1
|
Scavo NA, Juarez JG, Chaves LF, Fernández-Santos NA, Carbajal E, Perkin J, Londono-Renteria B, Hamer GL. Little disease but lots of bites: social, urbanistic, and entomological risk factors of human exposure to Aedes aegypti in South Texas, U.S. PLoS Negl Trop Dis 2024; 18:e0011953. [PMID: 39432539 PMCID: PMC11527178 DOI: 10.1371/journal.pntd.0011953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/31/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Aedes aegypti presence, human-vector contact rates, and Aedes-borne virus transmission are highly variable through time and space. The Lower Rio Grande Valley (LRGV), Texas, is one of the few regions in the U.S. where local transmission of Aedes-borne viruses occurs, presenting an opportunity to evaluate social, urbanistic, entomological, and mobility-based factors that modulate human exposure to Ae. aegypti. METHODOLOGY & PRINCIPAL FINDINGS Mosquitoes were collected using BG-Sentinel 2 traps during November 2021 as part of an intervention trial, with knowledge, attitudes, and practices (KAP) and housing quality surveys to gather environmental and demographic data. Human blood samples were taken from individuals and a Bitemark Assay (ELISA) was conducted to quantify human antibodies to the Ae. aegypti Nterm-34kDa salivary peptide as a measure of human exposure to bites. In total, 64 houses were surveyed with 142 blood samples collected. More than 80% of participants had knowledge of mosquito-borne diseases and believed mosquitoes to be a health risk in their community. Our best fit generalized linear mixed effects model found four fixed effects contributed significantly to explaining the variation in exposure to Ae. aegypti bites: higher annual household income, younger age, larger lot area, and higher female Ae. aegypti abundance per trap night averaged over 5 weeks prior to human blood sampling. CONCLUSIONS Most surveyed residents recognized mosquitoes and the threat they pose to individual and public health. Urbanistic (i.e., lot size), social (i.e., income within a low-income community and age), and entomological (i.e., adult female Ae. aegypti abundance) factors modulate the risk of human exposure to Ae. aegypti bites. The use of serological biomarker assays, such as the Bitemark Assay, are valuable tools for surveillance and risk assessment of mosquito-borne disease, especially in areas like the LRGV where the transmission of target pathogens is low or intermittent.
Collapse
Affiliation(s)
- Nicole A. Scavo
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Ecology & Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America
| | - Jose G. Juarez
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Luis Fernando Chaves
- Department of Environmental and Occupational Health, School of Public Health and Department of Geography, Indiana University, Bloomington Indiana, United States of America
| | - Nadia A. Fernández-Santos
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Instituto Politecnico Nacional, Centro de Biotecnologia Genomica, Reynosa, Mexico
| | - Ester Carbajal
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Joshuah Perkin
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, United States of America
| | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, Louisiana, United States of America
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
2
|
Wang ZY, Nie KX, Niu JC, Cheng G. Research progress toward the influence of mosquito salivary proteins on the transmission of mosquito-borne viruses. INSECT SCIENCE 2024; 31:663-673. [PMID: 37017683 DOI: 10.1111/1744-7917.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Mosquito-borne viruses (MBVs) are a large class of viruses transmitted mainly through mosquito bites, including dengue virus, Zika virus, Japanese encephalitis virus, West Nile virus, and chikungunya virus, which pose a major threat to the health of people around the world. With global warming and extended human activities, the incidence of many MBVs has increased significantly. Mosquito saliva contains a variety of bioactive protein components. These not only enable blood feeding but also play a crucial role in regulating local infection at the bite site and the remote dissemination of MBVs as well as in remodeling the innate and adaptive immune responses of host vertebrates. Here, we review the physiological functions of mosquito salivary proteins (MSPs) in detail, the influence and the underlying mechanism of MSPs on the transmission of MBVs, and the current progress and issues that urgently need to be addressed in the research and development of MSP-based MBV transmission blocking vaccines.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Kai-Xiao Nie
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ji-Chen Niu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Govella NJ, Assenga A, Mlwale AT, Mirzai N, Heffernan E, Moriarty J, Wenger J, Corbel V, McBeath J, Ogoma SB, Killeen GF. Entomological assessment of hessian fabric transfluthrin vapour emanators for protecting against outdoor-biting Aedes aegypti in coastal Tanzania. PLoS One 2024; 19:e0299722. [PMID: 38809841 PMCID: PMC11135681 DOI: 10.1371/journal.pone.0299722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/13/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND A low technology emanator device for slowly releasing vapour of the volatile pyrethroid transfluthrin was recently developed in Tanzania that provides robust protection against night biting Anopheles and Culex vectors of malaria and filariasis for several months. Here these same emanator devices were assessed in Dar es Salaam city, as a means of protection against outdoor-biting Aedes (Stegomia) aegypti, the most important vector of human arboviruses worldwide, in parallel with similar studies in Haiti and Brazil. METHODS A series of entomological experiments were conducted under field and semi-field conditions, to evaluate whether transfluthrin emanators protect against wild Ae. aegypti, and also compare the transfluthrin responsiveness of Ae. aegypti originating from wild-caught eggs to established pyrethroid-susceptible Ae. aegypti and Anopheles gambiae colonies. Preliminary measurements of transfluthrin vapour concentration in air samples collected near treated emanators were conducted by gas chromatography-mass spectrometry. RESULTS Two full field experiments with four different emanator designs and three different transfluthrin formulations consistently indicated negligible reduction of human landing rates by wild Ae. aegypti. Under semi-field conditions in large cages, 50 to 60% reductions of landing rates were observed, regardless of which transfluthrin dose, capture method, emanator placement position, or source of mosquitoes (mildly pyrethroid resistant wild caught Ae. aegypti or pyrethroid-susceptible colonies of Ae. aegypti and An. gambiae) was used. Air samples collected immediately downwind from an emanator treated with the highest transfluthrin dose (15g), contained 12 to 19 μg/m3 transfluthrin vapour. CONCLUSIONS It appears unlikely that the moderate levels of pyrethroid resistance observed in wild Ae. aegypti can explain the modest-to-undetectable levels of protection exhibited. While potential inhalation exposure could be of concern for the highest (15g) dose evaluated, 3g of transfluthrin appears sufficient to achieve the modest levels of protection that were demonstrated entomologically. While the generally low levels of protection against Aedes reported here from Tanzania, and from similar entomological studies in Haiti and Brazil, are discouraging, complementary social science studies in Haiti and Brazil suggest end-users perceive valuable levels of protection against mosquitoes. It therefore remains unclear whether transfluthrin emanators have potential for protecting against Aedes vectors of important human arboviruses.
Collapse
Affiliation(s)
- Nicodem J. Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
- African Institution of Science and Technology, School of Life Science and Bio-Engineering, The Nelson Mandela, Tengeru, Arusha, United Republic of Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Alphonce Assenga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Amos T. Mlwale
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Nosrat Mirzai
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Eimear Heffernan
- Centre for Research into Atmospheric Chemistry, School of Chemistry, University College Cork, Cork, Republic of Ireland
- Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| | - Jennie Moriarty
- Centre for Research into Atmospheric Chemistry, School of Chemistry, University College Cork, Cork, Republic of Ireland
- Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| | - John Wenger
- Centre for Research into Atmospheric Chemistry, School of Chemistry, University College Cork, Cork, Republic of Ireland
- Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| | - Vincent Corbel
- Institut de Recherche pour le Developpement, University of Montpellier, Montpellier, France
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, Rio de Janeiro-RJ, Brazil
| | - Justin McBeath
- Envu UK Ltd, Cambridge, Milton, Cambridge, United Kingdom
| | | | - Gerry F. Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
- Environmental Research Institute, University College Cork, Cork, Republic of Ireland
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Biological Earth & Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| |
Collapse
|
4
|
Supreme C, Damus O, Frederick J, Lemoine JF, Raccurt C, McBeath J, Mirzai N, Ogoma SB, Corbel V, Impoinvil D, Killeen GF, Czeher C. Entomological assessment of hessian fabric transfluthrin vapour emanators as a means to protect against outdoor-biting Aedes after providing them to households for routine use in Port-au-Prince, Haiti. PLoS One 2024; 19:e0298919. [PMID: 38805442 PMCID: PMC11132518 DOI: 10.1371/journal.pone.0298919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/31/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND A simple treated fabric device for passively emanating the volatile pyrethroid transfluthrin was recently developed in Tanzania that protected against nocturnal Anopheles and Culex mosquitoes for several months. Here these transfluthrin emanators were assessed in Port-au-Prince, Haiti against outdoor-biting Aedes. METHODS Transfluthrin emanators were distributed to participating households in poor-to-middle class urban neighbourhoods and evaluated once every two months in terms of their effects on human landing rates of wild Aedes populations. A series of three such entomological assessment experiments were conducted, to examine the influence of changing weather conditions, various transfluthrin formulations and emanator placement on protective efficacy measurements. Laboratory experiments assessed resistance of local Aedes aegypti to transfluthrin and deltamethrin, and the irritancy and repellency of the transfluthrin-treated fabric used in the field. RESULTS Across all three entomological field assessments, little evidence of protection against wild Ae. aegypti was observed, regardless of weather conditions, transfluthrin formulation or emanator placement: A generalized linear mixed model fitted to the pooled data from all three assessment rounds (921 females caught over 5129 hours) estimated a relative landing rate [95% Confidence interval] of 0.87 [0.73, 1.04] for users of treated versus untreated emanators (P = 0.1241). Wild Ae. aegypti in this setting were clearly resistant to transfluthrin when compared to a fully susceptible colony. CONCLUSIONS Transfluthrin emanators had little if any apparent effect upon Aedes landing rates by wild Ae. aegypti in urban Haiti, and similar results have been obtained by comparable studies in Tanzania, Brazil and Peru. In stark contrast, however, parallel sociological assessments of perspectives among these same end-users in urban Haitian communities indicate strong satisfaction in terms of perceived protection against mosquitoes. It remains unclear why the results obtained from these complementary entomological and sociological assessments in Haiti differ so much, as do those from a similar set of studies in Brazil. It is encouraging, however, that similar contrasts between the entomological and epidemiological results of a recent large-scale assessment of another transfluthrin emanator product in Peru, which indicate they provide useful protection against Aedes-borne arboviral infections, despite apparently providing only modest protection against Aedes mosquito bites.
