1
|
Alvedro A, Macchiaverna NP, Murphy N, Enriquez GF, Gaspe MS, Gürtler RE, Cardinal MV. Unusual frequency of Trypanosoma cruzi DTU TcI and predominance of hybrid lineages in Triatoma infestans before and after control interventions in the Argentinian Chaco. Acta Trop 2025; 261:107502. [PMID: 39675410 DOI: 10.1016/j.actatropica.2024.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Transmission of Trypanosoma cruzi involves diverse hosts, vectors and parasitic genotypes, in different environments. In recent decades, the distribution of T. cruzi has altered due to urbanization of affected people and vectors. We implemented a longitudinal intervention program between 2015 and 2022 which aimed to suppress (peri)domestic Triatoma infestans in the municipality of Avia Terai (Chaco Province, Argentina), and found a marginal risk of domestic vector-borne transmission across the rural-to-urban gradient after interventions. Here, we identified the parasite Discrete Typing Units (DTUs) in infected T. infestans collected throughout the intervention program (37 insects pre-intervention and 7 post-intervention). Identification of DTUs was conducted by two methodologies, using DNA extracted from T. infestans rectal ampoules. We also assessed the association between blood-feeding sources and DTUs. Complete DTU identification was achieved in 48 % of samples. The hybrid lineages TcV or TcVI and their combinations predominated (72 %), followed by TcI (16 %) and mixed infections of TcI and hybrid lineages (14 %). Half (50 %) of the houses harbored TcI infected bugs either alone or mixed with TcII/TcV/TcVI. Humans predominated as the bloodmeal sources in all insects with identified DTU. All DTUs (TcI, TcV and TcII/TcV/TcVI) were recorded in both rural and peri-urban environments, with 62 % of the houses having more than one DTU. These results confirm the predominance of hybrid lineages in domestic transmission cycles of the Argentine Chaco. However, the finding of several triatomines infected with TcI both pre- and post-intervention raises the question of which host(s) are involved in its transmission.
Collapse
Affiliation(s)
- Alejandra Alvedro
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Gustavo Fabián Enriquez
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - María Sol Gaspe
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Jiménez-Ortega RF, Alejandre-Aguilar R, Rivas N, Sánchez F, Sánchez-Muñoz F, Ballinas-Verdugo MA. Ninoa T. cruzi Strain Modifies the Expression of microRNAs in Cardiac Tissue and Plasma During Chagas Disease Infection. Pathogens 2024; 13:1127. [PMID: 39770386 PMCID: PMC11679500 DOI: 10.3390/pathogens13121127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Chronic chagasic cardiomyopathy is the most severe clinical manifestation of Chagas disease, which affects approximately seven million people worldwide. Latin American countries bear the highest burden, with the greatest morbidity and mortality rates. Currently, diagnostic methods do not provide information on the risk of progression to severe stages of the disease. Recently, microRNAs (miRNAs) have been proposed as promising tools for monitoring the progression of Chagas disease. This study aimed to analyze the expression profiles of the miRNAs miR-1, miR-16, miR-208, and miR-208b in cardiac tissue, plasma, and plasma extracellular vesicles from Ninoa TcI-infected mice during the acute and indeterminate phases of Chagas disease. Methods: The cardiac-specific miRNAs and miR-16 levels were examined in all samples using RT-qPCR. Additionally, pathway analysis was performed to investigate the impact of potential miRNA target genes across various databases. Results: Elevated miR-208b expression was observed in cardiac tissue and plasma during the acute phase. Bioinformatic analysis identified three pathways implicated in disease progression: phosphatidylinositol 3-kinase signaling, Fc gamma receptor-mediated phagocytosis, and leukocyte transendothelial migration, as well as cholinergic synapse pathways. Conclusions: MiR-208b was upregulated during the acute phase and downregulated in the indeterminate phase, suggesting it may play a crucial role in disease progression.
Collapse
Affiliation(s)
- Rogelio F. Jiménez-Ortega
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Unidad de Acupuntura Rehabilitatoria, Universidad Estatal del Valle de Ecatepec (UNEVE), Ecatepec 55210, Estado de México, Mexico
| | - Ricardo Alejandre-Aguilar
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico; (R.A.-A.); (N.R.)
| | - Nancy Rivas
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico; (R.A.-A.); (N.R.)
| | - Fausto Sánchez
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Xochimilco (UAM-X), Mexico City 04960, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez (INCICH), Mexico City 14080, Mexico;
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez (INCICH), Mexico City 14080, Mexico
| | - Martha A. Ballinas-Verdugo
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez (INCICH), Mexico City 14080, Mexico
| |
Collapse
|
3
|
Martínez-Vega PP, Rivera-Pérez M, Pellegrin G, Amblard-Rambert A, Calderón-Quintal JA, Barnabé C, Teh-Poot C, Ruiz-Piña H, Ortega-Pacheco A, Waleckx E. Presence of Trypanosoma cruzi (TcI) in different tissues of Didelphis virginiana from the metropolitan area of Merida, southeastern Mexico: Epidemiological relevance and implications for non-vector transmission routes. PLoS Negl Trop Dis 2024; 18:e0012733. [PMID: 39671456 DOI: 10.1371/journal.pntd.0012733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/27/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Trypanosoma cruzi is mainly transmitted to mammals by vectors, but other transmission routes exist. For example, opossums can harbor the infectious form of the parasite in their anal glands, underscoring their potential role in non-vectorial transmission. T. cruzi has been detected in the anal gland secretions of various opossum species, and their infectivity has been confirmed in Didelphis marsupialis and D. albiventris. Vertical transmission has also been proposed in D. virginiana. However, if this occurs in opossums, it remains unclear whether it happens during pregnancy or lactation. In Mexico, Didelphis virginiana and D. marsupialis are the main opossum species. Our objective was to investigate the possible contribution of urban opossums to non-vectorial transmission of T. cruzi in the metropolitan area of Merida, Yucatan, in southeastern Mexico. METHODOLOGY/PRINCIPAL FINDINGS Blood, anal gland secretions, and milk were collected from opossums captured in Merida, Mexico, all identified as D. virginiana using taxonomic keys and Cytb sequencing. By PCR, T. cruzi was detected in 16/102 opossums (15.69%) in at least one type of sample. The prevalence was 14.71% (15/102) in blood and 0.98% (1/102) in anal gland secretions. 1/22 milk samples (4.55%) tested positive. Blood of 37 offspring from T. cruzi-positive mothers was collected and tested negative. qPCR revealed that females with offspring tended to have lower parasite load in blood compared to females without offspring and males. Genotyping of the parasite through multiplex PCR revealed only the DTU TcI. CONCLUSIONS/SIGNIFICANCE This study agrees with previous works where D. virginiana was the most abundant opossum species in urban areas in southeastern Mexico and confirms that it is associated with TcI. Detection of T. cruzi in a sample of anal gland secretions underscores the potential risk represented by D. virginiana in non-vectorial transmission in urban areas of southeastern Mexico. Detection in the milk of a lactating female, along with the observed tendency towards a lower parasite load in females with offspring, highlight the importance of further investigating vertical transmission in D. virginiana.
Collapse
Affiliation(s)
- Pedro Pablo Martínez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Marian Rivera-Pérez
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
- Universidad Politécnica de Huatusco, Huatusco, México
| | - Gabrielle Pellegrin
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Antoine Amblard-Rambert
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Jorge Andrés Calderón-Quintal
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Christian Barnabé
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Christian Teh-Poot
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Hugo Ruiz-Piña
- Laboratorio de Zoonosis, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Antonio Ortega-Pacheco
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, México
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France
- ACCyC, Asociación Chagas con Ciencia y Conocimiento, A. C., Orizaba, Veracruz, México
| |
Collapse
|
4
|
Versteeg L, Adhikari R, Robinson G, Lee J, Wei J, Islam N, Keegan B, Russell WK, Poveda C, Villar MJ, Jones K, Bottazzi ME, Hotez P, Tijhaar E, Pollet J. Immunopeptidomic MHC-I profiling and immunogenicity testing identifies Tcj2 as a new Chagas disease mRNA vaccine candidate. PLoS Pathog 2024; 20:e1012764. [PMID: 39693359 DOI: 10.1371/journal.ppat.1012764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease. Globally 6 to 7 million people are infected by this parasite of which 20-30% will progress to develop Chronic Chagasic Cardiomyopathy (CCC). Despite its high disease burden, no clinically approved vaccine exists for the prevention or treatment of CCC. Developing vaccines that can stimulate T. cruzi-specific CD8+ cytotoxic T cells and eliminate infected cells requires targeting parasitic antigens presented on major histocompatibility complex-I (MHC-I) molecules. We utilized mass spectrometry-based immunopeptidomics to investigate which parasitic peptides are displayed on MHC-I of T. cruzi infected cells. Through duplicate experiments, we identified an array of unique peptides that could be traced back to 17 distinct T. cruzi proteins. Notably, six peptides were derived from Tcj2, a trypanosome chaperone protein and member of the DnaJ (heat shock protein 40) family, showcasing its potential as a viable candidate vaccine antigen with cytotoxic T cell inducing capacity. Upon testing Tcj2 as an mRNA vaccine candidate in mice, we observed a strong memory cytotoxic CD8+ T cell response along with a Th1-skewed humoral antibody response. In vitro co-cultures of T. cruzi infected cells with splenocytes of Tcj2-immunized mice restricted the replication of T. cruzi, demonstrating the protective potential of Tcj2 as a vaccine target. Moreover, antisera from Tcj2-vaccinated mice displayed no cross-reactivity with DnaJ in lysates from mouse and human indicating a decreased likelihood of triggering autoimmune reactions. Our findings highlight how immunopeptidomics can identify new vaccine targets for Chagas disease, with Tcj2 emerging as a promising new mRNA vaccine candidate.
Collapse
Affiliation(s)
- Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Rakesh Adhikari
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gonteria Robinson
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jungsoon Lee
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junfei Wei
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nelufa Islam
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Brian Keegan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - William K Russell
- University of Texas Medical Branch, Mass Spectrometry Facility, UTMB Health, Galveston, Texas, United States of America
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Jose Villar
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathryn Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen Pollet
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
5
|
Dias N, Dias M, Ribeiro A, Gomes N, Moraes A, Wesley M, Gonzaga C, Ramos DDAR, Braz S, Dallago B, de Carvalho JL, Hagström L, Nitz N, Hecht M. Network Analysis of Pathogenesis Markers in Murine Chagas Disease Under Antimicrobial Treatment. Microorganisms 2024; 12:2332. [PMID: 39597721 PMCID: PMC11596328 DOI: 10.3390/microorganisms12112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Chagas disease (CD), a disease affecting millions globally, remains shrouded in scientific uncertainty, particularly regarding the role of the intestinal microbiota in disease progression. This study investigates the effects of antibiotic-induced microbiota depletion on parasite burden, immune responses, and clinical outcomes in BALB/c mice infected with either the Trypanosoma cruzi Colombiana or CL Brener strains. Mice were treated with a broad-spectrum antibiotic cocktail before infection, and parasite burden was quantified via qPCR at 30 and 100 days post-infection (dpi). Immune responses were analyzed using flow cytometry and ELISA, while histopathology was conducted on cardiac and intestinal tissues. Antibiotic treatment uncovered strain-specific correlations, with Colombiana infections affecting Bifidobacterium populations and CL Brener infections linked to Lactobacillus. Microbiota depletion initially reduced parasite burden in the heart and intestine, but an increase was observed in the chronic phase, except in the CL Brener-infected gut, where an early burden spike was followed by a decline. Antibiotic-induced bacterial shifts, such as reductions in Bacteroides and Bifidobacterium, promoted a more pro-inflammatory immune profile. These findings highlight the importance of microbiota and strain-specific factors in CD and suggest further research into microbiota manipulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Marina Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Andressa Ribeiro
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Nélio Gomes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Aline Moraes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Moisés Wesley
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Carlito Gonzaga
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Doralina do Amaral Rabello Ramos
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Shélida Braz
- Institute of Exact and Technological Sciences, Federal University of Amazonas, Manaus 69000-000, Brazil;
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Juliana Lott de Carvalho
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| |
Collapse
|
6
|
Silva MA, Izidoro MA, Aricó M, Juliano L, Schenkman S. The effect of nutritional and oxidative stress on the metabolome of Trypanosoma cruzi. Mol Microbiol 2024; 122:704-719. [PMID: 38814666 DOI: 10.1111/mmi.15279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Trypanosoma cruzi, a flagellated protozoan, is the causative agent of Chagas disease. The parasite has developed various mechanisms to get through its intricate life cycle and adapt to different evolutionary phases. T. cruzi proliferates in the insect vector's digestive tract as an epimastigote form, encountering fluctuating nutrient availability and oxidative stress caused by the digestion of red blood cells from the mammalian host blood meal. To unravel how the parasite's metabolism adapts to these changing conditions, we conducted an analysis of the chemical species present in epimastigote forms. This involved comparing cultured parasites with those subjected to nutritional deficiency or oxidative stress using untargeted metabolomics. We looked at 21 samples: seven biological copies of parasites that were actively growing, seven samples that were put in a medium without nutrients for 3 h, and seven samples that were treated with glucose oxidase for 30 min to make H2O2 continuously. Importantly, in all conditions, parasite viability was maintained when the samples were collected. Upon nutrient removal, we observed a substantial decrease in amino acids and carbohydrate metabolites, accompanied by the accumulation of fatty acids and steroids, with the predominance of inositol and sphingolipid metabolism, along with a simultaneous decrease in the levels of H2O2. In the presence of H2O2, a significant rise in components of the pentose pathway and specific amino acids such as methionine and serine occurred, along with pathways related to an increase in antioxidant species metabolism such as ribulose 5-phosphate and glyceric acid. Conversely, fatty acid and steroid levels decrease. We found no common increase in metabolites or lipids. In contrast, eight species (succinic acid, glutamic acid, valine, 2-hydroxyisocaproic acid, alanine, indolelactic acid, proline, and lanosterol) were consumed under both stresses. These findings underscore the rapid and distinct enrichment responses in amino acids, lipids, and carbohydrates required to cope with each different environmental condition. We concluded that T. cruzi presents a flexible metabolism that rapidly adapts to variable changes in the environment.
