1
|
Kato H. Dr. Jekyll and Mr. Hyde in sand fly saliva. Parasitol Int 2025; 105:102998. [PMID: 39581305 DOI: 10.1016/j.parint.2024.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Phlebotomine sand flies are very small hematophagous insects, and some species transmit human pathogens, such as Leishmania protozoa. Similar to other hematophagous insects, sand flies possess unique bioactive substances in their saliva to facilitate blood feeding. Active transcriptome and proteome analyses revealed that sand flies have unique molecules in their saliva that are structurally different from those of other arthropods. These components exert anticoagulant, antiplatelet, vasodilator, and anti-inflammatory effects on the host, and the unique bioactivities of each molecule are currently being characterized. Several bioactivities of salivary components have been associated with the exacerbation of Leishmania infection, and investigations on the molecular mechanisms responsible are underway. On the other hand, host immunity to some salivary components has been shown to confer protection against Leishmania infection, suggesting the potential of salivary components as vaccine candidates. Although some negative effects of protection by sand fly saliva have been reported, the identification of suitable immunogens and elucidation of appropriate protective immunity are expected for the development of a sand fly saliva vaccine against Leishmania infection.
Collapse
Affiliation(s)
- Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke city, Tochigi 329-0498, Japan.
| |
Collapse
|
2
|
Keskek Turk Y, Ergunay K, Kohl A, Hughes J, McKimmie CS. Toscana virus - an emerging Mediterranean arbovirus transmitted by sand flies. J Gen Virol 2024; 105:002045. [PMID: 39508743 PMCID: PMC11542635 DOI: 10.1099/jgv.0.002045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Toscana virus (TOSV) is an emerging arthropod-borne virus (arbovirus) of medical importance that is increasing its range across much of the Mediterranean Basin, Europe and the Middle East. Transmitted by Phlebotomus spp. sand flies, it is the most clinically relevant sand fly-borne phlebovirus. Initially isolated in the Tuscany region of Central Italy, it has now been detected in multiple countries that surround this geographical area. Infection of the vertebrate host can cause fever and neurological disease, following the dissemination of the virus to the brain. The prevalence is high in some regions, with a notable percentage of individuals showing seroconversion. TOSV can be a leading cause of acute meningitis and encephalitis (AME) during the summer months. In this comprehensive review, we will focus on several key topics. We discuss how TOSV has spread to establish outbreaks of infection in both humans and animals around the Mediterranean and the wider region. Clinical aspects of TOSV infection in humans are described, along with the best standards in diagnosis. Finally, we focus our discussion on the role of the sand fly vector, describing their biology, vector competency, implications for putative vertebrate reservoirs, the effect of the climate emergency on sand fly distribution and the putative role that sand fly-derived salivary factors may have on modulating host susceptibility to TOSV infection.
Collapse
Affiliation(s)
| | - Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, USA
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Alain Kohl
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Clive S. McKimmie
- Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| |
Collapse
|
3
|
Hamarsheh O, Guernaoui S, Karakus M, Yaghoobi-Ershadi MR, Kruger A, Amro A, Kenawy MA, Dokhan MR, Shoue DA, McDowell MA. Population structure analysis of Phlebotomus papatasi populations using transcriptome microsatellites: possible implications for leishmaniasis control and vaccine development. Parasit Vectors 2024; 17:410. [PMID: 39358814 PMCID: PMC11448080 DOI: 10.1186/s13071-024-06495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Phlebotomus papatasi is considered the primary vector of Leishmania major parasites that cause zoonotic cutaneous leishmaniasis (ZCL) in the Middle East and North Africa. Phlebotomus papatasi populations have been studied extensively, revealing the existence of different genetic populations and subpopulations over its large distribution range. Genetic diversity and population structure analysis using transcriptome microsatellite markers is important to uncover the vector distribution dynamics, essential for controlling ZCL in endemic areas. METHODS In this study, we investigated the level of genetic variation using expressed sequence tag-derived simple sequence repeats (EST-SSRs) among field and colony P. papatasi samples collected from 25 different locations in 11 countries. A total of 302 P. papatasi sand fly individuals were analyzed, including at least 10 flies from each region. RESULTS The analysis revealed a high-level population structure expressed by five distinct populations A through E, with moderate genetic differentiation among all populations. These genetic differences in expressed genes may enable P. papatasi to adapt to different environmental conditions along its distribution range and likely affect dispersal. CONCLUSIONS Elucidating the population structuring of P. papatasi is essential to L. major containment efforts in endemic countries. Moreover, the level of genetic variation among these populations may improve our understanding of Leishmania-sand fly interactions and contribute to the efforts of vaccine development based on P. papatasi salivary proteins.
Collapse
Affiliation(s)
- Omar Hamarsheh
- Department of Biological Sciences, Faculty of Science and Technology, Al-Quds University, Jerusalem, Palestine.
- Department of Biological Sciences, Galvin Life Science, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46656, USA.
| | - Souad Guernaoui
- Biotechnology, Conservation and Valorization of Natural Resources Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mehmet Karakus
- Faculty of Medicine, Department of Medical Microbiology, University of Health Sciences, Istanbul, Turkey
| | - Mohammad Reza Yaghoobi-Ershadi
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Amro
- Faculty of Pharmacy, Al-Quds University, Jerusalem, Palestine
| | - Mohamed Amin Kenawy
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | | | - Douglas A Shoue
- Department of Biological Sciences, Galvin Life Science, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46656, USA
| | - Mary Ann McDowell
- Department of Biological Sciences, Galvin Life Science, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46656, USA.
| |
Collapse
|
4
|
Sant'Anna MRV, Pereira-Filho AA, Mendes-Sousa AF, Silva NCS, Gontijo NF, Pereira MH, Koerich LB, D'Avila Pessoa GC, Andersen J, Araujo RN. Inhibition of vertebrate complement system by hematophagous arthropods: inhibitory molecules, mechanisms, physiological roles, and applications. INSECT SCIENCE 2024; 31:1334-1352. [PMID: 38246860 DOI: 10.1111/1744-7917.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.
Collapse
Affiliation(s)
- Mauricio Roberto Vianna Sant'Anna
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Adalberto Alves Pereira-Filho
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Naylene Carvalho Sales Silva
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Marcos Horácio Pereira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Leonardo Barbosa Koerich
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Grasielle Caldas D'Avila Pessoa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - John Andersen
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ricardo Nascimento Araujo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Barrera-Téllez FJ, Prieto-Martínez FD, Hernández-Campos A, Martínez-Mayorga K, Castillo-Bocanegra R. In Silico Exploration of the Trypanothione Reductase (TryR) of L. mexicana. Int J Mol Sci 2023; 24:16046. [PMID: 38003236 PMCID: PMC10671491 DOI: 10.3390/ijms242216046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Human leishmaniasis is a neglected tropical disease which affects nearly 1.5 million people every year, with Mexico being an important endemic region. One of the major defense mechanisms of these parasites is based in the polyamine metabolic pathway, as it provides the necessary compounds for its survival. Among the enzymes in this route, trypanothione reductase (TryR), an oxidoreductase enzyme, is crucial for the Leishmania genus' survival against oxidative stress. Thus, it poses as an attractive drug target, yet due to the size and features of its catalytic pocket, modeling techniques such as molecular docking focusing on that region is not convenient. Herein, we present a computational study using several structure-based approaches to assess the druggability of TryR from L. mexicana, the predominant Leishmania species in Mexico, beyond its catalytic site. Using this consensus methodology, three relevant pockets were found, of which the one we call σ-site promises to be the most favorable one. These findings may help the design of new drugs of trypanothione-related diseases.
