1
|
Dumidae A, Subkrasae C, Ardpairin J, Pansri S, Polseela R, Thanwisai A, Vitta A. Population genetic structure of Indoplanorbis exustus (Gastropoda: Planorbidae) in Thailand and its infection with trematode cercariae. PLoS One 2024; 19:e0297761. [PMID: 38277375 PMCID: PMC10817173 DOI: 10.1371/journal.pone.0297761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Indoplanorbis exustus is a freshwater gastropod belonging to the family Planorbidae. This snail is widely distributed across the tropics and plays an important role as the intermediate host for trematodes. However, relatively little is understood regarding the genetic relationship between I. exustus and trematodes. The goals of this study were to investigate the current transmission status of trematode cercariae in I. exustus in Thailand and to examine the genetic diversity, genetic structure, and demographic history of I. exustus. We collected 575 I. exustus from 21 provinces across six regions of Thailand and investigated cercarial infections by using the shedding method. I. exustus from two provinces were infected with cercarial trematodes, and two types of cercarial stages were molecularly identified as furcocercous cercaria and xiphidiocercariae. Phylogenetic tree analysis based on 28S rDNA and ITS2 sequences demonstrated that furcocercous cercaria and xiphidiocercariae were closely clustered with a clade of Euclinostomum sp. and Xiphidiocercariae sp., respectively. Phylogenetic and network analyses of I. exustus haplotypes based on the COI, 16S rDNA, and ITS1 genes demonstrated four main clades. Only snails in clade A were distributed in all regions of Thailand and harbored trematode cercariae. The level of genetic diversity of I. exustus was relatively high, but most populations were not genetically different, thus suggesting the appearance of gene flow within the I. exustus populations. Overall, the haplotype network was star-shaped, thus suggesting the recent demographic expansion of populations. This result was also supported by the unimodal mode of the mismatch distribution graph and the large negative values of the neutrality tests. Therefore, the I. exustus snail was likely another freshwater snail of the invasive species in Thailand. This information will aid in monitoring the spread of the parasitic trematodes carried by I. exustus from different populations.
Collapse
Affiliation(s)
- Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Supawan Pansri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Raxsina Polseela
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
2
|
Calvo-Urbano B, Léger E, Gabain I, De Dood CJ, Diouf ND, Borlase A, Rudge JW, Corstjens PLAM, Sène M, Van Dam GJ, Walker M, Webster JP. Sensitivity and specificity of human point-of-care circulating cathodic antigen (POC-CCA) test in African livestock for rapid diagnosis of schistosomiasis: A Bayesian latent class analysis. PLoS Negl Trop Dis 2023; 17:e0010739. [PMID: 37216407 DOI: 10.1371/journal.pntd.0010739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Schistosomiasis is a major neglected tropical disease (NTD) affecting both humans and animals. The morbidity and mortality inflicted upon livestock in the Afrotropical region has been largely overlooked, in part due to a lack of validated sensitive and specific tests, which do not require specialist training or equipment to deliver and interpret. As stressed within the recent WHO NTD 2021-2030 Roadmap and Revised Guideline for schistosomiasis, inexpensive, non-invasive, and sensitive diagnostic tests for livestock-use would also facilitate both prevalence mapping and appropriate intervention programmes. The aim of this study was to assess the sensitivity and specificity of the currently available point-of-care circulating cathodic antigen test (POC-CCA), designed for Schistosoma mansoni detection in humans, for the detection of intestinal livestock schistosomiasis caused by Schistosoma bovis and Schistosoma curassoni. POC-CCA, together with the circulating anodic antigen (CAA) test, miracidial hatching technique (MHT) and organ and mesentery inspection (for animals from abattoirs only), were applied to samples collected from 195 animals (56 cattle and 139 small ruminants (goats and sheep) from abattoirs and living populations) from Senegal. POC-CCA sensitivity was greater in the S. curassoni-dominated Barkedji livestock, both for cattle (median 81%; 95% credible interval (CrI): 55%-98%) and small ruminants (49%; CrI: 29%-87%), than in S. bovis-dominated Richard Toll ruminants (cattle: 62%; CrI: 41%-84%; small ruminants: 12%, CrI: 1%-37%). Overall, sensitivity was greater in cattle than in small ruminants. Small ruminants POC-CCA specificity was similar in both locations (91%; CrI: 77%-99%), whilst cattle POC-CCA specificity could not be assessed owing to the low number of uninfected cattle surveyed. Our results indicate that, whilst the current POC-CCA does represent a potential diagnostic tool for cattle and possibly for predominantly S. curassoni-infected livestock, future work is needed to develop parasite- and/or livestock-specific affordable and field-applicable diagnostic tests to enable determination of the true extent of livestock schistosomiasis.