Collapse
Affiliation(s)
- Michel Augusto Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Mirella Aricó
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Fontes FM, de Oliveira J, Menezes ALR, Teixeira MMG, Andrade DC, da Rosa JA, Madi RR, de Melo CM. Triatomine (Hemiptera: Reduviidae) populations and Trypanosoma cruzi genotyping in peridomestic and sylvatic environments in the semiarid region of Sergipe, Northeastern, Brazil. Acta Trop 2024; 259:107385. [PMID: 39251171 DOI: 10.1016/j.actatropica.2024.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
We assessed the diversity of triatomines, the rates of natural infection, and the discrete typing units (DTUs) of Trypanosoma cruzi isolated from them in two municipalities in the state of Sergipe, Brazil. Active searches for triatomines were conducted in the peridomicily and wild enviroments of 10 villages within the two municipalities. Triatomines were taxonomically identified and their feces were extracted using the abdominal compression method. Parasite detection was performed using optical microscopy. For Trypanosoma cruzi genotyping via PCR-FFLB, 151 samples of the subspecies Triatoma brasiliensis macromelasoma and Triatoma brasiliensis were isolated from both municipalities. In total, 505 triatomines were collected, with Triatoma brasiliensis macromelasoma being the most frequent species (58.81 %). Triatoma b. brasiliensis was the only species in both peridomestic and wild environments. Regarding the other species, T. pseudomaculata was found only in the peridomestic environment; and T. b. macromelasoma and Psammolestes tertius were found in the wild environment. Three Discrete Typing Units were identified: TcI (87.51 %) detected in T. b. brasiliensis and T. b. macromelasoma, TcI+TcIII (10.41 %) in T. b. macromelasoma, and TcI+Trypanosoma rangeli (2.08 %) in T. b. macromelasoma. It is concluded that T. b. macromelasoma is the species collected most frequently in the studied region and the one that presents the highest rates of natural infection, highlighting its epidemiological importance for the vectorial transmission of Chagas disease in Sergipe.
Collapse
Affiliation(s)
- Felipe Mendes Fontes
- Tiradentes University (UNIT), Post-Graduation Program in Health and Environment. Av. Murilo Dantas, 300, 49045-760 Aracaju, SE, Brazil.
| | - Jader de Oliveira
- University of São Paulo (USP), Faculty of Public Health, Department of Epidemiology, Laboratory of Entomology in Public Health. Av. Dr. Arnaldo, 715, 01246-904 São Paulo, SP, Brazil
| | - André Luiz Rodrigues Menezes
- Federal Institute of Education, Science and Technology of Rondônia, Av. 15 de novembro, s/n, 76850-000 Guajará-Mirim, RO, Brazil
| | - Marta Maria Geraldes Teixeira
- University of São Paulo (USP), Institute of Biomedical Sciences, Department of Parasitology, Av. Lineu Prestes, 1374, 05508-000 São Paulo, SP, Brazil
| | - David Campos Andrade
- Tiradentes University (UNIT), Post-Graduation Program in Health and Environment. Av. Murilo Dantas, 300, 49045-760 Aracaju, SE, Brazil
| | - João Aristeu da Rosa
- São Paulo State University (UNESP), School of Pharmaceutical Sciences. Rodovia Araraquara Jaú, Km 01 - s/n, 14800-903 Araraquara, SP, Brazil
| | - Rubens Riscala Madi
- Tiradentes University (UNIT), Post-Graduation Program in Health and Environment. Av. Murilo Dantas, 300, 49045-760 Aracaju, SE, Brazil; Institute of Research and Technology (ITP), Av. Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
| | - Cláudia Moura de Melo
- Tiradentes University (UNIT), Post-Graduation Program in Health and Environment. Av. Murilo Dantas, 300, 49045-760 Aracaju, SE, Brazil; Institute of Research and Technology (ITP), Av. Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
| |
Collapse
|
8
|
Hughes R, Francisco R, Garrett K, Willitts K, Munk B, Brown J, Rodriguez C, von Dohlen AR, McCarrall S, Dennard T, Champion T, Brown-Fox T, Strules J, Olfenbuttel C, DePerno C, Hamer SA, Yabsley MJ. Trypanosoma cruzi infection in American black bears (Ursus americanus): A case report in a cub from California and serologic survey for exposure in wild black bears from several states. Vet Parasitol Reg Stud Reports 2024; 56:101129. [PMID: 39550185 DOI: 10.1016/j.vprsr.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 11/18/2024]
Abstract
Trypanosoma cruzi is an important cause of disease and death in humans and dogs, and although wildlife infections are common, less is known about disease manifestations. A 12-week-old male American black bear (Ursus americanus) cub with mild lethargy and anorexia presented to a wildlife rehabilitation center in Lake Tahoe, California. The cub continued to become increasingly weak and showed decreasing interest in play and other activities. The cub was anemic and had increased γ-glutamyltransferase (GGT) liver enzymes. A large number of trypanosomes were noted on a thin blood smear. Trypanosoma cruzi was isolated in culture from a subsequent blood collection. Proliferative bony lesions were noted on radiographs, but this finding was considered unrelated to the T. cruzi infection. The number of parasites observed in thin blood smears dramatically dropped over time, but it remained PCR positive until at least nine months. The cub continued to gain weight and became increasingly active. Serum samples from the cub were positive with three different serologic assays (IFA, ELISA, and ICT). The bear was not treated because of the decreasing parasitemia and the improvement in activity and appetite. Although the bear could not be released due to issues unrelated to T. cruzi, it remains healthy in a captive facility. Sequence analysis of the DHFR-TS and COII-ND1 gene sequences confirmed the bear was infected with DTC TcIV. Following the detection of this clinical case, a serologic survey was conducted to determine the prevalence of T. cruzi exposure of black bears in California, North Carolina, and Pennsylvania. Because no serologic assay has been validated for use in bears, three different assays were used. Marked differences in apparent seroprevalence range from 1% (requiring all three assays to be positive) to ∼20.7% (requiring only one assay to be positive). Black bears are naturally exposed to T. cruzi across the United States. Future studies using PCR testing of tissues or blood would be needed to better understand the prevalence of T. cruzi in wild black bears, lineages most commonly associated with infection, and if T. cruzi represents a health threat to bears.
Collapse
Affiliation(s)
- Reece Hughes
- Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA 30602, USA; Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Raquel Francisco
- Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA 30602, USA; Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Kayla Garrett
- Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA 30602, USA; Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Kevin Willitts
- Lake Tahoe Wildlife Care, 1551 Al Tahoe Blvd, South Lake Tahoe, CA 96150, USA
| | - Brandon Munk
- California Department of Fish and Wildlife, Wildlife Health Laboratory, 1701 Nimbus Road, Suite D, Rancho Cordova, CA 95670, USA
| | - Justin Brown
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Carlos Rodriguez
- Texas A&M Veterinary Medical Diagnostic Laboratory, P.O. Drawer 3040, College Station, TX 77843, USA
| | - Alexa Rosypal von Dohlen
- Department of Natural Sciences and Mathematics, College of Science, Technology, Engineering and Mathematics, Johnson C. Smith University, Charlotte, NC 28216, USA
| | - Sterling McCarrall
- Department of Natural Sciences and Mathematics, College of Science, Technology, Engineering and Mathematics, Johnson C. Smith University, Charlotte, NC 28216, USA
| | - T'Keyah Dennard
- Department of Natural Sciences and Mathematics, College of Science, Technology, Engineering and Mathematics, Johnson C. Smith University, Charlotte, NC 28216, USA
| | - Timothy Champion
- Department of Natural Sciences and Mathematics, College of Science, Technology, Engineering and Mathematics, Johnson C. Smith University, Charlotte, NC 28216, USA
| | - Tracy Brown-Fox
- Department of Natural Sciences and Mathematics, College of Science, Technology, Engineering and Mathematics, Johnson C. Smith University, Charlotte, NC 28216, USA
| | - Jennifer Strules
- Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, NC 27606, USA
| | - Colleen Olfenbuttel
- Wildlife Management Division, North Carolina Wildlife Resources Commission, Raleigh, NC 27669, USA
| | - Christopher DePerno
- Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, NC 27606, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael J Yabsley
- Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA 30602, USA; Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Moo-Millan JI, Tu W, de Jesús Montalvo-Balam T, Ibarra-López MP, Hernández-Betancourt S, Jesús May-Concha I, Ibarra-Cerdeña CN, Barnabé C, Dumonteil E, Waleckx E. Presence of Trypanosoma cruzi TcI and Trypanosoma dionisii in sylvatic bats from Yucatan, Mexico. Trans R Soc Trop Med Hyg 2024; 118:659-665. [PMID: 38695180 DOI: 10.1093/trstmh/trae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Chagas disease is caused by Trypanosoma cruzi, whose genetic structure is divided into six discrete typing units (DTUs) known as TcI-TcVI. In the Yucatan Peninsula, Mexico, information regarding the DTUs circulating in wild mammals is scarce, while this is important knowledge for our understanding of T. cruzi transmission dynamics. METHODS In the current study, we sampled wild mammals in a sylvatic site of the Yucatan Peninsula and assessed their infection with T. cruzi by PCR. Then, for infected mammals, we amplified and sequenced nuclear and mitochondrial T. cruzi genetic markers for DTU identification. RESULTS In total, we captured 99 mammals belonging to the orders Chiroptera, Rodentia and Didelphimorphia. The prevalence of infection with T. cruzi was 9% (9/99; 95% CI [5, 16]), and we identified TcI in a Jamaican fruit bat, Artibeus jamaicensis. Moreover, we fortuitously identified Trypanosoma dionisii in another Jamaican fruit bat and detected an unidentified Trypanosoma species in a third specimen. While the latter discoveries were not expected because we used primers designed for T. cruzi, this study is the first to report the identification of T. dionisii in a bat from Yucatan, Mexico, adding to a recent first report of T. dionisii in bats from Veracruz, and first report of this Trypanosoma species in Mexico. CONCLUSION Further research is needed to enhance our knowledge of T. cruzi DTUs and Trypanosoma diversity circulating in wildlife in Southeastern Mexico.
Collapse
Affiliation(s)
- Joel Israel Moo-Millan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Calle 43 #613 x 96, Col. Inalámbrica, C.P. 97225, Mérida, Yucatán, México
| | - Weihong Tu
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St., 70112, New Orleans, Louisiana, USA
| | - Teresa de Jesús Montalvo-Balam
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Calle 43 #613 x 96, Col. Inalámbrica, C.P. 97225, Mérida, Yucatán, México
| | - Martha Pilar Ibarra-López
- Departamento de Ecología Humana, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav), Unidad Mérida, Antigua Carretera a Progreso Km 6, C.P. 97310, Mérida, Yucatán, México
| | - Silvia Hernández-Betancourt
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5 Tizapán, C.P. 97100, Mérida, Yucatán, México
| | - Irving Jesús May-Concha
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Calle 43 #613 x 96, Col. Inalámbrica, C.P. 97225, Mérida, Yucatán, México
| | - Carlos Napoleón Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav), Unidad Mérida, Antigua Carretera a Progreso Km 6, C.P. 97310, Mérida, Yucatán, México
| | - Christian Barnabé
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Campus international de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Eric Dumonteil
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St., 70112, New Orleans, Louisiana, USA
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Calle 43 #613 x 96, Col. Inalámbrica, C.P. 97225, Mérida, Yucatán, México
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Campus international de Baillarguet, 34398 Montpellier Cedex 5, France
- ACCyC, Asociación Chagas con Ciencia y Conocimiento, A. C., Sur 21 no 810, Colonia Benito Juárez, C.P. 94390, Orizaba, Veracruz, México
| |
Collapse
|
10
|
Bhattacharyya T, Murphy N, Miles MA. Diversity of Chagas disease diagnostic antigens: Successes and limitations. PLoS Negl Trop Dis 2024; 18:e0012512. [PMID: 39352878 PMCID: PMC11444392 DOI: 10.1371/journal.pntd.0012512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, remains a public health issue in endemic regions of the Americas, and is becoming globalised due to migration. In the chronic phase, 2 accordant serological tests are required for diagnosis. In addition to "in-house" assays, commercial tests are available (principally ELISA and rapid diagnostic tests). Herein, we discuss the discovery era of defined T. cruzi serological antigens and their utilisation in commercialised tests. A striking feature is the re-discovery of the same antigens from independent studies, and their overlapping use among commonly reported commercial serological tests. We also consider reports of geographical variation in assay sensitivity and areas for refinement including applications to congenital diagnosis, treatment monitoring, and lineage-specific antigens.
Collapse
Affiliation(s)
- Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
11
|
Apodaca S, Di Salvatore M, Muñoz-Calderón A, Curto MDLÁ, Longhi SA, Schijman AG. Novel 3D human trophoblast culture to explore T. cruzi infection in the placenta. Front Cell Infect Microbiol 2024; 14:1433424. [PMID: 39165920 PMCID: PMC11333438 DOI: 10.3389/fcimb.2024.1433424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Human trophoblastic cell lines, such as BeWo, are commonly used in 2D models to study placental Trypanosoma cruzi infections. However, these models do not accurately represent natural infections. Three-dimensional (3D) microtissue cultures offer a more physiologically relevant in vitro model, mimicking tissue microarchitecture and providing an environment closer to natural infections. These 3D cultures exhibit functions such as cell proliferation, differentiation, morphogenesis, and gene expression that resemble in vivo conditions. Methods We developed a 3D culture model using the human trophoblastic cell line BeWo and nonadherent agarose molds from the MicroTissues® 3D Petri Dish® system. Both small (12-256) and large (12-81) models were tested with varying initial cell numbers. We measured the diameter of the 3D cultures and evaluated cell viability using Trypan Blue dye. Trophoblast functionality was assessed by measuring β-hCG production via ELISA. Cell fusion was evaluated using confocal microscopy, with Phalloidin or ZO-1 marking cell edges and DAPI staining nuclei. T. cruzi infection was assessed by microscopy and quantitative PCR, targeting the EF1-α gene for T. cruzi and GAPDH for BeWo cells, using three parasite strains: VD (isolated from a congenital Chagas disease infant and classified as Tc VI), and K98 and Pan4 (unrelated to congenital infection and classified as Tc I). Results Seeding 1000 BeWo cells per microwell in the large model resulted in comparable cellular viability to 2D cultures, with a theoretical diameter of 408.68 ± 12.65 μm observed at 5 days. Functionality, assessed through β-hCG production, exceeded levels in 2D cultures at both 3 and 5 days. T. cruzi infection was confirmed by qPCR and microscopy, showing parasite presence inside the cells for all three tested strains. The distribution and progression of the infection varied with each strain. Discussion This innovative 3D model offers a simple yet effective approach for generating viable and functional cultures susceptible to T. cruzi infection, presenting significant potential for studying the placental microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alejandro G. Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Davila E, Fernandez-Santos NA, Estrada-Franco JG, Wei L, Velázquez-Ramírez DD, García-Miranda R, Irecta Nájera C, Cruz-Cadena R, Guichard-Romero C, Rodriguez C, Tarleton R, Rodríguez-Pérez MA, Ochoa-Díaz-López H, Hamer GL, Hamer SA. Domestic Dog Infection with Trypanosoma cruzi from Northern and Southern Regions of Mexico. Vector Borne Zoonotic Dis 2024; 24:510-519. [PMID: 38949980 DOI: 10.1089/vbz.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Background: Chagas disease or American trypanosomiasis, caused by Trypanosoma cruzi and vectored by triatomines, affects millions of people worldwide. In endemic countries including Mexico, infections in domestic animals, such as dogs, may affect the risk of human disease when they serve as a source of infection to vectors that subsequently infect humans. Materials and Methods: We conducted a cross-sectional study of 296 dogs from two cities near the northern and southern borders of Mexico: Reynosa, Tamaulipas, and Tuxtla Gutierrez, Chiapas. Infection was measured based on testing of blood using T. cruzi quantitative PCR (qPCR) and up to three antibody detection assays. The StatPak immunochromatographic assay was used to screen samples and the indirect fluorescent antibody (IFA) and multiplex microsphere immunoassay (MIA) tests were used as secondary tests on all samples that screened positive and a subset of negatives. Serologic positivity was defined based on reactivity on at least two independent tests. Results: Of the 280 samples tested for parasite DNA, two (0.7%) were positive, one of which (0.4%) was confirmed as T. cruzi discrete typing unit TcIV. Overall, 72 (24.3%) samples were reactive for T. cruzi antibodies via StatPak of which 8 were also positive using MIA and 2 were also positive using IFA (including one of the PCR-positive dogs). Overall, nine dogs (3.4%) met study criteria of positivity based on either/both serology or PCR tests. Positive dogs were found in both regions of Mexico; five (2.7%) from Reynosa and four (3.6%) from Tuxtla Gutierrez. We found no association between infection status and state of origin, sex, age group, breed group, neighborhood, and whether other pets lived in the home. Conclusion: Our results re-emphasize dogs' utility as sentinels for T. cruzi in Mexico and underscore the need for improved veterinary diagnostic tests and parasite surveillance at the household level in endemic countries.