Collapse
Affiliation(s)
- Francisco J. Barrera-Téllez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Fernando D. Prieto-Martínez
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz, Km. 4.5, Ucú 97357, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Karina Martínez-Mayorga
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacal, Mérida 97302, Mexico
| | - Rafael Castillo-Bocanegra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
6
|
Alvarenga PH, Andersen JF. An Overview of D7 Protein Structure and Physiological Roles in Blood-Feeding Nematocera. BIOLOGY 2022; 12:biology12010039. [PMID: 36671732 PMCID: PMC9855781 DOI: 10.3390/biology12010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Each time an insect bites a vertebrate host, skin and vascular injury caused by piercing triggers a series of responses including hemostasis, inflammation and immunity. In place, this set of redundant and interconnected responses would ultimately cause blood coagulation, itching and pain leading to host awareness, resulting in feeding interruption in the best-case scenario. Nevertheless, hematophagous arthropod saliva contains a complex cocktail of molecules that are crucial to the success of blood-feeding. Among important protein families described so far in the saliva of blood sucking arthropods, is the D7, abundantly expressed in blood feeding Nematocera. D7 proteins are distantly related to insect Odorant-Binding Proteins (OBP), and despite low sequence identity, observation of structural similarity led to the suggestion that like OBPs, they should bind/sequester small hydrophobic compounds. Members belonging to this family are divided in short forms and long forms, containing one or two OBP-like domains, respectively. Here, we provide a review of D7 proteins structure and function, discussing how gene duplication and some modifications in their OBP-like domains during the course of evolution lead to gain and loss of function among different hematophagous Diptera species.
Collapse
|
7
|
Fayaz S, Bahrami F, Parvizi P, Fard-Esfahani P, Ajdary S. An overview of the sand fly salivary proteins in vaccine development against leishmaniases. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:792-801. [PMID: 36721440 PMCID: PMC9867623 DOI: 10.18502/ijm.v14i6.11253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leishmaniases are a group of vector-borne parasitic diseases transmitted through the infected sand flies. Leishmania parasites are inoculated into the host skin along with sand fly saliva. The sand fly saliva consists of biologically active molecules with anticoagulant, anti-inflammatory, and immunomodulatory properties. Such properties help the parasite circumvent the host's immune responses. The salivary compounds support the survival and multiplication of the parasite and facilitate the disease progression. It is documented that frequent exposure to uninfected sand fly bites produces neutralizing antibodies against specific salivary proteins and further activates the cellular mechanisms to prevent the establishment of the disease. The immune responses due to sand fly saliva are highly specific and depend on the composition of the salivary molecules. Hence, thorough knowledge of these compounds in different sand fly species and information about their antigenicity are paramount to designing an effective vaccine. Herein, we review the composition of the sand fly saliva, immunomodulatory properties of some of its components, immune responses to its proteins, and potential vaccine candidates against leishmaniases.
Collapse
Affiliation(s)
- Shima Fayaz
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Corresponding author: Soheila Ajdary, Ph.D, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran. Tel: +98-2166968857 Fax: +98-2166968857 ;
| |
Collapse
|
8
|
Lozano-Sardaneta YN, Jacobo-Olvera E, Ruiz-Tovar K, Sánchez-Montes S, Rodríguez-Rojas JJ, Fernández-Figueroa EA, Roldán-Fernández SG, Rodriguez-Martinez LM, Dzul-Manzanilla F, Correa-Morales F, Treviño-Garza N, Díaz-Albíter HM, Zwetsch A, Valadas SYOB, Nilce-Silveira A, Becker I, Huerta H. Detection of Wolbachia and Leishmania DNA in sand flies (Diptera: Psychodidae, Phlebotominae) from a focus of cutaneous leishmaniasis in Tabasco, Mexico. Parasitol Res 2022; 121:513-520. [PMID: 35067743 DOI: 10.1007/s00436-021-07412-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
Phlebotomine sand flies are the main vectors of Leishmania genus species worldwide; therefore, the detection of some reproductive parasites, such as Wolbachia, has been considered a possible strategy for biological control. In Mexico, leishmaniasis cases have been recorded in 25 states, yet only two sand fly species have been related to Wolbachia spp. Although the state of Tabasco has a high number of leishmaniasis cases, only few studies have been done on sand fly species. The aim of this study was to analyze the diversity of sand fly species and to detect Wolbachia spp. and/or Leishmania spp. in the captured specimens. Sand flies were collected at the locality of Huimango, Tabasco, Mexico, during October 2019, using nine light traps (CDC) and two Shannon traps per night. The specimens were identified and females were analyzed by PCR for the DNA detection for pathogens. A total of 193 sand fly specimens belonging to five species were morphologically identified. Pintomyia ovallesi was the most abundant species (76.84%), followed by Micropygomyia cayennensis (6.40%). Furthermore, first records of four sand fly species were established for the state of Tabasco, thereby increasing the species richness in the state from four to eight. We observed a natural infection rate of 9.7% (10/103) for Leishmania and 0.91% (1/103) for Wolbachia. The importance of conducting entomological surveys in endemic areas of leishmaniasis in Mexico is highlighted, to determine whether other sand fly species may be potential vectors of Leishmania spp., and if some Wolbachia strains could be relevant for the control of leishmaniasis.
Collapse
Affiliation(s)
- Yokomi N Lozano-Sardaneta
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, 06720, México
| | - Erika Jacobo-Olvera
- Laboratorio de Entomología, Instituto de Diagnóstico Y Referencia Epidemiológicos 'Dr, Manuel Martínez Báez', Francisco de P. Miranda No. 177, Unidad Lomas de Plateros, 01480, Ciudad de México, México
| | - Karina Ruiz-Tovar
- Laboratorio de Entomología, Instituto de Diagnóstico Y Referencia Epidemiológicos 'Dr, Manuel Martínez Báez', Francisco de P. Miranda No. 177, Unidad Lomas de Plateros, 01480, Ciudad de México, México
| | - Sokani Sánchez-Montes
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, 06720, México
- Facultad de Ciencias Biológicas Y Agropecuarias, Región Tuxpan, Universidad Veracruzana, Carretera Tuxpan Tampico Kilómetro 7. 5, Universitaria, 92870, Tuxpan de Rodríguez Cano, Veracruz, México
| | - Jorge J Rodríguez-Rojas
- Centro de Investigación Y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Patógenos Y Vectores, Dr. Carlos Canseco S/N Esquina Dr. J. E. González, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, México
| | - Edith A Fernández-Figueroa
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, 06720, México
- Computational and Integrative Genomics, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | | | - Luis Miguel Rodriguez-Martinez
- Unidad de Investigación Entomológica Y de Bioensayo del Estado de Tabasco, Melchor Ocampo 113, Col Atasta de serra, C.P.86100, Villahermosa, Tabasco, México
| | - Felipe Dzul-Manzanilla
- Programa de Enfermedades Transmitidas Por Vectores, Centro Nacional de Programas Preventivos Y Control de Enfermedades, Benjamín Franklin 132, 11800, Escandón, Mexico City, México
| | - Fabian Correa-Morales
- Programa de Enfermedades Transmitidas Por Vectores, Centro Nacional de Programas Preventivos Y Control de Enfermedades, Benjamín Franklin 132, 11800, Escandón, Mexico City, México
| | - Nancy Treviño-Garza
- Programa de Enfermedades Transmitidas Por Vectores, Centro Nacional de Programas Preventivos Y Control de Enfermedades, Benjamín Franklin 132, 11800, Escandón, Mexico City, México
| | - Héctor Manuel Díaz-Albíter
- El Colegio de La Frontera Sur (ECOSUR), Unidad Villahermosa, Carretera Villahermosa a Reforma Km. 15.5 s/n, Ranchería Guineo 2da. Sección, 86280, Villahermosa, Tabasco, Mexico
| | - Adriana Zwetsch
- Laboratorio de Transmissores de Leishmanioses, Instituto Oswaldo Cruz, Fundaçăo Oswaldo Cruz. Avenue Brasil 4365, Manguinhos, Rio de Janeiro, 21040-360, Brazil
| | | | - Ana Nilce-Silveira
- Asesora Regional Para Leishmaniasis OPS/OMS, Av. Gov. Leonel de Moura Brizola, Duque de Caxias, Rio de Janeiro, 7778, Brazil
| | - Ingeborg Becker
- Centro de Medicina Tropical, Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, 06720, México
| | - Herón Huerta
- Laboratorio de Entomología, Instituto de Diagnóstico Y Referencia Epidemiológicos 'Dr, Manuel Martínez Báez', Francisco de P. Miranda No. 177, Unidad Lomas de Plateros, 01480, Ciudad de México, México.
