1
|
Divakar S, Dhanalakshmi H, Sandeep N, Isloor S, Rashmi R, Ananda KJ, Reddy M. Dry LAMP: A point of care diagnostics for diagnosis of bovine tropical theileriosis. J Vector Borne Dis 2024; 61:357-363. [PMID: 39374493 DOI: 10.4103/0972-9062.392261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND OBJECTIVES Theileriosis is an important tick-bome hemoprotozoan disease of cattle which causes severe economic loss due to morbidity and mortality. A diagnostic test having high sensitivity, specificity and easy application at the field level is the need of the hour. In this regard Loop-mediated isothermal amplification (LAMP) is proven to be a sensitive, easy and time efficient method. One of the major obstacles for the application of LAMP is the difficulty in maintaining the cold chain to preserve reagents. Thus, the challenge is to develop a LAMP kit in a ready-to-use format with dried reagents useful for quick and simple application in field conditions. METHODS The optimized reaction of wet LAMP was followed for the standardization of dry LAMP with certain modifications which are needful. The major modification is vitrification technology of enzyme using trehalose. RESULTS LAMP assay (dry and wet LAMP) was found to be more sensitive (100%) when compared to microscopy (69.5%) and PCR (86.9%). It was observed that the dry LAMP reaction tubes at room temperature as well as refrigeration temperature provided successful amplification till 7 weeks. INTERPRETATION CONCLUSION The drying conditions of LAMP reagents were optimized, and finally managed to dry them in a single reaction tube without reducing the sensitivity. This technology enables us to transport LAMP kits to areas where the cold chain is not easily available.
Collapse
Affiliation(s)
- Sindhoora Divakar
- Department of Veterinary Parasitology, Veterinary College, Bengaluru, India
| | - H Dhanalakshmi
- Department of Veterinary Parasitology, Veterinary College, Bengaluru, India
| | - N Sandeep
- Department of Veterinary Parasitology, Veterinary College, Bengaluru, India
| | - Shrikrishna Isloor
- Department of Veterinary Microbiology, Veterinary College, Bengaluru, India
| | - R Rashmi
- Department of Veterinary Pharmacology, Veterinary College, Bengaluru, India
| | - K J Ananda
- Department of Veterinary Parasitology, Veterinary College, Shimogga, India
| | - Manjunatha Reddy
- National Institute of Veterinary Epidemiology and Disease Informatics, Yelhanka, Bengaluru, India
| |
Collapse
|
2
|
Wilkinson AF, Barra MJ, Novak EN, Bond M, Richards-Kortum R. Point-of-care isothermal nucleic acid amplification tests: progress and bottlenecks for extraction-free sample collection and preparation. Expert Rev Mol Diagn 2024; 24:509-524. [PMID: 38973430 PMCID: PMC11514575 DOI: 10.1080/14737159.2024.2375233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Suitable sample collection and preparation methods are essential to enable nucleic acid amplification testing at the point of care (POC). Strategies that allow direct isothermal nucleic acid amplification testing (iNAAT) of crude sample lysate without the need for nucleic acid extraction minimize time to result as well as the need for operator expertise and costly infrastructure. AREAS COVERED The authors review research to understand how sample matrix and preparation affect the design and performance of POC iNAATs. They focus on approaches where samples are directly combined with liquid reagents for preparation and amplification via iNAAT strategies. They review factors related to the type and method of sample collection, storage buffers, and lysis strategies. Finally, they discuss RNA targets and relevant regulatory considerations. EXPERT OPINION Limitations in sample preparation methods are a significant technical barrier preventing implementation of nucleic acid testing at the POC. The authors propose a framework for co-designing sample preparation and amplification steps for optimal performance with an extraction-free paradigm by considering a sample matrix and lytic strategy prior to an amplification assay and readout. In the next 5 years, the authors anticipate increasing priority on the co-design of sample preparation and iNAATs.
Collapse
Affiliation(s)
| | - Maria J. Barra
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Emilie N. Novak
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Meaghan Bond
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | |
Collapse
|
3
|
Sen A, Masetty M, Weerakoon S, Morris C, Yadav JS, Apewokin S, Trannguyen J, Broom M, Priye A. Paper-based loop-mediated isothermal amplification and CRISPR integrated platform for on-site nucleic acid testing of pathogens. Biosens Bioelectron 2024; 257:116292. [PMID: 38653014 DOI: 10.1016/j.bios.2024.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
We report the development and initial validation of a paper-based nucleic acid testing platform that integrates Loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR) technology, referred to as PLACID (Paper-based LAMP-CRISPR Integrated Diagnostics). LAMP eliminates the need for thermal cycling, resulting in simplified instrumentation, and the CRISPR-associated protein (Cas 12a) system eliminates false positive signals from LAMP products, resulting in highly selective and sensitive assays. We optimized the assay to perform both amplification and detection entirely on paper, eliminating the need for complex fluid handling steps and lateral flow assay transfers. Additionally, we engineered a smartphone-operated system that includes a low-powered, non-contact IR heating chamber to actuate paper-based LAMP and CRISPR reactions and enable the detection of fluorescent signals from the paper. The platform demonstrates high specificity and sensitivity in detecting nucleic acid targets with a limit of detection of 50 copies/μL. We integrate an equipment-free sample preparation separation technology designed to streamline the preparation of crude samples prior to nucleic acid testing. The practical utility of our platform is demonstrated by the successful detection of spiked SARS-CoV-2 RNA fragments in saliva, E. Coli in soil, and pathogenic E. Coli in clinically fecal samples of infected patients. Furthermore, we demonstrate that the paper-based LAMP CRISPR chips employed in our assays possess a shelf life of several weeks, establishing them as viable candidates for on-site diagnostics.
Collapse
Affiliation(s)
- Anindita Sen
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand
| | - Manaswini Masetty
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Sasanka Weerakoon
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Calum Morris
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand
| | - Jagjit S Yadav
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Senu Apewokin
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Jennifer Trannguyen
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Murray Broom
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand.
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA; Digital Futures, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
4
|
Sutipatanasomboon A, Wongsantichon J, Sakdee S, Naksith P, Watthanadirek A, Anuracpreeda P, Blacksell SD, Saisawang C. RPA-CRISPR/Cas12a assay for the diagnosis of bovine Anaplasma marginale infection. Sci Rep 2024; 14:7820. [PMID: 38570576 PMCID: PMC10991388 DOI: 10.1038/s41598-024-58169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Anaplasma marginale infection is one of the most common tick-borne diseases, causing a substantial loss in the beef and dairy production industries. Once infected, the pathogen remains in the cattle for life, allowing the parasites to spread to healthy animals. Since clinical manifestations of anaplasmosis occur late in the disease, a sensitive, accurate, and affordable pathogen identification is crucial in preventing and controlling the infection. To this end, we developed an RPA-CRISPR/Cas12a assay specific to A. marginale infection in bovines targeting the msp4 gene. Our assay is performed at one moderately high temperature, producing fluorescent signals or positive readout of a lateral flow dipstick, which is as sensitive as conventional PCR-based DNA amplification. This RPA-CRISPR/Cas12a assay can detect as few as 4 copies/μl of Anaplasma using msp4 marker without cross-reactivity to other common bovine pathogens. Lyophilized components of the assay can be stored at room temperature for an extended period, indicating its potential for field diagnosis and low-resource settings of anaplasmosis in bovines.
Collapse
Affiliation(s)
- Arpaporn Sutipatanasomboon
- Molecular Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Thailand
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Somsri Sakdee
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Piyaporn Naksith
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Amaya Watthanadirek
- Molecular Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Thailand
| | - Panat Anuracpreeda
- Molecular Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Thailand
| | - Stuart D Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Chonticha Saisawang
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
5
|
Jiang KP, Bennett S, Heiniger EK, Kumar S, Yager P. UbiNAAT: a multiplexed point-of-care nucleic acid diagnostic platform for rapid at-home pathogen detection. LAB ON A CHIP 2024; 24:492-504. [PMID: 38164805 DOI: 10.1039/d3lc00753g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The COVID-19 pandemic increased demands for respiratory disease testing to facilitate treatment and limit transmission, demonstrating in the process that most existing test options were too complex and expensive to perform in point-of-care or home scenarios. Lab-based molecular techniques can detect viral RNA in respiratory illnesses but are expensive and require trained personnel, while affordable antigen-based home tests lack sensitivity for early detection in newly infected or asymptomatic individuals. The few home RNA detection tests deployed were prohibitively expensive. Here, we demonstrate a point-of-care, paper-based rapid analysis device that simultaneously detects multiple viral RNAs; it is demonstrated on two common respiratory viruses (COVID-19 and influenza A) spiked onto a commercial nasal swab. The automated device requires no sample preparation by the user after insertion of the swab, minimizing user operation steps. We incorporated lyophilized amplification reagents immobilized in a porous matrix, a novel thermally actuated valve for multiplexed fluidic control, a printed circuit board that performs on-device lysis and amplification within a cell-phone-sized disposable device. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) products are visualized via fluorescent dyes using a modified cell phone, resulting in detection of as few as 104 viral copies per swab across both pathogens within 30 minutes. This integrated platform could be commercialized in a form that would be inexpensive, portable, and sensitive; it can readily be multiplexed to detect as many as 8 different RNA or DNA sequences, and adapted to any desired RNA or DNA detection assays.
Collapse
Affiliation(s)
- Kevin P Jiang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Steven Bennett
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Erin K Heiniger
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Sujatha Kumar
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Paul Yager
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
6
|
Ditchendorf E, Ahmed I, Sepate J, Priye A. A Smartphone-Enabled Continuous Flow Digital Droplet LAMP Platform for High Throughput and Inexpensive Quantitative Detection of Nucleic Acid Targets. SENSORS (BASEL, SWITZERLAND) 2023; 23:8310. [PMID: 37837140 PMCID: PMC10575248 DOI: 10.3390/s23198310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Molecular tests for infectious diseases and genetic anomalies, which account for significant global morbidity and mortality, are central to nucleic acid analysis. In this study, we present a digital droplet LAMP (ddLAMP) platform that offers a cost-effective and portable solution for such assays. Our approach integrates disposable 3D-printed droplet generator chips with a consumer smartphone equipped with a custom image analysis application for conducting ddLAMP assays, thereby eliminating the necessity for expensive and complicated photolithographic techniques, optical microscopes, or flow cytometers. Our 3D printing technique for microfluidic chips facilitates rapid chip fabrication in under 2 h, without the complications of photolithography or chip bonding. The platform's heating mechanism incorporates low-powered miniature heating blocks with dual resistive cartridges, ensuring rapid and accurate temperature modulation in a compact form. Instrumentation is further simplified by integrating miniaturized magnification and fluorescence optics with a smartphone camera. The fluorescence quantification benefits from our previously established RGB to CIE-xyY transformation, enhancing signal dynamic range. Performance assessment of our ddLAMP system revealed a limit of detection at 10 copies/μL, spanning a dynamic range up to 104 copies/μL. Notably, experimentally determined values of the fraction of positive droplets for varying DNA concentrations aligned with the anticipated exponential trend per Poisson statistics. Our holistic ddLAMP platform, inclusive of chip production, heating, and smartphone-based droplet evaluation, provides a refined method compatible with standard laboratory environments, alleviating the challenges of traditional photolithographic methods and intricate droplet microfluidics expertise.
Collapse
Affiliation(s)
- Elijah Ditchendorf
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA (I.A.)
| | - Isteaque Ahmed
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA (I.A.)
| | - Joseph Sepate
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA (I.A.)
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA (I.A.)
- Digital Futures, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
7
|
Ayaz Kök S, Üstün S, Taşkent Sezgin H. Diagnosis of Ruminant Viral Diseases with Loop-Mediated Isothermal Amplification. Mol Biotechnol 2023; 65:1228-1241. [PMID: 36719638 PMCID: PMC9888337 DOI: 10.1007/s12033-023-00674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Infectious diseases in livestock industry are major problems for animal health, food safety, and the economy. Zoonotic diseases from farm animals are significant threat to human population as well. These are notifiable diseases listed by the World Organization for Animal Health (OIE). Rapid diagnostic methods can help keep infectious diseases under control in herds. Loop-mediated isothermal amplification (LAMP) is a simple and rapid nucleic acid amplification method that is studied widely for detection of many infectious diseases in the field. LAMP allows biosensing of target DNA or RNA under isothermal conditions with high specificity in a short period of time. An untrained user can analyze results based on color change or turbidity. Here we review LAMP assays to diagnose OIE notifiable ruminant viral diseases in literature highlighting properties of LAMP method considering what is expected from an efficient, field usable diagnostic test.