Collapse
Affiliation(s)
- Edward Davila
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Nadia A Fernandez-Santos
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biomedicina Molecular, Reynosa, Tamaulipas, Mexico
| | - José Guillermo Estrada-Franco
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biomedicina Molecular, Reynosa, Tamaulipas, Mexico
| | - Lihua Wei
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biomedicina Molecular, Reynosa, Tamaulipas, Mexico
| | | | - Rosario García-Miranda
- Departamento de Salud, El Colegio de la Frontera Sur (ECOSUR), San Cristóbal de Las Casas, México
- Escuela de Lenguas, Universidad Autónoma de Chiapas (UNACH), San Cristóbal de Las Casas, México
| | - Cesar Irecta Nájera
- Departamento de Salud, El Colegio de la Frontera Sur (ECOSUR), Villahermosa, México
| | - Raúl Cruz-Cadena
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas (UNACH), Ocozocoautla de Espinosa, México
| | | | - Carlos Rodriguez
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA
| | - Rick Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Mario A Rodríguez-Pérez
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biomedicina Molecular, Reynosa, Tamaulipas, Mexico
| | - Héctor Ochoa-Díaz-López
- Departamento de Salud, El Colegio de la Frontera Sur (ECOSUR), San Cristóbal de Las Casas, México
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Silva RA, Estevão VAO, Villela EFDM. Circulation of Trypanosoma cruzi in triatomines and Didelphis sp. in urban areas: Transmission risk assessment in the Metropolitan Region. Vet Parasitol Reg Stud Reports 2024; 52:101059. [PMID: 38880572 DOI: 10.1016/j.vprsr.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
The presence of Trypanosoma cruzi vectors in urban areas has been frequent, with colonization of homes and associated with reservoir animals that increase risk to humans, with simultaneous circulation of vectors and T. cruzi. The study aimed to describe the circulation of triatomines and T. cruzi in the Metropolitan Region of São Paulo, as well as evaluate risk situations. For analysis purposes, the triatomine notification information from January 2016 to July 2023 was used. While for Didelphis sp. collection with the aid of traps, notification information used was from 2019 to 2023. Information about triatomines came from spontaneous demand by the population and notification services were carried out by state field teams following defined protocols. 202 notifications were received with the capture of 448 triatomines. The positivity for T. cruzi observed was 60.5%. Regarding Didelphis sp., 416 animals were collected, 5.3% of which were positive for T. cruzi. There was overlapping areas of presence of infected triatomines and Didelphis sp., whose Discrete Typing Unit (DTU) was T. cruzi I. This work indicates the presence of infected vectors in urban areas, and the presence of a wild cycle of T. cruzi in didelphiids, reaffirming the need for and importance of vector surveillance work, through actions that can prevent the transmission of Chagas disease.
Collapse
Affiliation(s)
- Rubens Antonio Silva
- São Paulo State Department of Health, Disease Control Coordination, Pasteur Institute, Afonso Pessini 86, Mogi Guaçu, Brazil.
| | - Vera Aparecida Oliveira Estevão
- São Paulo State Department of Health, Disease Control Coordination, Vector Control, Avenue Dr Arnaldo 351, São Paulo, Brazil
| | - Edlaine Faria de Moura Villela
- São Paulo State Department of Health, Disease Control Coordination, Postgraduate Program in Sciences, Avenue Dr Arnaldo 351, São Paulo, Brazil
| |
Collapse
|
14
|
Moehling TJ, Worthington MD, Wong PYG, Wong SS, Meagher RJ. Development of a Colorimetric Loop-Mediated Isothermal Amplification Assay for the Detection of Trypanosoma cruzi in Low-Resource Settings. Diagnostics (Basel) 2024; 14:1193. [PMID: 38893719 PMCID: PMC11172009 DOI: 10.3390/diagnostics14111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chagas disease is an inflammatory parasitic infection caused by Trypanosoma cruzi (T. cruzi). Early diagnosis is crucial in guiding treatment and slowing disease progression; however, current diagnostic methods have insufficient detection limits and often require skilled technicians. Molecular tests, especially isothermal nucleic acid assays, are advantageous due to their excellent sensitivity, specificity, speed, and simplicity. Here, we optimized a colorimetric loop-mediated isothermal amplification (LAMP) assay for T. cruzi. We can detect as few as 2 genomic copies/reaction using three different T. cruzi strains. We examined selectivity using other parasitic protozoans and successfully detected T. cruzi DNA extracted from parasites in human whole blood down to 1.2 parasite equivalents/reaction. We also performed a blinded study using canine blood samples and established a 100% sensitivity, specificity, and accuracy for the colorimetric LAMP assay. Finally, we used a heated 3D printer bed and an insulated thermos cup to demonstrate that the LAMP incubation step could be performed with accessible, low-cost materials. Altogether, we have developed a high-performing assay for T. cruzi with a simple colorimetric output that would be ideal for rapid, low-cost screening at the point of use.
Collapse
Affiliation(s)
- Taylor J. Moehling
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94551, USA; (T.J.M.); (M.D.W.)
| | - Myla D. Worthington
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94551, USA; (T.J.M.); (M.D.W.)
| | | | | | - Robert J. Meagher
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94551, USA; (T.J.M.); (M.D.W.)
| |
Collapse
|
15
|
Cáceres TM, Cruz-Saavedra L, Patiño LH, Ramírez JD. Comparative analysis of metacyclogenesis and infection curves in different discrete typing units of Trypanosoma cruzi. Parasitol Res 2024; 123:181. [PMID: 38602595 PMCID: PMC11008065 DOI: 10.1007/s00436-024-08183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Chagas disease (CD), caused by the complex life cycle parasite Trypanosoma cruzi, is a global health concern and impacts millions globally. T. cruzi's genetic variability is categorized into discrete typing units (DTUs). Despite their widespread presence in the Americas, a comprehensive understanding of their impact on CD is lacking. This study aims to analyze life cycle traits across life cycle stages, unraveling DTU dynamics. Metacyclogenesis curves were generated, inducing nutritional stress in epimastigotes of five DTUs (TcI (MG), TcI (DA), TcII(Y), TcIII, TcIV, and TcVI), resulting in metacyclic trypomastigotes. Infection dynamics in Vero cells from various DTUs were evaluated, exploring factors like amastigotes per cell, cell-derived trypomastigotes, and infection percentage. Statistical analyses, including ANOVA tests, identified significant differences. Varying onset times for metacyclogenesis converged on the 7th day. TcI (MG) exhibited the highest metacyclogenesis potential. TcI (DA) stood out, infecting 80% of cells within 24 h. TcI demonstrated the highest potential in both metacyclogenesis and infection among the strains assessed. Intra-DTU diversity was evident among TcI strains, contributing to a comprehensive understanding of Trypanosoma cruzi dynamics and genetic diversity.
Collapse
Affiliation(s)
- Tatiana M Cáceres
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
16
|
Cruz-Alegría IY, Santos-Hernández NG, Ruiz-Castillejos C, Ruan-Soto JF, Moreno-Rodríguez A, Flores-Villegas AL, Gutiérrez-Jiménez J, Hernández-Mijangos LA, Espinoza-Medinilla EE, Vidal-López DG, De Fuentes-Vicente JA. Ecoepidemiology of Chagas Disease in a Biological Corridor in Southeastern Mexico: A Promising Approach to Understand the Risk of Chagas Disease. J Parasitol Res 2024; 2024:4775361. [PMID: 38495541 PMCID: PMC10942820 DOI: 10.1155/2024/4775361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Ecoepidemiology is an emerging field that attempts to explain how biotic, environmental, and even social factors influence the dynamics of infectious diseases. Particularly in vector-borne diseases, the study under this approach offers us an overview of the pathogens, vectors, and hosts that coexist in a given region and their ecological determinants. As a result of this, risk predictions can be established in a changing environment and how it may impact human populations. This paper is aimed at evaluating some ecoepidemiological characteristics of Chagas disease in a natural reserve in southeastern Mexico that borders human settlements. We carry out a cross-sectional study in 2022 where we search insects manually and with light traps. We set traps for small mammals and bats and conducted interviews with the inhabitants living around the study site. We identified the presence of Triatoma dimidiata and T. huehuetenanguensis species with a percentage of TcI T. cruzi infection of 68.4% (95% CI: 66.9-69.9). Temperature and humidity were not determining factors for the probability of insect capture. Of the 108 wild mammals (Chiroptera, Rodentia, and Didelphimorphia), none was infected with T. cruzi. Knowledge about Chagas disease in nearby inhabitants is poor, and some characteristics were found on the periphery of dwellings that could offer a refuge for insect vectors. With this information, surveillance strategies can be generated in the study area that reduce the risk of transmission of T. cruzi parasite to humans, and it is expected to motivate the use of this field in future research.
Collapse
Affiliation(s)
- Ingrid Yazmin Cruz-Alegría
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Christian Ruiz-Castillejos
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Juan Felipe Ruan-Soto
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | | | - Javier Gutiérrez-Jiménez
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | | | | | | |
Collapse
|
17
|
López R, García A, Chura Aruni JJ, Balboa V, Rodríguez A, Erkosar B, Kamoun A, Rodriguez M, Fortun E, Bohorquez LC. Comparative evaluation of lateral flow assays to diagnose chronic Trypanosoma cruzi infection in Bolivia. PLoS Negl Trop Dis 2024; 18:e0012016. [PMID: 38437237 PMCID: PMC10939271 DOI: 10.1371/journal.pntd.0012016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/14/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Bolivia has the highest incidence of Chagas disease (CD) worldwide. Caused by the parasite Trypanasoma cruzi, CD is generally a chronic condition. Diagnosis is logistically and financially challenging, requiring at least two different laboratory-based serological tests. Many CD cases are missed; in Bolivia it is estimated just 6% of individuals chronically infected with T. cruzi get diagnosed. Achieving control on the way to elimination of CD requires a radical simplification of the current CD testing pathways, to overcome the barriers to accessing CD treatment. We aimed to generate unbiased performance data of lateral flow assays (LFAs) for T. cruzi infection in Bolivia, to evaluate their usefulness for improving T. cruzi diagnosis rates in a precise and efficient manner. This retrospective, laboratory-based, diagnostic evaluation study sought to estimate the sensitivity/specificity of 10 commercially available LFAs for T. cruzi, using the current CD diagnostic algorithm employed in Bolivia as the reference test method. All tests were blinded at the study site and performed by three operators. In total, 470 serum samples were tested, including 221 and 249 characterized as CD-positive/-negative, respectively. The LFAs were scored according to their relative importance using a decision-tree-based algorithm, with the mean decrease in Gini index as the scoring metric. The estimates of sensitivities ranged from 62.2-97.7% (95% confidence interval (CI) lower bound 55.0-94.7%); for specificities the range was 78.6-100% (95% CI lower bound 72.0-97.5%); 5/10 and 6/10 tests had sensitivity >90% and specificity >95%, respectively. Four LFAs showed high values of both sensitivity (93-95%) and specificity (97-99%). The agreement between 6 LFAs and the reference tests was almost perfect (Kappa 0.83-0.94). Most LFAs evaluated thus showed performances comparable with current laboratory-based diagnostic methods.