| |
Collapse
|
9
|
Sumova P, Sanjoba C, Willen L, Polanska N, Matsumoto Y, Noiri E, Paul SK, Ozbel Y, Volf P. PpSP32-like protein as a marker of human exposure to Phlebotomus argentipes in Leishmania donovani foci in Bangladesh. Int J Parasitol 2021; 51:1059-1068. [PMID: 34273394 PMCID: PMC8575019 DOI: 10.1016/j.ijpara.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Phlebotomus argentipes is a sole vector of Leishmania donovani in the Indian subcontinent. 40% of humans in the study area have IgG antibodies against P. argentipes saliva. A correlation was found between IgG responses against P. argentipes saliva and rPagSP06. rPagSP06 is a valid antigen to measure human exposure to P. argentipes.
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.
Collapse
Affiliation(s)
- Petra Sumova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic.
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Laura Willen
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic
| | - Nikola Polanska
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic
| | - Yoshitsugu Matsumoto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Eisei Noiri
- Hemodialysis and Apheresis, Nephrology 107 Lab, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shyamal Kumar Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2206, Bangladesh
| | - Yusuf Ozbel
- Department of Parasitology, Faculty of Medicine, Ege University, 35100 Bornova, Izmir, Turkey
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Vinicna7, Prague 12844, Czech Republic
| |
Collapse
|
10
|
Sangare M, Coulibaly YI, Huda N, Vidal S, Tariq S, Coulibaly ME, Coulibaly SY, Soumaoro L, Dicko I, Traore B, Sissoko IM, Traore SF, Faye O, Nutman TB, Valenzuela JG, Oliveira F, Doumbia S, Kamhawi S, Semnani RT. Individuals co-exposed to sand fly saliva and filarial parasites exhibit altered monocyte function. PLoS Negl Trop Dis 2021; 15:e0009448. [PMID: 34106920 PMCID: PMC8189443 DOI: 10.1371/journal.pntd.0009448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/04/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In Mali, cutaneous leishmaniasis (CL) and filariasis are co-endemic. Previous studies in animal models of infection have shown that sand fly saliva enhance infectivity of Leishmania parasites in naïve hosts while saliva-specific adaptive immune responses may protect against cutaneous and visceral leishmaniasis. In contrast, the human immune response to Phlebotomus duboscqi (Pd) saliva, the principal sand fly vector in Mali, was found to be dichotomously polarized with some individuals having a Th1-dominated response and others having a Th2-biased response. We hypothesized that co-infection with filarial parasites may be an underlying factor that modulates the immune response to Pd saliva in endemic regions. METHODOLOGY/PRINCIPAL FINDINGS To understand which cell types may be responsible for polarizing human responses to sand fly saliva, we investigated the effect of salivary glands (SG) of Pd on human monocytes. To this end, elutriated monocytes were cultured in vitro, alone, or with SG, microfilariae antigen (MF ag) of Brugia malayi, or LPS, a positive control. The mRNA expression of genes involved in inflammatory or regulatory responses was then measured as were cytokines and chemokines associated with these responses. Monocytes of individuals who were not exposed to sand fly bites (mainly North American controls) significantly upregulated the production of IL-6 and CCL4; cytokines that enhance leishmania parasite establishment, in response to SG from Pd or other vector species. This selective inflammatory response was lost in individuals that were exposed to sand fly bites which was not changed by co-infection with filarial parasites. Furthermore, infection with filarial parasites resulted in upregulation of CCL22, a type-2 associated chemokine, both at the mRNA levels and by its observed effect on the frequency of recruited monocytes. CONCLUSIONS/SIGNIFICANCE Together, our data suggest that SG or recombinant salivary proteins from Pd alter human monocyte function by upregulating selective inflammatory cytokines.
Collapse
Affiliation(s)
- Moussa Sangare
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- * E-mail: (MS); (RTS)
| | - Yaya Ibrahim Coulibaly
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Dermatology Hospital of Bamako, Bamako, Mali
| | - Naureen Huda
- Department of Pediatrics, University of California, San Francisco, California, United States of America
| | - Silvia Vidal
- Institut Recerca H. Sant Pau C. Sant Quintí, Spain
| | - Sameha Tariq
- Laboratory of Parasitic Diseases, LPD, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michel Emmanuel Coulibaly
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Siaka Yamoussa Coulibaly
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Lamine Soumaoro
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ilo Dicko
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bourama Traore
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Dermatology Hospital of Bamako, Bamako, Mali
| | - Ibrahim Moussa Sissoko
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou Fantamady Traore
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ousmane Faye
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Dermatology Hospital of Bamako, Bamako, Mali
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, LPD, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, LMVR, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, LMVR, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Seydou Doumbia
- Mali International Center for Excellence in Research, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Shaden Kamhawi
- Vector Molecular Biology Section, LMVR, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Roshanak Tolouei Semnani
- Autoimmunity and Translational Immunology, Precigen, Inc. A wholly owned subsidiary of Intrexon Corporation, Germantown, Maryland, United States of America
- * E-mail: (MS); (RTS)
| |
Collapse
|
11
|
Guimaraes-Costa AB, Shannon JP, Waclawiak I, Oliveira J, Meneses C, de Castro W, Wen X, Brzostowski J, Serafim TD, Andersen JF, Hickman HD, Kamhawi S, Valenzuela JG, Oliveira F. A sand fly salivary protein acts as a neutrophil chemoattractant. Nat Commun 2021; 12:3213. [PMID: 34050141 PMCID: PMC8163758 DOI: 10.1038/s41467-021-23002-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Apart from bacterial formyl peptides or viral chemokine mimicry, a non-vertebrate or insect protein that directly attracts mammalian innate cells such as neutrophils has not been molecularly characterized. Here, we show that members of sand fly yellow salivary proteins induce in vitro chemotaxis of mouse, canine and human neutrophils in transwell migration or EZ-TAXIScan assays. We demonstrate murine neutrophil recruitment in vivo using flow cytometry and two-photon intravital microscopy in Lysozyme-M-eGFP transgenic mice. We establish that the structure of this ~ 45 kDa neutrophil chemotactic protein does not resemble that of known chemokines. This chemoattractant acts through a G-protein-coupled receptor and is dependent on calcium influx. Of significance, this chemoattractant protein enhances lesion pathology (P < 0.0001) and increases parasite burden (P < 0.001) in mice upon co-injection with Leishmania parasites, underlining the impact of the sand fly salivary yellow proteins on disease outcome. These findings show that some arthropod vector-derived factors, such as this chemotactic salivary protein, activate rather than inhibit the host innate immune response, and that pathogens take advantage of these inflammatory responses to establish in the host. Immune mimicry has been shown in chemokine like moieties from bacteria and viruses. Here, the authors characterise a sand fly salivary protein that induces neutrophil chemotaxis and explore its impact in a model of parasitic infection.