Collapse
Affiliation(s)
- Beatriz Calvo-Urbano
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Isobel Gabain
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Nicolas D Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | - Anna Borlase
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James W Rudge
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
- Communicable Diseases Policy Research Group, Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | | | - Martin Walker
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P Webster
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
3
|
Summers S, Bhattacharyya T, Allan F, Stothard JR, Edielu A, Webster BL, Miles MA, Bustinduy AL. A review of the genetic determinants of praziquantel resistance in Schistosoma mansoni: Is praziquantel and intestinal schistosomiasis a perfect match? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.933097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) caused by parasitic trematodes belonging to the Schistosoma genus. The mainstay of schistosomiasis control is the delivery of a single dose of praziquantel (PZQ) through mass drug administration (MDA) programs. These programs have been successful in reducing the prevalence and intensity of infections. Due to the success of MDA programs, the disease has recently been targeted for elimination as a public health problem in some endemic settings. The new World Health Organization (WHO) treatment guidelines aim to provide equitable access to PZQ for individuals above two years old in targeted areas. The scale up of MDA programs may heighten the drug selection pressures on Schistosoma parasites, which could lead to the emergence of PZQ resistant schistosomes. The reliance on a single drug to treat a disease of this magnitude is worrying should drug resistance develop. Therefore, there is a need to detect and track resistant schistosomes to counteract the threat of drug resistance to the WHO 2030 NTD roadmap targets. Until recently, drug resistance studies have been hindered by the lack of molecular markers associated with PZQ resistance. This review discusses recent significant advances in understanding the molecular basis of PZQ action in S. mansoni and proposes additional genetic determinants associated with PZQ resistance. PZQ resistance will also be analyzed in the context of alternative factors that may decrease efficacy within endemic field settings, and the most recent treatment guidelines recommended by the WHO.
Collapse
|
4
|
Vianney TJ, Berger DJ, Doyle SR, Sankaranarayanan G, Serubanja J, Nakawungu PK, Besigye F, Sanya RE, Holroyd N, Allan F, Webb EL, Elliott AM, Berriman M, Cotton JA. Genome-wide analysis of Schistosoma mansoni reveals limited population structure and possible praziquantel drug selection pressure within Ugandan hot-spot communities. PLoS Negl Trop Dis 2022; 16:e0010188. [PMID: 35981002 PMCID: PMC9426917 DOI: 10.1371/journal.pntd.0010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/30/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Populations within schistosomiasis control areas, especially those in Africa, are recommended to receive regular mass drug administration (MDA) with praziquantel (PZQ) as the main strategy for controlling the disease. The impact of PZQ treatment on schistosome genetics remains poorly understood, and is limited by a lack of high-resolution genetic data on the population structure of parasites within these control areas. We generated whole-genome sequence data from 174 individual miracidia collected from both children and adults from fishing communities on islands in Lake Victoria in Uganda that had received either annual or quarterly MDA with PZQ over four years, including samples collected immediately before and four weeks after treatment. Genome variation within and between samples was characterised and we investigated genomic signatures of natural selection acting on these populations that could be due to PZQ treatment. The parasite population on these islands was more diverse than found in nearby villages on the lake shore. We saw little or no genetic differentiation between villages, or between the groups of villages with different treatment intensity, but slightly higher genetic diversity within the pre-treatment compared to post-treatment parasite populations. We identified classes of genes significantly enriched within regions of the genome with evidence of recent positive selection among post-treatment and intensively treated parasite populations. The differential selection observed in post-treatment and pre-treatment parasite populations could be linked to any reduced susceptibility of parasites to praziquantel treatment.
Collapse
Affiliation(s)
- Tushabe John Vianney
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Duncan J. Berger
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephen R. Doyle
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Joel Serubanja
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Prossy Kabuubi Nakawungu
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Fred Besigye
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Richard E. Sanya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Health and Systems for Health Unit, African Population and Health Research Center, Nairobi, Kenya
| | - Nancy Holroyd
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Emily L. Webb
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Berriman
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - James A. Cotton
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
5
|
Lund AJ, Wade KJ, Nikolakis ZL, Ivey KN, Perry BW, Pike HNC, Paull SH, Liu Y, Castoe TA, Pollock DD, Carlton EJ. Integrating genomic and epidemiologic data to accelerate progress toward schistosomiasis elimination. eLife 2022; 11:79320. [PMID: 36040013 PMCID: PMC9427098 DOI: 10.7554/elife.79320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes. Here, we focus on leveraging genomic data to tailor interventions to distinct social and ecological circumstances. We consider two priority questions that can be addressed by integrating epidemiological, ecological, and genomic information: (1) how often do non-human host species contribute to human schistosome infection? and (2) what is the importance of locally acquired versus imported infections in driving transmission at different stages of elimination? These questions address processes that can undermine control programs, especially those that rely heavily on treatment with praziquantel. Until recently, these questions were difficult to answer with sufficient precision to inform public health decision-making. We review the literature related to these questions and discuss how whole-genome approaches can identify the geographic and taxonomic sources of infection, and how such information can inform context-specific efforts that advance schistosomiasis control efforts and minimize the risk of reemergence.