Collapse
Affiliation(s)
- Ronald López
- Instituto Nacional de Laboratorios de Salud (INLASA), La Paz, Bolivia
| | - Andrea García
- Instituto Nacional de Laboratorios de Salud (INLASA), La Paz, Bolivia
| | | | - Victor Balboa
- Instituto Nacional de Laboratorios de Salud (INLASA), La Paz, Bolivia
| | - Andrea Rodríguez
- Instituto Nacional de Laboratorios de Salud (INLASA), La Paz, Bolivia
| | - Berra Erkosar
- FIND, Campus Biotech, Chemin des Mines 9, Geneva, Switzerland
| | - Aurélie Kamoun
- FIND, Campus Biotech, Chemin des Mines 9, Geneva, Switzerland
| | | | - Evelin Fortun
- Instituto Nacional de Laboratorios de Salud (INLASA), La Paz, Bolivia
| | | |
Collapse
|
18
|
Bilheiro AB, Costa GDS, Araújo MS, Ribeiro WAR, Finamore-Araújo P, Moreira OC, Medeiros JF, Fontes G, Camargo LMA. Detection and Genotyping of Trypanosoma cruzi Samples in Species of Genus Rhodnius from Different Environments in the Brazilian Amazon. Vector Borne Zoonotic Dis 2024; 24:95-103. [PMID: 38165392 DOI: 10.1089/vbz.2023.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Background: In the Amazon region, several species of triatomines occur in the natural environments. Among them, species of the genus Rhodnius are a risk to human populations due to their high rates of infection with Trypanosoma cruzi. The aim of this study was to identify the T. cruzi genotypes in Rhodnius specimens and their relationship with sylvatic hosts from different environments in the Brazilian Amazon. Methods: A total of 492 triatomines were collected from the municipalities of Monte Negro, Rondônia state, and Humaitá, Amazonas state, 382 of them being nymphs and 110 adults. Genotyping of T. cruzi in six discrete typing units (DTUs) was performed using conventional multilocus PCR. The triatomines that were positive for T. cruzi and engorged with blood were also targeted for amplification of the cytochrome B (cytB) gene to identify bloodmeal sources. Results: Of the 162 positive samples, the identified DTUs were TcI (87.65%) and TcIV (12.35%). It was observed that 102 specimens were engorged with a variety of bloodmeals. Triatomines infected with TcI were associated with DNA of all identified vertebrates, except Plecturocebus brunneus. TcIV was detected in triatomines that fed on Coendou prehensilis, Didelphis marsupialis, Mabuya nigropunctata, P. brunneus, Pithecia irrorata, Sapajus apella, and Tamandua tetradactyla. Conclusion: Results highlight the need to understand the patterns of T. cruzi genotypes in Rhodnius spp. and their association with sylvatic hosts to better elucidate their role in the transmission of Chagas disease in the Amazon region.
Collapse
Affiliation(s)
- Adriana Benatti Bilheiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de São João del Rei, Divinópolis, MG, Brazil
| | - Glaucilene da Silva Costa
- Laboratório de Saúde Pública-LACEN, Núcleo de Biologia Animal e Entomologia Médica, Porto Velho, RO, Brazil
| | - Maisa Silva Araújo
- Fundação Oswaldo Cruz/Fiocruz Rondônia, Porto Velho, RO, Brazil
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM)/Secretaria de Estado da Saúde de Rondônia, Porto Velho, RO, Brazil
| | | | - Paula Finamore-Araújo
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz/IOC, Rio de Janeiro, RJ, Brazil
| | - Otacílio C Moreira
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz/IOC, Rio de Janeiro, RJ, Brazil
| | - Jansen Fernandes Medeiros
- Fundação Oswaldo Cruz/Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental INCT-EPIAMO, Porto Velho, RO, Brazil
| | - Gilberto Fontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de São João del Rei, Divinópolis, MG, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental INCT-EPIAMO, Porto Velho, RO, Brazil
| | - Luís Marcelo Aranha Camargo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de São João del Rei, Divinópolis, MG, Brazil
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM)/Secretaria de Estado da Saúde de Rondônia, Porto Velho, RO, Brazil
- Instituto de Ciências Biomédicas 5, Universidade de São Paulo (ICB-5, USP), Monte Negro, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental INCT-EPIAMO, Porto Velho, RO, Brazil
| |
Collapse
|
19
|
Liempi D, Zulantay I, Varela NM, Canals M, Guevara A, Poulsen N, Apt W. Parasite Burden of Trypanosoma cruzi in Whole Blood and Buffy Coat Determined by Real-Time PCR in Individuals with Chronic Chagas Disease. Microorganisms 2024; 12:249. [PMID: 38399653 PMCID: PMC10893161 DOI: 10.3390/microorganisms12020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to compare, by qPCR, the circulating blood parasite load of Trypanosoma cruzi in the buffy coat, and in whole blood mixed with boiled and unboiled guanidine hydrochloride-EDTA buffer, of individuals with chronic ChD. The concentration and purity of DNA were evaluated in a Nanodrop Denovix DS-11FX Series Spectrophotometer (DeNovix Inc., Wilmington, NC, USA). The parasite load was determined with the Taqman® qPCR system using a Stratagene Mx3000P thermocycler (Agilent Technologies, Santa Clara, CA, USA) with Cruzi 1 and Cruzi 2 satellite primers. Student's t-test with Bonferroni correction, Chi-squared (χ2) tests and Spearman's correlation coefficient were applied. The concentration and purity of DNA were higher in the buffy coat. Parasite DNA was detected and quantifiable in the three types of samples in seven patients, without statistically significant differences in the parasite load obtained. Higher correlations were found between the total DNA concentrations and the parasite loads obtained in the samples of the buffy coat.
Collapse
Affiliation(s)
- Daniela Liempi
- Institute of Parasitology, Faculty of Medicine, Austral University of Chile, Valdivia 5090000, Chile
- Master’s Program in Parasitology, Graduate School, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Inés Zulantay
- Basic-Clinical Parasitology Laboratory, Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Nelson M. Varela
- Basic-Clinical Oncology Department, Faculty of Medicine, University of Chile, Santiago 8500000, Chile;
| | - Mauricio Canals
- Department of Eastern Medicine and Environmental Health Program, School of Public Health, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Andrés Guevara
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (A.G.); (N.P.)
| | - Nicolás Poulsen
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (A.G.); (N.P.)
| | - Werner Apt
- Basic-Clinical Parasitology Laboratory, Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| |
Collapse
|
20
|
Shelton WJ, Gonzalez JM. Outcomes of patients in Chagas disease of the central nervous system: a systematic review. Parasitology 2024; 151:15-23. [PMID: 37987164 PMCID: PMC10941035 DOI: 10.1017/s0031182023001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Chagas disease is a parasitic infection caused by the protozoan Trypanosoma cruzi. One of the complications of the disease is the infection of the central nervous system (CNS), as it can result from either the acute phase or by reactivation during the chronic phase, exhibiting high mortality in immunocompromised patients. This systematic review aimed to determine clinical and paraclinical characteristics of patients with Chagas disease in the CNS. Articles were searched from PubMed, Scopus and LILACS until January 2023. From 2325 articles, 59 case reports and 13 case series of patients with Chagas in the CNS were retrieved from which 138 patients were identified. In this population, 77% of the patients were male, with a median age of 35 years old, from which most of them came from Argentina and Brazil. Most of the individuals were immunocompromised from which 89% were HIV-positive, and 54 patients had an average of 48 cells per mm3 CD4+ T cells. Motor deficits and seizures were the most common manifestation of CNS compromise. Furthermore, 90 patients had a documented CNS lesion by imaging from which 89% were supratentorial and 86% were in the anterior/middle cranial fossa. The overall mortality was of 74%. Among patients who were empirically treated with anti-toxoplasma drugs, 70% died. This review shows how Chagas disease in the CNS is a devastating complication requiring prompt diagnosis and treatment to improve patients’ outcomes.
Collapse
Affiliation(s)
- William J. Shelton
- Grupo de Ciencias Básicas Medicas, School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - John M. Gonzalez
- Grupo de Ciencias Básicas Medicas, School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
21
|
Zingales B, Macedo AM. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life (Basel) 2023; 13:2339. [PMID: 38137940 PMCID: PMC10744745 DOI: 10.3390/life13122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease (ChD), exhibits striking genetic and phenotypic intraspecific diversity, along with ecoepidemiological complexity. Human-pathogen interactions lead to distinct clinical presentations of ChD. In 2009, an international consensus classified T. cruzi strains into six discrete typing units (DTUs), TcI to TcVI, later including TcBat, and proposed reproducible genotyping schemes for DTU identification. This article aims to review the impact of classifying T. cruzi strains into DTUs on our understanding of biological, ecoepidemiological, and pathogenic aspects of T. cruzi. We will explore the likely origin of DTUs and the intrinsic characteristics of each group of strains concerning genome organization, genomics, and susceptibility to drugs used in ChD treatment. We will also provide an overview of the association of DTUs with mammalian reservoirs, and summarize the geographic distribution, and the clinical implications, of prevalent specific DTUs in ChD patients. Throughout this review, we will emphasize the crucial roles of both parasite and human genetics in defining ChD pathogenesis and chemotherapy outcome.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andréa M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| |
Collapse
|
22
|
Chaves LF, Meyers AC, Hodo CL, Sanders JP, Curtis-Robles R, Hamer GL, Hamer SA. Trypanosoma cruzi infection in dogs along the US-Mexico border: R 0 changes with vector species composition. Epidemics 2023; 45:100723. [PMID: 37935075 DOI: 10.1016/j.epidem.2023.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 07/05/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Infection with Trypanosoma cruzi, etiological agent of Chagas disease, is common in US government working dogs along the US-Mexico border. This 3145 km long border comprises four states: Texas (TX), New Mexico (NM), Arizona (AZ) and California (CA) with diverse ecosystems and several triatomine (a.k.a., kissing bug) species, primary vectors of T. cruzi in this region. The kissing bug (Heteroptera: Reduviidae) community ranging from CA to TX includes Triatoma protracta (Uhler), Triatoma recurva (Stål) and Triatoma rubida (Uhler) and becomes dominated by Triatoma gerstaeckeri Stål in TX. Here, we ask if T. cruzi infection dynamics in dogs varies along this border region, potentially reflecting changes in vector species and their vectorial capacity. Using reversible catalytic models of infection, where seropositivity can be lost, we estimated an R0 (Estimate ± S.E.) of 1.192 ± 0.084 for TX and NM. In contrast, seropositivity decayed to zero as dogs aged in AZ and CA. These results suggest that dogs are likely infected by T. cruzi during their training in western TX, with a force of infection large enough for keeping R0 above 1, i.e., the disease endemically established, in TX and NM. In AZ and CA, a lower force of infection, probably associated with different vector species communities and associated vectorial capacity and/or different lineages of T. cruzi, results in dogs decreasing their seropositivity with age.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington IN 47405, USA.
| | - Alyssa C Meyers
- Department of Veterinary Integrative Bioscienes, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carolyn L Hodo
- Department of Veterinary Integrative Bioscienes, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Comparative Medicine, Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - John P Sanders
- Office of Health Security, US Department of Homeland Security, Washington, DC 20528, USA
| | - Rachel Curtis-Robles
- Department of Veterinary Integrative Bioscienes, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Bioscienes, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Barnabé C, Brenière SF, Santillán-Guayasamín S, Douzery EJP, Waleckx E. Revisiting gene typing and phylogeny of Trypanosoma cruzi reference strains: Comparison of the relevance of mitochondrial DNA, single-copy nuclear DNA, and the intergenic region of mini-exon gene. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105504. [PMID: 37739149 DOI: 10.1016/j.meegid.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Chagas disease is a widespread neglected disease in Latin America. Trypanosoma cruzi, the causative agent of the disease, is currently subdivided into six DTUs (discrete typing units) named TcI-TcVI, and although no clear association has been found between parasite genetics and different clinical outcomes of the disease or different transmission cycles, genetic characterization of T. cruzi strains remains crucial for integrated epidemiological studies. Numerous markers have been used for this purpose, although without consensus. These include mitochondrial genes, single or multiple-copy nuclear genes, ribosomal RNA genes, and the intergenic region of the repeated mini-exon gene. To increase our knowledge of these gene sequences and their usefulness for strain typing, we sequenced fragments of three mitochondrial genes, nine single-copy nuclear genes, and the repeated intergenic part of the mini-exon gene by Next Generation Sequencing (NGS) on a sample constituted of 16 strains representative of T. cruzi genetic diversity, to which we added the corresponding genetic data of the 38 T. cruzi genomes fully sequenced until 2022. Our results show that single-copy nuclear genes remain the gold standard for characterizing T. cruzi strains; the phylogenetic tree from concatenated genes (3959 bp) confirms the six DTUs previously recognized and provides additional information about the alleles present in the hybrid strains. In the tree built from the three mitochondrial concatenated genes (1274 bp), three main clusters are identified, including one with TcIII, TcIV, TcV, and TcVI DTUs which are not separated. Nevertheless, mitochondrial markers remain necessary for detecting introgression and heteroplasmy. The phylogenetic tree built from the sequence alignment of the repeated mini-exon gene fragment (327 bp) displayed six clusters, but only TcI was associated with a single cluster. The sequences obtained from strains belonging to the other DTUs were scattered into different clusters. Therefore, while the mini-exon marker may bring, for some biological samples, some advantages in terms of sensibility due to its repeated nature, mini-exon sequences must be used with caution and, when possible, avoided for T. cruzi typing and phylogenetic studies.
Collapse
Affiliation(s)
- Christian Barnabé
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France.
| | - Simone Frédérique Brenière
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France
| | - Soledad Santillán-Guayasamín
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France; Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Emmanuel J P Douzery
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.
| | - Etienne Waleckx
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico; ACCyC, Asociación Chagas con Ciencia y Conocimiento, A. C, Orizaba, Mexico.
| |
Collapse
|
24
|
Romer G, Bracco LA, Ricci AD, Balouz V, Berná L, Villar JC, Ramsey JM, Nolan MS, Torrico F, Kesper N, Altcheh J, Robello C, Buscaglia CA, Agüero F. Deep serological profiling of the Trypanosoma cruzi TSSA antigen reveals different epitopes and modes of recognition by Chagas disease patients. PLoS Negl Trop Dis 2023; 17:e0011542. [PMID: 37556493 PMCID: PMC10441789 DOI: 10.1371/journal.pntd.0011542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/21/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi, the agent of Chagas disease, displays a highly structured population, with multiple strains that can be grouped into 6-7 evolutionary lineages showing variable eco-epidemiological traits and likely also distinct disease-associated features. Previous works have shown that antibody responses to 'isoforms' of the polymorphic parasite antigen TSSA enable robust and sensitive identification of the infecting strain with near lineage-level resolution. To optimize the serotyping performance of this molecule, we herein used a combination of immunosignaturing approaches based on peptide microarrays and serum samples from Chagas disease patients to establish a deep linear B-cell epitope profiling of TSSA. METHODS/PRINCIPLE FINDINGS Our assays revealed variations in the seroprevalence of TSSA isoforms among Chagas disease populations from different settings, hence strongly supporting the differential distribution of parasite lineages in domestic cycles across the Americas. Alanine scanning mutagenesis and the use of peptides of different lengths allowed us to identify key residues involved in antibody pairing and the presence of three discrete B-cell linear epitopes in TSSAII, the isoform with highest seroprevalence in human infections. Comprehensive screening of parasite genomic repositories led to the discovery of 9 novel T. cruzi TSSA variants and one TSSA sequence from the phylogenetically related bat parasite T. cruzi marinkellei. Further residue permutation analyses enabled the identification of diagnostically relevant or non-relevant substitutions among TSSA natural polymorphisms. Interestingly, T. cruzi marinkellei TSSA displayed specific serorecognition by one chronic Chagas disease patient from Colombia, which warrant further investigations on the diagnostic impact of such atypical TSSA. CONCLUSIONS/SIGNIFICANCE Overall, our findings shed new light into TSSA evolution, epitope landscape and modes of recognition by Chagas disease patients; and have practical implications for the design and/or evaluation of T. cruzi serotyping strategies.