Collapse
Affiliation(s)
- Anderson B Guimaraes-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.,Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - John P Shannon
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ingrid Waclawiak
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Jullyanna Oliveira
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Waldione de Castro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Xi Wen
- Chemotaxis Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Joseph Brzostowski
- Twinbrook Imaging Facility, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - John F Andersen
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
12
|
Cecílio P, Oristian J, Meneses C, Serafim TD, Valenzuela JG, Cordeiro da Silva A, Oliveira F. Engineering a vector-based pan-Leishmania vaccine for humans: proof of principle. Sci Rep 2020; 10:18653. [PMID: 33122717 PMCID: PMC7596519 DOI: 10.1038/s41598-020-75410-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Leishmaniasis is a spectrum of diseases transmitted by sand fly vectors that deposit Leishmania spp. parasites in the host skin during blood feeding. Currently, available treatment options are limited, associated with high toxicity and emerging resistance. Even though a vaccine for human leishmaniasis is considered an achievable goal, to date we still do not have one available, a consequence (amongst other factors) of a lack of pre-clinical to clinical translatability. Pre-exposure to uninfected sand fly bites or immunization with defined sand fly salivary proteins was shown to negatively impact infection. Still, cross-protection reports are rare and dependent on the phylogenetic proximity of the sand fly species, meaning that the applicability of a sand fly saliva-based vaccine will be limited to a defined geography, one parasite species and one form of leishmaniasis. As a proof of principle of a future vector saliva-based pan-Leishmania vaccine, we engineered through a reverse vaccinology approach that maximizes translation to humans, a fusion protein consisting of immunogenic portions of PdSP15 and LJL143, sand fly salivary proteins demonstrated as potential vaccine candidates against cutaneous and visceral leishmaniasis, respectively. The in silico analysis was validated ex vivo, through T cell proliferation experiments, proving that the fusion protein (administered as a DNA vaccine) maintained the immunogenicity of both PdSP15 and LJL143. Additionally, while no significant effect was detected in the context of L. major transmission by P. duboscqi, this DNA vaccine was defined as partially protective, in the context of L. major transmission by L. longipalpis sand flies. Importantly, a high IFNγ response alone was not enough to confer protection, that mainly correlated with low T cell mediated Leishmania-specific IL-4 and IL-10 responses, and consequently with high pro/anti-inflammatory cytokine ratios. Overall our immunogenicity data suggests that to design a potentially safe vector-based pan-Leishmania vaccine, without geographic restrictions and against all forms of leishmaniasis is an achievable goal. This is why we propose our approach as a proof-of principle, perhaps not only applicable to the anti-Leishmania vector-based vaccines' field, but also to other branches of knowledge that require the design of multi-epitope T cell vaccines with a higher potential for translation.
Collapse
Affiliation(s)
- Pedro Cecílio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - James Oristian
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Anabela Cordeiro da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal.
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| |
Collapse
|
13
|
RNA-sequencing of the Nyssomyia neivai sialome: a sand fly-vector from a Brazilian endemic area for tegumentary leishmaniasis and pemphigus foliaceus. Sci Rep 2020; 10:17664. [PMID: 33077743 PMCID: PMC7572365 DOI: 10.1038/s41598-020-74343-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis encompasses a spectrum of diseases caused by a protozoan belonging to the genus Leishmania. The parasite is transmitted by the bite of sand flies, which inoculate the promastigote forms into the host’s skin while acquiring a blood meal. Nyssomyia neivai is one of the main vectors of tegumentary leishmaniasis (TL) in Brazil. Southeastern Brazil is an endemic region for TL but also overlaps with an endemic focus for pemphigus foliaceus (PF), also known as Fogo Selvagem. Salivary proteins of sand flies, specifically maxadilan and LJM11, have been related to pemphigus etiopathogenesis in the New World, being proposed as an environmental trigger for autoimmunity. We present a comprehensive description of the salivary transcriptome of the N. neivai, using deep sequencing achieved by the Illumina protocol. In addition, we highlight the abundances of several N. neivai salivary proteins and use phylogenetic analysis to compare with Old- and New-World sand fly salivary proteins. The collection of protein sequences associated with the salivary glands of N. neivai can be useful for monitoring vector control strategies as biomarkers of N. neivai, as well as driving vector-vaccine design for leishmaniasis. Additionally, this catalog will serve as reference to screen for possible antigenic peptide candidates triggering anti-Desmoglein-1 autoantibodies.
Collapse
|
14
|
Ojha R, Pandey RK, Prajapati VK. Vaccinomics strategy to concoct a promising subunit vaccine for visceral leishmaniasis targeting sandfly and leishmania antigens. Int J Biol Macromol 2020; 156:548-557. [DOI: 10.1016/j.ijbiomac.2020.04.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
|
15
|
Oliveira F, Giorgobiani E, Guimarães-Costa AB, Abdeladhim M, Oristian J, Tskhvaradze L, Tsertsvadze N, Zakalashvili M, Valenzuela JG, Kamhawi S. Immunity to vector saliva is compromised by short sand fly seasons in endemic regions with temperate climates. Sci Rep 2020; 10:7990. [PMID: 32409684 PMCID: PMC7224377 DOI: 10.1038/s41598-020-64820-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
Individuals exposed to sand fly bites develop humoral and cellular immune responses to sand fly salivary proteins. Moreover, cellular immunity to saliva or distinct salivary proteins protects against leishmaniasis in various animal models. In Tbilisi, Georgia, an endemic area for visceral leishmaniasis (VL), sand flies are abundant for a short period of ≤3 months. Here, we demonstrate that humans and dogs residing in Tbilisi have little immunological memory to saliva of P. kandelakii, the principal vector of VL. Only 30% of humans and 50% of dogs displayed a weak antibody response to saliva after the end of the sand fly season. Likewise, their peripheral blood mononuclear cells mounted a negligible cellular immune response after stimulation with saliva. RNA seq analysis of wild-caught P. kandelakii salivary glands established the presence of a typical salivary repertoire that included proteins commonly found in other sand fly species such as the yellow, SP15 and apyrase protein families. This indicates that the absence of immunity to P. kandelakii saliva in humans and dogs from Tbilisi is probably caused by insufficient exposure to sand fly bites. This absence of immunity to vector saliva will influence the dynamics of VL transmission in Tbilisi and other endemic areas with brief sand fly seasons.
Collapse
Affiliation(s)
- Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Ekaterina Giorgobiani
- R. G. Lugar Center for Public Health Research, National Center for Disease Control and Public Health (NCDC), Kakheti Highway 99, 0198, Tbilisi, Georgia
| | - Anderson B Guimarães-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - James Oristian
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Lamzira Tskhvaradze
- R. G. Lugar Center for Public Health Research, National Center for Disease Control and Public Health (NCDC), Kakheti Highway 99, 0198, Tbilisi, Georgia
| | - Nikoloz Tsertsvadze
- R. G. Lugar Center for Public Health Research, National Center for Disease Control and Public Health (NCDC), Kakheti Highway 99, 0198, Tbilisi, Georgia
| | - Mariam Zakalashvili
- R. G. Lugar Center for Public Health Research, National Center for Disease Control and Public Health (NCDC), Kakheti Highway 99, 0198, Tbilisi, Georgia
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA.