Collapse
Affiliation(s)
| | | | - Joseph Frederick
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population, Port-au-Prince, Republic of Haiti
| | - Jean-Frantz Lemoine
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population, Port-au-Prince, Republic of Haiti
| | | | - Justin McBeath
- Envu UK Ltd, Cambridge, Milton, Cambridge, United Kingdom
| | - Nosrat Mirzai
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Vincent Corbel
- Institut de Recherche pour le Developpement, University of Montpellier, Montpellier, France
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Daniel Impoinvil
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Gerry F. Killeen
- Ifakara Health Institute, Ifakara, Morogoro, United Republic of Tanzania
- Liverpool School of Tropical Medicine, Department of Vector Biology, Liverpool, United Kingdom
- School of Biological Earth & Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| | - Cyrille Czeher
- Institut de Recherche pour le Developpement, University of Montpellier, Montpellier, France
- Entente Interdépartementale pour la Démoustication du Littoral Méditerranéen (EID Méditerranée), Montpellier, France
| |
Collapse
|
5
|
Chea S, Willen L, Nhek S, Ly P, Tang K, Oristian J, Salas-Carrillo R, Ponce A, Leon PCV, Kong D, Ly S, Sath R, Lon C, Leang R, Huy R, Yek C, Valenzuela JG, Calvo E, Manning JE, Oliveira F. Antibodies to Aedes aegypti D7L salivary proteins as a new serological tool to estimate human exposure to Aedes mosquitoes. Front Immunol 2024; 15:1368066. [PMID: 38751433 PMCID: PMC11094246 DOI: 10.3389/fimmu.2024.1368066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Aedes spp. are the most prolific mosquito vectors in the world. Found on every continent, they can effectively transmit various arboviruses, including the dengue virus which continues to cause outbreaks worldwide and is spreading into previously non-endemic areas. The lack of widely available dengue vaccines accentuates the importance of targeted vector control strategies to reduce the dengue burden. High-throughput tools to estimate human-mosquito contact and evaluate vector control interventions are lacking. We propose a novel serological tool that allows rapid screening of human cohorts for exposure to potentially infectious mosquitoes. Methods We tested 563 serum samples from a longitudinal pediatric cohort study previously conducted in Cambodia. Children enrolled in the study were dengue-naive at baseline and were followed biannually for dengue incidence for two years. We used Western blotting and enzyme-linked immunosorbent assays to identify immunogenic Aedes aegypti salivary proteins and measure total anti-Ae. aegypti IgG. Results We found a correlation (rs=0.86) between IgG responses against AeD7L1 and AeD7L2 recombinant proteins and those to whole salivary gland homogenate. We observed seasonal fluctuations of AeD7L1+2 IgG responses and no cross-reactivity with Culex quinquefasciatus and Anopheles dirus mosquitoes. The baseline median AeD7L1+2 IgG responses for young children were higher in those who developed asymptomatic versus symptomatic dengue. Discussion The IgG response against AeD7L1+2 recombinant proteins is a highly sensitive and Aedes specific marker of human exposure to Aedes bites that can facilitate standardization of future serosurveys and epidemiological studies by its ability to provide a robust estimation of human-mosquito contact in a high-throughput fashion.
Collapse
Affiliation(s)
- Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Laura Willen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sreynik Nhek
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Piseth Ly
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Kristina Tang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - James Oristian
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Roberto Salas-Carrillo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Aiyana Ponce
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dara Kong
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Sokna Ly
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ratanak Sath
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chanthap Lon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
- National Dengue Control Program, Ministry of Health, Phnom Penh, Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
| | - Christina Yek
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jessica E. Manning
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Fabiano Oliveira
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Howell MM, Olajiga OM, Cardenas JC, Parada-Higuera CA, Gonzales-Pabon MU, Gutierrez-Silva LY, Jaimes-Villamizar L, Werner BM, Shaffer JG, Manuzak JA, Londono-Renteria B. Mosquito Salivary Antigens and Their Relationship to Dengue and P. vivax Malaria. Pathogens 2024; 13:52. [PMID: 38251359 PMCID: PMC10818852 DOI: 10.3390/pathogens13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
In tropical areas, the simultaneous transmission of multiple vector-borne diseases is common due to ecological factors shared by arthropod vectors. Malaria and dengue virus, transmitted by Anopheles and Aedes mosquitoes, respectively, are among the top vector-borne diseases that cause significant morbidity and mortality in endemic areas. Notably, tropical areas often have suitable conditions for the co-existence of these mosquito species, highlighting the importance of identifying markers that accurately indicate the risk of acquiring each specific disease entity. Aedes are daytime-biting mosquitoes, while Anopheles preferentially bite during the night. These biting patterns raise the possibility of concurrent exposure to bites from both species. This is important because mosquito saliva, deposited in the skin during blood feeding, induces immune responses that modulate pathogen establishment and infection. Previous studies have focused on characterizing such effects on the vector-pathogen interface for an individual pathogen and its mosquito vector. In this study, we evaluated associations between immune responses to salivary proteins from non-dengue and non-malaria vector mosquito species with clinical characteristics of malaria and dengue, respectively. Surprisingly, antibody responses against Anopheles antigens in dengue patients correlated with red blood cell count and hematocrit, while antibody responses against Aedes proteins were associated with platelet count in malaria patients. Our data indicate that concurrent exposure to multiple disease-carrying mosquito vectors and their salivary proteins with differing immunomodulatory properties could influence the transmission, pathogenesis, and clinical presentation of malaria, dengue fever, and other vector-borne illnesses.
Collapse
Affiliation(s)
- McKenna M. Howell
- Arbovirology Laboratory, Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA; (M.M.H.); (J.C.C.)
| | - Olayinka M. Olajiga
- Arbovirology Laboratory, Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA; (M.M.H.); (J.C.C.)
| | - Jenny C. Cardenas
- Arbovirology Laboratory, Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA; (M.M.H.); (J.C.C.)
| | | | | | | | | | - Brett M. Werner
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Jennifer A. Manuzak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Berlin Londono-Renteria
- Arbovirology Laboratory, Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA; (M.M.H.); (J.C.C.)
| |
Collapse
|
7
|
Chea S, Willen L, Nhek S, Ly P, Tang K, Oristian J, Salas-Carrillo R, Ponce A, Leon PCV, Kong D, Ly S, Sath R, Lon C, Leang R, Huy R, Yek C, Valenzuela JG, Calvo E, Manning JE, Oliveira F. Antibodies to Aedes aegypti D7L salivary proteins as a new serological tool to estimate human exposure to Aedes mosquitoes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.22.23300438. [PMID: 38318204 PMCID: PMC10843157 DOI: 10.1101/2023.12.22.23300438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Introduction Aedes spp. are the most prolific mosquito vectors in the world. Found on every continent, they can effectively transmit various arboviruses, including the dengue virus which continues to cause outbreaks worldwide and is spreading into previously non-endemic areas. The lack of widely available dengue vaccines accentuates the importance of targeted vector control strategies to reduce the dengue burden. High-throughput sensitive tools to estimate human-mosquito contact and evaluate vector control interventions are lacking. We propose a novel serological tool that allows rapid screening of large human cohorts for exposure to potentially infectious mosquitoes and effective targeting of vector control. Methods We tested 563 serum samples from a longitudinal pediatric cohort study previously conducted in Cambodia. Children enrolled in the study were dengue-naïve at baseline and were followed biannually for dengue incidence for two years. We used Western blotting and enzyme-linked immunosorbent assays to identify the most immunogenic Aedes aegypti salivary proteins and measure total anti- Ae. Aegypti IgG. Results We found a strong correlation (r s =0.86) between the combined IgG responses against AeD7L1 and AeD7L2 recombinant proteins and those to whole salivary gland homogenate. We observed seasonal fluctuations of AeD7L1+2 IgG responses, corresponding to Aedes spp. abundance in the region, and no cross-reactivity with Culex quinquefasciatus and Anopheles dirus mosquitoes. The baseline median AeD7L1+2 IgG responses for young children were higher in those who developed asymptomatic dengue versus those who developed symptomatic dengue. Conclusion The IgG response against AeD7L1+2 recombinant proteins is a highly sensitive and Aedes specific marker of human exposure to Aedes bites that can facilitate standardization of future serosurveys and epidemiological studies by its ability to provide a robust estimation of human-mosquito contact in a high-throughput fashion.