Collapse
Affiliation(s)
- Sanem Ayaz Kök
- Biotechnology Interdisciplinary Program, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430
- New Era Biotechnology, Teknopark İzmir, Gülbahçe, Urla, İzmir, Turkey, 35430
| | - Selcen Üstün
- Bioengineering Department, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430
| | - Hümeyra Taşkent Sezgin
- Biotechnology Interdisciplinary Program, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430.
- New Era Biotechnology, Teknopark İzmir, Gülbahçe, Urla, İzmir, Turkey, 35430.
- Bioengineering Department, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430.
| |
Collapse
|
8
|
Kapalamula TF, Thapa J, Hayashida K, Chizimu J, Tanomsridachchai W, Nyenje ME, Mkakosya R, Nakajima C, Suzuki Y. Direct detection of Mycobacterium bovis by a dry loop-mediated isothermal amplification assay in cattle samples collected during routine abattoir examination in Malawi. J Vet Diagn Invest 2023; 35:307-310. [PMID: 37029660 PMCID: PMC10185984 DOI: 10.1177/10406387231164596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
The lack of quick, accurate, and low-cost detection methods has hindered the active control strategies for bovine tuberculosis (bTB) in resource-limited countries with a high burden of disease. We developed a dry loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of Mycobacterium bovis, the principal causative agent of bTB, and evaluated the efficacy of the assay using suspected bTB samples collected during routine meat inspection at major regional abattoirs in Malawi. Template genomic DNA was extracted directly from the granulomatous bTB-like lesion (crude extracted DNA), as well as growth from the incubated mycobacterial growth indicator tubes (MGIT). Field results were visualized by the naked eye within 40 min following a color change of the amplified products. The sensitivity and specificity of the dry LAMP assay while using 152 DNA samples extracted from MGIT with confirmed M. bovis results were 98% and 88%, respectively. When 43 randomly selected crude DNA samples from lesions were used, the sensitivity and specificity of the dry LAMP assay were 100% and 75%, respectively. Our LAMP assay offers the potential to meet the demands for a low-cost and rapid field detection tool for bTB in resource-limited countries in which bTB is endemic.
Collapse
Affiliation(s)
- Thoko Flav Kapalamula
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Pathobiology, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kyoko Hayashida
- Division of Collaborations and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Joseph Chizimu
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Zambian National Public Health Institute, Lusaka, Zambia
| | - Wimonrat Tanomsridachchai
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mirriam Ethel Nyenje
- Community Health Sciences Unit, National Tuberculosis Reference Laboratory, Lilongwe, Malawi
| | - Rajab Mkakosya
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
9
|
Arnuphapprasert A, Nugraheni YR, Aung A, Asada M, Kaewthamasorn M. Detection of Babesia bovis using loop-mediated isothermal amplification (LAMP) with improved thermostability, sensitivity and alternative visualization methods. Sci Rep 2023; 13:1838. [PMID: 36725982 PMCID: PMC9892585 DOI: 10.1038/s41598-023-29066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Bovine babesiosis is one of the most economically important tick-borne diseases in tropical and subtropical countries. A conventional microscopic diagnosis is typically used because it is inexpensive and expeditious. However, it is highly dependent on well-trained microscopists and tends to be incapable of detecting subpatent and chronic infections. Here, we developed a novel nucleic acid-based amplification method using loop-mediated isothermal amplification (LAMP) in conjunction with a colori-fluorometric dual indicator for the rapid and accurate detection of Babesia bovis based on the mitochondrial cytochrome b gene. We aimed to improve the thermostability, sensitivity, specificity, and alternative visualization of LAMP-based methods. We assessed its diagnostic performance compared to two conventional PCR agarose gel electrophoresis (PCR-AGE) methods. The thermostability of LAMP reaction mixtures and DNA templates in variable conditions was also assessed. In addition, we evaluated alternative visualization methods using different light sources including neon, LED, and UV lights. We found that the LAMP-neon was ten times more sensitive than the PCR-AGE, while the LAMP-LED and LAMP-UV were 1,000 times more sensitive. The current LAMP method showed no cross-amplification with uninfected cattle DNA or other common blood parasites in cattle, including Babesia bigemina, Theileria orientalis, Anaplasma marginale, and Trypanosoma evansi. In addition, the developed LAMP method has good thermostability and the potential for on-site utility as B. bovis DNA could still be detected up to 72 h after initial preparation. Our findings suggested that the developed LAMP method provides an alternative approach for B. bovis detection with sensitivity higher than PCR-AGE diagnostics, high specificity, and the flexibility to use neon, LED, and UV light sources for positive signal observations.
Collapse
Affiliation(s)
- Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yudhi Ratna Nugraheni
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aung Aung
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
10
|
Jawla J, Kumar RR, Mendiratta SK, Agarwal RK, Singh P, Saxena V, Kumari S, Kumar D. A novel paper based loop mediated isothermal amplification and lateral flow assay (LAMP‐LFA) for point‐of‐care detection of buffalo tissue origin in diverse foods. J Food Saf 2023. [DOI: 10.1111/jfs.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jyoti Jawla
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Rajiv Ranjan Kumar
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Sanjod Kumar Mendiratta
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Ravi Kant Agarwal
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Praveen Singh
- Division of Veterinary Biotechnology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Vikas Saxena
- Center for Vascular & Inflammatory Diseases, School of Medicine University of Maryland Baltimore Maryland USA
| | - Sarita Kumari
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Dhananjay Kumar
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| |
Collapse
|
11
|
Hayashida K, Garcia A, Moonga LC, Sugi T, Takuya K, Kawase M, Kodama F, Nagasaka A, Ishiguro N, Takada A, Kajihara M, Nao N, Shingai M, Kida H, Suzuki Y, Hall WW, Sawa H, Yamagishi J. Field-deployable multiplex detection method of SARS-CoV-2 and influenza virus using loop-mediated isothermal amplification and DNA chromatography. PLoS One 2023; 18:e0285861. [PMID: 37192155 DOI: 10.1371/journal.pone.0285861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
A novel multiplex loop-mediated isothermal amplification (LAMP) method combined with DNA chromatography was developed for the simultaneous detection of three important respiratory disease-causing viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus. Amplification was performed at a constant temperature, and a positive result was confirmed by a visible colored band. An in-house drying protocol with trehalose was used to prepare the dried format multiplex LAMP test. Using this dried multiplex LAMP test, the analytical sensitivity was determined to be 100 copies for each viral target and 100-1000 copies for the simultaneous detection of mixed targets. The multiplex LAMP system was validated using clinical COVID-19 specimens and compared with the real-time qRT-PCR method as a reference test. The determined sensitivity of the multiplex LAMP system for SARS-CoV-2 was 71% (95% CI: 0.62-0.79) for cycle threshold (Ct) ≤ 35 samples and 61% (95% CI: 0.53-0.69) for Ct ≤40 samples. The specificity was 99% (95%CI: 0.92-1.00) for Ct ≤35 samples and 100% (95%CI: 0.92-1.00) for the Ct ≤40 samples. The developed simple, rapid, low-cost, and laboratory-free multiplex LAMP system for the two major important respiratory viral diseases, COVID-19 and influenza, is a promising field-deployable diagnosis tool for the possible future 'twindemic, ' especially in resource-limited settings.
Collapse
Affiliation(s)
- Kyoko Hayashida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Alejandro Garcia
- UCD Centre for Experimental Pathogen Host Research, University College Dublin, Belfield, Ireland
| | - Lavel Chinyama Moonga
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Tatsuki Sugi
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | | | | | - Nobuhisa Ishiguro
- Division of Infection Control, Hokkaido University Hospital, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Ayato Takada
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - William W Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Ireland
- Global Virus Network, Baltimore, Maryland, United States of America
| | - Hirofumi Sawa
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, United States of America
| | - Junya Yamagishi
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Chen CY, Yang HW, Hsieh PH, Hsieh CH, Wu MH. Development of a photothermal bead-based nucleic acid amplification test (pbbNAAT) technique for a high-performance loop-mediated isothermal amplification (LAMP)–based point-of-care test (POCT). Biosens Bioelectron 2022; 215:114574. [DOI: 10.1016/j.bios.2022.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
|
13
|
Yalley AK, Ahiatrogah S, Kafintu-Kwashie AA, Amegatcher G, Prah D, Botwe AK, Adusei-Poku MA, Obodai E, Nii-Trebi NI. A Systematic Review on Suitability of Molecular Techniques for Diagnosis and Research into Infectious Diseases of Concern in Resource-Limited Settings. Curr Issues Mol Biol 2022; 44:4367-4385. [PMID: 36286015 PMCID: PMC9601131 DOI: 10.3390/cimb44100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases significantly impact the health status of developing countries. Historically, infectious diseases of the tropics especially have received insufficient attention in worldwide public health initiatives, resulting in poor preventive and treatment options. Many molecular tests for human infections have been established since the 1980s, when polymerase chain reaction (PCR) testing was introduced. In spite of the substantial innovative advancements in PCR technology, which currently has found wide application in most viral pathogens of global concern, the development and application of molecular diagnostics, particularly in resource-limited settings, poses potential constraints. This review accessed data from sources including PubMed, Google Scholar, the Web of Knowledge, as well as reports from the World Health Organization’s Annual Meeting on infectious diseases and examined these for current molecular approaches used to identify, monitor, or investigate some neglected tropical infectious diseases. This review noted some growth efforts in the development of molecular techniques for diagnosis of pathogens that appear to be common in resource limited settings and identified gaps in the availability and applicability of most of these molecular diagnostics, which need to be addressed if the One Health goal is to be achieved.
Collapse
Affiliation(s)
- Akua K. Yalley
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
| | - Selasie Ahiatrogah
- Department of Obstetrics and Gynaecology, College of Medicine, Pan African University of Life and Earth Sciences Institute, University of Ibadan, Ibadan P.O. Box 22133, Nigeria
| | - Anna A. Kafintu-Kwashie
- Department of Medical Microbiology, University of Ghana Medical School, Accra GA-221-1570, Ghana
| | - Gloria Amegatcher
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
| | - Diana Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Akua K. Botwe
- Molecular Biology Unit, Kintampo Health Research Centre, Ghana Health Service, Kintampo P.O. Box 200, Ghana
| | - Mildred A. Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, Accra GA-221-1570, Ghana
| | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Nicholas I. Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
- Correspondence: ; Tel.: +233-54-827-6424
| |
Collapse
|
14
|
García-Bernalt Diego J, Fernández-Soto P, Márquez-Sánchez S, Santos Santos D, Febrer-Sendra B, Crego-Vicente B, Muñoz-Bellido JL, Belhassen-García M, Corchado Rodríguez JM, Muro A. SMART-LAMP: A Smartphone-Operated Handheld Device for Real-Time Colorimetric Point-of-Care Diagnosis of Infectious Diseases via Loop-Mediated Isothermal Amplification. BIOSENSORS 2022; 12:bios12060424. [PMID: 35735571 PMCID: PMC9221248 DOI: 10.3390/bios12060424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 05/04/2023]
Abstract
Nucleic acid amplification diagnostics offer outstanding features of sensitivity and specificity. However, they still lack speed and robustness, require extensive infrastructure, and are neither affordable nor user-friendly. Thus, they have not been extensively applied in point-of-care diagnostics, particularly in low-resource settings. In this work, we have combined the loop-mediated isothermal amplification (LAMP) technology with a handheld portable device (SMART-LAMP) developed to perform real-time isothermal nucleic acid amplification reactions, based on simple colorimetric measurements, all of which are Bluetooth-controlled by a dedicated smartphone app. We have validated its diagnostic utility regarding different infectious diseases, including Schistosomiasis, Strongyloidiasis, and COVID-19, and analyzed clinical samples from suspected COVID-19 patients. Finally, we have proved that the combination of long-term stabilized LAMP master mixes, stored and transported at room temperature with our developed SMART-LAMP device, provides an improvement towards true point-of-care diagnosis of infectious diseases in settings with limited infrastructure. Our proposal could be easily adapted to the diagnosis of other infectious diseases.