Collapse
Affiliation(s)
- Andrea J Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Kristen J Wade
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Zachary L Nikolakis
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Kathleen N Ivey
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Blair W Perry
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Hamish NC Pike
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Sara H Paull
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Yang Liu
- Sichuan Centers for Disease Control and PreventionChengduChina
| | - Todd A Castoe
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - David D Pollock
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| |
Collapse
|
6
|
Panzner U, Boissier J. Natural Intra- and Interclade Human Hybrid Schistosomes in Africa with Considerations on Prevention through Vaccination. Microorganisms 2021; 9:microorganisms9071465. [PMID: 34361901 PMCID: PMC8305539 DOI: 10.3390/microorganisms9071465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/04/2022] Open
Abstract
Causal agents of schistosomiasis are dioecious, digenean schistosomes affecting mankind in 76 countries. Preventive measures are manifold but need to be complemented by vaccination for long-term protection; vaccine candidates in advanced pre-clinical/clinical stages include Sm14, Sm-TSP-2/Sm-TSP-2Al®, Smp80/SchistoShield®, and Sh28GST/Bilhvax®. Natural and anthropogenic changes impact on breaking species isolation barriers favoring introgressive hybridization, i.e., allelic exchange among gene pools of sympatric, interbreeding species leading to instant large genetic diversity. Phylogenetic distance matters, thus the less species differ phylogenetically the more likely they hybridize. PubMed and Embase databases were searched for publications limited to hybridale confirmation by mitochondrial cytochrome c oxidase (COX) and/or nuclear ribosomal internal transcribed spacer (ITS). Human schistosomal hybrids are predominantly reported from West Africa with clustering in the Senegal River Basin, and scattering to Europe, Central and Eastern Africa. Noteworthy is the dominance of Schistosoma haematobium interbreeding with human and veterinary species leading due to hybrid vigor to extinction and homogenization as seen for S. guineensis in Cameroon and S. haematobium in Niger, respectively. Heterosis seems to advantage S. haematobium/S. bovis interbreeds with dominant S. haematobium-ITS/S. bovis-COX1 profile to spread from West to East Africa and reoccur in France. S. haematobium/S. mansoni interactions seen among Senegalese and Côte d’Ivoirian children are unexpected due to their high phylogenetic distance. Detecting pure S. bovis and S. bovis/S. curassoni crosses capable of infecting humans observed in Corsica and Côte d’Ivoire, and Niger, respectively, is worrisome. Taken together, species hybridization urges control and preventive measures targeting human and veterinary sectors in line with the One-Health concept to be complemented by vaccination protecting against transmission, infection, and disease recurrence. Functional and structural diversity of naturally occurring human schistosomal hybrids may impact current vaccine candidates requiring further research including natural history studies in endemic areas targeted for clinical trials.
Collapse
Affiliation(s)
- Ursula Panzner
- Division of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University of Munich, 80539 Munich, Germany
- Swiss Tropical and Public Health Institute, University of Basel, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +49-176-6657-2910
| | - Jerome Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan, 66860 Perpignan, France;
| |
Collapse
|
7
|
Catalano S, Léger E, Fall CB, Borlase A, Diop SD, Berger D, Webster BL, Faye B, Diouf ND, Rollinson D, Sène M, Bâ K, Webster JP. Multihost Transmission of Schistosoma mansoni in Senegal, 2015-2018. Emerg Infect Dis 2021; 26:1234-1242. [PMID: 32441625 PMCID: PMC7258455 DOI: 10.3201/eid2606.200107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In West Africa, Schistosoma spp. are capable of infecting multiple definitive hosts, a lifecycle feature that may complicate schistosomiasis control. We characterized the evolutionary relationships among multiple Schistosoma mansoni isolates collected from snails (intermediate hosts), humans (definitive hosts), and rodents (definitive hosts) in Senegal. On a local scale, diagnosis of S. mansoni infection ranged 3.8%-44.8% in school-aged children, 1.7%-52.6% in Mastomys huberti mice, and 1.8%-7.1% in Biomphalaria pfeifferi snails. Our phylogenetic framework confirmed the presence of multiple S. mansoni lineages that could infect both humans and rodents; divergence times of these lineages varied (0.13-0.02 million years ago). We propose that extensive movement of persons across West Africa might have contributed to the establishment of these various multihost S. mansoni clades. High S. mansoni prevalence in rodents at transmission sites frequented by humans further highlights the implications that alternative hosts could have on future public health interventions.
