetics to discover the driver of their activity: either concentration or time. The activities of compounds from three major classes of Hsp90 inhibitors in development were evaluated against trypanosomes. In all circumstances, the activities of the tested Hsp90 inhibitors were concentration driven. By optimally deploying the drug to match its kinetic driver, the efficacy of a given dose was improved up to 5-fold, and maximal efficacy was achieved with a significantly lower drug exposure. The superiority of concentration-driven regimens was evident in vitro over several logs of drug exposure and was predictive of efficacy in a mouse model of African trypanosomiasis. In studies with P. falciparum, antimalarial activity was similarly concentration driven. This experimental strategy offers an expedient and versatile translational tool to assess the impact of pharmacokinetics on antiprotozoal activity. Knowing kinetic governance early in drug development provides an additional metric for judging lead compounds and allows the incisive design of animal efficacy studies.
Collapse
Affiliation(s)
- Kirsten J Meyer
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Caton
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Theresa A Shapiro
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Chen Y, Murillo-Solano C, Kirkpatrick MG, Antoshchenko T, Park HW, Pizarro JC. Repurposing drugs to target the malaria parasite unfolding protein response. Sci Rep 2018; 8:10333. [PMID: 29985421 PMCID: PMC6037779 DOI: 10.1038/s41598-018-28608-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
Drug resistant Plasmodium falciparum parasites represent a major obstacle in our efforts to control malaria, a deadly vector borne infectious disease. This situation creates an urgent need to find and validate new drug targets to contain the spread of the disease. Several genes associated with the unfolded protein response (UPR) including Glucose-regulated Protein 78 kDa (GRP78, also known as BiP) have been deemed potential drug targets. We explored the drug target potential of GRP78, a molecular chaperone that is a regulator of the UPR, for the treatment of P. falciparum parasite infection. By screening repurposed chaperone inhibitors that are anticancer agents, we showed that GRP78 inhibition is lethal to drug-sensitive and -resistant P. falciparum parasite strains in vitro. We correlated the antiplasmodial activity of the inhibitors with their ability to bind the malaria chaperone, by characterizing their binding to recombinant parasite GRP78. Furthermore, we determined the crystal structure of the ATP binding domain of P. falciparum GRP78 with ADP and identified structural features unique to the parasite. These data suggest that P. falciparum GRP78 can be a valid drug target and that its structural differences to human GRP78 emphasize potential to generate parasite specific compounds.
Collapse
Affiliation(s)
- Yun Chen
- Department of Molecular Biology and Biochemistry, School of Medicine, Tulane University, New Orleans, USA
| | - Claribel Murillo-Solano
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Melanie G Kirkpatrick
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Tetyana Antoshchenko
- Department of Molecular Biology and Biochemistry, School of Medicine, Tulane University, New Orleans, USA
| | - Hee-Won Park
- Department of Molecular Biology and Biochemistry, School of Medicine, Tulane University, New Orleans, USA.,Vector Borne Infectious Disease Research Center (VBIDRC), Tulane University, New Orleans, USA
| | - Juan C Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA. .,Vector Borne Infectious Disease Research Center (VBIDRC), Tulane University, New Orleans, USA.