Collapse
Affiliation(s)
- Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (B.F.-S.); (B.C.-V.)
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (B.F.-S.); (B.C.-V.)
- Correspondence: (P.F.-S.); (A.M.); Tel.: +34-677596173 (ext. 6861) (P.F.-S.)
| | - Sergio Márquez-Sánchez
- BISITE Research Group, University of Salamanca, Calle Espejo s/n. Edificio Multiusos I+D+i, 37007 Salamanca, Spain; (S.M.-S.); (D.S.S.); (J.M.C.R.)
- Air Institute, IoT Digital Innovation Hub (Spain), 37188 Salamanca, Spain
| | - Daniel Santos Santos
- BISITE Research Group, University of Salamanca, Calle Espejo s/n. Edificio Multiusos I+D+i, 37007 Salamanca, Spain; (S.M.-S.); (D.S.S.); (J.M.C.R.)
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (B.F.-S.); (B.C.-V.)
| | - Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (B.F.-S.); (B.C.-V.)
| | - Juan Luis Muñoz-Bellido
- Microbiology and Parasitology Service, Complejo Asistencial Universitario de Salamanca, University of Salamanca, 37007 Salamanca, Spain;
| | - Moncef Belhassen-García
- Internal Medicine Service, Infectious Diseases Section, Complejo Asistencial Universitario de Salamanca, University of Salamanca, 37007 Salamanca, Spain;
| | - Juan M. Corchado Rodríguez
- BISITE Research Group, University of Salamanca, Calle Espejo s/n. Edificio Multiusos I+D+i, 37007 Salamanca, Spain; (S.M.-S.); (D.S.S.); (J.M.C.R.)
- Air Institute, IoT Digital Innovation Hub (Spain), 37188 Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (B.F.-S.); (B.C.-V.)
- Correspondence: (P.F.-S.); (A.M.); Tel.: +34-677596173 (ext. 6861) (P.F.-S.)
| |
Collapse
|
15
|
Colbert AJ, Lee DH, Clayton KN, Wereley ST, Linnes JC, Kinzer-Ursem TL. PD-LAMP smartphone detection of SARS-CoV-2 on chip. Anal Chim Acta 2022; 1203:339702. [PMID: 35361434 PMCID: PMC8905050 DOI: 10.1016/j.aca.2022.339702] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022]
Abstract
In 2019 the COVID-19 pandemic, caused by SARS-CoV-2, demonstrated the urgent need for rapid, reliable, and portable diagnostics. The COVID-19 pandemic was declared in January 2020 and surges of the outbreak continue to reoccur. It is clear that early identification of infected individuals, especially asymptomatic carriers, plays a huge role in preventing the spread of the disease. The current gold standard diagnostic for SARS-CoV-2 is quantitative reverse transcription polymerase chain reaction (qRT-PCR) test based on the detection of the viral RNA. While RT-PCR is reliable and sensitive, it requires expensive centralized equipment and is time consuming (∼2 h or more); limiting its applicability in low resource areas. The FDA issued Emergency Use Authorizations (EUAs) for several COVID-19 diagnostics with an emphasis on point-of care (PoC) testing. Numerous RT-PCR and serological tests were approved for use at the point of care. Abbott's ID NOW, and Cue Health's COVID-19 test are of particular interest, which use isothermal amplification methods for rapid detection in under 20 min. We look to expand on the range of current PoC testing platforms with a new rapid and portable isothermal nucleic acid detection device. We pair reverse transcription loop mediated isothermal amplification (RT-LAMP) with a particle imaging technique, particle diffusometry (PD), to successfully detect SARS-CoV-2 in only 35 min on a portable chip with integrated heating. A smartphone device is used to image the samples containing fluorescent beads post-RT-LAMP and correlates decreased diffusivity to positive samples. We detect as little as 30 virus particles per μL from a RT-LAMP reaction in a microfluidic chip using a portable heating unit. Further, we can perform RT-LAMP from a diluted unprocessed saliva sample without RNA extraction. Additionally, we lyophilize SARS-CoV-2-specific RT-LAMP reactions that target both the N gene and the ORF1ab gene in the microfluidic chip, eliminating the need for cold storage. Our assay meets specific target product profiles outlined by the World Health Organization: it is specific to SARS-CoV-2, does not require cold storage, is compatible with digital connectivity, and has a detection limit of less than 35 × 104 viral particles per mL in saliva. PD-LAMP is rapid, simple, and attractive for screening and use at the point of care.
Collapse
Affiliation(s)
- Ashlee J Colbert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Dong Hoon Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
16
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
17
|
Heithoff DM, Barnes L, Mahan SP, Fox GN, Arn KE, Ettinger SJ, Bishop AM, Fitzgibbons LN, Fried JC, Low DA, Samuel CE, Mahan MJ. Assessment of a Smartphone-Based Loop-Mediated Isothermal Amplification Assay for Detection of SARS-CoV-2 and Influenza Viruses. JAMA Netw Open 2022; 5:e2145669. [PMID: 35089353 PMCID: PMC8800074 DOI: 10.1001/jamanetworkopen.2021.45669] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Importance A critical need exists in low-income and middle-income countries for low-cost, low-tech, yet highly reliable and scalable testing for SARS-CoV-2 virus that is robust against circulating variants. Objective To assess whether a smartphone-based assay is suitable for SARS-CoV-2 and influenza virus testing without requiring specialized equipment, accessory devices, or custom reagents. Design, Setting, and Participants This cohort study enrolled 2 subgroups of participants (symptomatic and asymptomatic) at Santa Barbara Cottage Hospital. The symptomatic group consisted of 20 recruited patients who tested positive for SARS-CoV-2 with symptoms; 30 asymptomatic patients were recruited from the same community, through negative admission screening tests for SARS-CoV-2. The smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) was first optimized for analysis of human saliva samples spiked with either SARS-CoV-2 or influenza A or B virus; these results then were compared with those obtained by side-by-side analysis of spiked samples using the Centers for Disease Control and Prevention (CDC) criterion-standard reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) assay. Next, both assays were used to test for SARS-CoV-2 and influenza viruses present in blinded clinical saliva samples obtained from 50 hospitalized patients. Statistical analysis was performed from May to June 2021. Exposures Testing for SARS-CoV-2 and influenza A and B viruses. Main Outcomes and Measures SARS-CoV-2 and influenza infection status and quantitative viral load were determined. Results Among the 50 eligible participants with no prior SARS-CoV-2 infection included in the study, 29 were men. The mean age was 57 years (range, 21 to 93 years). SmaRT-LAMP exhibited 100% concordance (50 of 50 patient samples) with the CDC criterion-standard diagnostic for SARS-CoV-2 sensitivity (20 of 20 positive and 30 of 30 negative) and for quantitative detection of viral load. This platform also met the CDC criterion standard for detection of clinically similar influenza A and B viruses in spiked saliva samples (n = 20), and in saliva samples from hospitalized patients (50 of 50 negative). The smartphone-based LAMP assay was rapid (25 minutes), sensitive (1000 copies/mL), low-cost (<$7/test), and scalable (96 samples/phone). Conclusions and Relevance In this cohort study of saliva samples from patients, the smartphone-based LAMP assay detected SARS-CoV-2 infection and exhibited concordance with RT-qPCR tests. These findings suggest that this tool could be adapted in response to novel CoV-2 variants and other pathogens with pandemic potential including influenza and may be useful in settings with limited resources.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
| | - Lucien Barnes
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis
| | - Gary N Fox
- Department of Materials and Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara
| | - Katherine E Arn
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Sarah J Ettinger
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Andrew M Bishop
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Lynn N Fitzgibbons
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
- Division of Infectious Diseases, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Jeffrey C Fried
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
- Department of Pulmonary and Critical Care Medicine, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - David A Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
| |
Collapse
|
18
|
De Falco M, De Felice M, Rota F, Zappi D, Antonacci A, Scognamiglio V. Next-generation diagnostics: augmented sensitivity in amplification-powered biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Makarova JA, Fomicheva KA, Osipyants AI, Shkurnikov MY, Pokryshchenko AA, Tonevitsky EA, Vechorko VI. Loop-Mediated Isothermal Amplification as a Promising Method for Mass COVID-19 Diagnostics. APPL BIOCHEM MICRO+ 2021; 57:845-850. [PMID: 34924586 PMCID: PMC8670616 DOI: 10.1134/s0003683821080032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
Real-time reverse-transcription polymerase chain reaction (RT-PCR) is currently the most popular method for early COVID-19 diagnostics. However, loop-mediated isothermal amplification (LAMP) is superior to real-time RT-PCR in rapidity and simplicity, since it does not require expensive laboratory equipment and trained personnel. LAMP-based diagnostic kits for COVID-19 testing already exist, but corresponding tests are not yet widely available. The method has great potential for mass application. Here, we discuss the technical and methodological aspects of its widespread adoption.
Collapse
Affiliation(s)
- J A Makarova
- Faculty of Biology and Biotechnology, Higher School of Economics National Research University, 101000 Moscow, Russia
| | - K A Fomicheva
- Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - A I Osipyants
- Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Ministry of Health of the Russian Federation, 125284 Moscow, Russia.,Far Eastern Federal University, 690091 Vladivostok, Russia
| | - M Yu Shkurnikov
- Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - A A Pokryshchenko
- Faculty of Biology and Biotechnology, Higher School of Economics National Research University, 101000 Moscow, Russia
| | - E A Tonevitsky
- Development Fund, Mendeleev Valley, Innovative Scientific and Technological Center, 125480 Moscow, Russia
| | - V I Vechorko
- Filatov City Clinical Hospital no. 15, Department of Health of Moscow, 111539 Moscow, Russia
| |
Collapse
|
20
|
Davidson JL, Wang J, Maruthamuthu MK, Dextre A, Pascual-Garrigos A, Mohan S, Putikam SVS, Osman FOI, McChesney D, Seville J, Verma MS. A paper-based colorimetric molecular test for SARS-CoV-2 in saliva. BIOSENSORS & BIOELECTRONICS: X 2021; 9:100076. [PMID: 34423284 PMCID: PMC8364207 DOI: 10.1016/j.biosx.2021.100076] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 04/16/2023]
Abstract
Herein, we describe the development of a paper-based device to detect nucleic acids of pathogens of interest in complex samples using loop-mediated isothermal amplification (LAMP) by producing a colorimetric response visible to the human eye. To demonstrate the utility of this device in emerging public health emergencies, we developed and optimized our device to detect SARS-CoV-2 in human saliva without preprocessing. The resulting device was capable of detecting the virus within 60 min and had an analytical sensitivity of 97% and a specificity of 100% with a limit of detection of 200 genomic copies/μL of patient saliva using image analysis. The device consists of a configurable number of reaction zones constructed of Grade 222 chromatography paper separated by 20 mil polystyrene spacers attached to a Melinex® backing via an ARclean® double-sided adhesive. The resulting device is easily configurable to detect multiple targets and has the potential to detect a variety of pathogens simply by changing the LAMP primer sets.