Collapse
|
8
|
Arnoldi I, Villa M, Mancini G, Varotto-Boccazzi I, Yacoub MR, Asperti C, Mascheri A, Casiraghi S, Epis S, Bandi C, Dagna L, Forneris F, Gabrieli P. IgE response to Aed al 13 and Aed al 14 recombinant allergens from Aedes albopictus saliva in humans. World Allergy Organ J 2023; 16:100836. [PMID: 37965096 PMCID: PMC10641722 DOI: 10.1016/j.waojou.2023.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background Mosquito bite is normally associated with mild allergic responses, but severe localized or systemic reactions are also possible. Reliable tools for the diagnosis of mosquito allergy are still unavailable. Here, we investigated the IgE response to 3 potential salivary allergens identified in the saliva of the tiger mosquito Aedes albopictus. Methods Serum from 55 adult individuals (28 controls and 27 allergic people), were analysed using an in-house Enzyme Linked ImmunoSorbent Assay (ELISA) against the Salivary Gland Extract (SGE) and the recombinant proteins albD7l2 (Aed al 2), albAntigen5-3 (Aed al 13) and albLIPS-2 (Aed al 14). Results Fifteen of the 27 (56%) individuals having hypersensitive reactions to mosquito bites had IgE serum levels recognizing SGE. Negative sera did not show detectable levels of IgE targeting the SGE from the most common sympatric mosquito Culex pipiens. Among the positive individuals, 2 subjects displayed IgE targeting Aed al 2 (13%), while IgE recognizing Aed al 13 and Aed al 14 were detected in ten (67%) and seven (47%) individuals, respectively. Two sera from non-hypersensitive subjects had detectable levels of IgE targeting Aed al 13, suggesting possible cross-reaction with the homologue salivary proteins of multiple mosquito species or, more generally, of hematophagous insects. Conclusions Our results indicate that Aed al 13 and Aed al 14 hold the potential to be developed as tools for the diagnosis of allergy to Ae. albopictus bites. Such tools would facilitate epidemiological studies on tiger mosquito allergy in humans and might foster the development of further protein-based assays to investigate cross-species allergies.
Collapse
Affiliation(s)
- Irene Arnoldi
- Entopar Lab, Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, 20133, Italy
- University School of Advanced Studies Pavia, IUSS, Pavia, 27100, Italy
| | - Marta Villa
- Entopar Lab, Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giulia Mancini
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
- University School of Advanced Studies Pavia, IUSS, Pavia, 27100, Italy
| | - Ilaria Varotto-Boccazzi
- Entopar Lab, Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, 20133, Italy
| | - Mona-Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Asperti
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ambra Mascheri
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Casiraghi
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Epis
- Entopar Lab, Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, 20133, Italy
| | - Claudio Bandi
- Entopar Lab, Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, 20133, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Paolo Gabrieli
- Entopar Lab, Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, 20133, Italy
| |
Collapse
|
9
|
Sri-In C, Thontiravong A, Bartholomay LC, Wechtaisong W, Thongmeesee K, Riana E, Tiawsirisup S. 34-kDa salivary protein enhances duck Tembusu virus infectivity in the salivary glands of Aedes albopictus by modulating the innate immune response. Sci Rep 2023; 13:9098. [PMID: 37277542 DOI: 10.1038/s41598-023-35914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
Duck Tembusu virus (DTMUV) is an important flavivirus that can be transmitted to poultry via Aedes albopictus bites. Furthermore, humans residing in the DTMUV epidemic area display activated antiviral immune responses to local DTMUV isolates during the pathogenic invasion, thereby raising the primary concern that this flavivirus may be transmitted to humans via mosquito bites. Therefore, we identified the gene AALF004421, which is a homolog of the 34-kDa salivary protein (34 kDa) of Ae. albopictus and studied the salivary protein-mediated enhancement of DTMUV infection in Ae. albopictus salivary glands. We observed that double-stranded RNA-mediated silencing of the 34 kDa in mosquito salivary glands demonstrated that the silenced 34 kDa impaired DTMUV infectivity, similar to inhibition through serine protease. This impairment occurred as a consequence of triggering the innate immune response function of a macroglobulin complement-related factor (MCR). 34-kDa in the salivary gland which had similar activity as a serine protease, results in the abrogation of antimicrobial peptides production and strong enhance DTMUV replication and transmission. Although the function of the 34 kDa in Ae. albopictus is currently unknown; in the present study, we showed that it may have a major role in DTMUV infection in mosquito salivary glands through the suppression of the antiviral immune response in the earliest stages of infection. This finding provides the first identification of a prominently expressed 34 kDa protein in Ae. albopictus saliva that could serve as a target for controlling DTMUV replication in mosquito vectors.
Collapse
Affiliation(s)
- Chalida Sri-In
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aunyaratana Thontiravong
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, USA
| | - Wittawat Wechtaisong
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kritsada Thongmeesee
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Elizabeth Riana
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sonthaya Tiawsirisup
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Kassam NA, Laswai D, Kulaya N, Kaaya RD, Kajeguka DC, Schmiegelow C, Wang CW, Alifrangis M, Kavishe RA. Human IgG responses to Aedes mosquito salivary peptide Nterm-34kDa and its comparison to Anopheles salivary antigen (gSG6-P1) IgG responses measured among individuals living in Lower Moshi, Tanzania. PLoS One 2022; 17:e0276437. [PMID: 36301860 PMCID: PMC9612500 DOI: 10.1371/journal.pone.0276437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The level of human exposure to arbovirus vectors, the Aedes mosquitoes, is mainly assessed by entomological methods which are labour intensive, difficult to sustain at a large scale and are affected if transmission and exposure levels are low. Alternatively, serological biomarkers which detect levels of human exposure to mosquito bites may complement the existing epidemiologic tools as they seem cost-effective, simple, rapid, and sensitive. This study explored human IgG responses to an Aedes mosquito salivary gland peptide Nterm-34kDa in Lower Moshi, a highland area with evidence of circulating arboviruses and compared the Aedes IgG responses to Anopheles mosquitoes' salivary antigen (GSG6-P1) IgG responses. METHODS Three cross-sectional surveys were conducted in 2019: during the first dry season in March, at the end of the rainy season in June and during the second dry season in September in five villages located in Lower Moshi. Blood samples were collected from enrolled participants above six months of age (age span: 7 months to 94 years) and analysed for the presence of anti-Nterm-34kDa IgG antibodies. Possible associations between Nterm-34kDa seroprevalence and participants' characteristics were determined. Levels of IgG responses and seroprevalence were correlated and compared to the already measured IgG responses and seroprevalence of Anopheles mosquitoes' salivary antigen, GSG6-P1. RESULTS During the first dry season, Nterm-34kDa seroprevalence was 34.1% and significantly increased at the end of the rainy season to 45.3% (Chi square (χ2) = 6.42 p = 0.011). During the second dry season, the seroprevalence significantly declined to 26.5% (χ2 = 15.12 p<0.001). During the rainy season, seroprevalence was significantly higher among residents of Oria village (adjusted odds ratio (AOR) = 2.86; 95% CI = 1.0-7.8; p = 0.041) compared to Newland. Moreover, during the rainy season, the risk of exposure was significantly lower among individuals aged between 16 and 30 years (AOR = 0.25; 95% CI = 0.1 = 0.9; p = 0.036) compared to individuals aged between 0 and 5 years. There was weak to moderate negative correlation between N-term 34kDa IgG and gSG6-P1 antigens. N-term 34kDa seroprevalence were higher compared to gSG6-P1 seroprevalence. CONCLUSION The findings of this study support that IgG antibody responses towards the Aedes mosquito salivary peptide Nterm-34kDa are detectable among individuals living in lower Moshi and vary with season and geographical area. More individuals are exposed to Aedes mosquito bites than Anopheles mosquito and those exposed to Aedes bites are not necessarily exposed to Anopheles mosquitoes.
Collapse
Affiliation(s)
- Nancy A. Kassam
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- * E-mail:
| | - Daniel Laswai
- Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Neema Kulaya
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Robert D. Kaaya
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Pan-African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Debora C. Kajeguka
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Christentze Schmiegelow
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Christian W. Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | |
Collapse
|
11
|
Buezo Montero S, Gabrieli P, Poinsignon A, Zamble BZH, Lombardo F, Remoue F, Arcà B. Human IgG responses to the Aedes albopictus 34k2 salivary protein: analyses in Réunion Island and Bolivia confirm its suitability as marker of host exposure to the tiger mosquito. Parasit Vectors 2022; 15:260. [PMID: 35858924 PMCID: PMC9301888 DOI: 10.1186/s13071-022-05383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rapid worldwide spreading of Aedes aegypti and Aedes albopictus is expanding the risk of arboviral diseases transmission, pointing out the urgent need to improve monitoring and control of mosquito vector populations. Assessment of human-vector contact, currently estimated by classical entomological methods, is crucial to guide planning and implementation of control measures and evaluate transmission risk. Antibody responses to mosquito genus-specific salivary proteins are emerging as a convenient complementary tool for assessing host exposure to vectors. We previously showed that IgG responses to the Ae. albopictus 34k2 salivary protein (al34k2) allow detection of seasonal and geographic variation of human exposure to the tiger mosquito in two temperate areas of Northeast Italy. The main aim of this study was to confirm and extend these promising findings to tropical areas with ongoing arboviral transmission. METHODS IgG responses to al34k2 and to the Ae. aegypti orthologous protein ae34k2 were measured by ELISA in cohorts of subjects only exposed to Ae. albopictus (Réunion Island), only exposed to Ae. aegypti (Bolivia) or unexposed to both these vectors (North of France). RESULTS AND CONCLUSION Anti-al34k2 IgG levels were significantly higher in sera of individuals from Réunion Island than in unexposed controls, indicating that al34k2 may be a convenient and reliable proxy for whole saliva or salivary gland extracts as an indicator of human exposure to Ae. albopictus. Bolivian subjects, exposed to bites of Ae. aegypti, carried in their sera IgG recognizing the Ae. albopictus al34k2 protein, suggesting that this salivary antigen can also detect, even though with low sensitivity, human exposure to Ae. aegypti. On the contrary, due to the high background observed in unexposed controls, the recombinant ae34k2 appeared not suitable for the evaluation of human exposure to Aedes mosquitoes. Overall, this study confirmed the suitability of anti-al34k2 IgG responses as a specific biomarker of human exposure to Ae. albopictus and, to a certain extent, to Ae. aegypti. Immunoassays based on al34k2 are expected to be especially effective in areas where Ae. albopictus is the main arboviral vector but may also be useful in areas where Ae. albopictus and Ae. aegypti coexist.