Collapse
Affiliation(s)
- Guadalupe Romer
- Instituto de Investigaciones Biotecnológicas (IIB)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Leonel A. Bracco
- Instituto de Investigaciones Biotecnológicas (IIB)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Alejandro D. Ricci
- Instituto de Investigaciones Biotecnológicas (IIB)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas (IIB)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Biomatemática-Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan C. Villar
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga y Fundación Cardioinfantil—Instituto de Cardiología, Colombia
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México
| | - Melissa S. Nolan
- Laboratory of Vector-borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States of America
| | | | - Norival Kesper
- LIM-49, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São 33 Paulo, São Paulo, Brazil
| | - Jaime Altcheh
- Hospital de Niños “Ricardo Gutierrez”, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP)–GCBA-CONICET, Buenos Aires, Argentina
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas (IIB)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| |
Collapse
|
25
|
Moreira OC, Fernandes AG, Gomes NLDS, Dos Santos CM, Jacomasso T, Costa ADT, Nascimento LDOR, Hasslocher-Moreno AM, do Brasil PEAA, Morello LG, Marchini FK, Krieger MA, Britto C. Validation of the NAT Chagas IVD Kit for the Detection and Quantification of Trypanosoma cruzi in Blood Samples of Patients with Chagas Disease. Life (Basel) 2023; 13:1236. [PMID: 37374019 DOI: 10.3390/life13061236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
In the absence of validated biomarkers to control the cure of Chagas disease, PCR-based diagnosis is being used as the main tool for an early indication of therapeutic failure. However, since it is considered a technique of complex reproducibility, mainly due to difficulties in establishing accurate controls to guarantee the quality of the reaction, the use of PCR for Chagas disease diagnosis is restricted to specialized centers. In an effort to disseminate the molecular diagnosis of Chagas disease and its applications, new diagnostic kits based on qPCR have been made available in the market in recent years. Here, we show the results of the validation of the NAT Chagas kit (Nucleic Acid Test for Chagas Disease) for the detection and quantification of T. cruzi in blood samples of patients suspected of Chagas disease infection. The kit, composed of a TaqMan duplex reaction targeting the T. cruzi satellite nuclear DNA and an exogenous internal amplification control, presented a reportable range from 104 to 0.5 parasite equivalents/mL and a limit of detection (LOD) of 0.16 parasite equivalents/mL of blood. In addition, the NAT Chagas kit detected T. cruzi belonging to all six discrete typing units (DTUs-TcI to TcVI), similarly to the in-house real-time PCR performed with commercial reagents, which has been selected as the best performance assay in the international consensus for the validation of qPCR for Chagas disease. In the clinical validation presented here, the kit showed 100% sensitivity and 100% specificity when compared to the consensus in-house real-time PCR assay. Thus, the NAT Chagas kit, which is produced entirely in Brazil under the international standards of good manufacturing practices (GMP), appears as an excellent alternative to enable the molecular diagnosis of Chagas disease in public and private diagnostic centers, as well as to facilitate the monitoring of patients under etiological treatment participating in clinical trials.
Collapse
Affiliation(s)
- Otacilio C Moreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Alice Gomes Fernandes
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Natalia Lins da Silva Gomes
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Carolina Messias Dos Santos
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Thiago Jacomasso
- Instituto de Biologia Molecular do Paraná, Curitiba 81350-010, Brazil
| | - Alexandre Dias Tavares Costa
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute/Fiocruz, Curitiba 81310-020, Brazil
| | | | - Alejandro Marcel Hasslocher-Moreno
- Laboratory of Clinical Research in Chagas Disease, Evandro Chagas National Institute of Infectious Diseases/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - Luis Gustavo Morello
- Instituto de Biologia Molecular do Paraná, Curitiba 81350-010, Brazil
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute/Fiocruz, Curitiba 81310-020, Brazil
| | - Fabricio Klerynton Marchini
- Instituto de Biologia Molecular do Paraná, Curitiba 81350-010, Brazil
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute/Fiocruz, Curitiba 81310-020, Brazil
| | - Marco Aurelio Krieger
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute/Fiocruz, Curitiba 81310-020, Brazil
| | - Constança Britto
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
26
|
Cutshaw MK, Sciaudone M, Bowman NM. Risk Factors for Progression to Chronic Chagas Cardiomyopathy: A Systematic Review and Meta-Analysis. Am J Trop Med Hyg 2023; 108:791-800. [PMID: 36848894 PMCID: PMC10076993 DOI: 10.4269/ajtmh.22-0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 03/01/2023] Open
Abstract
Approximately one-third of people with chronic Trypanosoma cruzi infection develop Chagas cardiomyopathy, which carries a poor prognosis. Accurate prediction of which individuals will go on to develop Chagas cardiomyopathy remains elusive. We performed a systematic review of literature comparing characteristics of individuals with chronic Chagas disease with or without evidence of cardiomyopathy. Studies were not excluded on the basis of language or publication date. Our review yielded a total of 311 relevant publications. We further examined the subset of 170 studies with data regarding individual age, sex, or parasite load. A meta-analysis of 106 eligible studies indicated that male sex was associated with having Chagas cardiomyopathy (Hedge's g: 1.56, 95% CI: 1.07-2.04), and a meta-analysis of 91 eligible studies indicated that older age was associated with having Chagas cardiomyopathy (Hedge's g: 0.66, 95% CI: 0.41-0.91). A meta-analysis of four eligible studies did not find an association between parasite load and disease state. This study provides the first systematic review to assess whether age, sex, and parasite load are associated with Chagas cardiomyopathy. Our findings suggest that older and male patients with Chagas disease are more likely to have cardiomyopathy, although we are unable to identify causal relationships due to the high heterogeneity and predominantly retrospective study designs in the current literature. Prospective, multidecade studies are needed to better characterize the clinical course of Chagas disease and identify risk factors for progression to Chagas cardiomyopathy.
Collapse
Affiliation(s)
| | - Michael Sciaudone
- Section of Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana
| | - Natalie M. Bowman
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Ricci AD, Bracco L, Salas-Sarduy E, Ramsey JM, Nolan MS, Lynn MK, Altcheh J, Ballering GE, Torrico F, Kesper N, Villar JC, Marcipar IS, Marco JD, Agüero F. The Trypanosoma cruzi Antigen and Epitope Atlas: antibody specificities in Chagas disease patients across the Americas. Nat Commun 2023; 14:1850. [PMID: 37012236 PMCID: PMC10070320 DOI: 10.1038/s41467-023-37522-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
During an infection the immune system produces pathogen-specific antibodies. These antibody repertoires become specific to the history of infections and represent a rich source of diagnostic markers. However, the specificities of these antibodies are mostly unknown. Here, using high-density peptide arrays we examined the human antibody repertoires of Chagas disease patients. Chagas disease is a neglected disease caused by Trypanosoma cruzi, a protozoan parasite that evades immune mediated elimination and mounts long-lasting chronic infections. We describe a proteome-wide search for antigens, characterised their linear epitopes, and show their reactivity on 71 individuals from diverse human populations. Using single-residue mutagenesis we revealed the core functional residues for 232 of these epitopes. Finally, we show the diagnostic performance of identified antigens on challenging samples. These datasets enable the study of the Chagas antibody repertoire at an unprecedented depth and granularity, while also providing a rich source of serological biomarkers.
Collapse
Affiliation(s)
- Alejandro D Ricci
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Leonel Bracco
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Janine M Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México
| | - Melissa S Nolan
- Laboratory of Vector-borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - M Katie Lynn
- Laboratory of Vector-borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jaime Altcheh
- Hospital de Niños "Ricardo Gutierrez", Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP) - GCBA-CONICET, Buenos Aires, Argentina
| | - Griselda E Ballering
- Hospital de Niños "Ricardo Gutierrez", Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Norival Kesper
- LIM-49, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Juan C Villar
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga y Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - Iván S Marcipar
- Facultad de Ciencias Médicas y Facultad de Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge D Marco
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Landsgaard KA, Milliron SM, Faccin M, Broughton CA, Auckland LD, Edwards JF, Hamer SA, Hensel ME. Protozoal meningoencephalitis and myelitis in 4 dogs associated with Trypanosoma cruzi infection. Vet Pathol 2023; 60:199-202. [PMID: 36636956 DOI: 10.1177/03009858221148510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
American trypanosomiasis is caused by the zoonotic protozoa Trypanosoma cruzi and primarily results in heart disease. Organisms also infect the central nervous system (CNS). The Texas A&M University veterinary teaching hospital archive was searched for dogs with CNS disease with intralesional protozoal amastigotes. This study summarizes 4 cases of dogs with disseminated trypanosomiasis and CNS involvement confirmed by quantitative polymerase chain reaction (qPCR) with T. cruzi primers. Clinical signs included lethargy, respiratory distress, tetraparesis, and seizures. Central nervous system lesions included meningeal congestion (1/4), necrosis with hemorrhage in the spinal cord gray and white matter (2/4), and histiocytic meningoencephalitis (4/4), and meningomyelitis (2/4) with intralesional and intracellular protozoal. Genotyping identified 1 case of T. cruzi discrete typing unit (DTU) TcI and 2 cases as TcIV, both are common variants in the United States. Trypanosomiasis should be considered a differential diagnosis for dogs with CNS signs in T. cruzi-endemic areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Martha E Hensel
- Texas A&M University, College Station, TX.,The University of Texas MD Anderson Cancer Center, Bastrop, TX
| |
Collapse
|
29
|
Rios LE, Lokugamage N, Garg NJ. Effects of Acute and Chronic Trypanosoma cruzi Infection on Pregnancy Outcomes in Mice: Parasite Transmission, Mortality, Delayed Growth, and Organ Damage in Pups. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:313-331. [PMID: 36565805 PMCID: PMC10013038 DOI: 10.1016/j.ajpath.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 12/22/2022]
Abstract
Chagas disease is caused by Trypanosoma cruzi. This study aimed to determine the effects of T. cruzi infection on fertility rate and health of the newborn pups in pregnant mice. Female mice were challenged with T. cruzi and mated at 21 days (acute parasitemic phase) or 90 days (chronic parasite persistence phase) after infection. Pups were examined for growth up to 20 days after birth; and parasite burden in brain, heart, skeletal muscle, and intestine was measured by real-time quantitative PCR. The inflammatory infiltrate, necrosis, and fibrosis in pups' heart and brain tissues were evaluated by histology. T. cruzi infection in dams delayed the onset of pregnancy, decreased the fertility rate, and led to vertical transmission of parasite to the pups. Furthermore, infected dams delivered pups that exhibited decreased survival rate, decreased birth weight, and decreased growth rate. Significantly increased inflammation, necrosis, and fibrosis of cardiac and brain tissues were noted in pups born to infected dams. Initial challenge with higher parasite dose had more detrimental effects on fertility rate and pups' health in both acutely and chronically infected dams. In conclusion, mice offer a promising model to evaluate the efficacy of new vaccines and therapeutic drugs in controlling the acute and chronic maternal T. cruzi infection and congenital transmission to newborns, and in improving the fertility rate and pups' health outcomes.
Collapse
Affiliation(s)
- Lizette E Rios
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry, Cellular and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
30
|
Becker I, Miranda-Ortiz H, Fernández-Figueroa EA, Sánchez-Montes S, Colunga-Salas P, Grostieta E, Juárez-Gabriel J, Lozano-Sardaneta YN, Arce-Fonseca M, Rodríguez-Morales O, Meneses-Ruíz G, Pastén-Sánchez S, López Martínez I, González-Guzmán S, Paredes-Cervantes V, Moreira OC, Finamore-Araujo P, Canseco-Méndez JC, Coquis-Navarrete U, Rengifo-Correa L, González-Salazar C, Alfaro-Cortés MM, Falcón-Lezama JA, Tapia-Conyer R, Stephens CR. The Low Variability of Tc24 in Trypanosoma cruzi TcI as an Advantage for Chagas Disease Prophylaxis and Diagnosis in Mexico. Pathogens 2023; 12:pathogens12030368. [PMID: 36986290 PMCID: PMC10057631 DOI: 10.3390/pathogens12030368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Chagas disease is the main neglected tropical disease in America. It is estimated that around 6 million people are currently infected with the parasite in Latin America, and 25 million live in endemic areas with active transmission. The disease causes an estimated economic loss of USD 24 billion dollars annually, with a loss of 75,200 working years per year of life; it is responsible for around ~12,000 deaths annually. Although Mexico is an endemic country that recorded 10,186 new cases of Chagas disease during the period of 1990–2017, few studies have evaluated the genetic diversity of genes that could be involved in the prophylaxis and/or diagnosis of the parasite. One of the possible candidates proposed as a vaccine target is the 24 kDa trypomastigote excretory–secretory protein, Tc24, whose protection is linked to the stimulation of T. cruzi-specific CD8+ immune responses. (2) Methods: The aim of the present study was to evaluate the fine-scale genetic diversity and structure of Tc24 in T. cruzi isolates from Mexico, and to compare them with other populations reported in the Americas with the aim to reconsider the potential role of Tc24 as a key candidate for the prophylaxis and improvement of the diagnosis of Chagas disease in Mexico. (3) Results: Of the 25 Mexican isolates analysed, 48% (12) were recovered from humans and 24% (6) recovered from Triatoma barberi and Triatoma dimidiata. Phylogenetic inferences revealed a polytomy in the T. cruzi clade with two defined subgroups, one formed by all sequences of the DTU I and the other formed by DTU II–VI; both subgroups had high branch support. Genetic population analysis detected a single (monomorphic) haplotype of TcI throughout the entire distribution across both Mexico and South America. This information was supported by Nei’s pairwise distances, where the sequences of TcI showed no genetic differences. (4) Conclusions: Given that both previous studies and the findings of the present work confirmed that TcI is the only genotype detected from human isolates obtained from various states of Mexico, and that there is no significant genetic variability in any of them, it is possible to propose the development of in silico strategies for the production of antigens that optimise the diagnosis of Chagas disease, such as quantitative ELISA methods that use this region of Tc24.