Collapse
Affiliation(s)
- Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Murali Kannan Maruthamuthu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Andres Dextre
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Ana Pascual-Garrigos
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Suraj Mohan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Sai Venkata Sravan Putikam
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Fujr Osman Ibrahim Osman
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
21
|
Saar M, Beissner M, Gültekin F, Maman I, Herbinger KH, Bretzel G. RLEP LAMP for the laboratory confirmation of leprosy: towards a point-of-care test. BMC Infect Dis 2021; 21:1186. [PMID: 34823479 PMCID: PMC8620619 DOI: 10.1186/s12879-021-06882-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nucleic acid-based amplification tests (NAAT), above all (q)PCR, have been applied for the detection of Mycobacterium leprae in leprosy cases and household contacts with subclinical infection. However, their application in the field poses a range of technical challenges. Loop-mediated isothermal amplification (LAMP), as a promising point-of-care NAAT does not require sophisticated laboratory equipment, is easy to perform, and is applicable for decentralized diagnosis at the primary health care level. Among a range of gene targets, the M. leprae specific repetitive element RLEP is regarded as highly sensitive and specific for diagnostic applications. METHODS: Our group developed and validated a dry-reagent-based (DRB) RLEP LAMP, provided product specifications for customization of a ready-to-use kit (intended for commercial production) and compared it against the in-house prototype. The assays were optimized for application on a Genie® III portable fluorometer. For technical validation, 40 "must not detect RLEP" samples derived from RLEP qPCR negative exposed and non-exposed individuals, as well as from patients with other conditions and a set of closely related mycobacterial cultures, were tested together with 25 "must detect RLEP" samples derived from qPCR confirmed leprosy patients. For clinical validation, 150 RLEP qPCR tested samples were analyzed, consisting of the following categories: high-positive samples of multibacillary (MB) leprosy patients (> 10.000 bacilli/extract), medium-positive samples of MB leprosy patients (1.001-10.000 bacilli/extract), low-positive samples of MB leprosy patients (1-1.000 bacilli/extract), endemic controls and healthy non-exposed controls; each n = 30. RESULTS: Technical validation: both LAMP formats had a limit of detection of 1.000 RLEP copies, i.e. 43-27 bacilli, a sensitivity of 92% (in-house protocol)/100% (ready-to-use protocol) and a specificity of 100%. Reagents were stable for at least 1 year at 22 °C. Clinical validation: Both formats showed a negativity rate of 100% and a positivity rate of 100% for high-positive samples and 93-100% for medium positive samples, together with a positive predictive value of 100% and semi-quantitative results. The positivity rate for low-positive samples was 77% (in-house protocol)/43% (ready-to-use protocol) and differed significantly between both formats. CONCLUSIONS: The ready-to-use RLEP DRB LAMP assay constitutes an ASSURED test ready for field-based evaluation trials aiming for routine diagnosis of leprosy at the primary health care level.
Collapse
Affiliation(s)
- Malkin Saar
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany.
| | - Marcus Beissner
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany
| | - Fatih Gültekin
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany
| | - Issaka Maman
- Ministère de la Santé, Institut National d'Hygiène (INH), Lomé, Togo
| | - Karl-Heinz Herbinger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany
| | - Gisela Bretzel
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany
| |
Collapse
|
22
|
Colbert AJ, Co K, Lima-Cooper G, Lee DH, Clayton KN, Wereley ST, John CC, Linnes JC, Kinzer-Ursem TL. Towards the use of a smartphone imaging-based tool for point-of-care detection of asymptomatic low-density malaria parasitaemia. Malar J 2021; 20:380. [PMID: 34563189 PMCID: PMC8466697 DOI: 10.1186/s12936-021-03894-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Globally, there are over 200 million cases of malaria annually and over 400,000 deaths. Early and accurate detection of low-density parasitaemia and asymptomatic individuals is key to achieving the World Health Organization (WHO) 2030 sustainable development goals of reducing malaria-related deaths by 90% and eradication in 35 countries. Current rapid diagnostic tests are neither sensitive nor specific enough to detect the low parasite concentrations in the blood of asymptomatic individuals. METHODS Here, an imaging-based sensing technique, particle diffusometry (PD), is combined with loop mediated isothermal amplification (LAMP) on a smartphone-enabled device to detect low levels of parasitaemia often associated with asymptomatic malaria. After amplification, PD quantifies the Brownian motion of fluorescent nanoparticles in the solution during a 30 s video taken on the phone. The resulting diffusion coefficient is used to detect the presence of Plasmodium DNA amplicons. The coefficients of known negative samples are compared to positive samples using a one-way ANOVA post-hoc Dunnett's test for confirmation of amplification. RESULTS As few as 3 parasite/µL of blood was detectable in 45 min without DNA extraction. Plasmodium falciparum parasites were detected from asymptomatic individuals' whole blood samples with 89% sensitivity and 100% specificity when compared to quantitative polymerase chain reaction (qPCR). CONCLUSIONS PD-LAMP is of value for the detection of low density parasitaemia especially in areas where trained personnel may be scarce. The demonstration of this smartphone biosensor paired with the sensitivity of LAMP provides a proof of concept to achieve widespread asymptomatic malaria testing at the point of care.
Collapse
Affiliation(s)
- Ashlee J Colbert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Katrina Co
- Indiana University School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Giselle Lima-Cooper
- Indiana University School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Dong Hoon Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chandy C John
- Indiana University School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
23
|
Akapelwa ML, Kapalamula TF, Ouchi-Aizu Y, Hang'ombe BM, Nishiuchi Y, Gordon SV, Solo ES, Tamaru A, Nishimura T, Hasegawa N, Morimoto K, Fukushima Y, Suzuki Y, Nakajima C. Evaluation of IS1245 LAMP in Mycobacterium avium and the influence of host-related genetic diversity on its application. Diagn Microbiol Infect Dis 2021; 101:115494. [PMID: 34391980 DOI: 10.1016/j.diagmicrobio.2021.115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Early detection and treatment are paramount for the timely control of Mycobacterium avium infections. Herein, we designed a LAMP assay targeting a widely used species-specific marker IS1245 for the rapid detection of M. avium and evaluated its applicability using human (n = 137) and pig (n = 91) M. avium isolates from Japan. The developed assay could detect as low as 1 genome copy of M. avium DNA within 30 minutes. All 91 (100%) M. avium isolates from pigs were detected positive while all other tested bacterial species were negative. Interestingly, among the 137 clinical M. avium isolates, 41 (30%) were undetectable with this LAMP assay as they lacked IS1245, the absence of which was revealed by PCR and whole-genome sequencing. These findings highlighted genotypic differences in M. avium strains from humans and pigs in Japan and how this diversity can influence the applicability of a detection tool across different geographic areas and hosts.
Collapse
Affiliation(s)
- Mwangala Lonah Akapelwa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Thoko Flav Kapalamula
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Yuki Ouchi-Aizu
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Bernard Mudenda Hang'ombe
- Department of ParaClinicals, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia; Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
| | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Eddie Samuneti Solo
- Department of Pathology and Microbiology, University Teaching Hospital, Ministry of Health, Lusaka, Zambia
| | - Aki Tamaru
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan.
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan.
| |
Collapse
|
24
|
Mori A, Pomari E, Deiana M, Perandin F, Caldrer S, Formenti F, Mistretta M, Orza P, Ragusa A, Piubelli C. Molecular techniques for the genomic viral RNA detection of West Nile, Dengue, Zika and Chikungunya arboviruses: a narrative review. Expert Rev Mol Diagn 2021; 21:591-612. [PMID: 33910444 DOI: 10.1080/14737159.2021.1924059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Molecular technology has played an important role in arboviruses diagnostics. PCR-based methods stand out in terms of sensitivity, specificity, cost, robustness, and accessibility, and especially the isothermal amplification (IA) method is ideal for field-adaptable diagnostics in resource-limited settings (RLS).Areas covered: In this review, we provide an overview of the various molecular methods for West Nile, Zika, Dengue and Chikungunya. We summarize literature works reporting the assessment and use of in house and commercial assays. We describe limitations and challenges in the usage of methods and opportunities for novel approaches such as NNext-GenerationSequencing (NGS).Expert opinion: The rapidity and accuracy of differential diagnosis is essential for a successful clinical management, particularly in co-circulation area of arboviruses. Several commercial diagnostic molecular assays are available, but many are not affordable by RLS and not usable as Point-of-care/Point-of-need (POC/PON) such as RReal-TimeRT-PCR, Array-based methods and NGS. In contrast, the IA-based system fits better for POC/PON but it is still not ideal for the multiplexing detection system. Improvement in the characterization and validation of current molecular assays is needed to optimize their translation to the point of care.
Collapse
Affiliation(s)
- Antonio Mori
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy.,Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elena Pomari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Michela Deiana
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Francesca Perandin
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Sara Caldrer
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Fabio Formenti
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Manuela Mistretta
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Pierantonio Orza
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Andrea Ragusa
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| |
Collapse
|
25
|
Maheshwarappa HM, Guru P, Mundre RS, Lawrence N, Majumder S, Sigamani A, Anupama CN, Adak S. Validation of an Isothermal Amplification Platform for Microbial Identification and Antimicrobial Resistance Detection in Blood: A Prospective Study. Indian J Crit Care Med 2021; 25:299-304. [PMID: 33790511 PMCID: PMC7991769 DOI: 10.5005/jp-journals-10071-23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Recent advances in nucleic acid amplification technique (NAAT)-based identification of pathogens in blood stream infections (BSI) have revolutionized molecular diagnostics in comparison to traditional clinical microbiology practice of blood culture. Rapid pathogen detection with point-of-care diagnostic-applicable platform is prerequisite for efficient patient management. The aim of the study is to evaluate an in-house developed, lyophilized OmiX-AMP pathogen test for the detection of top six BSI-causing bacteria along with two major antimicrobial resistance (AMR) markers of carbapenem and compare it to the traditional blood culture-based detection. Materials and methods: One hundred forty-three patients admitted to the Medical Intensive Care Unit, Narayana Hrudayalaya, Bangalore, with either suspected or proven sepsis, of either gender, of age ≥18 years were enrolled for the study. Pathogen DNA extracted from blood culture sample using OmiX pReP method was amplified at isothermal conditions and analyzed in real time using OmiX Analysis software. Results: Among the processed 143 samples, 54 were true negative, 83 were true positive, 3 were false negative, and 2 were false positive as analyzed by OmiX READ software. Gram-negative bacteria (91.3%) and gram-positive bacteria (75%) were detected with 100% specificity and 95.6% sensitivity along with the AMR marker pattern with a turnaround time of 4 hours from sample collection to results. Conclusion: OmiX-AMP pathogen test detected pathogens with 96.5% concordance in comparison to traditional blood culture. Henceforth, OmiX-AMP pathogen test could be used as a readily deployable diagnostic kit even in low-resource settings. How to cite this article: Maheshwarappa HM, Guru P, Mundre RS, Lawrence N, Majumder S, Sigamani A, et al. Validation of an Isothermal Amplification Platform for Microbial Identification and Antimicrobial Resistance Detection in Blood: A Prospective Study. Indian J Crit Care Med 2021;25(3):299–304.
Collapse
Affiliation(s)
- Harish M Maheshwarappa
- Department of Intensive Care Medicine, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | - Prasadini Guru
- Department of Laboratory Medicine, Microbiology and Serology, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | | | - Nima Lawrence
- OmiX Research and Diagnostics Laboratories, Bangalore, Karnataka, India
| | - Snehali Majumder
- Department of Clinical Research, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | - Alben Sigamani
- Department of Clinical Research, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | - C N Anupama
- OmiX Research and Diagnostics Laboratories, Bangalore, Karnataka, India
| | - Sudeshna Adak
- OmiX Research and Diagnostics Laboratories, Bangalore, Karnataka, India
| |
Collapse
|
26
|
García-Bernalt Diego J, Fernández-Soto P, Domínguez-Gil M, Belhassen-García M, Bellido JLM, Muro A. A Simple, Affordable, Rapid, Stabilized, Colorimetric, Versatile RT-LAMP Assay to Detect SARS-CoV-2. Diagnostics (Basel) 2021; 11:438. [PMID: 33806456 PMCID: PMC8000859 DOI: 10.3390/diagnostics11030438] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 pandemic has forced all countries worldwide to rapidly develop and implement widespread testing to control and manage the Coronavirus Disease 2019 (COVID-19). reverse-transcription (RT)-qPCR is the gold standard molecular diagnostic method for COVID-19, mostly in automated testing platforms. These systems are accurate and effective, but also costly, time-consuming, high-technological, infrastructure-dependent, and currently suffer from commercial reagent supply shortages. The reverse-transcription loop-mediated isothermal amplification (RT-LAMP) can be used as an alternative testing method. Here, we present a novel versatile (real-time and colorimetric) RT-LAMP for the simple (one-step), affordable (~1.7 €/sample), and rapid detection of SARS-CoV-2 targeting both ORF1ab and N genes of the novel virus genome. We demonstrate the assay on RT-qPCR-positive clinical samples, obtaining most positive results under 25 min. In addition, a novel 30-min one-step drying protocol has been developed to stabilize the RT-LAMP reaction mixtures, allowing them to be stored at room temperature functionally for up to two months, as predicted by the Q10. This Dry-RT-LAMP methodology is suitable for potentially ready-to-use COVID-19 diagnosis. After further testing and validation, it could be easily applied both in developed and in low-income countries yielding rapid and reliable results.