Collapse
|
8
|
Mawa PA, Kincaid-Smith J, Tukahebwa EM, Webster JP, Wilson S. Schistosomiasis Morbidity Hotspots: Roles of the Human Host, the Parasite and Their Interface in the Development of Severe Morbidity. Front Immunol 2021; 12:635869. [PMID: 33790908 PMCID: PMC8005546 DOI: 10.3389/fimmu.2021.635869] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is the second most important human parasitic disease in terms of socioeconomic impact, causing great morbidity and mortality, predominantly across the African continent. For intestinal schistosomiasis, severe morbidity manifests as periportal fibrosis (PPF) in which large tracts of macro-fibrosis of the liver, visible by ultrasound, can occlude the main portal vein leading to portal hypertension (PHT), sequelae such as ascites and collateral vasculature, and ultimately fatalities. For urogenital schistosomiasis, severe morbidity manifests as pathology throughout the urinary system and genitals, and is a definitive cause of squamous cell bladder carcinoma. Preventative chemotherapy (PC) programmes, delivered through mass drug administration (MDA) of praziquantel (PZQ), have been at the forefront of schistosomiasis control programmes in sub-Saharan Africa since their commencement in Uganda in 2003. However, despite many successes, 'biological hotspots' (as distinct from 'operational hotspots') of both persistent high transmission and morbidity remain. In some areas, this failure to gain control of schistosomiasis has devastating consequences, with not only persistently high infection intensities, but both "subtle" and severe morbidity remaining prevalent. These hotspots highlight the requirement to revisit research into severe morbidity and its mechanisms, a topic that has been out of favor during times of PC implementation. Indeed, the focality and spatially-structured epidemiology of schistosomiasis, its transmission persistence and the morbidity induced, has long suggested that gene-environmental-interactions playing out at the host-parasite interface are crucial. Here we review evidence of potential unique parasite factors, host factors, and their gene-environmental interactions in terms of explaining differential morbidity profiles in the human host. We then take the situation of schistosomiasis mansoni within the Albertine region of Uganda as a case study in terms of elucidating the factors behind the severe morbidity observed and the avenues and directions for future research currently underway within a new research and clinical trial programme (FibroScHot).
Collapse
Affiliation(s)
- Patrice A. Mawa
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julien Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | | | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Kebede T, Bech N, Allienne JF, Olivier R, Erko B, Boissier J. Genetic evidence for the role of non-human primates as reservoir hosts for human schistosomiasis. PLoS Negl Trop Dis 2020; 14:e0008538. [PMID: 32898147 PMCID: PMC7500647 DOI: 10.1371/journal.pntd.0008538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/18/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background Schistosomiasis is a chronic parasitic disease, that affects over 207 million people and causes over 200,000 deaths annually, mainly in sub-Saharan Africa. Although many health measures have been carried out to limit parasite transmission, significant numbers of non-human primates such as Chlorocebus aethiops (Ch. aethiops) (vervet) and Papio anubis (baboon) are infected with S. mansoni, notably in Ethiopia, where they are expected to have potentially significant implications for transmission and control efforts. Objective The objective of this study was to assess and compare the genetic diversity and population structure of S. mansoni isolates from human and non-human primates free-ranging in close proximity to villages in selected endemic areas of Ethiopia. Methods A cross-sectional study was conducted in three transmission sites: Bochesa, Kime and Fincha. A total of 2,356 S. mansoni miracidia were directly isolated from fecal specimens of 104 hosts (i.e. 60 human hosts and 44 non-human primates). We performed DNA extraction and PCR amplification using fourteen microsatellite loci. Results At population scale we showed strong genetic structure between the three sample sites. At the definitive host scale, we observed that host factors can shape the genetic composition of parasite infra-populations. First, in male patients, we observed a positive link between parasite genetic diversity and the age of the patients. Second, we observed a difference in genetic diversity which was high in human males, medium in human females and low in non-human primates (NHPs). Finally, whatever the transmission site no genetic structure was observed between human and non-human primates, however, there appears to be little barriers, if any, host specificity of the S. mansoni populations with cross-host infections. Conclusion Occurrence of infection of a single host with multiple S. mansoni strains and inter- and intra-host genetic variations was observed. Substantial genetic diversity and gene flow across the S. mansoni population occurred at each site and non-human primates likely play a role in local transmission and maintenance of infection. Therefore, public health and wildlife professionals should work together to improve disease control and elimination strategies. Schistosomiasis is a chronic disease caused by flukes (trematodes). The definitive host spectrum of schistosomes, whether human, non-human primates (NHPs) or other mammals, is highly dependent on the schistosome species concerned. Genetic diversity and population structure studies of S. mansoni have provided insights into the variation of natural populations. Understanding S. mansoni genetic diversity and population structure of isolates from human and non-human primate hosts living in close proximity showed the occurrence of infection of a single host with multiple S. mansoni strains and inter- and intra-host genetic variations. In this article, the researchers assert the fact that genetic approach reveals that parasites from the three different sites are independent. Thus, we could consider the three sites as geographical replicates showing the influence of NHPs in parasitic transmission in Ethiopia. This study provides insights into the epidemiology, genetic diversity and population structure of S. mansoni in human and non-human primates in Ethiopia, all of which are crucial for the control of schistosomiasis.