Collapse
Affiliation(s)
- Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence: (I.B.); (C.R.S.)
| | - Haydee Miranda-Ortiz
- Unidad de Secuenciación, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | | | - Sokani Sánchez-Montes
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratorio de Diagnóstico, Facultad de Ciencias Biológicas y Agropecuarias Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano 92870, Mexico
| | - Pablo Colunga-Salas
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa de Enríquez 91090, Mexico
| | - Estefanía Grostieta
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Javier Juárez-Gabriel
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratorio de Diagnóstico, Facultad de Ciencias Biológicas y Agropecuarias Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano 92870, Mexico
| | - Yokomi N. Lozano-Sardaneta
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Minerva Arce-Fonseca
- Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Olivia Rodríguez-Morales
- Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Gabriela Meneses-Ruíz
- Departamento de Parasitología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City 01480, Mexico
| | - Sergio Pastén-Sánchez
- Departamento de Parasitología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City 01480, Mexico
| | - Irma López Martínez
- Departamento de Parasitología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City 01480, Mexico
| | - Saúl González-Guzmán
- Laboratorio del Banco Central de Sangre del Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Zumpango, Zumpango 55600, Mexico
| | - Vladimir Paredes-Cervantes
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico
| | - Otacilio C. Moreira
- Laboratorio de Biología Molecular e Doencas Endêmicas, Instituto Oswaldo Cruz, Fiocruz 21040900, RJ, Brazil
| | - Paula Finamore-Araujo
- Laboratorio de Biología Molecular e Doencas Endêmicas, Instituto Oswaldo Cruz, Fiocruz 21040900, RJ, Brazil
| | | | - Uriel Coquis-Navarrete
- Departamento de Genómica Poblacional, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Laura Rengifo-Correa
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | - Jorge A. Falcón-Lezama
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | - Roberto Tapia-Conyer
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Christopher R. Stephens
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence: (I.B.); (C.R.S.)
| |
Collapse
|
31
|
de Freitas VLT, Piotto MR, Esper HR, Nakanishi EYS, Fonseca CDA, Assy JGPL, Berreta OCP, França FODS, Lopes MH. Detection of Trypanosoma cruzi DTUs TcI and TcIV in two outbreaks of orally-transmitted Chagas disease in the Northern region of Brazil. Rev Inst Med Trop Sao Paulo 2023; 65:e7. [PMID: 36651468 PMCID: PMC9870254 DOI: 10.1590/s1678-9946202365007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
This study describes the laboratory investigation of two acute Chagas disease outbreaks that occurred in the riverside communities of Marimarituba and Cachoeira do Arua, in the Santarem municipality, Para State, located in the Northern region of Brazil, and occurred in March 2016 and August 2017, respectively. The generation of data regarding the diversity of Trypanosoma cruzi parasites circulating in the Amazon region is key for understanding the emergence and expansion of Chagas disease. This study aimed to identify T. cruzi Discrete Typing Units (DTUs) involved in two outbreaks of acute Chagas disease (ACD) directly from the patient's biological sample. Nested and multiplex PCR targeting the 24Sα (rRNA) and mini-exon genes, respectively, were used to identify T. cruzi DTU in blood samples from patients diagnosed with ACD. The samples with positive cPCR were submitted for analysis for T. cruzi DTUs, which included 13 samples from the patients with ACD by oral transmission and two samples collected from two newborns of two women with ACD, from Marimarituba and Cachoeira do Arua. The samples were classified as T. cruzi TcIV, from Marimarituba's outbreak, and T. cruzi TcI, from Cachoeira do Arua's outbreak. The molecular identification of T. cruzi may increase understanding of the role of this parasite in Chagas disease's emergence within the Amazon region, contributing to the improvement of the management of this important, but also neglected, disease.
Collapse
Affiliation(s)
- Vera Lúcia Teixeira de Freitas
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil
| | - Mariana Ramos Piotto
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil
| | - Helena Rangel Esper
- Universidade de São Paulo, Faculdade de Medicina, Núcleo de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil,Secretaria Municipal de Saúde de Santarém, Hospital Municipal de Santarém, Santarém, Pará, Brazil
| | - Erika Yoshie Shimoda Nakanishi
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Laboratório de Investigação Médica em Imunologia (LIM48), São Paulo, São Paulo, Brazil
| | - Claudia de Abreu Fonseca
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Laboratório de Investigação Médica em Imunologia (LIM48), São Paulo, São Paulo, Brazil
| | - João Guilherme Pontes Lima Assy
- Universidade de São Paulo, Faculdade de Medicina, Núcleo de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil,Secretaria Municipal de Saúde de Santarém, Hospital Municipal de Santarém, Santarém, Pará, Brazil
| | - Olívia Campos Pinheiro Berreta
- Universidade de São Paulo, Faculdade de Medicina, Núcleo de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil,Secretaria Municipal de Saúde de Santarém, Hospital Municipal de Santarém, Santarém, Pará, Brazil
| | - Francisco Oscar de Siqueira França
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil,Universidade de São Paulo, Faculdade de Medicina, Núcleo de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil,Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Laboratório de Investigação Médica em Imunologia (LIM48), São Paulo, São Paulo, Brazil
| | - Marta Heloísa Lopes
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil,Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Laboratório de Investigação Médica em Imunologia (LIM48), São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Smircich P, Pérez-Díaz L, Hernández F, Duhagon MA, Garat B. Transcriptomic analysis of the adaptation to prolonged starvation of the insect-dwelling Trypanosoma cruzi epimastigotes. Front Cell Infect Microbiol 2023; 13:1138456. [PMID: 37091675 PMCID: PMC10117895 DOI: 10.3389/fcimb.2023.1138456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Trypanosoma cruzi is a digenetic unicellular parasite that alternates between a blood-sucking insect and a mammalian, host causing Chagas disease or American trypanosomiasis. In the insect gut, the parasite differentiates from the non-replicative trypomastigote forms that arrive upon blood ingestion to the non-infective replicative epimastigote forms. Epimastigotes develop into infective non-replicative metacyclic trypomastigotes in the rectum and are delivered via the feces. In addition to these parasite stages, transitional forms have been reported. The insect-feeding behavior, characterized by few meals of large blood amounts followed by long periods of starvation, impacts the parasite population density and differentiation, increasing the transitional forms while diminishing both epimastigotes and metacyclic trypomastigotes. To understand the molecular changes caused by nutritional restrictions in the insect host, mid-exponentially growing axenic epimastigotes were cultured for more than 30 days without nutrient supplementation (prolonged starvation). We found that the parasite population in the stationary phase maintains a long period characterized by a total RNA content three times smaller than that of exponentially growing epimastigotes and a distinctive transcriptomic profile. Among the transcriptomic changes induced by nutrient restriction, we found differentially expressed genes related to managing protein quality or content, the reported switch from glucose to amino acid consumption, redox challenge, and surface proteins. The contractile vacuole and reservosomes appeared as cellular components enriched when ontology term overrepresentation analysis was carried out, highlighting the roles of these organelles in starving conditions possibly related to their functions in regulating cell volume and osmoregulation as well as metabolic homeostasis. Consistent with the quiescent status derived from nutrient restriction, genes related to DNA metabolism are regulated during the stationary phase. In addition, we observed differentially expressed genes related to the unique parasite mitochondria. Finally, our study identifies gene expression changes that characterize transitional parasite forms enriched by nutrient restriction. The analysis of the here-disclosed regulated genes and metabolic pathways aims to contribute to the understanding of the molecular changes that this unicellular parasite undergoes in the insect vector.
Collapse
Affiliation(s)
- Pablo Smircich
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- *Correspondence: Beatriz Garat, ; Pablo Smircich,
| | - Leticia Pérez-Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Fabricio Hernández
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| | - Beatriz Garat
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Beatriz Garat, ; Pablo Smircich,
| |
Collapse
|
33
|
Valença-Barbosa C, Finamore-Araujo P, Moreira OC, Alvarez MVN, Borges-Veloso A, Barbosa SE, Diotaiuti L, de Souza RDCM. High Parasitic Loads Quantified in Sylvatic Triatoma melanica, a Chagas Disease Vector. Pathogens 2022; 11:1498. [PMID: 36558833 PMCID: PMC9785645 DOI: 10.3390/pathogens11121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Triatoma melanica is a sylvatic vector species in Brazil. In We aimed to characterize the Trypanosoma cruzi discrete typing units (DTUs), the parasitic loads, and the blood meal sources of insects collected in rocky outcrops in rural areas in the state of Minas Gerais. An optical microscope (OM) and kDNA-PCR were used to examine natural infection by T. cruzi, and positive samples were genotyped by conventional multilocus PCR. Quantification of the T. cruzi load was performed using qPCR, and the blood meal sources were identified by Sanger sequencing the 12S rRNA gene. A total of 141 T. melanica were captured. Of these, ~55% (61/111) and ~91% (63/69) were positive by OM and KDNA-PCR, respectively. We genotyped ~89% (56/63) of the T. cruzi-positive triatomines, with TcI (~55%, 31/56) being the most prevalent DTU, followed by TcIII (~20%, 11/56) and TcII (~7%, 4/56). Only TcI+TcIII mixed infections were detected in 10 (~18%) specimens. A wide range of variation in the parasitic loads of T. melanica was observed, with an overall median value of 104 parasites/intestine, with females having higher T. cruzi loads than N2, N4, and N5. TcII showed lower parasitic loads compared to TcI and TcIII. The OM positive diagnosis odds ratio between T. cruzi infection when the parasite load is 107 compared to 103 was approximately 29.1. The most frequent blood meal source was Kerodon rupestris (~58%), followed by Thrichomys apereoides (~18%), Wiedomys cerradensis (~8%), Galactis cuja (~8%) and Gallus gallus (~8%). Our findings characterize biological and epidemiological aspects of the sylvatic population of T. melanica in the study area, highlighting the need to extend surveillance and control to this vector.
Collapse
Affiliation(s)
- Carolina Valença-Barbosa
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Paula Finamore-Araujo
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Otacílio Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - André Borges-Veloso
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Silvia Ermelinda Barbosa
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Liléia Diotaiuti
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | | |
Collapse
|
34
|
Flores-Chavez MD, Abras A, Ballart C, Ibáñez-Perez I, Perez-Gordillo P, Gállego M, Muñoz C, Moure Z, Sulleiro E, Nieto J, García Diez E, Simón L, Cruz I, Picado A. Parasitemia Levels in Trypanosoma cruzi Infection in Spain, an Area Where the Disease Is Not Endemic: Trends by Different Molecular Approaches. Microbiol Spectr 2022; 10:e0262822. [PMID: 36190410 PMCID: PMC9603785 DOI: 10.1128/spectrum.02628-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/13/2022] [Indexed: 01/04/2023] Open
Abstract
Trypanosoma cruzi infection has expanded globally through human migration. In Spain, the mother-to-child route is the mode of transmission contributing to autochthonous Chagas disease (CD); however, most people acquired the infection in their country of origin and were diagnosed in the chronic phase (imported chronic CD). In this context, we assessed the quantitative potential of the Loopamp Trypanosoma cruzi detection kit (Sat-TcLAMP) based on satellite DNA (Sat-DNA) to determine parasitemia levels compared to those detected by real-time quantitative PCRs (qPCRs) targeting Sat-DNA (Sat-qPCR) and kinetoplast DNA minicircles (kDNA-qPCR). This study included 173 specimens from 39 autochthonous congenital and 116 imported chronic CD cases diagnosed in Spain. kDNA-qPCR showed higher sensitivity than Sat-qPCR and Sat-TcLAMP. According to all quantitative approaches, parasitemia levels were significantly higher in congenital infection than in chronic CD (1 × 10-1 to 5 × 105 versus >1 × 10-1 to 6 × 103 parasite equivalents/mL, respectively [P < 0.001]). Sat-TcLAMP, Sat-qPCR, and kDNA-qPCR results were equivalent at high levels of parasitemia (P = 0.381). Discrepancies were significant for low levels of parasitemia and older individuals. Differences between Sat-TcLAMP and Sat-qPCR were not qualitatively significant, but estimations of parasitemia using Sat-TcLAMP were closer to those by kDNA-qPCR. Parasitemia changes were assessed in 6 individual cases in follow-up, in which trends showed similar patterns by all quantitative approaches. At high levels of parasitemia, Sat-TcLAMP, Sat-qPCR, and kDNA-qPCR worked similarly, but significant differences were found for the low levels characteristic of late chronic CD. A suitable harmonization strategy needs to be developed for low-level parasitemia detection using Sat-DNA- and kDNA-based tests. IMPORTANCE Currently, molecular equipment has been introduced into many health care centers, even in low-income countries. PCR, qPCR, and loop-mediated isothermal amplification (LAMP) are becoming more accessible for the diagnosis of neglected infectious diseases. Chagas disease (CD) is spreading worldwide, and in countries where the disease is not endemic, such as Spain, the parasite Trypanosoma cruzi is transmitted from mother to child (congenital CD). Here, we explore why LAMP, aimed at detecting T. cruzi parasite DNA, is a reliable option for the diagnosis of congenital CD and the early detection of reactivation in chronic infection. When the parasite load is high, LAMP is equivalent to any qPCR. In addition, the estimations of T. cruzi parasitemia in patients living in Spain, a country where the disease is not endemic, resemble natural evolution in areas of endemicity. If molecular tests are introduced into the diagnostic algorithm for congenital infection, early diagnosis and timely treatment would be accomplished, so the interruption of vertical transmission can be an achievable goal.