Collapse
Affiliation(s)
- Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (M.B.-G.); (A.M.)
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (M.B.-G.); (A.M.)
| | - Marta Domínguez-Gil
- Microbiology Service, Hospital Universitario Río Hortega, 47012 Valladolid, Spain;
| | - Moncef Belhassen-García
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (M.B.-G.); (A.M.)
- Internal Medicine Service, Sección de Enfermedades Infecciosas, Complejo Asistencial Universitario de Salamanca, University of Salamanca, 37007 Salamanca, Spain
| | - Juan Luis Muñoz Bellido
- Microbiology and Parasitology Service, Complejo Asistencial Universitario de Salamanca, University of Salamanca, 37007 Salamanca, Spain;
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (M.B.-G.); (A.M.)
| |
Collapse
|
27
|
Longbottom J, Wamboga C, Bessell PR, Torr SJ, Stanton MC. Optimising passive surveillance of a neglected tropical disease in the era of elimination: A modelling study. PLoS Negl Trop Dis 2021; 15:e0008599. [PMID: 33651803 PMCID: PMC7954327 DOI: 10.1371/journal.pntd.0008599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/12/2021] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Surveillance is an essential component of global programs to eliminate infectious diseases and avert epidemics of (re-)emerging diseases. As the numbers of cases decline, costs of treatment and control diminish but those for surveillance remain high even after the 'last' case. Reducing surveillance may risk missing persistent or (re-)emerging foci of disease. Here, we use a simulation-based approach to determine the minimal number of passive surveillance sites required to ensure maximum coverage of a population at-risk (PAR) of an infectious disease. METHODOLOGY AND PRINCIPAL FINDINGS For this study, we use Gambian human African trypanosomiasis (g-HAT) in north-western Uganda, a neglected tropical disease (NTD) which has been reduced to historically low levels (<1000 cases/year globally), as an example. To quantify travel time to diagnostic facilities, a proxy for surveillance coverage, we produced a high spatial-resolution resistance surface and performed cost-distance analyses. We simulated travel time for the PAR with different numbers (1-170) and locations (170,000 total placement combinations) of diagnostic facilities, quantifying the percentage of the PAR within 1h and 5h travel of the facilities, as per in-country targets. Our simulations indicate that a 70% reduction (51/170) in diagnostic centres still exceeded minimal targets of coverage even for remote populations, with >95% of a total PAR of ~3million individuals living ≤1h from a diagnostic centre, and we demonstrate an approach to best place these facilities, informing a minimal impact scale back. CONCLUSIONS Our results highlight that surveillance of g-HAT in north-western Uganda can be scaled back without substantially reducing coverage of the PAR. The methodology described can contribute to cost-effective and equable strategies for the surveillance of NTDs and other infectious diseases approaching elimination or (re-)emergence.
Collapse
Affiliation(s)
- Joshua Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | | | | | - Steve J. Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michelle C. Stanton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
28
|
Yamazaki W, Matsumura Y, Thongchankaew-Seo U, Yamazaki Y, Nagao M. Development of a point-of-care test to detect SARS-CoV-2 from saliva which combines a simple RNA extraction method with colorimetric reverse transcription loop-mediated isothermal amplification detection. J Clin Virol 2021; 136:104760. [PMID: 33610926 PMCID: PMC7877809 DOI: 10.1016/j.jcv.2021.104760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/03/2022]
Abstract
The new coronavirus infection (COVID-19) is a major public health concern, with a high burden and risk for infection among patients and healthcare workers. Saliva droplets containing SARS-COV-2 are a major vector for COVID-19 infection, making saliva a promising alternative for COVID-19 testing using nasopharyngeal swab samples. To diagnose COVID-19 patients in the field, a point-of-care test (POCT) using saliva was conceptualized. We have developed a simple method for extracting RNA from saliva samples using semi-alkaline proteinase, a sputum homogenizer typically used for preparing samples for tuberculosis testing, and a subsequent simple heating step with no need for centrifugation or RNA extraction. Further, we newly developed a triplex reverse transcription loop-mediated isothermal amplification approach (RT-LAMP) which utilizes colorimetric readout using a heat block, with results evaluated with the unaided eye. In 44 clinical patients suspected of having COVID-19 infection, the test took 45 min, and resulted in a diagnostic sensitivity of 82.6% (19/23) and diagnostic specificity of 100% (21/21), compared to the reference standard. The limit of detection was 250 copies/reaction (25,000 copies/mL). Our newly developed POCT approach achieved simple RNA extraction and constant RT-LAMP detection. This POCT has the potential to be used for simple inspection stations in a field setting, helping reduce the risk of infection by simplifying and accelerating testing for COVID-19.
Collapse
Affiliation(s)
- Wataru Yamazaki
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan; Kyoto University School of Public Health, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8303, Japan.
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8303, Japan
| | - Uraiwan Thongchankaew-Seo
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuko Yamazaki
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8303, Japan
| |
Collapse
|
29
|
Bakre AA, Jones LP, Bennett HK, Bobbitt DE, Tripp RA. Detection of swine influenza virus in nasal specimens by reverse transcription-loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 2021; 288:114015. [PMID: 33271254 PMCID: PMC7799534 DOI: 10.1016/j.jviromet.2020.114015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Detection of swine influenza virus (SIV) in commercial swine herds is important for understanding the infection status of the herd and for controlling disease. Current molecular diagnostics require that specimens be submitted to a laboratory which provides results to the growers after some time which is generally too late to intercede in disease control. Moreover, current diagnostic assays are time-consuming, typically costly, and require skilled technical expertise. We have instituted a reverse transcription loop-mediated isothermal amplification (RT-LAMP) diagnostic assay based on conserved regions of the SIV matrix (M) gene and H1N1 hemagglutinin (HA) sequences. The RT-LAMP assay was optimized to use both colorimetric and fluorescent endpoints and was validated. The M and HA RT-LAMP assays have a limit-of-detection (LOD) sensitive to 11 and 8-log-fold dilutions of viral RNA, respectively, and are capable of discriminating between H1 and H3 strains of SIV. Additionally, the RT-LAMP assay was optimized for direct amplification of SIV from field samples without the need for viral RNA isolation. The direct RT-LAMP detected >86 % of qRT-PCR validated SIV samples, and >66 % of negative samples when spiked with viral RNA or SIV. The diagnostic RT-LAMP assay is a rapid, sensitive, specific, and cost-effective method for the detection of SIV in herds substantially aiding diagnosis and surveillance.
Collapse
Affiliation(s)
- Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Les P Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Hailey K Bennett
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Davis E Bobbitt
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.
| |
Collapse
|
30
|
Kapalamula TF, Thapa J, Akapelwa ML, Hayashida K, Gordon SV, Hang' ombe BM, Munyeme M, Solo ES, Bwalya P, Nyenje ME, Tamaru A, Suzuki Y, Nakajima C. Development of a loop-mediated isothermal amplification (LAMP) method for specific detection of Mycobacterium bovis. PLoS Negl Trop Dis 2021; 15:e0008996. [PMID: 33493196 PMCID: PMC7833227 DOI: 10.1371/journal.pntd.0008996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/14/2020] [Indexed: 11/24/2022] Open
Abstract
Bovine tuberculosis (TB) caused by Mycobacterium bovis is a significant health threat to cattle and a zoonotic threat for humans in many developing countries. Rapid and accurate detection of M. bovis is fundamental for controlling the disease in animals and humans, and for the proper treatment of patients as one of the first-line anti-TB drug, pyrazinamide, is ineffective against M. bovis. Currently, there are no rapid, simplified and low-cost diagnostic methods that can be easily integrated for use in many developing countries. Here, we report the development of a loop-mediated isothermal amplification (LAMP) assay for specific identification of M. bovis by targeting the region of difference 4 (RD4), a 12.7 kb genomic region that is deleted solely in M. bovis. The assay's specificity was evaluated using 139 isolates comprising 65 M. bovis isolates, 40 M. tuberculosis isolates, seven M. tuberculosis complex reference strains, 22 non-tuberculous mycobacteria and five other bacteria. The established LAMP detected only M. bovis isolates as positive and no false positives were observed using the other mycobacteria and non-mycobacteria tested. Our LAMP assay detected as low as 10 copies of M. bovis genomic DNA within 40 minutes. The procedure of LAMP is simple with an incubation at a constant temperature. Results are observed with the naked eye by a color change, and there is no need for expensive equipment. The established LAMP can be used for the detection of M. bovis infections in cattle and humans in resource-limited areas. Although bovine tuberculosis in humans has been eliminated in developed countries, the disease remains a challenge in many developing countries. Routine laboratory methods used to identify tuberculosis (TB) in high-burden countries do not distinguish between the two main causes of TB in humans, namely Mycobacterium tuberculosis and M. bovis. In addition, M. bovis is naturally resistant to one of the first-line drugs used to treat TB called pyrazinamide; therefore, accurate diagnosis of M. bovis is important for proper selection of anti TB drugs. In cattle, surveillance for M. bovis infection is important to obtain data on bovine TB burden and hence provide a basis for the establishment and/or improvement of control programs. In this study, a loop-mediated isothermal amplification (LAMP) based method was developed to identify M. bovis. This LAMP method detected M. bovis within 40 minutes following incubation at constant temperature (66°C) in a battery-powered incubator and results could be read with the naked eye following development of a color change. Our results elaborate a rapid and low-cost LAMP based method for detection and surveillance of M. bovis infection in cattle and humans in resource-limited, endemic areas.
Collapse
Affiliation(s)
- Thoko Flav Kapalamula
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jeewan Thapa
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kyoko Hayashida
- Division of Collaborations and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, Research Center for Zoonosis Contsrol, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Stephen V. Gordon
- International Collaboration Unit, Research Center for Zoonosis Contsrol, Hokkaido University, Sapporo, Hokkaido, Japan
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Bernard Mudenda Hang' ombe
- School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Eddie Samuneti Solo
- Department of Pathology and Microbiology, University Teaching Hospital, Ministry of Health, Lusaka, Zambia
| | - Precious Bwalya
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Pathology and Microbiology, University Teaching Hospital, Ministry of Health, Lusaka, Zambia
| | - Mirriam Ethel Nyenje
- Community Health Sciences Unit, National Tuberculosis Reference Laboratory, Lilongwe, Malawi
| | - Aki Tamaru
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, Research Center for Zoonosis Contsrol, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chie Nakajima
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, Research Center for Zoonosis Contsrol, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
31
|
Paul R, Ostermann E, Wei Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosens Bioelectron 2020; 169:112592. [PMID: 32942143 PMCID: PMC7476893 DOI: 10.1016/j.bios.2020.112592] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.