Collapse
Affiliation(s)
- Tadesse Kebede
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Laboratoire Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244 CNRS, University of Perpignan, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
- * E-mail:
| | - Nicolas Bech
- Laboratory of Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Poitiers University, Poitiers, France
| | - Jean-François Allienne
- Laboratoire Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244 CNRS, University of Perpignan, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Rey Olivier
- Laboratoire Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244 CNRS, University of Perpignan, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jerome Boissier
- Laboratoire Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244 CNRS, University of Perpignan, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| |
Collapse
|
10
|
Catalano S, Sène M, Diouf ND, Fall CB, Borlase A, Léger E, Bâ K, Webster JP. Rodents as Natural Hosts of Zoonotic Schistosoma Species and Hybrids: An Epidemiological and Evolutionary Perspective From West Africa. J Infect Dis 2019; 218:429-433. [PMID: 29365139 DOI: 10.1093/infdis/jiy029] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
The complex multi-host disease dynamics of schistosomiasis and Schistosoma spp., including the emergence of zoonotic parasite hybrids, remain largely unexplored in West Africa. We elucidated the role of wild small mammals as reservoir for zoonotic Schistosoma species and hybrids in endemic areas of Senegal. We identified Schistosoma mansoni, Schistosoma bovis, and a Schistosoma haematobium/S. bovis hybrid, with local prevalence in wild rodents ranging from 1.9% to 28.6%. Our findings indicate that rodents may be an important local reservoir for zoonotic schistosomiasis in endemic areas of West Africa, amplifying transmission to humans and acting as natural definitive hosts of schistosome hybrids.
Collapse
Affiliation(s)
- Stefano Catalano
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Nicolas D Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal.,Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey, Senegal
| | - Cheikh B Fall
- Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Anna Borlase
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Elsa Léger
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Khalilou Bâ
- Centre de Biologie et de Gestion des Populations, Institut de Recherche pour le Développement, Campus ISRA-IRD Bel Air, Dakar, Senegal
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, United Kingdom
| |
Collapse
|
11
|
Blanton RE. Population Structure and Dynamics of Helminthic Infection: Schistosomiasis. Microbiol Spectr 2019; 7:10.1128/microbiolspec.ame-0009-2019. [PMID: 31325285 PMCID: PMC6650164 DOI: 10.1128/microbiolspec.ame-0009-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
While disease and outbreaks are mainly clonal for bacteria and other asexually reproducing organisms, sexual reproduction in schistosomes and other helminths usually results in unique individuals. For sexually reproducing organisms, the traits conserved in clones will instead be conserved in the group of organisms that tends to breed together, the population. While the same tools are applied to characterize DNA, how results are interpreted can be quite different at times (see another article in this collection, http://www.asmscience.org/content/journal/microbiolspec/10.1128/microbiolspec.AME-0002-2018). It is difficult to know what the real effect any control program has on the parasite population without assessing the health of this population, how they respond to the control measure, and how they recover, if they do. This review, part of the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases, concentrates on one approach using pooled samples to study schistosome populations and shows how this and other approaches have contributed to our understanding of this parasite family's biology and epidemiology. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Ronald E Blanton
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44120
| |
Collapse
|
12
|
Djuikwo-Teukeng FF, Kouam Simo A, Allienne JF, Rey O, Njayou Ngapagna A, Tchuem-Tchuente LA, Boissier J. Population genetic structure of Schistosoma bovis in Cameroon. Parasit Vectors 2019; 12:56. [PMID: 30678712 PMCID: PMC6346511 DOI: 10.1186/s13071-019-3307-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022] Open
Abstract
Background Schistosomiasis is neglected tropical parasitic disease affecting both humans and animals. Due to the human health impact, population genetic studies have focused on the three main human-infecting schistosome species: Schistosoma mansoni, S. haematobium and S. japonicum. Here we present novel data on the population genetic structure of Schistosoma bovis, a highly widespread and prevalent schistosome infecting ruminants, and therefore of veterinary importance. Methods Adult S. bovis were sampled in the two main abattoirs of Cameroon (Yaoundé and Douala). Twenty-two cows originating from four distinct localities were sampled and a total of 218 parasites were recovered. All parasites were genotyped using a panel of 14 microsatellite markers and a sub-sample of 91 parasites were sequenced and characterized with the mitochondrial (cox1) and nuclear (ITS) genetic markers. Results No significant difference in allelic richness, heterozygosity, nucleotide diversity and haplotype diversity was observed between the populations. Additionally, no strong genetic structure was observed at the country scale. Our data also show that S. bovis is more polymorphic than its sister species, S. haematobium, and that the haplotype diversity is similar to that of S. mansoni while the nucleotide diversity does not significantly differ from that of S. haematobium. The resulting negative Tajima’s D* and Fu and Li’s D* indices could be a signature of population demographic expansion. No S. haematobium/S. bovis hybrids were observed in our populations, thus all samples were considered as pure S. bovis. Conclusions This study provides novel insights into genetic diversity and population genetic structure of S. bovis. No strong genetic structure was observed at the country scale but some genetic indices could be associated as a signature of population demographic expansion. Electronic supplementary material The online version of this article (10.1186/s13071-019-3307-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Alain Kouam Simo
- Université des Montagnes, Faculty of Heath Science, PO Box: 208, Bangangté, Cameroon
| | - Jean-François Allienne
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, F-66860, Perpignan, France
| | - Olivier Rey
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, F-66860, Perpignan, France
| | | | - Louis Albert Tchuem-Tchuente
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon.,Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jérôme Boissier
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
13
|
Le Clec’h W, Chevalier FD, McDew-White M, Allan F, Webster BL, Gouvras AN, Kinunghi S, Tchuenté LAT, Garba A, Mohammed KA, Ame SM, Webster JP, Rollinson D, Emery AM, Anderson TJC. Whole genome amplification and exome sequencing of archived schistosome miracidia. Parasitology 2018; 145:1739-1747. [PMID: 29806576 PMCID: PMC6193844 DOI: 10.1017/s0031182018000811] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adult schistosomes live in the blood vessels and cannot easily be sampled from humans, so archived miracidia larvae hatched from eggs expelled in feces or urine are commonly used for population genetic studies. Large collections of archived miracidia on FTA cards are now available through the Schistosomiasis Collection at the Natural History Museum (SCAN). Here we describe protocols for whole genome amplification of Schistosoma mansoni and Schistosome haematobium miracidia from these cards, as well as real time PCR quantification of amplified schistosome DNA. We used microgram quantities of DNA obtained for exome capture and sequencing of single miracidia, generating dense polymorphism data across the exome. These methods will facilitate the transition from population genetics, using limited numbers of markers to population genomics using genome-wide marker information, maximising the value of collections such as SCAN.