| |
Collapse
|
23
|
Guswanto A, Nugraha AB, Tuvshintulga B, Tayebwa DS, Rizk MA, Batiha GES, Gantuya S, Sivakumar T, Yokoyama N, Igarashi I. 17-DMAG inhibits the multiplication of several Babesia species and Theileria equi on in vitro cultures, and Babesia microti in mice. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:104-111. [PMID: 29499568 PMCID: PMC6114103 DOI: 10.1016/j.ijpddr.2018.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 01/20/2023]
Abstract
Heat shock protein 90 (Hsp90) is a chaperone protein that stabilizes cells during stress or non-stress responses. Previous reports have shown that Hsp90 is a potential drug target to suppress the multiplication of several protozoan parasites. In this study, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), an Hsp90 inhibitor, was evaluated for its inhibitory effect on five in vitro cultures of Babesia and Theileria species, including B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi, and on the multiplication of a B. microti–infected mouse model. 17-DMAG showed the inhibitory effect in all of the species tested. The half maximum inhibition concentration (IC50) of 17-DMAG on B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi was 77.6 ± 2.9, 62.4 ± 1.9, 183.8 ± 3.2, 88.5 ± 9.6, and 307.7 ± 7.2 nM, respectively. The toxicity assay on MDBK and NIH/3T3 cell lines showed that 17-DMAG affected the viability of cells with an IC50 of 15.5 ± 4 and 8.8 ± 2 μM, respectively. Since the IC50s were much lower on the parasites than on the host cell lines, the selectivity index were high for all tested species. Furthermore, the two-drug combination of 17-DMAG with diminazene aceturate (DA) and atovaquone (AV) showed synergism or addition on in vitro cultures of Babesia and Theileria parasites. In the mouse model, 17-DMAG at a concentration of 30 mg/kg BW effectively inhibited the multiplication of B. microti. Moreover, if combined with DA or AV, 17-DMAG showed a comparable inhibition at the half dose. Taken together, these results indicate that 17-DMAG is a potent drug for treating piroplamosis. The data warrant further evaluation of 17-DMAG as an antibabesial drug and as an option in combination with atovaquone for the treatment of human babesiosis. 17-DMAG inhibits the in vitro multiplication of Babesia and Theileria parasites. Combination of 17-DMAG with diminazene aceturate or atovaquone were also effective. 17-DMAG also inhibits the multiplication of B. microti in mice. 17-DMAG is a new treatment option for babesiosis in animal and human.
Collapse
Affiliation(s)
- Azirwan Guswanto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro 080-8555, Japan; Balai Veteriner Subang (DIC Subang), Jl. Terusan Garuda 33/11 Blok Werasari Dangdeur, Subang, Jawa Barat 41212, Indonesia.
| | - Arifin Budiman Nugraha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro 080-8555, Japan; Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis, Kampus IPB Dramaga, Bogor, Indonesia.
| | - Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro 080-8555, Japan.
| | - Dickson Stuart Tayebwa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro 080-8555, Japan.
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro 080-8555, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Gaber El-Saber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro 080-8555, Japan; Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, 22511, Egypt.
| | - Sambuu Gantuya
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro 080-8555, Japan.
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro 080-8555, Japan.
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro 080-8555, Japan.
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro 080-8555, Japan.
| |
Collapse
|
24
|
Berninger M, Schmidt I, Ponte-Sucre A, Holzgrabe U. Novel lead compounds in pre-clinical development against African sleeping sickness. MEDCHEMCOMM 2017; 8:1872-1890. [PMID: 30108710 PMCID: PMC6072528 DOI: 10.1039/c7md00280g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/29/2017] [Indexed: 01/21/2023]
Abstract
Human African trypanosomiasis (HAT), also known as African sleeping sickness, is caused by parasitic protozoa of the genus Trypanosoma. As the disease progresses, the parasites cross the blood brain barrier and are lethal for the patients if the disease is left untreated. Current therapies suffer from several drawbacks due to e.g. toxicity of the respective compounds or resistance to approved antitrypanosomal drugs. In this review, the different strategies of drug development against HAT are considered, namely the target-based approach, the phenotypic high throughput screening and the drug repurposing strategy. The most promising compounds emerging from these approaches entering an in vivo evaluation are mentioned herein. Of note, it may turn out to be difficult to confirm in vitro activity in an animal model of infection; however, possible reasons for the missing efficacy in unsuccessful in vivo studies are discussed.
Collapse
Affiliation(s)
- Michael Berninger
- Institute of Pharmacy and Food Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Ines Schmidt
- Institute of Pharmacy and Food Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology , Institute of Experimental Medicine , Luis Razetti School of Medicine , Faculty of Medicine , Universidad Central de Venezuela Caracas , Venezuela . Tel: +0931 31 85461
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany .
| |
Collapse
|
25
|
Wachsmuth LM, Johnson MG, Gavenonis J. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions. PLoS Negl Trop Dis 2017; 11:e0005720. [PMID: 28662026 PMCID: PMC5507555 DOI: 10.1371/journal.pntd.0005720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/12/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.