Collapse
Affiliation(s)
- Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emily Ostermann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
32
|
Development of a Multiplex Loop-Mediated Isothermal Amplification (LAMP) Method for Simultaneous Detection of Spotted Fever Group Rickettsiae and Malaria Parasites by Dipstick DNA Chromatography. Diagnostics (Basel) 2020; 10:diagnostics10110897. [PMID: 33147773 PMCID: PMC7694008 DOI: 10.3390/diagnostics10110897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Spotted fever group (SFG) rickettsiae causes febrile illness in humans worldwide. Since SFG rickettsiosis’s clinical presentation is nonspecific, it is frequently misdiagnosed as other febrile diseases, especially malaria, and complicates proper treatment. Aiming at rapid, simple, and simultaneous detection of SFG Rickettsia spp. and Plasmodium spp., we developed a novel multiple pathogen detection system by combining a loop-mediated isothermal amplification (LAMP) method and dipstick DNA chromatography technology. Two primer sets detecting SFG Rickettsia spp. and Plasmodium spp. were mixed, and amplified products were visualized by hybridizing to dipstick DNA chromatography. The multiplex LAMP with dipstick DNA chromatography distinguished amplified Rickettsia and Plasmodium targeted genes simultaneously. The determined sensitivity using synthetic nucleotides was 1000 copies per reaction for mixed Rickettsia and Plasmodium genes. When genomic DNA from in vitro cultured organisms was used, the sensitivity was 100 and 10 genome equivalents per reaction for Rickettsia monacensis and Plasmodium falciparum, respectively. Although further improvement will be required for more sensitive detection, our developed simultaneous diagnosis technique will contribute to the differential diagnosis of undifferentiated febrile illness caused by either SFG Rickettsia spp. or Plasmodium spp. in resource-limited endemic areas. Importantly, this scheme is potentially versatile for the simultaneous detection of diverse infectious diseases.
Collapse
|
33
|
Lumbala C, Kayembe S, Makabuza J, Lutumba P, Van Geertruyden JP, Bessell PR, Ndung’u JM. Development and implementation of a strategy for intensified screening for gambiense human African trypanosomiasis in Kongo Central province, DRC. PLoS Negl Trop Dis 2020; 14:e0008779. [PMID: 33057341 PMCID: PMC7591064 DOI: 10.1371/journal.pntd.0008779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/27/2020] [Accepted: 09/06/2020] [Indexed: 11/21/2022] Open
Abstract
Background The Democratic Republic of the Congo (DRC) accounts for the majority of the reported gambiense human African trypanosomiasis (HAT) cases. Kongo Central province in the DRC reports a relatively low, yet steady number of cases, and forms a transboundary focus with Angola and the Republic of Congo. This paper describes an intervention aimed at reducing the case burden in Kongo Central by improving passive case detection, complemented with reactive screening. Methodology/Principal findings At the initiation of this programme in August 2015, 620 health facilities were identified and equipped with Rapid Diagnostic Tests (RDTs) for HAT screening. Of these, 603 (97%) reported use of RDTs, and 584 (94%) that continued to use RDTs to the last quarter of 2016 were used in the analysis going forward. Among all health facilities involved, 23 were equipped to confirm HAT by microscopy, and 4 of the latter were equipped to perform molecular testing with loop-mediated isothermal amplification (LAMP). Patients clinically suspected of HAT were tested with an RDT and those with a positive RDT result were referred to the nearest microscopy facility for confirmatory testing. If RDT positive patients were negative by microscopy, they were tested by LAMP, either on fresh blood or blood that was dried on filter paper and transported to a facility performing LAMP. This network of diagnostic facilities reduced the median distance for a patient to travel to a screening facility from 13.7km when the classical card agglutination test for trypanosomiasis (CATT) was used as a screening test in the past, to 3.4km. As a consequence, passive case detection was improved by between 30% and 130% compared to the period before. Furthermore, the proportion of HAT cases detected in early stage disease by passive screening increased from 27% to 64%. Reactive screening took place in 20 villages where cases were reported by passive screening, and in 45 villages in the neighbourhood of these villages. Reactive screening was responsible for detection of 40% of cases, of which, 90% were in first stage of the disease. Conclusions This programme has demonstrated that it is possible to deploy passive screening for HAT at sub-country or country levels in the DRC, and this is made more effective when supplemented with reactive screening. Results and achievements showed an increase in the number of HAT cases detected, the majority of them in early disease, demonstrating that this strategy enables better population coverage and early detection of cases, which is critical in removing the HAT reservoir and interrupting transmission, and could contribute to HAT elimination in regions where it is implemented. A number of diagnostic tests for HAT have recently been developed, to improve case detection. We report on the use of these technologies in a strategy to increase coverage and early detection of HAT cases in Kongo Central province of DRC. All 620 health facilities in the focus were equipped with RDTs to test patients presenting with symptoms suggestive of HAT. Among these health facilities, 23 were upgraded to perform confirmatory testing, for a final diagnosis. This strategy has reduced the distance a patient travels to a facility screening for HAT, from 13.7km to 3.4km. From August 2015 to December 2016, the proportion of HAT cases detected, adjusted annually, increased by between 30% and 130% compared to the previous two years, and 64% of them were in early stage disease, compared to 27% previously. This strategy has enabled better population coverage, and when supplemented with reactive screening, the identification of local outbreaks and early detection of most cases, which is critical in removing the HAT reservoir and interrupting transmission, thus contributing to elimination of the disease.
Collapse
Affiliation(s)
- Crispin Lumbala
- Directorate of Disease Control, Ministry of Public Health, Democratic Republic of the Congo
- Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Simon Kayembe
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Jacquies Makabuza
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Kinshasa, République Démocratique du Congo
| | - Pascal Lutumba
- Kinshasa University, Kinshasa, Democratic Republic of the Congo
| | | | | | | |
Collapse
|
34
|
Development of a Loop-Mediated Isothermal Amplification (LAMP) Assay Targeting the Citrate Synthase Gene for Detection of Ehrlichia canis in Dogs. Vet Sci 2020; 7:vetsci7040156. [PMID: 33076400 PMCID: PMC7712857 DOI: 10.3390/vetsci7040156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Canine monocytic ehrlichiosis caused by Ehrlichia canis is one of the leading tick-borne diseases of dogs, particularly in tropical countries. A highly sensitive and specific diagnostic method is essential for early detection to facilitate treatment. This study was conducted to develop E. canis loop-mediated isothermal amplification (LAMP) assay, a highly sensitive yet simple molecular technique, targeting the citrate synthase (gltA) gene of E. canis. Canine blood samples were subjected to conventional PCR targeting E. canis gltA. After analysis of the sequences of PCR amplicons, LAMP primers were generated. The optimum temperature and time for the LAMP assay were determined using eight samples—after which, the effectiveness and reproducibility of LAMP were verified by testing 40 samples, which included PCR-positive and negative samples. The detection limit was also established. The optimal condition for the assay was 61 °C for 60 min. Compared to PCR, the LAMP assay had a relative sensitivity and specificity of 92.5 and 100%, respectively. Statistical analysis using McNemar’s test showed that the E. canis LAMP assay has no significant difference with PCR. Therefore, the LAMP assay developed in this study may be used as an alternative to PCR in the detection of E. canis.
Collapse
|
35
|
Everitt ML, Tillery A, David MG, Singh N, Borison A, White IM. A critical review of point-of-care diagnostic technologies to combat viral pandemics. Anal Chim Acta 2020; 1146:184-199. [PMID: 33461715 PMCID: PMC7548029 DOI: 10.1016/j.aca.2020.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
The COVID-19 global pandemic of 2019-2020 pointedly revealed the lack of diagnostic solutions that are able to keep pace with the rapid spread of the virus. Despite the promise of decades of lab-on-a-chip research, no commercial products were available to deliver rapid results or enable testing in the field at the onset of the pandemic. In this critical review, we assess the current state of progress on the development of point-of-care technologies for the diagnosis of viral diseases that cause pandemics. While many previous reviews have reported on progress in various lab-on-a-chip technologies, here we address the literature from the perspective of the testing needs of a rapidly expanding pandemic. First, we recommend a set of requirements to heed when designing point-of-care diagnostic technologies to address the testing needs of a pandemic. We then review the current state of assay technologies with a focus on isothermal amplification and lateral-flow immunoassays. Though there is much progress on assay development, we argue that the largest roadblock to deployment exists in sample preparation. We summarize current approaches to automate sample preparation and discuss both the progress and shortcomings of these developments. Finally, we provide our recommendations to the field of specific challenges to address in order to prepare for the next pandemic.
Collapse
Affiliation(s)
- Micaela L Everitt
- Fischell Department of Bioengineering, University of Maryland, United States
| | - Alana Tillery
- Fischell Department of Bioengineering, University of Maryland, United States
| | - Martha G David
- Fischell Department of Bioengineering, University of Maryland, United States
| | - Nikita Singh
- Fischell Department of Bioengineering, University of Maryland, United States
| | - Aviva Borison
- Fischell Department of Bioengineering, University of Maryland, United States
| | - Ian M White
- Fischell Department of Bioengineering, University of Maryland, United States.
| |
Collapse
|
36
|
A descriptive survey of porcine epidemic diarrhea in pig populations in northern Vietnam. Trop Anim Health Prod 2020; 52:3781-3788. [PMID: 33011908 PMCID: PMC7532947 DOI: 10.1007/s11250-020-02416-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is a globally emerging and re-emerging epizootic swine virus that causes massive economic losses in the swine industry, with high mortality in piglets. In Vietnam, PED first emerged in 2009 and has now developed to an endemic stage. This is the first cross-sectional survey performed to evaluate the proportion of PEDV-positive swine farms in Vietnam from January 2018 to February 2019. Fecal samples from 327 pig farms in northern Vietnam were collected and tested for PEDV infection by reverse transcription-loop-mediated isothermal amplification (RT-LAMP) method. The proportion of PEDV-positive farms was 30.9% and PEDV-positive farms were distributed throughout the study area. The highest proportion of PEDV-positive farms was 70% (7/10) among nucleus production type farms (P < 0.05). Higher proportions of PEDV-positive farms were found in the Northeast and Red River Delta areas, which are the major areas of pig production (P < 0.05). The proportion of PEDV-positive farms was higher among larger farms (P < 0.05). Our findings illustrate the high proportion of PEDV-positive farms in the Vietnamese pig population and will help to better understand the epidemiological dynamics of PED infection, to estimate impact, and establish and improve prevention and control measures.
Collapse
|
37
|
Hayashida K, Nambala P, Reet NV, Büscher P, Kawai N, Mutengo MM, Musaya J, Namangala B, Sugimoto C, Yamagishi J. Development of a bio-inkjet printed LAMP test kit for detecting human African trypanosomiasis. PLoS Negl Trop Dis 2020; 14:e0008753. [PMID: 33091922 PMCID: PMC7608988 DOI: 10.1371/journal.pntd.0008753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/03/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Human African trypanosomiasis (HAT) is one of the neglected tropical diseases in sub-Saharan Africa. Early diagnosis and treatment prior to disease progression are crucial for the survival of HAT patients. We had previously established a loop-mediated isothermal amplification (LAMP) method for HAT diagnosis in which the reagents were dried for field-use purposes. In this study, we used a semi-automated process to produce the test tubes using a bio-inkjet printer to achieve an accurate production. The performance of the inkjet printer-produced dried LAMP test (CZC-LAMP) was found to be stable after storage for up to 180 days at 30 °C. The diagnostic accuracy of CZC-LAMP HAT was evaluated using DNA samples that were extracted from 116 Trypanosoma brucei gambiense patients and 66 T. b. rhodesiense patients. The sensitivity was 72% for T. b. gambiense (95%CI: 63%-80%) and 80% for T. b. rhodesiense (95%CI: 69%-89%). The specificity determined using DNA from 116 endemic control DNA samples was 95% (95%CI: 89%-98%). The performance of the CZC-LAMP HAT and CZC-LAMP rHAT were also evaluated using 14 crude blood lysate samples obtained from T. b. rhodesiense patients and endemic control samples collected from Rumphi District in Malawi. The sensitivity and specificity were both 100% (95%CI: 77%-100%). As the developed CZC-LAMP test does not require a cold chain or a sophisticated laboratory, it holds promise for use as a routine simple molecular tool for point-of-care HAT diagnosis in endemic areas.