Collapse
Affiliation(s)
- Winka Le Clec’h
- Texas Biomedical Research Institute, Department of Genetics, PO Box 760549, San Antonio, TX 78245-0549, USA
| | - Frédéric D. Chevalier
- Texas Biomedical Research Institute, Department of Genetics, PO Box 760549, San Antonio, TX 78245-0549, USA
| | - Marina McDew-White
- Texas Biomedical Research Institute, Department of Genetics, PO Box 760549, San Antonio, TX 78245-0549, USA
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, United Kingdom
| | - Bonnie L. Webster
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, United Kingdom
| | - Anouk N. Gouvras
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, United Kingdom
| | - Safari Kinunghi
- National Institute for Medical Research, Mwanza Research Centre, Mwanza, United Republic of Tanzania
| | - Louis-Albert Tchuem Tchuenté
- Laboratoire de Parasitologie et Ecologie, Université de Yaoundé I, Yaoundé, Cameroon
- Center for Schistosomiasis & Parasitology, P.O. Box 7244, Yaoundé, Cameroon
| | - Amadou Garba
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724, Niamey, Niger
| | - Khalfan A. Mohammed
- Helminth Control Laboratory Unguja, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Shaali M. Ame
- Public Health Laboratory - Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Patholobiology and Population Sciences, Royal Veterinary College, University of London, AL9 7TA, UK United Kingdom
| | - David Rollinson
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, United Kingdom
| | - Aidan M. Emery
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, United Kingdom
| | - Timothy J. C. Anderson
- Texas Biomedical Research Institute, Department of Genetics, PO Box 760549, San Antonio, TX 78245-0549, USA
| |
Collapse
|
14
|
Bezerra FSDM, Pinheiro MCC, Silva Filho JDD, Castro IMND, Caldeira RL, Sousa MS, Cavalcante AB, Ramos Júnior AN. Identification of Biomphalaria sp. and other freshwater snails in the large-scale water transposition project in the Northeast of Brazil. Rev Inst Med Trop Sao Paulo 2018; 60:e41. [PMID: 30133601 PMCID: PMC6103326 DOI: 10.1590/s1678-9946201860041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022] Open
Abstract
The wide eco-bio-social intervention generated by the SaoFrancisco River
Integration Project (PISF) may contribute to the dispersion or introduction of
schistosomiasis intermediate hosts in areas without prior recording. The
objective was to characterize the limnic malacofauna and its distribution along
watersheds involved in the PISF. A cross-sectional study based on the collection
of mollusks from 33 water bodies, from Aurora, Brejo Santo, Jaguaretama,
Jaguaribara, Jati e Mauriti municipalities in the Ceara (CE) State was
developed. The conchological characteristics were used to identify snails at the
genus level. The snails of the genus Biomphalaria were analyzed
for the presence of Schistosoma mansoni cercariae and the
molecular identification (only mollusks from Brejo Santo-CE) for differentiation
between species. The following species were found: Biomphalaria
sp.; Drepanotrema sp.; Melanoides sp.;
Physa sp.; and Pomacea sp.
Pomacea sp. (75.8%) and Biomphalaria sp.
(72.7%) were the most prevalent species. All municipalities showed
Biomphalaria sp. Biomphalaria straminea
(Porcos Stream) and Biomphalaria kuhniana was identified in the
Boi 1 and Cipo reservoirs (Brejo Santo). The evaluated municipalities under the
influence of the PISF present areas with potential for schistosomiasis
transmission. It is necessary to intensify control actions and health
surveillance in these areas.