Collapse
Affiliation(s)
- Leah M. Wachsmuth
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Meredith G. Johnson
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Jason Gavenonis
- Department of Chemistry, Dickinson College, Carlisle, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Novel Therapeutic Targets for Human African Trypanosomiasis. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0120-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Jamal R, Shimogawara R, Yamamoto KI, Ohta N. Anti-trypanosome effects of nutritional supplements and vitamin D3: in vitro and in vivo efficacy against Trypanosoma brucei brucei. Trop Med Health 2016; 44:26. [PMID: 27579019 PMCID: PMC4989295 DOI: 10.1186/s41182-016-0024-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/17/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previous publications suggest that nutritional supplements have anti-trypanosome activity in vitro, although apparent efficacy was not noted in vivo. This study was conducted by experimentally infecting mice with Trypanosoma brucei brucei to assess the anti-trypanosome activity of various nutritional supplements with the hope of finding possible application in the treatment of African trypanosomiasis. METHODS Activities of nutritional supplements were screened in vitro against bloodstream forms of T. b. brucei. To evaluate selectivity, we used two mammalian cells, Jurkat cells and Vero cells. The IC50 values and selectivity index values were calculated, and supplements with promising efficacy in vitro were selected for further testing in vivo. Mice were infected intraperitoneally with 1 × 10(3) T. b. brucei. We observed parameters for disease progression such as parasitemia, red blood cell count, white blood cell count, survivability, and splenomegaly. Morphological profiles after the treatment were analyzed by scanning electron microscopy. RESULTS Vitamin D3 showed anti-trypanosome efficacies both in vitro and in vivo. It seemed to have suppressive effects on parasitemia, and spleen weight was also significantly lower in vitamin D3-treated mice when compared to non-treated control mice. There was, however, no significant prolonged survivability of infected mice treated with vitamin D3. Among green tea extracts, polyphenon-60 and epigallocatechin gallate had suppressive effects against T. b. brucei in vitro, but in vivo efficacies were marginal. CONCLUSIONS Treatment with nutritional supplements, vitamin D3, and polyphenon-60 seemed to have anti-trypanosome activity in vitro and protective activity to some extent in vivo, respectively, although those supplements themselves did not have curable effects. The exact mechanisms of action are not clear, but the significant efficacy in vitro suggested direct effects of supplements against African trypanosome parasites.
Collapse
Affiliation(s)
- Ripa Jamal
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Rieko Shimogawara
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Ki-ichi Yamamoto
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Nobuo Ohta
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| |
Collapse
|
28
|
Abstract
Replication of Trypanosoma cruzi, the etiological agent of Chagas disease, displays peculiar features, such as absence of chromosome condensation and closed mitosis. Although previous proteome and subproteome analyses of T. cruzi have been carried out, the nuclear subproteome of this protozoan has not been described. Here, we report, for the first time to the best of our knowledge, the isolation and proteome analysis of T. cruzi nuclear fraction. For that, T. cruzi epimastigote cells were lysed and subjected to cell fractionation using two steps of sucrose density gradient centrifugation. The purity of the nuclear fraction was confirmed by phase contrast and fluorescence microscopy. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) allowed the identification of 864 proteins. Among those, 272 proteins were annotated as putative uncharacterized, and 275 had not been previously reported on global T. cruzi proteome analysis. Additionally, to support our enrichment method, bioinformatics analysis in DAVID was carried out. It grouped the nuclear proteins in 65 gene clusters, wherein the clusters with the highest enrichment scores harbor members with chromatin organization and DNA binding functions.
Collapse
|
29
|
Xie JL, Polvi EJ, Shekhar-Guturja T, Cowen LE. Elucidating drug resistance in human fungal pathogens. Future Microbiol 2014; 9:523-42. [PMID: 24810351 DOI: 10.2217/fmb.14.18] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fungal pathogens cause life-threatening infections in immunocompetent and immunocompromised individuals. Millions of people die each year due to fungal infections, comparable to the mortality attributable to tuberculosis or malaria. The three most prevalent fungal pathogens are Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Fungi are eukaryotes like their human host, making it challenging to identify fungal-specific therapeutics. There is a limited repertoire of antifungals in clinical use, and drug resistance and host toxicity compromise the clinical utility. The three classes of antifungals for treatment of invasive infections are the polyenes, azoles and echinocandins. Understanding mechanisms of resistance to these antifungals has been accelerated by global and targeted approaches, which have revealed that antifungal drug resistance is a complex phenomenon involving multiple mechanisms. Development of novel strategies to block the emergence of drug resistance and render resistant pathogens responsive to antifungals will be critical to treating life-threatening fungal infections.