Collapse
Affiliation(s)
- Sara Buezo Montero
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Present Address: Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany
| | - Paolo Gabrieli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Anne Poinsignon
- MIVEGEC, University of Montpellier, IRD, CNRS, 34000 Montpellier, France
| | | | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Franck Remoue
- MIVEGEC, University of Montpellier, IRD, CNRS, 34000 Montpellier, France
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Sri-In C, Thontiravong A, Bartholomay LC, Tiawsirisup S. Effects of Aedes aegypti salivary protein on duck Tembusu virus replication and transmission in salivary glands. Acta Trop 2022; 228:106310. [PMID: 35032469 DOI: 10.1016/j.actatropica.2022.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Duck Tembusu virus (DTMUV) infection is an arthropod-borne viral disease that affects many poultry species, including ducks, chickens, and geese. Aedes aegypti mosquito is an important vector of DTMUV. This study sought to determine whether any individual Ae. aegypti salivary protein modulated DTMUV replication in the mosquito salivary gland. Ae. aegypti salivary gland protein of 34 kDa (AaSG34) was found to be expressed explicitly in mosquito salivary glands and was upregulated following DTMUV infection. Thus, AaSG34 was silenced in mosquitoes via RNA interference using double strand RNA (dsRNA), and the mosquitoes were then infected with DTMUV to elucidate their effects on DTMUV replication and transmission. Transcripts of the DTMUV genome in salivary glands and virus titer in saliva were significantly diminished when AaSG34 was silenced, indicating that its presence enhances DTMUV replication in the salivary glands and DTMUV dissemination to saliva. Furthermore, the expression of antimicrobial peptides (AMPs) was upregulated upon AaSG34 silenced. Our results demonstrate that AaSG34 may play a vital role in the suppression of antiviral immune responses to enhance DTMUV replication and transmission. We thus provide new information on the effect of the AaSG34 salivary protein on DTMUV replication in Ae. aegypti as the mechanism of blocking virus transmission to the host.
Collapse
Affiliation(s)
- Chalida Sri-In
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aunyaratana Thontiravong
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, United States
| | - Sonthaya Tiawsirisup
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
13
|
Zamble BZH, Yao SS, Adja AM, Bakli M, Zoh DD, Mathieu-Daudé F, Assi SB, Remoue F, Almeras L, Poinsignon A. First evaluation of antibody responses to Culex quinquefasciatus salivary antigens as a serological biomarker of human exposure to Culex bites: A pilot study in Côte d'Ivoire. PLoS Negl Trop Dis 2021; 15:e0010004. [PMID: 34898609 PMCID: PMC8699949 DOI: 10.1371/journal.pntd.0010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/23/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background Culex mosquitoes are vectors for a variety of pathogens of public health concern. New indicators of exposure to Culex bites are needed to evaluate the risk of transmission of associated pathogens and to assess the efficacy of vector control strategies. An alternative to entomological indices is the serological measure of antibodies specific to mosquito salivary antigens. This study investigated whether the human IgG response to both the salivary gland extract and the 30 kDa salivary protein of Culex quinquefasciatus may represent a proxy of human exposure to Culex bites. Methodology/Principal findings A multidisciplinary survey was conducted with children aged 1 to 14 years living in neighborhoods with varying exposure to Culex quinquefasciatus in the city of Bouaké, Côte d’Ivoire. Children living in sites with high exposure to Cx quinquefasciatus had a significantly higher IgG response to both salivary antigens compared with children living in the control site where only very few Culex were recorded. Moreover, children from any Culex-high exposed sites had significantly higher IgG responses only to the salivary gland extract compared with children from the control village, whereas no difference was noted in the anti-30 kDa IgG response. No significant differences were noted in the specific IgG responses between age and gender. Sites and the use of a bed net were associated with the level of IgG response to the salivary gland extract and to the 30 kDa antigen, respectively. Conclusions/Significance These findings suggest that the IgG response to Culex salivary gland extracts is suitable as proxy of exposure; however, the specificity to the Culex genus needs further investigation. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other specific antibody responses might be more relevant as a biomarker of exposure. These epidemiological observations may form a starting point for additional work on developing serological biomarkers of Culex exposure. The evaluation of exposure to mosquitoes is a key parameter in assessing the risk of transmission of associated pathogens, including zoonoses. Entomological methods represent the gold standard but have several limitations, and efforts are being made to develop new indicators to accurately assess human–Culex contact. This study showed the IgG response to Culex quinquefasciatus salivary gland extract is suitable proxy of exposure to Culex bites. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other isotypic antibody responses specific to this salivary antigen might be more relevant as a biomarker of exposure.
Collapse
Affiliation(s)
- Bi Zamble H. Zamble
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
- * E-mail:
| | - Serge S. Yao
- Institut Pasteur de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Akré M. Adja
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- UFR Biosciences, University Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | | | - Dounin D. Zoh
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- UFR Biosciences, University Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | | | - Serge B. Assi
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- Programme National de Lutte contre le Paludisme, Abidjan, Côte d’Ivoire
| | - Franck Remoue
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Lionel Almeras
- IHU Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
| | - Anne Poinsignon
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
14
|
Manning JE, Chea S, Parker DM, Bohl JA, Lay S, Mateja A, Man S, Nhek S, Ponce A, Sreng S, Kong D, Kimsan S, Meneses C, Fay MP, Suon S, Huy R, Lon C, Leang R, Oliveira F. Development of inapparent dengue associated with increased antibody levels to Aedes aegypti salivary proteins: a longitudinal dengue cohort in Cambodia. J Infect Dis 2021; 226:1327-1337. [PMID: 34718636 DOI: 10.1093/infdis/jiab541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We established the first prospective cohort to understand how infection with dengue virus is influenced by vector-specific determinants like humoral immunity to Aedes aegypti salivary proteins. METHODS Children aged two to nine years old enrolled in the PAGODAS (Pediatric Assessment Group of Dengue and Aedes Saliva) cohort with informed consent by their guardians. Children were followed semi-annually for antibodies to dengue and to proteins in Ae. aegypti salivary gland homogenate using enzyme-linked immunosorbent assays and dengue-specific neutralization titers. Children presented with fever at any time for dengue testing. RESULTS From July 13 to August 30, 2018, we enrolled 771 children. At baseline, 22% (173/770) had evidence of neutralizing antibodies to one or more dengue serotypes. By April 2020, 51 children had symptomatic dengue while 148 dengue-naïve children had inapparent dengue defined by neutralization assays. In a multivariate model, individuals with higher antibodies to Ae. aegypti salivary proteins were 1.5x more likely to have dengue infection (HR 1.47 95% CI 1.05-2.06; p=0.02), particularly individuals with inapparent dengue (HR 1.64 95% CI 1.12-2.41; p=0.01). CONCLUSIONS High levels of seropositivity to Ae. aegypti salivary proteins are associated with future development of dengue infection, primarily inapparent, in dengue-naïve Cambodian children.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | | | - Jennifer A Bohl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sreyngim Lay
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Allyson Mateja
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Somnang Man
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Sreynik Nhek
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Aiyana Ponce
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sokunthea Sreng
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Dara Kong
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Soun Kimsan
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia.,National Dengue Control Program, Ministry of Health, Phnom Penh, Cambodia
| | - Claudio Meneses
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael P Fay
- Biostatistics Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seila Suon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Chanthap Lon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia.,National Dengue Control Program, Ministry of Health, Phnom Penh, Cambodia
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Fustec B, Phanitchat T, Aromseree S, Pientong C, Thaewnongiew K, Ekalaksananan T, Cerqueira D, Poinsignon A, Elguero E, Bangs MJ, Alexander N, Overgaard HJ, Corbel V. Serological biomarker for assessing human exposure to Aedes mosquito bites during a randomized vector control intervention trial in northeastern Thailand. PLoS Negl Trop Dis 2021; 15:e0009440. [PMID: 34043621 PMCID: PMC8189451 DOI: 10.1371/journal.pntd.0009440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/09/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023] Open
Abstract