Collapse
Affiliation(s)
- Maria D. Flores-Chavez
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Fundación Mundo Sano-España, Madrid, Spain
| | - Alba Abras
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Cristina Ballart
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Ismael Ibáñez-Perez
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Montserrat Gállego
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- ISGlobal, Barcelona, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Carmen Muñoz
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Biomèdica Sant Pau, Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Zaira Moure
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Elena Sulleiro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Microbiology Department, Vall d’Hebron Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Nieto
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Emilia García Diez
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Simón
- National Centre of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Israel Cruz
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Albert Picado
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| |
Collapse
|
35
|
Tibayrenc M, Ayala FJ. Microevolution and subspecific taxonomy of Trypanosoma cruzi. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105344. [PMID: 35926722 DOI: 10.1016/j.meegid.2022.105344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Trypanosoma cruzi, the agent of Chagas disease, is a highly polymorphic species, subdivided into 6 main evolutionary lineages or near-clades (formerly discrete typing units or DTUs). An additional near-clade (TC-bat) has recently been evidenced. This pattern is considered to be the result of predominant clonal evolution (PCE). PCE is compatible with occasional mating/hybridization, which do not break the prevalent pattern of clonal evolution, the main trait of it being the presence of Multigene Bifurcating Trees (MGBTs) at all evolutionary levels ("clonal frame"). The development of highly resolutive genetic (microsatellites*) and genomic (sequencing and multi-single nucleotide polymorphism {SNP}* typing) markers shows that PCE also operates at a microevolutionary* level within each of the near-clades ("Russian doll pattern"), in spite of occasional meiosis and hybridization events. Within each near-clade, one can evidence widespread clonal multilocus genotypes*, linkage disequilibrium*, Multigene Bifurcating Trees and lesser near-clades. The within near-clade population structure is like a miniature picture of that of the whole species, suggesting gradual rather than saltatory evolution. Additional data are required to evaluate the stability of these lesser near-clades in the long run and to evaluate the need for an adequate nomenclature for this microevolutionary level.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche Pour le Développement, BP 6450134394 Montpellier Cedex 5, France.
| | - Francisco J Ayala
- Catedra Francisco Jose Ayala of Science, Technology, and Religion, University of Comillas, 28015 Madrid, Spain. 2 Locke Court, Irvine, CA 92617, USA
| |
Collapse
|
36
|
da Costa KM, Valente RDC, da Fonseca LM, Freire-de-Lima L, Previato JO, Mendonça-Previato L. The History of the ABC Proteins in Human Trypanosomiasis Pathogens. Pathogens 2022; 11:pathogens11090988. [PMID: 36145420 PMCID: PMC9505544 DOI: 10.3390/pathogens11090988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Human trypanosomiasis affects nearly eight million people worldwide, causing great economic and social impact, mainly in endemic areas. T. cruzi and T. brucei are protozoan parasites that present efficient mechanisms of immune system evasion, leading to disease chronification. Currently, there is no vaccine, and chemotherapy is effective only in the absence of severe clinical manifestations. Nevertheless, resistant phenotypes to chemotherapy have been described in protozoan parasites, associated with cross-resistance to other chemically unrelated drugs. Multidrug resistance is multifactorial, involving: (i) drug entry, (ii) activation, (iii) metabolism and (iv) efflux pathways. In this context, ABC transporters, initially discovered in resistant tumor cells, have drawn attention in protozoan parasites, owing to their ability to decrease drug accumulation, thus mitigating their toxic effects. The discovery of these transporters in the Trypanosomatidae family started in the 1990s; however, few members were described and functionally characterized. This review contains a brief history of the main ABC transporters involved in resistance that propelled their investigation in Trypanosoma species, the main efflux modulators, as well as ABC genes described in T. cruzi and T. brucei according to the nomenclature HUGO. We hope to convey the importance that ABC transporters play in parasite physiology and chemotherapy resistance.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| | - Raphael do Carmo Valente
- Núcleo de Pesquisa Multidisciplinar em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25250-470, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| |
Collapse
|
37
|
Discrete Typing Units of Trypanosoma cruzi Identified by Real-Time PCR in Peripheral Blood and Dejections of Triatoma infestans Used in Xenodiagnosis Descriptive Study. Pathogens 2022; 11:pathogens11070787. [PMID: 35890030 PMCID: PMC9317341 DOI: 10.3390/pathogens11070787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Chagas disease (ChD) is a vector zoonosis native to the American continent caused by the protozoan parasite Trypanosoma cruzi; the biological vectors are multiple species of hematophagous insects of the family Triatominae. A relevant aspect in the host–parasite relationship is the identification of the various genotypes of T. cruzi called discrete typing units (DTU) that circulate in mammals and vectors. In Chile, it has been described that the DTUs TcI, TcII, TcV, and TcVI circulate in infected humans, vectors, and wild animals. Identifying DTUs has acquired clinical importance, since it has been suggested that different genotypes could cause distinct pathologies, circulate in different geographical areas, and present different sensitivities to trypanocidal drugs. In this study, circulating T. cruzi DTUs in peripheral blood and Triatoma infestans dejections used in xenodiagnosis (XD) were amplified by qPCR in 14 Chilean patients with chronic ChD from highly endemic areas. More positive samples were detected by XD compared to peripheral blood samples, and 64.28% of the cases were simple infections and 35.72% mixed, with a statistically significant difference in the frequency of TcV DTU. This study would suggest that T. infestans from Chile is more competent to amplify one DTU over others, probably due to a process of co-evolution.
Collapse
|
38
|
Gerasimov ES, Ramirez-Barrios R, Yurchenko V, Zimmer SL. Trypanosoma cruzi strain and starvation-driven mitochondrial RNA editing and transcriptome variability. RNA (NEW YORK, N.Y.) 2022; 28:993-1012. [PMID: 35470233 PMCID: PMC9202582 DOI: 10.1261/rna.079088.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/07/2022] [Indexed: 05/09/2023]
Abstract
Trypanosoma cruzi is a unicellular protistan parasitic species that is comprised of strains and isolates exhibiting high levels of genetic and metabolic variability. In the insect vector, it is known to be highly responsive to starvation, a signal for progression to a life stage in which it can infect mammalian cells. Most mRNAs encoded in its mitochondrion require the targeted insertion and deletion of uridines to become translatable transcripts. This study defined differences in uridine-insertion/deletion RNA editing among three strains and established the mechanism whereby abundances of edited (and, thus, translatable) mitochondrial gene products increase during starvation. Our approach utilized our custom T-Aligner toolkit to describe transcriptome-wide editing events and reconstruct editing products from high-throughput sequencing data. We found that the relative abundance of mitochondrial transcripts and the proportion of mRNAs that are edited varies greatly between analyzed strains, a characteristic that could potentially impact metabolic capacity. Starvation typically led to an increase in overall editing activity rather than affecting a specific step in the process. We also determined that transcripts CR3, CR4, and ND3 produce multiple open reading frames that, if translated, would generate different proteins. Finally, we quantitated the inherent flexibility of editing in T. cruzi and found it to be higher relative to that in a related trypanosomatid lineage. Over time, new editing domains or patterns could prove advantageous to the organism and become more widespread within individual transcriptomes or among strains.
Collapse
Affiliation(s)
- Evgeny S Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Roger Ramirez-Barrios
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota 55812, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow 119435, Russia
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota 55812, USA
| |
Collapse
|
39
|
Dario MA, Furtado C, Lisboa CV, de Oliveira F, Santos FM, D’Andrea PS, Roque ALR, Xavier SCDC, Jansen AM. Trypanosomatid Richness Among Rats, Opossums, and Dogs in the Caatinga Biome, Northeast Brazil, a Former Endemic Area of Chagas Disease. Front Cell Infect Microbiol 2022; 12:851903. [PMID: 35795183 PMCID: PMC9251133 DOI: 10.3389/fcimb.2022.851903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Parasites are important components of the immense n-dimensional trophic network that connects all living beings because they, among others, forge biodiversity and deeply influence ecological evolution and host behavior. In this sense, the influence of Trypanosomatidae remains unknown. The aim of this study was to determine trypanosomatid infection and richness in rats, opossums, and dogs in the semiarid Caatinga biome. We submitted DNA samples from trypanosomatids obtained through axenic cultures of the blood of these mammals to mini exon multiplex-PCR, Sanger, and next-generation sequencing targeting the 18S rDNA gene. Phylogenetic analyses were performed to identify genetic diversity in the Trypanosomatidae family. Shannon, Simpson, equability, and beta-diversity indices were calculated per location and per mammalian host. Dogs were surveyed for trypanosomatid infection through hemocultures and serological assays. The examined mammal species of this area of the Caatinga biome exhibited an enormous trypanosomatid species/genotypes richness. Ten denoised Operational Taxonomic Units (ZOTUs), including three species (Trypanosoma cruzi, Trypanosoma rangeli and Crithidia mellificae) and one Trypanosoma sp. five genotypes/lineages (T. cruzi DTU TcI, TcII, and TcIV; T. rangeli A and B) and four DTU TcI haplotypes (ZOTU1, ZOTU2, ZOTU5, and ZOTU10 merged), as well as 13 Amplicon Sequence Variants (ASVs), including five species (T. cruzi, T. rangeli, C. mellificae, Trypanosoma dionisii, and Trypanosoma lainsoni), five genotypes/lineages (same as the ZOTUs) and six DTU TcI haplotypes (ASV, ASV1, ASV2, ASV3, ASV5 and ASV13), were identified in single and mixed infections. We observed that trypanosomatids present a broad host spectrum given that species related to a single host are found in other mammals from different taxa. Concomitant infections between trypanosomatids and new host-parasite relationships have been reported, and this immense diversity in mammals raised questions, such as how this can influence the course of the infection in these animals and its transmissibility. Dogs demonstrated a high infection rate by T. cruzi as observed by positive serological results (92% in 2005 and 76% in 2007). The absence of positive parasitological tests confirmed their poor infectivity potential but their importance as sentinel hosts of T. cruzi transmission.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Maria Augusta Dario,
| | - Carolina Furtado
- Genetic Laboratory, National Cancer Institute, Rio de Janeiro, Brazil
| | - Cristiane Varella Lisboa
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Felipe de Oliveira
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Filipe Martins Santos
- Environmental Sciences and Agricultural Sustainability Postgraduation, Dom Bosco Catholic University, Campo Grande, Brazil
| | - Paulo Sérgio D’Andrea
- Wild Mammal Reservoirs Biology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - André Luiz Rodrigues Roque
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Ana Maria Jansen
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Gálvez RI, Jacobs T. Exhausted PD-1 + TOX + CD8 + T Cells Arise Only in Long-Term Experimental Trypanosoma cruzi Infection. Front Immunol 2022; 13:866179. [PMID: 35720419 PMCID: PMC9203896 DOI: 10.3389/fimmu.2022.866179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Infection with Trypanosoma cruzi remains the most important neglected zoonosis in Latin America. This infection does not lead to specific symptoms in the acute phase, but chronic infection can result in Chagas disease (CD) with cardiac and/or gastrointestinal manifestations that can lead to death. CD8+ T cells are highly effective and essential to control this infection, but fail to eliminate all parasites. In this study, we show that the CD8+ T cells are modulated by the transient induction of co-inhibitory receptors during acute infection of C57BL/6 mice. Therapeutic intervention strategies with blocking antibodies only had a marginal effect on the elimination of parasite reservoirs. Only long-term chronic infection gave rise to dysfunctional CD8+ T cells, which were characterized by high expression of the inhibitory receptor PD-1 and the co-expression of the transcription factor TOX, which plays a crucial role in the maintenance of the exhausted phenotype. PD-1+ TOX+ CD8+ T cells isolated from the site of infection produced significantly less IFN-γ, TNF-α and Granzyme B than their PD-1- TOX- CD8+ T cell counterparts after T. cruzi-specific stimulation ex vivo. Taken together, we provide evidence that, in the context of experimental infection of mice, the magnitude of the CD8+ T cell response in the acute phase is sufficient for parasite control and cannot be further increased by targeting co-inhibitory receptors. In contrast, persistent long-term chronic infection leads to an increase of exhausted T cells within the tissues of persistence. To our knowledge, this is the first description of infection-induced CD8+ T cells with an exhausted phenotype and reduced cytokine production in muscles of T. cruzi-infected mice.
Collapse
Affiliation(s)
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute of Tropical Medicine, Hamburg, Germany
| |
Collapse
|
41
|
Schijman AG, Alonso-Padilla J, Longhi SA, Picado A. Parasitological, serological and molecular diagnosis of acute and chronic Chagas disease: from field to laboratory. Mem Inst Oswaldo Cruz 2022; 117:e200444. [PMID: 35613155 PMCID: PMC9164950 DOI: 10.1590/0074-02760200444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/13/2021] [Indexed: 01/05/2023] Open
Abstract
There is no consensus on the diagnostic algorithms for many scenarios of Trypanosoma cruzi infection, which hinders the establishment of governmental guidelines in endemic and non-endemic countries. In the acute phase, parasitological methods are currently employed, and standardised surrogate molecular tests are being introduced to provide higher sensitivity and less operator-dependence. In the chronic phase, IgG-based serological assays are currently used, but if a single assay does not reach the required accuracy, PAHO/WHO recommends at least two immunological tests with different technical principles. Specific algorithms are applied to diagnose congenital infection, screen blood and organ donors or conduct epidemiological surveys. Detecting Chagas disease reactivation in immunosuppressed individuals is an area of increasing interest. Due to its neglect, enhancing access to diagnosis of patients at risk of suffering T. cruzi infection should be a priority at national and regional levels.
Collapse
Affiliation(s)
- Alejandro Gabriel Schijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr Hector Torres, CONICET, Laboratorio de Biología Molecular de la Enfermedad de Chagas, Ciudad de Buenos Aires, Argentina
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health, University of Barcelona, Hospital Clinic, Barcelona, Spain
| | - Silvia Andrea Longhi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr Hector Torres, CONICET, Laboratorio de Biología Molecular de la Enfermedad de Chagas, Ciudad de Buenos Aires, Argentina
| | - Albert Picado
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| |
Collapse
|
42
|
Trypanosoma cruzi infection in the wild Chagas disease vector, Mepraia spinolai: Parasitic load, discrete typing units, and blood meal sources. Acta Trop 2022; 229:106365. [PMID: 35150641 DOI: 10.1016/j.actatropica.2022.106365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mepraia spinolai, a wild vector of Trypanosoma cruzi in Chile, is an abundant triatomine species that is frequently infected by the parasite that causes Chagas disease. The aim of this study was to determine if the parasitic load of T. cruzi in M. spinolai is related to its blood meal source and the infecting DTUs of T. cruzi. METHODS The vector was captured in rural areas. In the laboratory, DNA was extracted from its abdomen and T. cruzi was quantified using qPCR. Real time PCR assays for four T. cruzi DTUs were performed. Blood meal sources were identified by real-time PCR amplification of vertebrate cytochrome b gene sequences coupled with high resolution melting (HRM). RESULTS Trypanosoma cruzi was detected in 735 M. spinolai; in 484 we identified one blood meal source, corresponding to human, sylvatic, and domestic species. From these, in 224 we were able to discriminate the infecting DTU. When comparing the parasitic loads between the unique blood meal sources, no significant differences were found, but infections with more than one DTU showed higher parasitic loads than single infections. DTU TcI was detected in a high proportion of the samples. CONCLUSIONS Higher parasitic loads are related to a greater number of T. cruzi DTUs infecting M. spinolai, and this triatomine seems to have a wide span of vertebrate species in its diet.