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA.
| |
Collapse
|
16
|
Polanska N, Ishemgulova A, Volfova V, Flegontov P, Votypka J, Yurchenko V, Volf P. Sergentomyia schwetzi: Salivary gland transcriptome, proteome and enzymatic activities in two lineages adapted to different blood sources. PLoS One 2020; 15:e0230537. [PMID: 32208452 PMCID: PMC7092997 DOI: 10.1371/journal.pone.0230537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
During the blood feeding, sand fly females inject saliva containing immunomodulatory and anti-haemostatic molecules into their vertebrate hosts. The saliva composition is species-specific, likely due to an adaptation to particular haemostatic pathways of their preferred host. Research on sand fly saliva is limited to the representatives of two best-studied genera, Phlebotomus and Lutzomyia. Although the members of the genus Sergentomyia are highly abundant in many areas in the Old World, their role in human disease transmission remains uncertain. Most Sergentomyia spp. preferentially attack various species of reptiles, but feeding on warm-blooded vertebrates, including humans and domestic animals, has been repeatedly described, especially for Sergentomyia schwetzi, of which salivary gland transcriptome and proteome is analyzed in the current study. Illumina RNA sequencing and de novo assembly of the reads and their annotation revealed 17,293 sequences homologous to other arthropods’ proteins. In the sialome, all proteins typical for sand fly saliva were identified–antigen 5-related, lufaxin, yellow-related, PpSP15-like, D7-related, ParSP25-like, and silk proteins, as well as less frequent salivary proteins included 71kDa-like, ParSP80-like, SP16-like, and ParSP17-like proteins. Salivary enzymes include apyrase, hyaluronidase, endonuclease, amylase, lipase A2, adenosine deaminase, pyrophosphatase, 5’nucleotidase, and ribonuclease. Proteomics analysis of salivary glands identified 631 proteins, 81 of which are likely secreted into the saliva. We also compared two S. schwetzi lineages derived from the same origin. These lineages were adapted for over 40 generations for blood feeding either on mice (S-M) or geckos (S-G), two vertebrate hosts with different haemostatic mechanisms. Altogether, 20 and 40 annotated salivary transcripts were up-regulated in the S-M and S-G lineage, respectively. Proteomic comparison revealed ten salivary proteins more abundant in the lineage S-M, whereas 66 salivary proteins were enriched in the lineage S-G. No difference between lineages was found for apyrase activity; contrarily the hyaluronidase activity was significantly higher in the lineage feeding on mice.
Collapse
Affiliation(s)
- Nikola Polanska
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| | - Aygul Ishemgulova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vera Volfova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Jan Votypka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Sullivan R, Heavey S, Graham DG, Wellman R, Khan S, Thrumurthy S, Simpson BS, Baker T, Jevons S, Ariza J, Eneh V, Pye H, Luxton H, Hamoudi R, Whitaker H, Lovat LB. An optimised saliva collection method to produce high-yield, high-quality RNA for translational research. PLoS One 2020; 15:e0229791. [PMID: 32150588 PMCID: PMC7062242 DOI: 10.1371/journal.pone.0229791] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/14/2020] [Indexed: 01/08/2023] Open
Abstract
Saliva represents an ideal matrix for diagnostic biomarker development as it is readily available and requires no invasive collection procedures. However, salivary RNA is labile and rapidly degrades. Previous attempts to isolate RNA from saliva have yielded poor quality and low concentrations. Here we compare collection and processing methods and propose an approach for future studies. The effects of RNA stabilisers, storage temperatures, length of storage and fasting windows were investigated on pooled saliva samples from healthy volunteers. Isolated RNA was assessed for concentration and quality. Bacterial growth was investigated through RT-PCR using bacterial and human primers. Optimal conditions were implemented and quality controlled in a clinical setting. The addition of RNAlater increased mean RNA yield from 4912 ng/μl to 15,473 ng and RNA Integrity Number (RIN) from 4.5 to 7.0. No significant changes to RNA yield were observed for storage at room temperature beyond 1 day or at -80 °C. Bacterial growth did not occur in samples stored at ambient temperature for up to a week. There was a trend towards higher RNA concentration when saliva was collected after overnight fasting but no effect on RIN. In the clinic, RNA yields of 6307 ng and RINs of 3.9 were achieved, improving on previous reports. The method we describe here is a robust, clinically feasible saliva collection method using preservative that gives high concentrations and improved RINs compared to saliva collected without preservative.
Collapse
Affiliation(s)
- Roisin Sullivan
- Gastroenterological Intervention Centre (GENIE) and Molecular Diagnostics and Therapeutics Group, University College London, London, England, United Kingdom
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, Division of Surgery & Interventional Science, University College London, London, England, United Kingdom
| | - David G. Graham
- Gastroenterological Intervention Centre (GENIE) and Molecular Diagnostics and Therapeutics Group, University College London, London, England, United Kingdom
- University College London Hospital, London, England, United Kingdom
| | - Rachel Wellman
- Gastroenterological Intervention Centre (GENIE) and Molecular Diagnostics and Therapeutics Group, University College London, London, England, United Kingdom
| | - Saif Khan
- Gastroenterological Intervention Centre (GENIE) and Molecular Diagnostics and Therapeutics Group, University College London, London, England, United Kingdom
| | - Sri Thrumurthy
- Gastroenterological Intervention Centre (GENIE) and Molecular Diagnostics and Therapeutics Group, University College London, London, England, United Kingdom
| | - Benjamin S. Simpson
- Molecular Diagnostics and Therapeutics Group, Division of Surgery & Interventional Science, University College London, London, England, United Kingdom
| | - Tina Baker
- Gastroenterological Intervention Centre (GENIE) and Molecular Diagnostics and Therapeutics Group, University College London, London, England, United Kingdom
| | - Sarah Jevons
- Gastroenterological Intervention Centre (GENIE) and Molecular Diagnostics and Therapeutics Group, University College London, London, England, United Kingdom
| | - Jose Ariza
- University College London Hospital, London, England, United Kingdom
| | - Victor Eneh
- University College London Hospital, London, England, United Kingdom
| | - Hayley Pye
- Molecular Diagnostics and Therapeutics Group, Division of Surgery & Interventional Science, University College London, London, England, United Kingdom
| | - Hayley Luxton
- Molecular Diagnostics and Therapeutics Group, Division of Surgery & Interventional Science, University College London, London, England, United Kingdom
| | - Rifat Hamoudi
- Gastroenterological Intervention Centre (GENIE) and Molecular Diagnostics and Therapeutics Group, University College London, London, England, United Kingdom
- Molecular Diagnostics and Therapeutics Group, Division of Surgery & Interventional Science, University College London, London, England, United Kingdom
- Department of Clinical Sciences, Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, Division of Surgery & Interventional Science, University College London, London, England, United Kingdom
- * E-mail:
| | - Laurence B. Lovat
- Gastroenterological Intervention Centre (GENIE) and Molecular Diagnostics and Therapeutics Group, University College London, London, England, United Kingdom
- University College London Hospital, London, England, United Kingdom
| |
Collapse
|
18
|
Sumova P, Sima M, Kalouskova B, Polanska N, Vanek O, Oliveira F, Valenzuela JG, Volf P. Amine-binding properties of salivary yellow-related proteins in phlebotomine sand flies. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 115:103245. [PMID: 31604119 DOI: 10.1016/j.ibmb.2019.103245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The amine-binding properties of sand fly salivary yellow-related proteins (YRPs) were described only in Lutzomyia longipalpis sand flies. Here, we experimentally confirmed the kratagonist function of YRPs in the genus Phlebotomus. We utilized microscale thermophoresis technique to determine the amine-binding properties of YRPs in saliva of Phlebotomus perniciosus and P. orientalis, the Old-World vectors of visceral leishmaniases causative agents. Expressed and purified YRPs from three different sand fly species were tested for their interactions with various biogenic amines, including serotonin, histamine and catecholamines. Using the L. longipalpis YRP LJM11 as a control, we have demonstrated the comparability of the microscale thermophoresis method with conventional isothermal titration calorimetry described previously. By homology in silico modeling, we predicted the surface charge and both amino acids and hydrogen bonds of the amine-binding motifs to influence the binding affinities between closely related YRPs. All YRPs tested bound at least two biogenic amines, while the affinities differ both among and within species. Low affinity was observed for histamine. The salivary recombinant proteins rSP03B (P. perniciosus) and rPorASP4 (P. orientalis) showed high-affinity binding of serotonin, suggesting their capability to facilitate inhibition of the blood vessel contraction and platelet aggregation.