Background Aedes mosquitoes are vectors for several major arboviruses of public health concern including dengue viruses. The relationships between Aedes infestation and disease transmission are complex wherein the epidemiological dynamics can be difficult to discern because of a lack of robust and sensitive indicators for predicting transmission risk. This study investigates the use of anti-Aedes saliva antibodies as a serological biomarker for Aedes mosquito bites to assess small scale variations in adult Aedes density and dengue virus (DENV) transmission risk in northeastern Thailand. Individual characteristics, behaviors/occupation and socio-demographics, climatic and epidemiological risk factors associated with human-mosquito exposure are also addressed. Methods The study was conducted within a randomized clustered control trial in Roi Et and Khon Kaen provinces over a consecutive 19 months period. Thirty-six (36) clusters were selected, each of ten houses. Serological and entomological surveys were conducted in all houses every four months and monthly in three sentinel households per cluster between September 2017 and April 2019 for blood spot collections and recording concurrent immature and adult Aedes indices. Additionally, the human exposure to Aedes mosquito bites (i.e., Mosquito Exposure Index or MEI) was estimated by ELISA measuring levels of human antibody response to the specific Nterm-34 kDa salivary antigen. The relationships between the MEI, vector infestation indices (adult and immature stages) and vector DENV infection were evaluated using a two-level (house and individual levels) mixed model analysis with one-month lag autoregressive correlation. Results There was a strong positive relationship between the MEI and adult Aedes (indoor and outdoor) density. Individuals from households with a medium mosquito density (mean difference: 0.091, p<0.001) and households with a high mosquito density (mean difference: 0.131, p<0.001) had higher MEI’s compared to individuals from households without Aedes. On a similar trend, individuals from households with a low, medium or high indoor Aedes densities (mean difference: 0.021, p<0.007, 0.053, p<0.0001 and 0.037, p<0.0001 for low, medium and high levels of infestation, respectively) had higher MEI than individuals from houses without indoor Aedes. The MEI was driven by individual characteristics, such as gender, age and occupation/behaviors, and varied according to climatic, seasonal factors and vector control intervention (p<0.05). Nevertheless, the study did not demonstrate a clear correlation between MEI and the presence of DENV-infected Aedes. Conclusion This study represents an important step toward the validation of the specific IgG response to the Aedes salivary peptide Nterm-34kDa as a proxy measure for Aedes infestation levels and human-mosquito exposure risk in a dengue endemic setting. The use of the IgG response to the Nterm-34 kDa peptide as a viable diagnostic tool for estimating dengue transmission requires further investigations and validation in other geographical and transmission settings. Aedes mosquitoes and the viruses they transmit are major public health concerns for over half of the global human population. However, the quantitative relationships between virus transmission and vector mosquito infestation remain unclear despite numerous indicators used to estimate transmission risk and predict dengue outbreaks. The aim of this study is to investigate the use of a salivary biomarker to assess the small-scale variation in human exposure to Aedes bites and the risk of dengue infection in the context of a vector control intervention in northeastern Thailand. A cohort of 539 persons visited every four months, including 161 individuals visited monthly, were recruited for routine serological and concurrent household entomological surveys during 19 consecutive months follow-up. Antibody response to Aedes bites was measured by enzyme-linked immunosorbent assays to assess the mosquito exposure index (MEI) and association with the Aedes adult and immature abundance as well as the presence of dengue virus (DENV) in adult mosquitoes (transmission risk). Additionally, the individual (cohort), climatic, and vector control intervention risk factors associated with MEI are explored. This study demonstrates that the MEI was strongly related to household adult Aedes density, particularly indoors resting mosquitoes. Additionally, the MEI was influenced by individual characteristics (i.e., person age, gender, staying indoors), and varied according to seasons and intervention. Nonetheless, no clear relationship between MEI and dengue transmission risk (i.e., vector infection) was detected. This study demonstrated the potential usefulness of the MEI to assess heterogeneity in adult Aedes infestation indices that could assist public health authorities to rapidly identify mosquito “hot spots” and the timeliness of effective vector control interventions.
Collapse
Affiliation(s)
- Benedicte Fustec
- Univ Montpellier, Montpellier, France
- Khon Kaen University, Khon Kaen, Thailand
- MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France
- * E-mail: (BF); (VC)
| | - Thipruethai Phanitchat
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok
| | - Sirinart Aromseree
- Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | | | - Tipaya Ekalaksananan
- Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Dominique Cerqueira
- Public Health & Malaria Control, International SOS, Mimika, Papua, Indonesia
| | | | - Eric Elguero
- MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France
| | - Michael J. Bangs
- Public Health & Malaria Control, International SOS, Mimika, Papua, Indonesia
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Neal Alexander
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Vincent Corbel
- Univ Montpellier, Montpellier, France
- MIVEGEC, Univ Montpellier, IRD, CNRS, Montpellier, France
- * E-mail: (BF); (VC)
| |
Collapse
|
16
|
Olajiga O, Holguin-Rocha AF, Rippee-Brooks M, Eppler M, Harris SL, Londono-Renteria B. Vertebrate Responses against Arthropod Salivary Proteins and Their Therapeutic Potential. Vaccines (Basel) 2021; 9:347. [PMID: 33916367 PMCID: PMC8066741 DOI: 10.3390/vaccines9040347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
The saliva of hematophagous arthropods contains a group of active proteins to counteract host responses against injury and to facilitate the success of a bloodmeal. These salivary proteins have significant impacts on modulating pathogen transmission, immunogenicity expression, the establishment of infection, and even disease severity. Recent studies have shown that several salivary proteins are immunogenic and antibodies against them may block infection, thereby suggesting potential vaccine candidates. Here, we discuss the most relevant salivary proteins currently studied for their therapeutic potential as vaccine candidates or to control the transmission of human vector-borne pathogens and immune responses against different arthropod salivary proteins.
Collapse
Affiliation(s)
- Olayinka Olajiga
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Andrés F. Holguin-Rocha
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | | | - Megan Eppler
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Shanice L. Harris
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Berlin Londono-Renteria
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| |
Collapse
|
17
|
Fustec B, Phanitchat T, Hoq MI, Aromseree S, Pientong C, Thaewnongiew K, Ekalaksananan T, Bangs MJ, Corbel V, Alexander N, Overgaard HJ. Complex relationships between Aedes vectors, socio-economics and dengue transmission-Lessons learned from a case-control study in northeastern Thailand. PLoS Negl Trop Dis 2020; 14:e0008703. [PMID: 33001972 PMCID: PMC7553337 DOI: 10.1371/journal.pntd.0008703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/13/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/OBJECTIVES Dengue fever is an important public health concern in most tropical and subtropical countries, and its prevention and control rest on vector surveillance and control. However, many aspects of dengue epidemiology remain unclear; in particular, the relationship between Aedes vector abundance and dengue transmission risk. This study aims to identify entomological and immunological indices capable of discriminating between dengue case and control (non-case) houses, based on the assessment of candidate indices, as well as individual and household characteristics, as potential risk factors for acquiring dengue infection. METHODS This prospective, hospital-based, case-control study was conducted in northeastern Thailand between June 2016 and August 2019. Immature and adult stage Aedes were collected at the houses of case and control patients, recruited from district hospitals, and at patients' neighboring houses. Blood samples were tested by RDT and PCR to detect dengue cases, and were processed with the Nterm-34 kDa salivary peptide to measure the human immune response to Aedes bites. Socioeconomic status, and other individual and household characteristics were analyzed as potential risk factors for dengue. RESULTS Study findings showed complex relationships between entomological indices and dengue risk. The presence of DENV-infected Aedes at the patient house was associated with 4.2-fold higher odds of dengue. On the other hand, Aedes presence (irrespective of infectious status) in the patient's house was negatively associated with dengue. In addition, the human immune response to Aedes bites, was higher in control than in case patients and Aedes adult abundance and immature indices were higher in control than in case houses at the household and the neighboring level. Multivariable analysis showed that children aged 10-14 years old and those aged 15-25 years old had respectively 4.5-fold and 2.9-fold higher odds of dengue infection than those older than 25 years. CONCLUSION DENV infection in female Aedes at the house level was positively associated with dengue infection, while adult Aedes presence in the household was negatively associated. This study highlights the potential benefit of monitoring dengue viruses in Aedes vectors. Our findings suggest that monitoring the presence of DENV-infected Aedes mosquitoes could be a better indicator of dengue risk than the traditional immature entomological indices.