Collapse
Affiliation(s)
- Kyoko Hayashida
- Division of Collaboration and Education, Research Center for Zoonosis Control (CZC), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Peter Nambala
- Department of Pathology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Naoko Kawai
- Division of Collaboration and Education, Research Center for Zoonosis Control (CZC), Hokkaido University, Sapporo, Japan
| | - Mable Mwale Mutengo
- Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Janelisa Musaya
- Department of Pathology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control (CZC), Hokkaido University, Sapporo, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, Research Center for Zoonosis Control (CZC), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
38
|
Yamazaki Y, Thongchankaew-Seo U, Nagao K, Mekata H, Yamazaki W. Development and evaluation of a point-of-care test with a combination of EZ-Fast DNA extraction and real-time PCR and LAMP detection: evaluation using blood samples containing the bovine leukaemia DNA. Lett Appl Microbiol 2020; 71:560-566. [PMID: 32852051 DOI: 10.1111/lam.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 02/03/2023]
Abstract
Along with progress in globalization of society, the spread of infectious diseases has accelerated worldwide. The deployment of highly sensitive genetic tests is essential for early diagnosis and early containment of potential outbreaks and epidemics, as well as routine surveillance, although tedious and expensive nucleic acid extraction steps represent a major drawback. Here we developed a simple and rapid DNA extraction method, named as an EZ-Fast kit, applicable to the field setting. The kit does not require advanced laboratory equipment or expensive DNA extraction kits and achieves crude DNA extraction within 10 min at extremely low cost and can easily be performed in field settings. When combined with real-time PCR and LAMP analyses, the performance of the POCT, using 183 bovine blood samples, was similar to that of the existing DNA extraction method: 92·5% (135/146) (real-time PCR) and 93·7% (133/142) (LAMP) diagnostic sensitivities, and 100% diagnostic specificities. The developed POCT provides a powerful tool to facilitate on-site diagnosis in a field setting.
Collapse
Affiliation(s)
- Y Yamazaki
- Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan
| | | | - K Nagao
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - H Mekata
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan
| | - W Yamazaki
- Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,School of Public Health, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Kolluri N, Albarran N, Fan A, Olson A, Sagar M, Young A, Gomez-Marquez J, Klapperich CM. SNAPflex: a paper-and-plastic device for instrument-free RNA and DNA extraction from whole blood. LAB ON A CHIP 2020; 20:3386-3398. [PMID: 32766666 DOI: 10.1039/d0lc00277a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nucleic acid amplification tests (NAATs), which amplify and detect pathogen nucleic acids, are vital methods to diagnose diseases, particularly in cases where patients exhibit low levels of infection. For many blood-borne pathogens such as HIV or Plasmodium falciparum, it is necessary to first extract pathogen RNA or DNA from patient blood prior to NAAT analysis. Traditional nucleic acid extraction methods are expensive, resource-intensive and are often difficult to deploy to resource-limited areas where many blood-borne infections are widespread. Here, we describe a portable, paper-and-plastic device, called SNAPflex, for instrument-free nucleic acid extraction from whole blood, which builds upon our previous work for RNA extraction using a pressure-driven extraction system. SNAPflex shows improved HIV RNA extraction from simulated patient samples compared to traditional extraction methods as well as long-term stability of extracted RNA without the need for cold storage. We further demonstrated successful extraction and recovery of P. falciparum DNA from cultured parasites in whole blood. SNAPflex was designed to be easily manufacturable and deployable to resource-limited settings.
Collapse
Affiliation(s)
- Nikunja Kolluri
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gummery L, Jallow S, Raftery AG, Bennet E, Rodgers J, Sutton DGM. Comparison of loop-mediated isothermal amplification (LAMP) and PCR for the diagnosis of infection with Trypanosoma brucei ssp. in equids in The Gambia. PLoS One 2020; 15:e0237187. [PMID: 32833981 PMCID: PMC7444819 DOI: 10.1371/journal.pone.0237187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Infection of equids with Trypanosoma brucei (T. brucei) ssp. is of socioeconomic importance across sub-Saharan Africa as the disease often progresses to cause fatal meningoencephalitis. Loop-mediated isothermal amplification (LAMP) has been developed as a cost-effective molecular diagnostic test and is potentially applicable for use in field-based laboratories. Part I Threshold levels for T. brucei ssp. detection by LAMP were determined using whole equine blood specimens spiked with known concentrations of parasites. Results were compared to OIE antemortem gold standard of T. brucei-PCR (TBR-PCR). Results I Threshold for detection of T. brucei ssp. on extracted DNA from whole blood was 1 parasite/ml blood for LAMP and TBR-PCR, and there was excellent agreement (14/15) between tests at high (1 x 103/ml) concentrations of parasites. Detection threshold was 100 parasites/ml using LAMP on whole blood (LWB). Threshold for LWB improved to 10 parasites/ml with detergent included. Performance was excellent for LAMP at high (1 x 103/ml) concentrations of parasites (15/15, 100%) but was variable at lower concentrations. Agreement between tests was weak to moderate, with the highest for TBR-PCR and LAMP on DNA extracted from whole blood (Cohen’s kappa 0.95, 95% CI 0.64–1.00). Part II A prospective cross-sectional study of working equids meeting clinical criteria for trypanosomiasis was undertaken in The Gambia. LAMP was evaluated against subsequent TBR-PCR. Results II Whole blood samples from 321 equids in The Gambia were processed under field conditions. There was weak agreement between LWB and TBR-PCR (Cohen’s kappa 0.34, 95% CI 0.19–0.49) but excellent agreement when testing CSF (100% agreement on 6 samples). Conclusions Findings support that LAMP is comparable to PCR when used on CSF samples in the field, an important tool for clinical decision making. Results suggest repeatability is low in animals with low parasitaemia. Negative samples should be interpreted in the context of clinical presentation.
Collapse
Affiliation(s)
- Lauren Gummery
- Weipers Centre Equine Hospital, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Saloum Jallow
- Gambia Horse and Donkey Trust, Sambel Kunda, The Gambia
| | - Alexandra G. Raftery
- Weipers Centre Equine Hospital, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Euan Bennet
- Weipers Centre Equine Hospital, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David G. M. Sutton
- Weipers Centre Equine Hospital, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
41
|
Augustine R, Hasan A, Das S, Ahmed R, Mori Y, Notomi T, Kevadiya BD, S. Thakor A. Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. BIOLOGY 2020; 9:E182. [PMID: 32707972 PMCID: PMC7464797 DOI: 10.3390/biology9080182] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
The rampant spread of COVID-19 and the worldwide prevalence of infected cases demand a rapid, simple, and cost-effective Point of Care Test (PoCT) for the accurate diagnosis of this pandemic. The most common molecular tests approved by regulatory bodies across the world for COVID-19 diagnosis are based on Polymerase Chain Reaction (PCR). While PCR-based tests are highly sensitive, specific, and remarkably reliable, they have many limitations ranging from the requirement of sophisticated laboratories, need of skilled personnel, use of complex protocol, long wait times for results, and an overall high cost per test. These limitations have inspired researchers to search for alternative diagnostic methods that are fast, economical, and executable in low-resource laboratory settings. The discovery of Loop-mediated isothermal Amplification (LAMP) has provided a reliable substitute platform for the accurate detection of low copy number nucleic acids in the diagnosis of several viral diseases, including epidemics like Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). At present, a cocktail of LAMP assay reagents along with reverse transcriptase enzyme (Reverse Transcription LAMP, RT-LAMP) can be a robust solution for the rapid and cost-effective diagnosis for COVID-19, particularly in developing, and low-income countries. In summary, the development of RT-LAMP based diagnostic tools in a paper/strip format or the integration of this method into a microfluidic platform such as a Lab-on-a-chip may revolutionize the concept of PoCT for COVID-19 diagnosis. This review discusses the principle, technology and past research underpinning the success for using this method for diagnosing MERS and SARS, in addition to ongoing research, and the prominent prospect of RT-LAMP in the context of COVID-19 diagnosis.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar
| | - Suvarthi Das
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA 94304, USA;
| | - Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar
| | - Yasuyoshi Mori
- Eiken Chemical Co., Ltd., Research and Development Division, Taito-ku 110-8408, Japan; (Y.M.); (T.N.)
| | - Tsugunori Notomi
- Eiken Chemical Co., Ltd., Research and Development Division, Taito-ku 110-8408, Japan; (Y.M.); (T.N.)
| | - Bhavesh D. Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (B.D.K.); (A.S.T.)
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (B.D.K.); (A.S.T.)
| |
Collapse
|
42
|
Saechue B, Kamiyama N, Wang Y, Fukuda C, Watanabe K, Soga Y, Goto M, Dewayani A, Ariki S, Hirose H, Ozaka S, Sachi N, Hidano S, Faisal K, Chowdhury R, Anik Ashfaq Khan M, Hossain F, Ghosh P, Shirin T, Mondal D, Murakami K, Kobayashi T. Development of a portable reverse transcription loop-mediated isothermal amplification system to detect the E1 region of Chikungunya virus in a cost-effective manner. Genes Cells 2020; 25:615-625. [PMID: 32562326 DOI: 10.1111/gtc.12797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Chikungunya fever is a mosquito-borne disease cause of persistent arthralgia. The current diagnosis of Chikungunya virus (CHIKV) relies on a conventional reverse transcription polymerase chain reaction assay. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a rapid and simple tool used for DNA-based diagnosis of a variety of infectious diseases. In this study, we established an RT-LAMP system to recognize CHIKV by targeting the envelope protein 1 (E1) gene that could also detect CHIKV at a concentration of 8 PFU without incorrectly detecting other mosquito-borne viruses. The system also amplified the E1 genome in the serum of CHIKV-infected mice with high sensitivity and specificity. Moreover, we established a dry RT-LAMP system that can be transported without a cold chain, which detected the virus genome in CHIKV-infected patient samples with high accuracy. Thus, the dry RT-LAMP system has great potential to be applied as a novel CHIKV screening kit in endemic areas.
Collapse
Affiliation(s)
- Benjawan Saechue
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Yinan Wang
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Chiaki Fukuda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Kei Watanabe
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Yasuhiro Soga
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Mizuki Goto
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Astri Dewayani
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Shimpei Ariki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Haruna Hirose
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Khaledul Faisal
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Rajashree Chowdhury
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Md Anik Ashfaq Khan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Faria Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Prakash Ghosh
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Tahmina Shirin
- Department of Virology, Institute of Epidemiology Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Dinesh Mondal
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
43
|
Taylor EM. NTD Diagnostics for Disease Elimination: A Review. Diagnostics (Basel) 2020; 10:E375. [PMID: 32517108 PMCID: PMC7344624 DOI: 10.3390/diagnostics10060375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
Neglected Tropical Diseases (NTDs) marked out for disease elimination provide a lens through which to explore the changing status of diagnosis in global health. This paper reports on the findings of a scoping review, which set out to explore the main debates around diagnosis for the elimination of NTDs, including the multiple roles diagnostic technologies are being ascribed and the ideal characteristics of tests. It also attempts to summarise the state of diagnosis for three NTDs with elimination goals. The review places special emphasis on point-of-care testing in acknowledgement of the remote and underserved areas where NTDs proliferate. Early NTD campaigns were largely focused on attack phase planning, whereby a similar set of interventions could be transplanted anywhere. Now, with elimination goals in sight, strategies must be tailored to local settings if they are to attain and sustain success. Diagnostic data helps with local adaptation and is increasingly used for programmatic decision-making. The review finds that elimination goals reframe whom diagnosis is for and the myriad roles diagnostics can play. The exigencies of elimination also serve to highlight deficiencies in the current diagnostic arsenal and development pipeline for many NTDs. Moving forward, a guiding framework is needed to drive research and stimulate investment in diagnosis to support NTD goals.