Collapse
Affiliation(s)
- Fernando Schemelzer de Moraes Bezerra
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de Pós-Graduação em Patologia, Fortaleza, Ceará, Brazil.,Universidade Federal do Ceará, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Fortaleza, Ceará, Brazil.,Universidade Federal do Ceará, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisa em Parasitologia e Biologia de Moluscos, Fortaleza, Ceará, Brazil
| | | | - José Damião da Silva Filho
- Universidade Federal do Ceará, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Pesquisa em Parasitologia e Biologia de Moluscos, Fortaleza, Ceará, Brazil
| | | | - Roberta Lima Caldeira
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Helmintologia e Malacologia Médica, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Silva Sousa
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Fortaleza, Ceará, Brazil
| | | | - Alberto Novaes Ramos Júnior
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de Pós-Graduação em Saúde Pública, Fortaleza, Ceará, Brazil
| |
Collapse
|
15
|
Abstract
Climate change is expected to impact across every domain of society, including health. The majority of the world's population is susceptible to pathological, infectious disease whose life cycles are sensitive to environmental factors across different physical phases including air, water and soil. Nearly all so-called neglected tropical diseases (NTDs) fall into this category, meaning that future geographic patterns of transmission of dozens of infections are likely to be affected by climate change over the short (seasonal), medium (annual) and long (decadal) term. This review offers an introduction into the terms and processes deployed in modelling climate change and reviews the state of the art in terms of research into how climate change may affect future transmission of NTDs. The 34 infections included in this chapter are drawn from the WHO NTD list and the WHO blueprint list of priority diseases. For the majority of infections, some evidence is available of which environmental factors contribute to the population biology of parasites, vectors and zoonotic hosts. There is a general paucity of published research on the potential effects of decadal climate change, with some exceptions, mainly in vector-borne diseases.
Collapse
Affiliation(s)
- Mark Booth
- Newcastle University, Institute of Health and Society, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
16
|
Keune H, Flandroy L, Thys S, De Regge N, Mori M, Antoine-Moussiaux N, Vanhove MPM, Rebolledo J, Van Gucht S, Deblauwe I, Hiemstra W, Häsler B, Binot A, Savic S, Ruegg SR, De Vries S, Garnier J, van den Berg T. The need for European OneHealth/EcoHealth networks. ACTA ACUST UNITED AC 2017; 75:64. [PMID: 29090094 PMCID: PMC5657065 DOI: 10.1186/s13690-017-0232-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 11/10/2022]
Abstract
Elaborating from the European One Health/Ecohealth (OH/EH) workshop that took place in fall 2016 and aimed to bring together different communities and explore collaborative potential, the creation of European networks focusing on the development of important OH/EH perspectives was a direct output from discussions at the end of some sessions, in particular: - A network on transdisciplinary One Health education. - A network integrating inputs from social sciences in One Health/EcoHealth actions and networks. - A network aiming at translating research findings on the Environment-Microbiome-Health axis into policy making, with a view to make healthy ecosystems a cost-effective disease prevention healthcare strategy. It was also suggested that a European Community of Practice could be initiated in order to support these several concrete networking initiatives, and to help to promote the building of other emerging initiatives.
Collapse
Affiliation(s)
- Hans Keune
- Belgian Community of Practice Biodiversity & Health (COPBH), Brussels, Belgium.,Belgian Biodiversity Platform, Brussels, Belgium.,Research Institute Nature & Forest (INBO), Kliniekstraat 25, 1070 Brussels, Belgium.,University of Antwerp, Faculty of Medicine and Health Sciences - Drie Eiken, gebouw R R.3.07, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucette Flandroy
- Federal Public Service Health, Food Chain Safety and Environment - DG Environment, Victor Horta Square, 40, box, 10, 1060 Brussels, Belgium
| | - Séverine Thys
- Institute of Tropical Medicine of Antwerp (ITM), Nationalestraat 155, 2000 Antwerp, Belgium
| | - Nick De Regge
- CODA-CERVA, Groeselenberg 99, 1180 Brussels, Belgium
| | - Marcella Mori
- CODA-CERVA, Groeselenberg 99, 1180 Brussels, Belgium
| | - Nicolas Antoine-Moussiaux
- University of Liège, Faculty of Veterinary Medicine (ULiege), 6 avenue de Cureghem, 4000 Liège, Belgium
| | - Maarten P M Vanhove
- Capacities for Biodiversity and Sustainable Development (CEBioS), Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Debériotstraat 32, 3000 Leuven, Belgium.,Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Javiera Rebolledo
- Scientific Institute of Public Health (WIV-ISP), Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Steven Van Gucht
- Scientific Institute of Public Health (WIV-ISP), Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Isra Deblauwe
- Institute of Tropical Medicine of Antwerp (ITM), Nationalestraat 155, 2000 Antwerp, Belgium
| | - Wim Hiemstra
- Dutch Farm Experience/Natural Livestock Farming, Winklerlaan 8, 3571 KJ Utrecht, Utrecht, Netherlands
| | - Barbara Häsler
- Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA UK
| | - Aurélie Binot