Collapse
Affiliation(s)
- Benedicte Fustec
- University of Montpellier, Montpellier, France
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Institut de Recherche pour le Developpement, Montpellier, France
| | - Thipruethai Phanitchat
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mohammad Injamul Hoq
- School of Public Health, Epidemiology and Social Medicine at the Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | | | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Michael J. Bangs
- Public Health & Malaria Control, PT Freeport Indonesia/International SOS, Mimika, Papua, Indonesia
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Vincent Corbel
- University of Montpellier, Montpellier, France
- Institut de Recherche pour le Developpement, Montpellier, France
| | - Neal Alexander
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
18
|
Buezo Montero S, Gabrieli P, Montarsi F, Borean A, Capelli S, De Silvestro G, Forneris F, Pombi M, Breda A, Capelli G, Arcà B. IgG Antibody Responses to the Aedes albopictus 34k2 Salivary Protein as Novel Candidate Marker of Human Exposure to the Tiger Mosquito. Front Cell Infect Microbiol 2020; 10:377. [PMID: 32850479 PMCID: PMC7405501 DOI: 10.3389/fcimb.2020.00377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023] Open
Abstract
Mosquitoes of the Aedes genus transmit arboviruses of great importance to human health as dengue, chikungunya, Zika and yellow fever. The tiger mosquito Aedes albopictus can play an important role as arboviral vector, especially when Aedes aegypti is absent or present at low levels. Remarkably, the rapid worldwide spreading of the tiger mosquito is expanding the risk of arboviral transmission also to temperate areas, and the autochthonous cases of chikungunya, dengue and Zika in Europe emphasize the need for improved monitoring and control. Proteomic and transcriptomic studies on blood feeding arthropod salivary proteins paved the way toward the exploitation of genus-specific mosquito salivary proteins for the development of novel tools to evaluate human exposure to mosquito bites. We previously found that the culicine-specific 34k2 salivary protein from Ae. albopictus (al34k2) evokes specific IgG responses in experimentally exposed mice, and provided preliminary evidence of its immunogenicity to humans. In this study we measured IgG responses to al34k2 and to Ae. albopictus salivary gland protein extracts (SGE) in individuals naturally exposed to the tiger mosquito. Sera were collected in two areas of Northeast Italy (Padova and Belluno) during two different time periods: at the end of the low- and shortly after the high-density mosquito seasons. Anti-SGE and anti-al34k2 IgG levels increased after the summer period of exposure to mosquito bites and were higher in Padova as compared to Belluno. An age-dependent decrease of anti-saliva IgG responses was found especially in Padova, an area with at least 25 years history of Ae. albopictus colonization. Moreover, a weak correlation between anti-saliva IgG levels and individual perception of mosquito bites by study participants was found. Finally, determination of anti-al34k2 IgG1 and IgG4 levels indicated a large predominance of IgG1 antibodies. Overall, this study provides a convincing indication that antibody responses to al34k2 may be regarded as a reliable candidate marker to detect temporal and/or spatial variation of human exposure to Ae. albopictus; a serological tool of this kind may prove useful both for epidemiological studies and to estimate the effectiveness of anti-vectorial measures.
Collapse
Affiliation(s)
- Sara Buezo Montero
- Division of Parasitology, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Fabrizio Montarsi
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Alessio Borean
- Department of Immunohematology and Transfusion Medicine, San Martino Hospital, Belluno, Italy
| | - Stefano Capelli
- Department of Immunohematology and Transfusion Medicine, San Martino Hospital, Belluno, Italy
| | | | - Federico Forneris
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Marco Pombi
- Division of Parasitology, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antonio Breda
- Coordinamento Regionale Attività Trasfusionali (CRAT), Padova, Italy
| | - Gioia Capelli
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Bruno Arcà
- Division of Parasitology, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Christofferson RC, Parker DM, Overgaard HJ, Hii J, Devine G, Wilcox BA, Nam VS, Abubakar S, Boyer S, Boonnak K, Whitehead SS, Huy R, Rithea L, Sochantha T, Wellems TE, Valenzuela JG, Manning JE. Current vector research challenges in the greater Mekong subregion for dengue, Malaria, and Other Vector-Borne Diseases: A report from a multisectoral workshop March 2019. PLoS Negl Trop Dis 2020; 14:e0008302. [PMID: 32730249 PMCID: PMC7392215 DOI: 10.1371/journal.pntd.0008302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Daniel M. Parker
- University of California, Irvine, California, United States of America
| | | | | | - Gregor Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bruce A. Wilcox
- ASEAN Institute for Health Development, Mahidol University, Nakhon Pathom, Thailand
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Sazaly Abubakar
- Tropical Infectious Diseases Research and Education Center, Kuala Lumpur, Malaysia
| | | | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stephen S. Whitehead
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Rekol Huy
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Leang Rithea
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Tho Sochantha
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jesus G. Valenzuela
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jessica E. Manning
- US National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| |
Collapse
|
20
|
Sagna AB, Kassié D, Couvray A, Adja AM, Hermann E, Riveau G, Salem G, Fournet F, Remoue F. Spatial Assessment of Contact Between Humans and Anopheles and Aedes Mosquitoes in a Medium-Sized African Urban Setting, Using Salivary Antibody-Based Biomarkers. J Infect Dis 2020; 220:1199-1208. [PMID: 31152664 DOI: 10.1093/infdis/jiz289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/30/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Anarchic and poorly controlled urbanization led to an increased risk of mosquito-borne diseases (MBD) in many African cities. Here, we evaluate the spatial heterogeneity of human exposure to malaria and arboviral disease vectors in an urban area of northern Senegal, using antibody-based biomarkers of exposure to Anopheles and Aedes mosquito bites. METHODS A cross-sectional study was undertaken during the rainy season of 2014 in 4 neighborhoods of Saint-Louis, a city in northern Senegal. Among children aged 6-59 months in each neighborhood, the dried blood spot technique was used to evaluate immunoglobulin G (IgG) responses to both gSG6-P1 (Anopheles) and Nterm-34-kDa (Aedes) salivary peptides as validated biomarkers of respective mosquito bite exposure. RESULTS IgG response levels to gSG6-P1 and Nterm-34-kDa salivary peptides varied significantly between the 4 neighborhoods (P < .0001). The level of exposure to Aedes bites also varied according to household access to sanitation services (P = .027), whereas that of exposure to Anopheles bites varied according to insecticide-treated bed net use (P = .006). In addition, spatial clusters of high contact between humans and mosquitoes were identified inside 3 neighborhoods. CONCLUSIONS Antibody-based biomarkers of exposure to Anopheles and Aedes mosquito bites could be helpful tools for evaluating the heterogeneity of exposure to malaria and arboviral disease vectors by national control programs.
Collapse
Affiliation(s)
- André B Sagna
- MIVEGEC, University of Montpellier, CNRS, IRD
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte d'Ivoire
- Biomedical Research Center Espoir Pour La Santé, Saint-Louis, Sénégal
| | - Daouda Kassié
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | - Akré Maurice Adja
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | - Emmanuel Hermann
- CIIL, Institut Pasteur de Lille, University of Lille, CNRS UMR, Inserm, Lille, France
| | - Gilles Riveau
- CIIL, Institut Pasteur de Lille, University of Lille, CNRS UMR, Inserm, Lille, France
- Biomedical Research Center Espoir Pour La Santé, Saint-Louis, Sénégal
| | - Gérard Salem
- CEPED, University of Paris Descartes, IRD, Paris
| | - Florence Fournet
- MIVEGEC, University of Montpellier, CNRS, IRD
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | |
Collapse
|
21
|
Risk factors of exposure to Aedes albopictus bites in mainland France using an immunological biomarker. Epidemiol Infect 2020; 147:e238. [PMID: 31364567 PMCID: PMC6625181 DOI: 10.1017/s0950268819001286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In recent decades, the invasive Aedes albopictus vector has spread across Europe and is responsible for numerous outbreaks of autochthonous arboviral disease. The aim of this study was to identify epidemiological and sociological risk factors related to individual levels of exposure to Aedes albopictus bites. A multidisciplinary survey was conducted with volunteer blood donors living in areas either colonised or not by Aedes albopictus in mainland France. Individual levels of exposure were evaluated by measuring the IgG level specific to Aedes albopictus saliva. The most striking risk factors concerned the localisation and characteristics of the dwelling. Individuals living in areas colonised prior to 2009 or recently colonised (between 2010 and 2012) had higher anti-salivary gland extract IgG levels compared with those who were living in areas not yet colonised by Ae. albopictus. The type of dwelling did not seem to impact the level of exposure to Aedes bites. People living in apartments had a higher anti-salivary gland extract IgG level than those living in individual houses but the difference was not statistically significant. Interestingly, the presence of air conditioning or window nets was associated with a noticeable reduction in bite intensity.
Collapse
|
22
|
Zinszer K, Caprara A, Lima A, Degroote S, Zahreddine M, Abreu K, Carabali M, Charland K, Dantas MA, Wellington J, Parra B, Fournet F, Bonnet E, Pérez D, Robert E, Dagenais C, Benmarhnia T, Andersson N, Ridde V. Sustainable, healthy cities: protocol of a mixed methods evaluation of a cluster randomized controlled trial for Aedes control in Brazil using a community mobilization approach. Trials 2020; 21:182. [PMID: 32059693 PMCID: PMC7023806 DOI: 10.1186/s13063-019-3714-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Background Dengue is increasing in its global presence with an estimated 4 billion people at-risk of infection in at least 128 countries. Despite the promising results of EcoHealth and community mobilization approaches to Aedes reduction, more evidence of their efficacy on reducing dengue risk is needed. The principal research question is to determine if interventions based upon community mobilization reduce the risk of dengue virus infection among children 3 to 9 years old compared to usual dengue control practice in Fortaleza, Brazil. Methods The present study will follow a pragmatic cluster randomized controlled trial (cRCT) design with randomization at the census tract level with equal allocation to the two arms. In each arm, there will be 34 clusters of 86 children between 3 to 9 years old for an expected total of 5848 children enrolled in the study, assuming a risk reduction of 29.5% based upon findings from a previous multi-site cRCT. The primary outcomes are rates of anti-dengue Immunoglobulin G (IgG) seroconversion and adult female Aedes density. The intervention is based upon a participatory health research approach, Socializing Evidence for Participatory Action (SEPA), where the research evidence is used to foster community engagement and ownership of the health issue and solution. Following allocation, intervention communities will develop and implement their own solutions that will likely include a wide variety of collective events and media approaches. Data collection activities over a period of 3 years include household visits for blood collection, household surveys, and entomological surveys; and qualitative activities including focus groups, in-depth interviews, and document analysis to evaluate the process, acceptability, fidelity, and sustainability of the intervention. Study participants will be aware of their assignment and all research staff will be blinded although the intervention assignment will likely be revealed to field staff through interaction with participants. Discussion The results of our study will provide evidence on community mobilization as an intervention for dengue control. We anticipate that if community mobilization is effective in Fortaleza, the results of this study will help develop evidence-based vector control programs in Brazil, and also in other countries struggling with Aedes-transmitted diseases. Trial registration ISRCTN66131315, registration date: 1 October 2018.