Collapse
Affiliation(s)
- Emma Michelle Taylor
- Department of Social Anthropology, University of Edinburgh, Edinburgh EH8 9LD, UK
| |
Collapse
|
44
|
Zasada AA, Wiatrzyk A, Czajka U, Brodzik K, Formińska K, Mosiej E, Prygiel M, Krysztopa-Grzybowska K, Wdowiak K. Application of loop-mediated isothermal amplification combined with colorimetric and lateral flow dipstick visualization as the potential point-of-care testing for Corynebacterium diphtheriae. BMC Infect Dis 2020; 20:308. [PMID: 32334517 PMCID: PMC7183728 DOI: 10.1186/s12879-020-05037-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/15/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Diphtheria outbreaks occurred in endemic areas and imported and indigenous cases are reported in UE/EEA. Because of the high infectiveness and severity of the disease, early and accurate diagnosis of each suspected case is essential for the treatment and management of the case and close contacts. The aim of the study was to establish simple and rapid testing methods based on Loop-Mediated Isothermal Amplification (LAMP) assay for the detection of Corynebacterium diphtheriae and differentiation between toxigenic and non-toxigenic strains. METHODS Corynebacterium diphtheriae and Corynebacterium ulcerans isolates from the National Institute of Public Health-National Institute of Hygiene collection were used for the development of LAMP assay for the diagnosis of diphtheria and nontoxigenic C. diphtheriae infections. Various colorimetric methods for visualization of results were investigated. Sensitivity and specificity of the assay were examined using a collection of DNA samples from various gram-positive and gram-negative bacteria. RESULTS The LAMP assay for tox and dtxR genes was developed. The sensitivity and specificity of the assay were calculated as 100%. The detection limit was estimated as 1.42 pg/μl concentration of DNA template when the reaction was conducted for 60 min. However, the detection limit was lowered 10 times for every 10 min of reduction in the time of incubation during the reaction. Positive results were successfully detected colorimetrically using hydroxynaphthol blue, calcein, QuantiFluor, and lateral flow Milenia HybriDetect dipsticks. CONCLUSION The assay developed in the study might be applied for point-of-care testing of diphtheria and other C. diphtheriae infections as well as for other infections caused by diphtheria-toxin producing Corynebacterium species. It is highly sensitive, specific, inexpensive, easy to use, and suitable for low-resource settings.
Collapse
Affiliation(s)
- Aleksandra A Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland.
| | - Aldona Wiatrzyk
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Urszula Czajka
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Klaudia Brodzik
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Kamila Formińska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Ewa Mosiej
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Marta Prygiel
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Katarzyna Krysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Karol Wdowiak
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| |
Collapse
|
45
|
Ristaino JB, Saville AC, Paul R, Cooper DC, Wei Q. Detection of Phytophthora infestans by Loop-Mediated Isothermal Amplification, Real-Time LAMP, and Droplet Digital PCR. PLANT DISEASE 2020; 104:708-716. [PMID: 31967506 DOI: 10.1094/pdis-06-19-1186-re] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytophthora infestans is the causal agent of potato late blight, a devastating disease of tomato and potato and a threat to global food security. Early detection and intervention is essential for effective management of the pathogen. We developed a loop-mediated isothermal amplification (LAMP) assay for P. infestans and compared this assay to conventional PCR, real-time LAMP, and droplet digital PCR for detection of P. infestans. The LAMP assay was specific for P. infestans on potato and tomato and did not amplify other potato- or tomato-infecting Phytophthora species or other fungal and bacterial pathogens that infect potato and tomato. The detection threshold for SYBR Green LAMP and real-time LAMP read with hydroxynaphthol blue and EvaGreen was 1 pg/µl. In contrast, detection by conventional PCR was 10 pg/µl. Droplet digital PCR had the lowest detection threshold (100 fg/µl). We adapted the LAMP assay using SYBR Green and a mobile reader (mReader) for use in the field. Detection limits were 584 fg/µl for SYBR Green LAMP read on the mReader, which was more sensitive than visualization with the human eye. The mobile platform records geospatial coordinates and data from positive pathogen detections can be directly uploaded to a cloud database. Data can then be integrated into disease surveillance networks. This system will be useful for real-time detection of P. infestans and will improve the timeliness of reports into surveillance systems such as USABlight or EuroBlight.
Collapse
Affiliation(s)
- Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC 27695
| | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | | | - Qingshan Wei
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC 27695
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
46
|
Waema MW, Misinzo G, Kagira JM, Agola EL, Ngowi HA. DNA-Detection Based Diagnostics for Taenia solium Cysticercosis in Porcine. J Parasitol Res 2020; 2020:5706981. [PMID: 32395335 PMCID: PMC7199576 DOI: 10.1155/2020/5706981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/02/2019] [Indexed: 11/17/2022] Open
Abstract
Porcine cysticercosis is a neglected and underestimated disease caused by metacestode stage of the tapeworm, Taenia solium (T. solium). Pigs are the intermediate hosts of T. solium while human are the only known definitive host. The disease has an economic consequence because the affected farmers lose 50-100 percent of the value of pigs if they are infected. Lack of affordable, easy to use, sensitive, and specific molecular diagnostic tools for detection of infections at the farm level hinders the control of porcine cysticercosis in endemic areas. A number of DNA based diagnostic assays for the detection of T. solium infections in pigs have been developed and evaluated but none is applicable at low-resource areas where this disease is an endemic. This review focuses mainly on DNA based diagnostic methods, their sensitivity, specificity, and utilization at low-resource areas. We summarized data from 65 studies on the current DNA-detection based diagnostic techniques for T. solium cysticercosis in porcine, published in English between the years 2000-2018, identified through PubMed search engine. Of the different polymerase chain reaction (PCR) assays developed for identification of T. solium, the most sensitive (97-100%) and specific (100%) one is nested PCR. One study utilized loop-mediated isothermal amplification (LAMP) as a diagnostic tool for the detection of T. solium infections though its field use was never determined. Recombinase polymerase amplification (RPA) has been evaluated as a diagnostic tool for a variety of diseases, but has never been exploited for the diagnosis of cysticercosis/taeniasis. In conclusion, several molecular methods have been developed and evaluated in lab settings. However, there is need to validate these methods as a diagnostic tool to diagnose porcine cysticercosis in low-resource areas.
Collapse
Affiliation(s)
- Maxwell W. Waema
- Southern African Centre for Infectious Disease Surveillance (SACIDS), Sokoine University of Agriculture, P.O Box 3297, Chuo Kikuu, Morogoro, Tanzania
| | - Gerald Misinzo
- Southern African Centre for Infectious Disease Surveillance (SACIDS), Sokoine University of Agriculture, P.O Box 3297, Chuo Kikuu, Morogoro, Tanzania
| | - John M. Kagira
- Department of Animal Health and Production, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Eric L. Agola
- Centre of Biotechnology Research and Development, Kenya Medical Research Institute, P.O Box 3297, Nairobi, Kenya
| | - Helena A. Ngowi
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P.O Box 3021, Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
47
|
Mongan AE, Tuda JSB, Runtuwene LR. Portable sequencer in the fight against infectious disease. J Hum Genet 2020; 65:35-40. [PMID: 31582773 PMCID: PMC6892364 DOI: 10.1038/s10038-019-0675-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
Infectious disease is still a major threat in the world today. Five decades ago, it was considered soon to be eradicated, but the adaptation of pathogens to environmental pressure, such as antimicrobials, encouraged the emergence and reemergence of infectious disease. The fight with infectious disease starts with prevention, diagnosis, and treatment. Diagnosis can be upheld by observing the cause of disease under the microscope or detecting the presence of nucleic acid and proteins of the pathogens. The molecular techniques span from classical polymerase chain reaction (PCR) to sequencing the nucleic acid composition. Here, we are reviewing the works have been undertaken to utilize a portable sequencer, MinION, in various aspects of infectious disease management.
Collapse
|
48
|
Nigo MM, Salieb-Beugelaar G, Battegay M, Odermatt P, Hunziker P. Schistosomiasis: from established diagnostic assays to emerging micro/nanotechnology-based rapid field testing for clinical management and epidemiology. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano3(1).191205.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Schistosomiasis is a neglected invasive worm disease with a huge disease burden in developing countries, particularly in children, and is seen increasingly in non-endemic regions through transfer by travellers, expatriates, and refugees. Undetected and untreated infections may be responsible for the persistence of transmission. Rapid and accurate diagnosis is the key to treatment and control. So far, parasitological detection methods remain the cornerstone of Schistosoma infection diagnosis in endemic regions, but conventional tests have limited sensitivity, in particular in low-grade infection. Recent advances contribute to improved detection in clinical and field settings. The recent progress in micro- and nanotechnologies opens a road by enabling the design of new miniaturized point-of-care devices and analytical platforms, which can be used for the rapid detection of these infections. This review starts with an overview of currently available laboratory tests and their performance and then discusses emerging rapid and micro/nanotechnologies-based tools. The epidemiological and clinical setting of testing is then discussed as an important determinant for the selection of the best analytical strategy in patients suspected to suffer from Schistosoma infection. Finally, it discusses the potential role of advanced technologies in the setting near to disease eradication is examined.
Collapse
Affiliation(s)
| | | | | | - Peter Odermatt
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | |
Collapse
|
49
|
Mohon AN, Getie S, Jahan N, Alam MS, Pillai DR. Ultrasensitive loop mediated isothermal amplification (US-LAMP) to detect malaria for elimination. Malar J 2019; 18:350. [PMID: 31619258 PMCID: PMC6796404 DOI: 10.1186/s12936-019-2979-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/26/2019] [Indexed: 11/13/2022] Open
Abstract
Background Malaria elimination requires diagnostic methods able to detect parasite levels well below what is currently possible with microscopy and rapid diagnostic tests. This is particularly true in surveillance of malaria at the population level that includes so-called “asymptomatic” individuals. Methods The development of the first ultrasensitive loop mediated amplification method capable of detecting malaria from both whole blood and dried blood spots (DBS) is described. The 18S rRNA and corresponding genes that remain stable on DBS for up to 5 months are targeted. Results In the case of Plasmodium falciparum, lower limits of detection of 25 parasite/mL and 50–100 parasite/mL from whole blood and DBS were obtained, respectively. A sensitivity of 97.0% (95% CI 82.5–99.8) and specificity of 99.1% (95% CI 97.6–99.7) was obtained for the detection of all species in asymptomatic individuals from Africa and Asia (n = 494). Conclusion This tool is ideally suited for low middle-income countries where malaria is endemic and ultrasensitive surveillance of malaria is highly desirable for elimination.
Collapse
Affiliation(s)
- Abu Naser Mohon
- Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada.,Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, 9-3535 Research Road NW, 1 W-416, Calgary, AB, T2L2K8, Canada
| | - Sisay Getie
- Department of Medical Parasitology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, P. O. Box: 196, Gondar, Ethiopia
| | - Nusrat Jahan
- Emerging Infections and Parasitology Laboratory, International Center for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
| | - Mohammad Shafiul Alam
- Emerging Infections and Parasitology Laboratory, International Center for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
| | - Dylan R Pillai
- Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada. .,Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, 9-3535 Research Road NW, 1 W-416, Calgary, AB, T2L2K8, Canada. .,Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
50
|
García-Bernalt Diego J, Fernández-Soto P, Crego-Vicente B, Alonso-Castrillejo S, Febrer-Sendra B, Gómez-Sánchez A, Vicente B, López-Abán J, Muro A. Progress in loop-mediated isothermal amplification assay for detection of Schistosoma mansoni DNA: towards a ready-to-use test. Sci Rep 2019; 9:14744. [PMID: 31611563 PMCID: PMC6791938 DOI: 10.1038/s41598-019-51342-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022] Open
Abstract
Schistosomiasis is one of the most prevalent Neglected Tropical Disease, affecting approximately 250 million people worldwide. Schistosoma mansoni is the most important species causing human intestinal schistosomiasis. Despite significant efforts in recent decades, the global disease burden of schistosomiasis remains extremely high. This could partly be attributed to the absence of accurate diagnostic tools, primarily in endemic areas. Loop-mediated isothermal amplification (LAMP) is increasingly used in molecular diagnostics as a field-friendly alternative to many other complex molecular methods and it has been proposed as an ideal candidate for revolutionizing point-of-care molecular diagnostics. In a previous work, a LAMP-based method to detect S. mansoni DNA (SmMIT-LAMP) was developed by our research group for early diagnosis of active schistosomiasis in an experimental infection murine model. The SmMIT-LAMP has been further successfully evaluated in both human stool and snail samples and, recently, in human urine samples. In this study, we developed an important improvement for SmMIT-LAMP molecular assay, transforming it into a cold maintenance dry format suitable for potentially manufacturing as kit for ready-to-use for schistosomiasis diagnosis. This procedure could be applied to create dry LAMP kits for a laboratory setting and for diagnostic applications for other neglected tropical diseases.
Collapse
Affiliation(s)
- J García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - P Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| | - B Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - S Alonso-Castrillejo
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - B Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - A Gómez-Sánchez
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - B Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - J López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - A Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| |
Collapse
|