- French Agricultural Research and International Cooperation Organization (CIRAD) - UMR 117 ASTRE - Campus International de Baillarguet, 34398 Montpellier, France
| | - Sara Savic
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, Novi Sad, 21 000 Serbia
| | - Simon R Ruegg
- Vetsuisse Faculty University of Zurich, Winterthurerstrasse 270, 8057 Zürich, Switzerland
| | - Sjerp De Vries
- Wageningen University and Research, Box 47, 6700AA Wageningen, Wageningen, PO Netherlands
| | - Julie Garnier
- Odyssey Conservation Trust, Bakewell, DE45 1LA Derbyshire UK
| | | |
Collapse
|
17
|
Population genetics of the Schistosoma snail host Bulinus truncatus in Egypt. Acta Trop 2017; 172:36-43. [PMID: 28408098 DOI: 10.1016/j.actatropica.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 03/29/2017] [Accepted: 04/08/2017] [Indexed: 11/23/2022]
Abstract
The tropical freshwater snail Bulinus truncatus serves as an important intermediate host of several human and cattle Schistosoma species in many African regions. Despite some ecological and malacological studies, there is no information on the genetic diversity of B. truncatus in Egypt. Here, we sampled 70-100 snails in ten localities in Upper Egypt and the Nile Delta. Per locality, we sequenced 10 snails at a partial fragment of the cytochrome c oxidase subunit 1 gene (cox1) and we genotyped 25-30 snails at six microsatellite markers. A total of nine mitochondrial haplotypes were detected, of which five were unique to the Nile Delta and three were unique to Upper Egypt, indicating that snail populations may have evolved independently in both regions. Bayesian clustering and hierarchical F-statistics using microsatellite markers further revealed strong population genetic structure at the level of locality. Observed heterozygosity was much lower compared to what is expected under random mating, which could be explained by high selfing rates, population size reductions and to a lesser extent by the Wahlund effect. Despite these observations, we found signatures of gene flow and cross-fertilization, even between snails from the Nile Delta and Upper Egypt, indicating that B. truncatus can travel across large distances in Egypt. These observations could have serious consequences for disease epidemiology, as it means that infected snails from one region could rapidly and unexpectedly spark a new epidemic in another distant region. This could be one of the factors explaining the rebound of human Schistosoma infections in the Nile Delta, despite decades of sustained schistosomiasis control.
Collapse
|
18
|
Bangert M, Molyneux DH, Lindsay SW, Fitzpatrick C, Engels D. The cross-cutting contribution of the end of neglected tropical diseases to the sustainable development goals. Infect Dis Poverty 2017; 6:73. [PMID: 28372566 PMCID: PMC5379574 DOI: 10.1186/s40249-017-0288-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/16/2017] [Indexed: 01/14/2023] Open
Abstract
The Sustainable Development Goals (SDGs) call for an integrated response, the kind that has defined Neglected Tropical Diseases (NTDs) efforts in the past decade.NTD interventions have the greatest relevance for SDG3, the health goal, where the focus on equity, and its commitment to reaching people in need of health services, wherever they may live and whatever their circumstances, is fundamentally aligned with the target of Universal Health Coverage. NTD interventions, however, also affect and are affected by many of the other development areas covered under the 2030 Agenda. Strategies such as mass drug administration or the programmatic integration of NTD and WASH activities (SDG6) are driven by effective global partnerships (SDG17). Intervention against the NTDs can also have an impact on poverty (SDG1) and hunger (SDG2), can improve education (SDG4), work and economic growth (SDG8), thereby reducing inequalities (SDG10). The community-led distribution of donated medicines to more than 1 billion people reinforces women's empowerment (SDG5), logistics infrastructure (SDG9) and non-discrimination against disability (SDG16). Interventions to curb mosquito-borne NTDs contribute to the goals of urban sustainability (SDG11) and resilience to climate change (SDG13), while the safe use of insecticides supports the goal of sustainable ecosystems (SDG15). Although indirectly, interventions to control water- and animal-related NTDs can facilitate the goals of small-scale fishing (SDG14) and sustainable hydroelectricity and biofuels (SDG7).NTDs proliferate in less developed areas in countries across the income spectrum, areas where large numbers of people have little or no access to adequate health care, clean water, sanitation, housing, education, transport and information. This scoping review assesses how in this context, ending the epidemic of the NTDs can impact and improve our prospects of attaining the SDGs.
Collapse
Affiliation(s)
- Mathieu Bangert
- Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211 Geneva, Switzerland
| | - David H. Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Christopher Fitzpatrick
- Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211 Geneva, Switzerland
| | - Dirk Engels
- Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211 Geneva, Switzerland
| |
Collapse
|
19
|
Van den Broeck F, Maes GE, Larmuseau MHD, Rollinson D, Sy I, Faye D, Volckaert FAM, Polman K, Huyse T. Correction: Reconstructing Colonization Dynamics of the Human Parasite Schistosoma mansoni following Anthropogenic Environmental Changes in Northwest Senegal. PLoS Negl Trop Dis 2015; 9:e0004090. [PMID: 26406990 PMCID: PMC4583503 DOI: 10.1371/journal.pntd.0004090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|