Collapse
Affiliation(s)
- Kate Zinszer
- School of Public Health, University of Montreal, Montréal, Québec, Canada. .,Québec Public Health Research Centre, Montréal, Canada. .,Québec Population Health Research Network, Montréal, Canada.
| | - Andrea Caprara
- Québec Population Health Research Network, Montréal, Canada
| | - Antonio Lima
- Fortaleza Municipal Health Secretariat, Fortaleza, Brazil.,University of Fortaleza, Fortaleza, Brazil
| | | | - Monica Zahreddine
- School of Public Health, University of Montreal, Montréal, Québec, Canada
| | | | | | - Katia Charland
- School of Public Health, University of Montreal, Montréal, Québec, Canada
| | | | | | | | - Florence Fournet
- French Institute for Research on Sustainable Development, Paris, France
| | - Emmanuel Bonnet
- French Institute for Research on Sustainable Development, Paris, France
| | - Denis Pérez
- School of Public Health, University of Montreal, Montréal, Québec, Canada.,Pedro Kourí Tropical Medicine Institute, Havana, Cuba
| | | | - Christian Dagenais
- School of Public Health, University of Montreal, Montréal, Québec, Canada
| | | | - Neil Andersson
- McGill University, Montréal, Canada.,Universidad Autonomy De Guerrero, Acapulco, Mexico
| | - Valéry Ridde
- French Institute for Research on Sustainable Development, Paris, France
| |
Collapse
|
23
|
Buezo Montero S, Gabrieli P, Severini F, Picci L, Di Luca M, Forneris F, Facchinelli L, Ponzi M, Lombardo F, Arcà B. Analysis in a murine model points to IgG responses against the 34k2 salivary proteins from Aedes albopictus and Aedes aegypti as novel promising candidate markers of host exposure to Aedes mosquitoes. PLoS Negl Trop Dis 2019; 13:e0007806. [PMID: 31618201 PMCID: PMC6816578 DOI: 10.1371/journal.pntd.0007806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/28/2019] [Accepted: 09/25/2019] [Indexed: 01/22/2023] Open
Abstract
Background Aedes mosquitoes are vectors of arboviral diseases of great relevance for public health. The recent outbreaks of dengue, Zika, chikungunya and the rapid worldwide spreading of Aedes albopictus emphasize the need for improvement of vector surveillance and control. Host antibody response to mosquito salivary antigens is emerging as a relevant additional tool to directly assess vector-host contact, monitor efficacy of control interventions and evaluate risk of arboviral transmission. Methodology/principal findings Groups of four BALB/c mice were immunized by exposure to bites of either Aedes albopictus or Aedes aegypti. The 34k2 salivary proteins from Ae. albopictus (al34k2) and Ae. aegypti (ae34k2) were expressed in recombinant form and Ae. albopictus salivary peptides were designed through B-cell epitopes prediction software. IgG responses to salivary gland extracts, peptides, al34k2 and ae34k2 were measured in exposed mice. Both al34k2 and ae34k2, with some individual and antigen-specific variation, elicited a clearly detectable antibody response in immunized mice. Remarkably, the two orthologous proteins showed very low level of immune cross-reactivity, suggesting they may eventually be developed as species-specific markers of host exposure. The al34k2 immunogenicity and the limited immune cross-reactivity to ae34k2 were confirmed in a single human donor hyperimmune to Ae. albopictus saliva. Conclusions/significance Our study shows that exposure to bites of Ae. albopictus or Ae. aegypti evokes in mice species-specific IgG responses to al34k2 or ae34k2, respectively. Deeper understanding of duration of antibody response and validation in natural conditions of human exposure to Aedes mosquitoes are certainly needed. However, our findings point to the al34k2 salivary protein as a promising potential candidate for the development of immunoassays to evaluate human exposure to Ae. albopictus. This would be a step forward in the establishment of a serological toolbox for the simultaneous assessment of human exposure to Aedes vectors and the pathogens they transmit. Taking advantage of several factors, as worldwide trading, climatic changes and urbanization, Aedes mosquitoes are impressively expanding their geographic distribution. A paradigm is provided by the rapid global spreading of Aedes albopictus, a species that is a competent vector of several arboviral diseases (e.g. dengue, Zika, chikungunya) and has been responsible of quite a few outbreaks in the last decade. Historically, vector control always played a pivotal role for the containment of arthropod-borne diseases, and this appears especially crucial for arboviral diseases for which no effective vaccines or specific medications are available. Currently, host exposure to mosquitoes is indirectly evaluated by entomological methods; however, exploitation of human immune responses to mosquito salivary proteins is emerging as a relevant additional tool, with important epidemiological implications for the evaluation of mosquito-borne disease risk. This study provides preliminary but solid indications that the 34k2 salivary proteins from Ae. albopictus and Aedes aegypti may be suitable candidates for the development of serological assays to evaluate spatial and/or temporal variation of human exposure to Aedes vectors. Combined to the presently available tools to assess arboviral exposure/infection, this may be of great help for the development of a serological toolbox allowing for the simultaneous determination of human exposure to Aedes vectors and to the pathogens they transmit.
Collapse
Affiliation(s)
- Sara Buezo Montero
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Italy
| | - Francesco Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Leonardo Picci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Italy
| | - Luca Facchinelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marta Ponzi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
24
|
Sri-In C, Weng SC, Chen WY, Wu-Hsieh BA, Tu WC, Shiao SH. A salivary protein of Aedes aegypti promotes dengue-2 virus replication and transmission. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103181. [PMID: 31265906 DOI: 10.1016/j.ibmb.2019.103181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/31/2019] [Accepted: 06/26/2019] [Indexed: 05/26/2023]
Abstract
Although dengue is the most prevalent arthropod-borne viral disease in humans, no effective medication or vaccine is presently available. Previous studies suggested that mosquito salivary proteins influence infection by the dengue virus (DENV) in the mammalian host. However, the effects of salivary proteins on DENV replication within the Aedes aegypti mosquito remain largely unknown. In this study, we investigated the effect of a specific salivary protein (named AaSG34) on DENV serotype 2 (DENV2) replication and transmission. We showed that transcripts of AaSG34 were upregulated in the salivary glands of Aedes aegypti mosquitoes after a meal of blood infected with DENV2. Transcripts of the dengue viral genome and envelop protein in the salivary glands were significantly diminished after an infectious blood meal when AaSG34 was silenced. The effect of AaSG34 on DENV2 transmission was investigated in Stat1-deficient mice. The intradermal inoculation of infectious mosquito saliva induced hemorrhaging in the Stat1-deficient mice; however, saliva from the AaSG34-silenced mosquitoes did not induce hemorrhaging, suggesting that AaSG34 enhances DENV2 transmission. This is the first report to demonstrate that the protein AaSG34 promotes DENV2 replication in mosquito salivary glands and enhances the transmission of the virus to the mammalian host.
Collapse
Affiliation(s)
- Chalida Sri-In
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yu Chen
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Betty A Wu-Hsieh
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wu-Chun Tu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
Meyding-Lamadé U, Craemer E, Schnitzler P. Emerging and re-emerging viruses affecting the nervous system. Neurol Res Pract 2019; 1:20. [PMID: 33324886 PMCID: PMC7650110 DOI: 10.1186/s42466-019-0020-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/20/2019] [Indexed: 02/05/2023] Open
Abstract
Emerging and re-emerging viruses may cause meningitis, encephalitis, meningoencephalomyelitis, encephalitis, Guillian-Barré-like-syndromes as well as strokes. Most important viruses belong to the family of Adenoviridae, Arbovirus, Arenaviridae, Herpesviridae, Picornaviridae, Paramyxoviridae as well as Togaviridae. Clinical presentation usually consists of a biphasic presentation. Non-specific febrile illnesses may be accompanied by rash, headache, arthralgia and myalgia. Thereafter focal neurological signs may evolve. Diagnostic strategies for the detection of emerging and re-emerging viruses may be difficult due to the short viraemic period. Pitfalls in serology may be due to antibody crossreactivity. Arboviruses are transmitted by arthropods. Aedes mosquitos are one of the vectors for arboviruses like Chikungunya-virus, Dengue-virus, Japanese-Encephalitis-B-virus and West-Nile-virus. Since the last centuries Aedes mosquitos have spread from their naturally habitat in Africa to America as well as Europe. The arboviruses risk profile depend essentially on the occurrence, the activity of the respective vector, this may be the key to fight the disease and its spread. Due to global shifts in the ecological balance but also as a result of more or less successful control measures, some diseases have become rarer, others are more common. The viruses persist in the respective vector months to years; in ticks they may persist for years and in mosquitoes 1 to 4 months. In order to survive bad climatic conditions unscathed, the viruses partially overwinter in arthropods.