Collapse
Affiliation(s)
- Petra Sumova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Michal Sima
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Kalouskova
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nikola Polanska
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondrej Vanek
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Jablonka W, Kim IH, Alvarenga PH, Valenzuela JG, Ribeiro JMC, Andersen JF. Functional and structural similarities of D7 proteins in the independently-evolved salivary secretions of sand flies and mosquitoes. Sci Rep 2019; 9:5340. [PMID: 30926880 PMCID: PMC6440969 DOI: 10.1038/s41598-019-41848-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/18/2019] [Indexed: 11/09/2022] Open
Abstract
The habit of blood feeding evolved independently in many insect orders of families. Sand flies and mosquitoes belong to separate lineages of blood-feeding Diptera and are thus considered to have evolved the trait independently. Because of this, sand fly salivary proteins differ structurally from those of mosquitoes, and orthologous groups are nearly impossible to define. An exception is the long-form D7-like proteins that show conservation with their mosquito counterparts of numerous residues associated with the N-terminal domain binding pocket. In mosquitoes, this pocket is responsible for the scavenging of proinflammatory cysteinyl leukotrienes and thromboxanes at the feeding site. Here we show that long-form D7 proteins AGE83092 and ABI15936 from the sand fly species, Phlebotomus papatasi and P. duboscqi, respectively, inhibit the activation of platelets by collagen and the thromboxane A2 analog U46619. Using isothermal titration calorimetry, we also demonstrate direct binding of U46619 and cysteinyl leukotrienes C4, D4 and E4 to the P. papatasi protein. The crystal structure of P. duboscqi ABI15936 was determined and found to contain two domains oriented similarly to those of the mosquito proteins. The N-terminal domain contains an apparent eicosanoid binding pocket. The C-terminal domain is smaller in overall size than in the mosquito D7s and is missing some helical elements. Consequently, it does not contain an obvious internal binding pocket for small-molecule ligands that bind to many mosquito D7s. Structural similarities indicate that mosquito and sand fly D7 proteins have evolved from similar progenitors, but phylogenetics and differences in intron/exon structure suggest that they may have acquired the ability to bind vertebrate eicosanoids independently, indicating a convergent evolution scenario.
Collapse
Affiliation(s)
- Willy Jablonka
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Il Hwan Kim
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Patricia H Alvarenga
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Jesus G Valenzuela
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Jose M C Ribeiro
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - John F Andersen
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA.
| |
Collapse
|
20
|
Volfova V, Volf P. The salivary hyaluronidase and apyrase of the sand fly Sergentomyia schwetzi (Diptera, Psychodidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:67-74. [PMID: 30273670 DOI: 10.1016/j.ibmb.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Current knowledge of sand fly salivary components has been based solely on Lutzomyia and Phlebotomus species which feed mainly on mammals; their hyaluronidases and apyrases were demonstrated to significantly affect blood meal intake and transmission of vector-borne pathogens. Members of the third sand fly genus Sergentomyia preferentially feed on reptiles but some of them are considered as Leishmania and arboviruses vectors; however, nothing is known about their salivary components that might be relevant for pathogens transmission. Here, marked hyaluronidase and apyrase activities were demonstrated in the saliva of a Sergentomyia schwetzi colony maintained on geckos. Hyaluronidase of S. schwetzi cleaved hyaluronan as the prominent substrate, and was active over a broad pH range from 4.0 to 8.0, with a sharp peak at pH 5.0. SDS PAGE zymography demonstrated the monomeric character of the enzyme, which remained active in reducing conditions. The apparent molecular weight of 43 kDa was substantially lower than in any sand fly species tested so far and may indicate relatively low grade of the glycosylation of the enzyme. The apyrase of S. schwetzi was typical strictly Ca2+ dependent Cimex-family apyrase. It was active over a pH range from 6.5 to 9.0, with a peak of activity at pH 8.5, and had an ATPase/ADPase ratio of 0.9. The apyrase activity increased during the first 3 days post-emergence, then reached a plateau and remained relatively constant until day 8. In comparison with a majority of Phlebotomus and Lutzomyia species tested to date, both the hyaluronidase and apyrase activities of S. schwetzi were relatively low, which may reflect an adaptation of this sand fly to blood feeding on non-mammalian hosts.
Collapse
Affiliation(s)
- Vera Volfova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic.