Collapse
|
43
|
Flores-López CA, Mitchell EA, Reisenman CE, Sarkar S, Williamson PC, Machado CA. Phylogenetic diversity of two common Trypanosoma cruzi lineages in the Southwestern United States. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105251. [PMID: 35183751 DOI: 10.1016/j.meegid.2022.105251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a devastating parasitic disease endemic to Central and South America, Mexico, and the USA. We characterized the genetic diversity of Trypanosoma cruzi circulating in five triatomine species (Triatoma gerstaeckeri, T. lecticularia, T.indictiva, T. sanguisuga and T. recurva) collected in Texas and Southern Arizona using multilocus sequence typing (MLST) with four single-copy loci (cytochrome oxidase subunit II- NADH dehydrogensase subunit 1 region (COII-ND1), mismatch-repair class 2 (MSH2), dihydrofolate reductase-thymidylate synthase (DHFR-TS) and a nuclear gene with ID TcCLB.506529.310). All T. cruzi variants fall in two main genetic lineages: 75% of the samples corresponded to T. cruzi Discrete Typing Unit (DTU) I (TcI), and 25% to a North American specific lineage previously labelled TcIV-USA. Phylogenetic and sequence divergence analyses of our new data plus all previously published sequence data from those four loci collected in the USA, show that TcIV-USA is significantly different from any other previously defined T. cruzi DTUs. The significant level of genetic divergence between TcIV-USA and other T. cruzi DTUs should lead to an increased focus on understanding the epidemiological importance of this DTU, as well as its geographical range and pathogenicity in humans and domestic animals. Our findings further corroborate the fact that there is a high genetic diversity of the parasite in North America and emphasize the need for appropriate surveillance and vector control programs for Chagas disease in southern USA and Mexico.
Collapse
Affiliation(s)
- Carlos A Flores-López
- Department of Biology, University of Maryland, College Park, MD, USA; Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Elizabeth A Mitchell
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Sahotra Sarkar
- Department of Philosophy and Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Philip C Williamson
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA; Creative Testing Solutions, Tempe, AZ, USA
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
44
|
Pathogen diversity, immunity, and the fate of infections: lessons learned from Trypanosoma cruzi human–host interactions. THE LANCET MICROBE 2022; 3:e711-e722. [DOI: 10.1016/s2666-5247(21)00265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/02/2023] Open
|
45
|
Molecular characterization of Trypanosoma cruzi DTUs of the triatomine species in a Chagas disease endemic area. J Parasit Dis 2022; 46:64-71. [PMID: 35299926 PMCID: PMC8901897 DOI: 10.1007/s12639-021-01418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, a neglected tropical infection with great public health importance. This protozoan has triatomine insects as vector but may also be transmitted through blood transfusion, organ transplants, ingestion of contaminated food, or congenitally. It has a heterogeneous population classified into Discrete Typing Units (DTUs), TcI-TcVI and TcBat. The aim of this study was to molecularly characterize the DTUs of T. cruzi in triatomines from a Chagas disease endemic area in Northeastern Brazil. Triatomines were collected and the gut content was microscopically analyzed to investigate the presence of trypanosomatid flagellates. In addition, digestive tracts of some specimens were dissected and molecularly analyzed through PCR for Trypanosoma spp. and sequencing. PCR positive samples were further submitted to a multiplex PCR for DTUs of T. cruzi. A total of 117 triatomines were collected, 93.16% being in intradomicile and 6.84% in peridomicile environments. Insects were identified as Panstrongylus lutzi (37.60%), Triatoma pseudomaculata (26.50%), Triatoma brasiliensis (23.08%) and Panstrongylus megistus (12.82%). The specimens herein analyzed presented infection rates by T. cruzi of 5.49% and 12.09% in parasitological and molecular examinations, respectively. Multiplex PCR screening revealed 70.59% of the TcI genotype, detected in all triatomine species identified in this study and 29.41% of the DTU TcIII/TcIV detected in P. megistus and P. lutzi. T. cruzi infect triatomines in intradomicile and peridomicile environments, which brings attention to the risk of human infections and to the importance of the implementation of surveillance and entomological control actions.
Collapse
|
46
|
Martins MF, de Moraes SC, Oliveira J, dos Santos JC, Santos-Silva LK, Galvão C. Triatoma williami in intradomiciliary environments of urban areas in Mato Grosso State, Brazil: domiciliation process of a wild species? Infect Dis Poverty 2022; 11:18. [PMID: 35164858 PMCID: PMC8843021 DOI: 10.1186/s40249-022-00938-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/18/2022] [Indexed: 01/09/2023] Open
Abstract
Abstract
Background
Triatomines in Latin America are natural Chagas disease (ChD) vectors. Triatomine domiciliation is one of the main factors increasing the occurrence risk of this disease in humans. There are 66 triatomine species in Brazil, with three genera of significant epidemiological importance—Panstrongylus, Rhodnius, and Triatoma. Among the Triatoma species, Triatoma williami, a wild species, has been reported in Goiás, Mato Grosso, and Mato Grosso do Sul. In the Barra do Garças, Mato Grosso, the invasion by triatomines has been reported, with T. williami being the most common species. This study aimed to survey triatomine fauna and determine the Trypanosoma cruzi natural infection rates in triatomines in the urban area of Barra do Garças, Mato Grosso, Brazil.
Methods
Triatomine specimens were sampled by passive surveillance or active search by agents combating endemic diseases from 2019 to 2020. A parasitological feces diagnosis was performed to detect the presence of T. cruzi after the specimens were identified. Concerning T. cruzi identification, molecular diagnosis and genetic sequencing were performed to determine the strain, also called discrete typing units (DTUs).
Results
The 211 triatomines were collected, distributed in specimens of T. williami (84.4%), P. geniculatus (3.3%), P. diasi (1.4%), and R. neglectus (10.9%). Two colonies of T. williami were found through morphological analyses. These insects were sampled inside domiciles in an urban area neighboring Jardim Pitaluga (15° 51′57.7″ N, 052° 16′ 04.5 E). The records were sampled in September 2019 and January 2021. The rate of natural infection by T. cruzi was 39.4%. Two T. williami specimens from the sampled colonies were positive for the T. cruzi strain DTU IV.
Conclusions
This is the first time that T. williami has been confirmed in an urban area of Barra do Garças, Mato Grosso, Brazil. Further studies are needed for a clearer understanding of the ecology of this species for prevention and control mechanisms since its sampled specimens had a high rate of natural infection by T. cruzi.
Graphical Abstract
Collapse
|
47
|
Nakamura IB, Miguel DC, Bruscato A, Pereira MB, Campiolo D, de Almeida EA, Peloso EDF, Gadelha FR. Biological characterization of Trypanosoma cruzi epimastigotes derived from trypomastigotes isolated from Brazilian chagasic patients. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100110. [PMID: 35199071 PMCID: PMC8851099 DOI: 10.1016/j.crmicr.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
T. cruzi TcII isolates from chagasic patients have distinct biological parameters. Isolates were more glucose-dependent than long-term cultivated Y strain parasites. Significant differences were observed on complex II and IV-supported respiration.
Chagas disease (CD), caused by Trypanosoma cruzi, occurs in several countries in Latin America and non-endemic countries. Heterogeneity among T. cruzi population has been the Achilles’ heel to find a better treatment for CD. In this study, we characterized the biochemical parameters and mitochondrial bioenergetics of epimastigotes differentiated from eight T. cruzi isolates (I1-I8) obtained from Brazilian CD patients. Molecular analysis of parasites DTUs grouped all of them as TcII. The profile of the growth curves in axenic cultures was distinct among them, except for I1 and I3 and I2 and I4. Doubling times, growth rates, cell body length, and resistance to benznidazole were also significantly different among them. All the isolates were more glucose-dependent than other T. cruzi strains adapted to grow in axenic culture. Mitochondrial bioenergetics analysis showed that each isolate behaved differently regarding oxygen consumption rates in non-permeabilized and in digitonin-permeabilized cells in the presence of a complex II-linked substrate. When complex IV-linked respiratory chain substrate was used to provide electrons to the mitochondrial respiratory chain (MRC), similarity among the isolates was higher. Our findings show that TcII epimastigotes derived from patients’ trypomastigotes displayed their own characteristics in vitro, highlighting the intra-TcII diversity, especially regarding the functionality of mitochondrial respiratory complexes II and IV. Understanding T. cruzi intraspecific biological features help us to move a step further on our comprehension regarding parasite's survival and adaptability offering clues to improve the development of new therapies for CD.
Collapse
Affiliation(s)
- Isabella Bagni Nakamura
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAMP, Campinas, São Paulo, 13083-862, Brazil
| | - Danilo Ciccone Miguel
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo, 13083-862, Brazil
| | - Andressa Bruscato
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAMP, Campinas, São Paulo, 13083-862, Brazil
| | - Mariane Barroso Pereira
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, UNICAMP, Campinas, São Paulo, 13083-894, Brazil
| | - Dimas Campiolo
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAMP, Campinas, São Paulo, 13083-862, Brazil
| | - Eros Antônio de Almeida
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, UNICAMP, Campinas, São Paulo, 13083-894, Brazil
| | | | - Fernanda Ramos Gadelha
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAMP, Campinas, São Paulo, 13083-862, Brazil
- Corresponding author.
| |
Collapse
|
48
|
Calzada JE, Samudio F, de Juncá C, Pineda V, Burleigh BA, Saldaña A. Genetic Diversity of Trypanosoma cruzi in Panama Inferred by Multi-locus Sequence Typing of Mitochondrial Genes. Microorganisms 2022; 10:287. [PMID: 35208746 PMCID: PMC8879757 DOI: 10.3390/microorganisms10020287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to provide information on Trypanosoma cruzi genetic diversity among isolates obtained from different biological sources circulating in endemic areas of Panama. Initial discrete typing units (DTUs) assignment was performed evaluating three single locus molecular markers (mini-exon, heat shock protein 60 and glucose-6-phosphate isomerase genes). Further diversity within TcI lineages was explored using a multi-locus sequence typing approach with six maxicircle genes. Haplotype network analysis and evolutionary divergency estimations were conducted to investigate the genetic relatedness between Panamanian TcI isolates and isolates from different endemic regions in the Americas. Our molecular approach validated that TcI is the predominant DTU circulating in Panama across different hosts and vector species, but also confirmed the presence of TcIII and TcVI circulating in the country. The phylogenetic tree topography for most Panamanian TcI isolates displayed a high level of genetic homogeneity between them. The haplotype network analysis inferred a higher genetic diversity within Panamanian TcI isolates, displaying eight different haplotypes circulating in endemic regions of the country, and revealed geographical structuring among TcI from different endemic regions in the Americas. This study adds novelty on the genetic diversity of T. cruzi circulating in Panama and complements regional phylogeographic studies regarding intra-TcI variations.
Collapse
Affiliation(s)
- Jose E. Calzada
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama 0816, Panama; (J.E.C.); (F.S.); (V.P.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Apartado 3366, Panama
| | - Franklyn Samudio
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama 0816, Panama; (J.E.C.); (F.S.); (V.P.)
- Departamento de Genética y Biología Molecular, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Apartado 3366, Panama
| | - Corina de Juncá
- Centro de Investigación y Diagnóstico de Enfermedades Parasitarias (CIDEP), Facultad de Medicina, Universidad de Panamá, Apartado 3366, Panama;
| | - Vanessa Pineda
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama 0816, Panama; (J.E.C.); (F.S.); (V.P.)
| | - Barbara A. Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Azael Saldaña
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama 0816, Panama; (J.E.C.); (F.S.); (V.P.)
- Centro de Investigación y Diagnóstico de Enfermedades Parasitarias (CIDEP), Facultad de Medicina, Universidad de Panamá, Apartado 3366, Panama;
| |
Collapse
|
49
|
Zingales B, Bartholomeu DC. Trypanosoma cruzi genetic diversity: impact on transmission cycles and Chagas disease. Mem Inst Oswaldo Cruz 2022; 117:e210193. [PMID: 35544857 PMCID: PMC9088421 DOI: 10.1590/0074-02760210193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi, the agent of Chagas disease (ChD), exhibits remarkable biological and genetic diversity, along with eco-epidemiological complexity. In order to facilitate communication among researchers aiming at the characterisation of biological and epidemiological aspects of T. cruzi, parasite isolates and strains were partitioned into seven discrete typing units (DTUs), TcI-TcVI and TcBat, identifiable by reproducible genotyping protocols. Here we present the potential origin of the genetic diversity of T. cruzi and summarise knowledge about eco-epidemiological associations of DTUs with mammalian reservoirs and vectors. Circumstantial evidence of a connection between T. cruzi genotype and ChD manifestations is also discussed emphasising the role of the host’s immune response in clinical ChD progression. We describe genomic aspects of DTUs focusing on polymorphisms in multigene families encoding surface antigens that play essential functions for parasite survival both in the insect vector and the mammalian host. Such antigens most probably contributed to the parasite success in establishing infections in different hosts and exploring several niches. Gaps in the current knowledge and challenges for future research are pointed out.
Collapse
|
50
|
Souza TKMD, Westphalen EVN, Westphalen SDR, Taniguchi HH, Elias CR, Motoie G, Gava R, Pereira-Chioccola VL, Novaes CTG, Carvalho NB, Bocchi EA, Cruz FDDD, Rocha MC, Shinjo SK, Shikanai-Yasuda MA, Ortiz PA, Teixeira MMG, Tolezano JE. Genetic diversity of Trypanosoma cruzi strains isolated from chronic chagasic patients and non-human hosts in the state of São Paulo, Brazil. Mem Inst Oswaldo Cruz 2022; 117:e220125. [PMID: 36383785 PMCID: PMC9651066 DOI: 10.1590/0074-02760220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi shows an exuberant genetic diversity. Currently, seven phylogenetic lineages, called discrete typing units (DTUs), are recognised: TcI-TcVI and Tcbat. Despite advances in studies on T. cruzi and its populations, there is no consensus regarding its heterogeneity. OBJECTIVES This study aimed to perform molecular characterisation of T. cruzi strains, isolated in the state of São Paulo, to identify the DTUs involved and evaluate their genetic diversity. METHODS T. cruzi strains were isolated from biological samples of chronic chagasic patients, marsupials and triatomines through culture techniques and subjected to molecular characterisation using the fluorescent fragment length barcoding (FFLB) technique. Subsequently, the results were correlated with complementary information to enable better discrimination between the identified DTUs. FINDINGS It was possible to identify TcI in two humans and two triatomines; TcII/VI in 19 humans, two marsupials and one triatomine; and TcIII in one human host, an individual that also presented a result for TcI, which indicated the possibility of a mixed infection. Regarding the strains characterised by the TcII/VI profile, the correlation with complementary information allowed to suggest that, in general, these parasite populations indeed correspond to the TcII genotype. MAIN CONCLUSIONS The TcII/VI profile, associated with domestic cycles and patients with chronic Chagas disease, was the most prevalent among the identified DTUs. Furthermore, the correlation of the study results with complementary information made it possible to suggest that TcII is the predominant lineage of this work.
Collapse
|