Collapse
Affiliation(s)
- Jinglin Lucy Xie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
30
|
Abstract
Trypanosomiasis is caused by Trypanosoma species which affect both human and animal populations and pose a major threat to developing countries. The incidence of animal trypanosomiasis is on the rise. Surra is a type of animal trypanosomiasis, caused by Trypanosoma evansi, and has been included in priority list B of significant diseases by the World Organization of Animal Health (OIE). Control of surra has been a challenge due to the lack of effective drugs and vaccines and emergence of resistance towards existing drugs. Our laboratory has previously implicated Heat shock protein 90 (Hsp90) from protozoan parasites as a potential drug target and successfully demonstrated efficacy of an Hsp90 inhibitor in cell culture as well as a pre-clinical mouse model of trypanosomiasis. This article explores the role of Hsp90 in the Trypanosoma life cycle and its potential as a drug target. It appears plausible that the repertoire of Hsp90 inhibitors available in academia and industry may have value for treatment of surra and other animal trypanosomiasis.
Collapse
|
31
|
Abstract
SummaryFungal pathogens pose a major threat to human health worldwide. They infect billions of people each year, leading to at least 1·5 million deaths. Treatment of fungal infections is difficult due to the limited number of clinically useful antifungal drugs, and the emergence of drug resistance. A promising new strategy to enhance the efficacy of antifungal drugs and block the evolution of drug resistance is to target the molecular chaperone Hsp90. Pharmacological inhibitors of Hsp90 function that are in development as anticancer agents have potential to be repurposed as agents for combination antifungal therapy for some applications, such as biofilm infections. For systemic infections, however, effective combination therapy regimens may require Hsp90 inhibitors that can selectively target Hsp90 in the pathogen, or alternate strategies to compromise function of the Hsp90 chaperone machine. Selectively impairing Hsp90 function in the pathogen could in principle be achieved by targeting Hsp90 co-chaperones or regulators of Hsp90 function that are more divergent between pathogen and host than Hsp90. Antifungal combination therapies could also exploit downstream effectors of Hsp90 that are critical for fungal drug resistance and virulence. Here, we discuss the progress and prospects for establishing Hsp90 as an important therapeutic target for life-threatening fungal infections.
Collapse
|
32
|
Gillan V, O'Neill K, Maitland K, Sverdrup FM, Devaney E. A repurposing strategy for Hsp90 inhibitors demonstrates their potency against filarial nematodes. PLoS Negl Trop Dis 2014; 8:e2699. [PMID: 24551261 PMCID: PMC3923716 DOI: 10.1371/journal.pntd.0002699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/02/2014] [Indexed: 02/03/2023] Open
Abstract
Novel drugs are required for the elimination of infections caused by filarial worms, as most commonly used drugs largely target the microfilariae or first stage larvae of these infections. Previous studies, conducted in vitro, have shown that inhibition of Hsp90 kills adult Brugia pahangi. As numerous small molecule inhibitors of Hsp90 have been developed for use in cancer chemotherapy, we tested the activity of several novel Hsp90 inhibitors in a fluorescence polarization assay and against microfilariae and adult worms of Brugia in vitro. The results from all three assays correlated reasonably well and one particular compound, NVP-AUY922, was shown to be particularly active, inhibiting Mf output from female worms at concentrations as low as 5.0 nanomolar after 6 days exposure to drug. NVP-AUY922 was also active on adult worms after a short 24 h exposure to drug. Based on these in vitro data, NVP-AUY922 was tested in vivo in a mouse model and was shown to significantly reduce the recovery of both adult worms and microfilariae. These studies provide proof of principle that the repurposing of currently available Hsp90 inhibitors may have potential for the development of novel agents with macrofilaricidal properties.
Collapse
Affiliation(s)
- Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Kerry O'Neill
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Kirsty Maitland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Francis M. Sverdrup
- Center for World Health & Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|