| |
Collapse
|
21
|
Arcà B, Ribeiro JM. Saliva of hematophagous insects: a multifaceted toolkit. CURRENT OPINION IN INSECT SCIENCE 2018; 29:102-109. [PMID: 30551815 DOI: 10.1016/j.cois.2018.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 06/09/2023]
Abstract
Transcriptomic, proteomic and genomic studies significantly improved our understanding of the complexity of blood feeding insect saliva providing unparalleled evolutionary insights. Salivary genes appeared to be under strong selective pressure with gene duplication and functional diversification being a powerful driver in the evolution of novel salivary genes/functions. The first insect salivary proteins responsible for complement inhibition were identified and a widespread mechanism of action shared by unrelated salivary protein families was recognized and named kratagonism. microRNAs were for the first time described in the saliva of a few blood feeding arthropods raising intriguing questions on their possible contribution to vertebrate host manipulation and pathogen transmission and further emphasizing how much we still have to learn on blood feeding insect saliva.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Josè Mc Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| |
Collapse
|
22
|
Coutinho-Abreu IV, Valenzuela JG. Comparative Evolution of Sand Fly Salivary Protein Families and Implications for Biomarkers of Vector Exposure and Salivary Vaccine Candidates. Front Cell Infect Microbiol 2018; 8:290. [PMID: 30211125 PMCID: PMC6123390 DOI: 10.3389/fcimb.2018.00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022] Open
Abstract
Sand fly salivary proteins that produce a specific antibody response in humans and animal reservoirs have been shown to be promising biomarkers of sand fly exposure. Furthermore, immunity to sand fly salivary proteins were shown to protect rodents and non-human primates against Leishmania infection. We are missing critical information regarding the divergence amongst sand fly salivary proteins from different sand fly vectors, a knowledge that will support the search of broad or specific salivary biomarkers of vector exposure and those for vaccines components against leishmaniasis. Here, we compare the molecular evolution of the salivary protein families in New World and Old World sand flies from 14 different sand fly vectors. We found that the protein families unique to OW sand flies are more conserved than those unique to NW sand flies regarding both sequence polymorphisms and copy number variation. In addition, the protein families unique to OW sand flies do not display as many conserved cysteine residues as the one unique to the NW group (28.5% in OW vs. 62.5% in NW). Moreover, the expression of specific protein families is restricted to the salivary glands of unique sand fly taxon. For instance, the ParSP15 family is unique to the Larroussius subgenus whereas phospholipase A2 is only expressed in member of Larroussius and Adlerius subgenera. The SP2.5-like family is only expressed in members of the Phlebotomus and Paraphlebotomus subgenera. The sequences shared between OW and NW sand flies have diverged at similar rates (38.7 and 45.3% amino acid divergence, respectively), yet differences in gene copy number were evident across protein families and sand fly species. Overall, this comparative analysis sheds light on the different modes of sand fly salivary protein family divergence. Also, it informs which protein families are unique and conserved within taxon for the choice of taxon-specific biomarkers of vector exposure, as well as those families more conserved across taxa to be used as pan-specific vaccines for leishmaniasis.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
23
|
Cunha JM, Abbehusen M, Suarez M, Valenzuela J, Teixeira CR, Brodskyn CI. Immunization with LJM11 salivary protein protects against infection with Leishmania braziliensis in the presence of Lutzomyia longipalpis saliva. Acta Trop 2018; 177:164-170. [PMID: 29037520 DOI: 10.1016/j.actatropica.2017.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/02/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
Abstract
Leishmania is transmitted in the presence of sand fly saliva. Protective immunity generated by saliva has encouraged identification of a vector salivary-based vaccine. Previous studies have shown that immunization with LJM11, a salivary protein from Lutzomyia longipalpis, is able to induce a Th1 immune response and protect mice against bites of Leishmania major-infected Lutzomyia longipalpis. Here, we further investigate if immunization with LJM11 recombinant protein is able to confer cross-protection against infection with Leishmania braziliensis associated with salivary gland sonicate (SGS) from Lutzomyia intermedia or Lu. longipalpis. Mice immunized with LJM11 protein exhibited an increased production of anti-LJM11 IgG, IgG1 and IgG2a and a DTH response characterized by an inflammatory infiltrate with the presence of CD4+ IFN-γ+ T cells. LJM11-immunized mice were intradermally infected in the ear with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia SGS. A significant reduction of parasite numbers in the ear and lymph node in the group challenged with L. braziliensis plus Lu. longipalpis SGS was observed, but not when the challenge was performed with L. braziliensis plus Lu. intermedia SGS. A higher specific production of IFN-γ and absence of IL-10 by lymph node cells were only observed in LJM11 immunized mice after infection. After two weeks, a similar frequency of CD4+ IFN-γ+ T cells was detected in LJM11 and BSA groups challenged with L. braziliensis plus Lu. longipalpis SGS, suggesting that early events possibly triggered by immunization are essential for protection against Leishmania infection. Our findings support the specificity of saliva-mediated immune responses and reinforce the importance of identifying cross-protective salivary antigens.
Collapse
Affiliation(s)
- Jurema M Cunha
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil.
| | - Melissa Abbehusen
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil.
| | - Martha Suarez
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil.
| | - Jesus Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | | | - Cláudia I Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil; Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia (INCT) de Investigação em Imunologia, Salvador, BA, Brazil.
| |
Collapse
|
24
|
Cecílio P, Pérez-Cabezas B, Fernández L, Moreno J, Carrillo E, Requena JM, Fichera E, Reed SG, Coler RN, Kamhawi S, Oliveira F, Valenzuela JG, Gradoni L, Glueck R, Gupta G, Cordeiro-da-Silva A. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Negl Trop Dis 2017; 11:e0005951. [PMID: 29176865 PMCID: PMC5720812 DOI: 10.1371/journal.pntd.0005951] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 12/07/2017] [Accepted: 09/11/2017] [Indexed: 01/18/2023] Open
Abstract
The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL), consisting of Virus-Like Particles (VLP) loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD) component, and KMP11 and LeishF3+, as parasite-derived (PD) antigens) and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA). Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the "natural infection".
Collapse
Affiliation(s)
- Pedro Cecílio
- Parasite Disease group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Begoña Pérez-Cabezas
- Parasite Disease group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Laura Fernández
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Epifanio Fichera
- Etna Biotech S.R.L, via Vincenzo Lancia, 57—Zona Industriale Blocco Palma 1, Catania, Italy
| | - Steven G. Reed
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States of America
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States of America
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Reinhard Glueck
- Etna Biotech S.R.L, via Vincenzo Lancia, 57—Zona Industriale Blocco Palma 1, Catania, Italy
| | - Gaurav Gupta
- Etna Biotech S.R.L, via Vincenzo Lancia, 57—Zona Industriale Blocco Palma 1, Catania, Italy
| | - Anabela Cordeiro-da-Silva
- Parasite Disease group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Tlili A, Marzouki S, Chabaane E, Abdeladhim M, Kammoun-Rebai W, Sakkouhi R, Belhadj Hmida N, Oliveira F, Kamhawi S, Louzir H, Valenzuela JG, Ben Ahmed M. Phlebotomus papatasi Yellow-Related and Apyrase Salivary Proteins Are Candidates for Vaccination against Human Cutaneous Leishmaniasis. J Invest Dermatol 2017; 138:598-606. [PMID: 29054598 DOI: 10.1016/j.jid.2017.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/25/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Nowadays, there is no available vaccine for human leishmaniasis. Animal experiments demonstrate that pre-exposure to sand fly saliva confers protection against leishmaniasis. Our preceding work in humans indicates that Phlebotomus papatasi saliva induces the production of IL-10 by CD8+ T lymphocytes. The neutralization of IL-10 enhanced the activation of a T-cell CD4+ population-producing IFN-γ. Herein, we used a biochemical and functional genomics approach to identify the sand fly salivary components that are responsible for the activation of the T helper type 1 immune response in humans, therefore constituting potential vaccine candidates against leishmaniasis. Fractionated P. papatasi salivary extracts were first tested on T lymphocytes of immune donors. We confirmed that the CD4+ lymphocytes proliferate and produce IFN-γ in response to stimulation with the proteins of molecular weight >30 kDa. Peripheral blood mononuclear cells from immune donors were transfected with plasmids coding for the most abundant proteins from the P. papatasi salivary gland cDNA library. Our result showed that the "yellow related proteins," PPTSP42 and PPTSP44, and "apyrase," PPTSP36, are the proteins responsible for the aforementioned cellular immune response and IFN-γ production. Strikingly, PPTSP44 triggered the highest level of lymphocyte proliferation and IFN-γ production. Multiplex cytokine analysis confirmed the T helper type 1-polarized response induced by these proteins. Importantly, recombinant PPTSP44 validated the results observed with the DNA plasmid, further supporting that PPTSP44 constitutes a promising vaccine candidate against human leishmaniasis.
Collapse
Affiliation(s)
- Aymen Tlili
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Soumaya Marzouki
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Emna Chabaane
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Wafa Kammoun-Rebai
- Laboratory of Medical Parasitology, Biotechnologies and Biomolecules, LR11IPT06, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Rahma Sakkouhi
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Nabil Belhadj Hmida
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Hechmi Louzir
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Mélika Ben Ahmed
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
26
|
Mendes-Sousa AF, do Vale VF, Silva NCS, Guimaraes-Costa AB, Pereira MH, Sant'Anna MRV, Oliveira F, Kamhawi S, Ribeiro JMC, Andersen JF, Valenzuela JG, Araujo RN. The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B. Front Immunol 2017; 8:1065. [PMID: 28912782 PMCID: PMC5583147 DOI: 10.3389/fimmu.2017.01065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023] Open
Abstract
Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation) is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system.
Collapse
Affiliation(s)
- Antonio F Mendes-Sousa
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Campus Senador Helvídio Nunes de Barros, Universidade Federal do Piauí, Picos, Piauí, Brazil
| | - Vladimir Fazito do Vale
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Laboratory of Simuliids and Onchocerciasis, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naylene C S Silva
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson B Guimaraes-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Marcos H Pereira
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio R V Sant'Anna
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - José M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - John F Andersen
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ricardo N Araujo
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis 2017; 11:e0005600. [PMID: 28704370 PMCID: PMC5509103 DOI: 10.1371/journal.pntd.0005600] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. Methods and findings In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. Conclusions In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host–sand fly–parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.
Collapse
Affiliation(s)
- Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| | - Iva Rohousova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Sima
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
28
|
Iqbal A, Goldfeder MB, Marques-Porto R, Asif H, Souza JGD, Faria F, Chudzinski-Tavassi AM. Revisiting antithrombotic therapeutics; sculptin, a novel specific, competitive, reversible, scissile and tight binding inhibitor of thrombin. Sci Rep 2017; 7:1431. [PMID: 28469161 PMCID: PMC5431157 DOI: 10.1038/s41598-017-01486-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 02/01/2023] Open
Abstract
Thrombin is a multifunctional enzyme with a key role in the coagulation cascade. Its functional modulation can culminate into normal blood coagulation or thrombosis. Thus, the identification of novel potent inhibitors of thrombin are of immense importance. Sculptin is the first specific thrombin inhibitor identified in the transcriptomics analysis of tick’s salivary glands. It consists of 168 residues having four similar repeats and evolutionary diverged from hirudin. Sculptin is a competitive, specific and reversible inhibitor of thrombin with a Ki of 18.3 ± 1.9 pM (kon 4.04 ± 0.03 × 107 M−1 s−1 and koff 0.65 ± 0.04 × 10−3 s−1). It is slowly consumed by thrombin eventually losing its activity. Contrary, sculptin is hydrolyzed by factor Xa and each polypeptide fragment is able to inhibit thrombin independently. A single domain of sculptin alone retains ~45% of inhibitory activity, which could bind thrombin in a bivalent fashion. The formation of a small turn/helical-like structure by active site binding residues of sculptin might have made it a more potent thrombin inhibitor. In addition, sculptin prolongs global coagulation parameters. In conclusion, sculptin and its independent domain(s) have strong potential to become novel antithrombotic therapeutics.
Collapse
Affiliation(s)
- Asif Iqbal
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Mauricio Barbugiani Goldfeder
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Rafael Marques-Porto
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Huma Asif
- Laboratory of Gene Expression in Eukaryotes, Butantan Institute, São Paulo, SP, Brazil
| | - Jean Gabriel de Souza
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Fernanda Faria
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil. .,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Structure of SALO, a leishmaniasis vaccine candidate from the sand fly Lutzomyia longipalpis. PLoS Negl Trop Dis 2017; 11:e0005374. [PMID: 28278244 PMCID: PMC5344329 DOI: 10.1371/journal.pntd.0005374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Immunity to the sand fly salivary protein SALO (Salivary Anticomplement of Lutzomyia longipalpis) protected hamsters against Leishmania infantum and L. braziliensis infection and, more recently, a vaccine combination of a genetically modified Leishmania with SALO conferred strong protection against L. donovani infection. Because of the importance of SALO as a potential component of a leishmaniasis vaccine, a plan to produce this recombinant protein for future scale manufacturing as well as knowledge of its structural characteristics are needed to move SALO forward for the clinical path. METHODOLOGY/PRINCIPAL FINDINGS Recombinant SALO was expressed as a soluble secreted protein using Pichia pastoris, rSALO(P), with yields of 1g/L and >99% purity as assessed by SEC-MALS and SDS-PAGE. Unlike its native counterpart, rSALO(P) does not inhibit the classical pathway of complement; however, antibodies to rSALO(P) inhibit the anti-complement activity of sand fly salivary gland homogenate. Immunization with rSALO(P) produces a delayed type hypersensitivity response in C57BL/6 mice, suggesting rSALO(P) lacked anti-complement activity but retained its immunogenicity. The structure of rSALO(P) was solved by S-SAD at Cu-Kalpha to 1.94 Å and refined to Rfactor 17%. SALO is ~80% helical, has no appreciable structural similarities to any human protein, and has limited structural similarity in the C-terminus to members of insect odorant binding proteins. SALO has three predicted human CD4+ T cell epitopes on surface exposed helices. CONCLUSIONS/SIGNIFICANCE The results indicate that SALO as expressed and purified from P. pastoris is suitable for further scale-up, manufacturing, and testing. SALO has a novel structure, is not similar to any human proteins, is immunogenic in rodents, and does not have the anti-complement activity observed in the native salivary protein which are all important attributes to move this vaccine candidate forward to the clinical path.
Collapse
|
30
|
Patino LH, Ramírez JD. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions. INFECTION GENETICS AND EVOLUTION 2017; 49:273-282. [PMID: 28179142 DOI: 10.1016/j.meegid.2017.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
Abstract
The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts.
Collapse
Affiliation(s)
- Luz Helena Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24# 63C-69, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24# 63C-69, Bogotá, Colombia.
| |
Collapse
|
31
|
Sima M, Novotny M, Pravda L, Sumova P, Rohousova I, Volf P. The Diversity of Yellow-Related Proteins in Sand Flies (Diptera: Psychodidae). PLoS One 2016; 11:e0166191. [PMID: 27812196 PMCID: PMC5094789 DOI: 10.1371/journal.pone.0166191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/24/2016] [Indexed: 01/06/2023] Open
Abstract
Yellow-related proteins (YRPs) present in sand fly saliva act as affinity binders of bioamines, and help the fly to complete a bloodmeal by scavenging the physiological signals of damaged cells. They are also the main antigens in sand fly saliva and their recombinant form is used as a marker of host exposure to sand flies. Moreover, several salivary proteins and plasmids coding these proteins induce strong immune response in hosts bitten by sand flies and are being used to design protecting vaccines against Leishmania parasites. In this study, thirty two 3D models of different yellow-related proteins from thirteen sand fly species of two genera were constructed based on the known protein structure from Lutzomyia longipalpis. We also studied evolutionary relationships among species based on protein sequences as well as sequence and structural variability of their ligand-binding site. All of these 33 sand fly YRPs shared a similar structure, including a unique tunnel that connects the ligand-binding site with the solvent by two independent paths. However, intraspecific modifications found among these proteins affects the charges of the entrances to the tunnel, the length of the tunnel and its hydrophobicity. We suggest that these structural and sequential differences influence the ligand-binding abilities of these proteins and provide sand flies with a greater number of YRP paralogs with more nuanced answers to bioamines. All these characteristics allow us to better evaluate these proteins with respect to their potential use as part of anti-Leishmania vaccines or as an antigen to measure host exposure to sand flies.
Collapse
Affiliation(s)
- Michal Sima
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| | - Marian Novotny
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukas Pravda
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Sumova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Iva Rohousova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|