Collapse
Affiliation(s)
- Uta Meyding-Lamadé
- Department of Neurology, Krankenhaus Nordwest GmbH, Steinbacher Hohl 2-26, 60488 Frankfurt/Main, Germany
| | - Eva Craemer
- Department of Neurology, Krankenhaus Nordwest GmbH, Steinbacher Hohl 2-26, 60488 Frankfurt/Main, Germany
| | - Paul Schnitzler
- Zentrum für Infektiologie, Virologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
A systematic review of individual and community mitigation measures for prevention and control of chikungunya virus. PLoS One 2019; 14:e0212054. [PMID: 30811438 PMCID: PMC6392276 DOI: 10.1371/journal.pone.0212054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chikungunya is a mosquito-borne virus transmitted by mosquitoes from the Aedes genus. The virus, endemic to parts of Asia and Africa, has recently undergone an emergence in other parts of the world where it was previously not found including Indian Ocean Islands, Europe, the Western Pacific and the Americas. There is no vaccine against chikungunya virus, which means that prevention and mitigation rely on personal protective measures and community level interventions including vector control. METHODOLOGY/PRINCIPAL FINDINGS A systematic review (SR) was conducted to summarize the literature on individual and community mitigation and control measures and their effectiveness. From a scoping review of the global literature on chikungunya, there were 91 articles that investigated mitigation or control strategies identified at the individual or community level. Of these, 81 were confirmed as relevant and included in this SR. The majority of the research was published since 2010 (76.5%) and was conducted in Asia (39.5%). Cross sectional studies were the most common study design (36.6%). Mitigation measures were placed into six categories: behavioural protective measures, insecticide use, public education, control of blood and blood products, biological vector control and quarantine of infected individuals. The effectiveness of various mitigation measures was rarely evaluated and outcomes were rarely quantitative, making it difficult to summarize results across studies and between mitigation strategies. Meta-analysis of the proportion of individuals engaging in various mitigation measures indicates habitat removal is the most common measure used, which may demonstrate the effectiveness of public education campaigns aimed at reducing standing water. CONCLUSIONS/SIGNIFICANCE Further research with appropriate and consistent outcome measurements are required in order to determine which mitigation measures, or combination of mitigation measures, are the most effective at protecting against exposure to chikungunya virus.
Collapse
|
27
|
Manning JE, Cantaert T. Time to Micromanage the Pathogen-Host-Vector Interface: Considerations for Vaccine Development. Vaccines (Basel) 2019; 7:E10. [PMID: 30669682 PMCID: PMC6466432 DOI: 10.3390/vaccines7010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
The current increase in vector-borne disease worldwide necessitates novel approaches to vaccine development targeted to pathogens delivered by blood-feeding arthropod vectors into the host skin. A concept that is gaining traction in recent years is the contribution of the vector or vector-derived components, like salivary proteins, to host-pathogen interactions. Indeed, the triad of vector-host-pathogen interactions in the skin microenvironment can influence host innate and adaptive responses alike, providing an advantage to the pathogen to establish infection. A better understanding of this "bite site" microenvironment, along with how host and vector local microbiomes immunomodulate responses to pathogens, is required for future vaccines for vector-borne diseases. Microneedle administration of such vaccines may more closely mimic vector deposition of pathogen and saliva into the skin with the added benefit of near painless vaccine delivery. Focusing on the 'micro'⁻from microenvironments to microbiomes to microneedles⁻may yield an improved generation of vector-borne disease vaccines in today's increasingly complex world.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh 12201, Cambodia.
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia.
| |
Collapse
|
28
|
Manning JE, Oliveira F, Parker DM, Amaratunga C, Kong D, Man S, Sreng S, Lay S, Nang K, Kimsan S, Sokha L, Kamhawi S, Fay MP, Suon S, Ruhl P, Ackerman H, Huy R, Wellems TE, Valenzuela JG, Leang R. The PAGODAS protocol: pediatric assessment group of dengue and Aedes saliva protocol to investigate vector-borne determinants of Aedes-transmitted arboviral infections in Cambodia. Parasit Vectors 2018; 11:664. [PMID: 30572920 PMCID: PMC6300895 DOI: 10.1186/s13071-018-3224-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mosquito-borne arboviruses, like dengue virus, continue to cause significant global morbidity and mortality, particularly in Southeast Asia. When the infectious mosquitoes probe into human skin for a blood meal, they deposit saliva containing a myriad of pharmacologically active compounds, some of which alter the immune response and influence host receptivity to infection, and consequently, the establishment of the virus. Previous reports have highlighted the complexity of mosquito vector-derived factors and immunity in the success of infection. Cumulative evidence from animal models and limited data from humans have identified various vector-derived components, including salivary components, that are co-delivered with the pathogen and play an important role in the dissemination of infection. Much about the roles and effects of these vector-derived factors remain to be discovered. METHODS/DESIGN We describe a longitudinal, pagoda (community)-based pediatric cohort study to evaluate the burden of dengue virus infection and document the immune responses to salivary proteins of Aedes aegypti, the mosquito vector of dengue, Zika, and chikungunya viruses. The study includes community-based seroprevalence assessments in the peri-urban town of Chbar Mon in Kampong Speu Province, Cambodia. The study aims to recruit 771 children between the ages of 2 and 9 years for a three year period of longitudinal follow-up, including twice per year (rainy and dry season) serosurveillance for dengue seroconversion and Ae. aegypti salivary gland homogenate antibody intensity determinations by ELISA assays. Diagnostic tests for acute dengue, Zika and chikungunya viral infections will be performed by RT-PCR. DISCUSSION This study will serve as a foundation for further understanding of mosquito saliva immunity and its impact on Aedes-transmitted arboviral diseases endemic to Cambodia. TRIAL REGISTRATION NCT03534245 registered on 23 May 2018.
Collapse
Affiliation(s)
- Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Daniel M. Parker
- Department of Population Health and Disease Prevention, University of California, Irvine, California, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Dara Kong
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Somnang Man
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sokunthea Sreng
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sreyngim Lay
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Kimsour Nang
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Soun Kimsan
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Ly Sokha
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Michael P. Fay
- Biostatistics Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Seila Suon
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Parker Ruhl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Rekol Huy
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland USA
| | - Rithea Leang
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| |
Collapse
|
29
|
Evaluation of Human Exposure to Aedes Bites in Rubber and Palm Cultivations Using an Immunoepidemiological Biomarker. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3572696. [PMID: 30175128 PMCID: PMC6106716 DOI: 10.1155/2018/3572696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/25/2018] [Indexed: 11/23/2022]
Abstract
Arbovirus infections, mainly transmitted by Aedes mosquito, are emerging in Africa. Efficient vector control requires an understanding of ecological factors which could impact on the risk of transmission, such as environmental changes linked to agricultural practices. The present study aims to assess the level of human exposure to Aedes mosquito bites in different agroecosystem area, using an immunological tool which quantifies human IgG antibody response to one Ae. aegypti salivary peptide. Specific IgG responses were assessed during dry and rainy seasons, in children living in different villages in Côte d'Ivoire: N'Zikro (rubber and oil palm exploitations), Ehania-V5 (oil palm), and Ayébo (without intensive agricultural activities). In the dry season, specific IgG levels were significantly lower in Ayébo compared to Ehania-V5 and N'Zikro and, interestingly, were similarly high in both villages with cultivations. In the rainy season, no difference of specific IgG was observed between villages. Specific IgG responses remained therefore high during both seasons in villages associated with intensive agricultural. The rubber and oil palm cultivations could maintain a high level of human exposure to Aedes mosquito bites during both dry and rainy seasons. These agricultural activities could represent a permanent risk factor of the transmission of arboviruses.
Collapse
|
30
|
Sagna AB, Yobo MC, Elanga Ndille E, Remoue F. New Immuno-Epidemiological Biomarker of Human Exposure to Aedes Vector Bites: From Concept to Applications. Trop Med Infect Dis 2018; 3:E80. [PMID: 30274476 PMCID: PMC6161005 DOI: 10.3390/tropicalmed3030080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) such as dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), and yellow fever virus (YFV) are the most important 'emerging pathogens' because of their geographic spread and their increasing impact on vulnerable human populations. To fight against these arboviruses, vector control strategies (VCS) remain one of the most valuable means. However, their implementation and monitoring are labour intensive and difficult to sustain on large scales, especially when transmission and Aedes mosquito densities are low. To increase the efficacy of VCS, current entomological methods should be improved by new complementary tools which measure the risk of arthropod-borne diseases' transmission. The study of human⁻Aedes immunological relationships can provide new promising serological tools, namely antibody-based biomarkers, allowing to accurately estimate the human⁻Aedes contact and consequently, the risk of transmission of arboviruses and the effectiveness of VCS. This review focuses on studies highlighting the concept, techniques, and methods used to develop and validate specific candidate biomarkers of human exposure to Aedes bites. Potential applications of such antibody-based biomarkers of exposure to Aedes vector bites in the field of operational research are also discussed.
Collapse
Affiliation(s)
- André B Sagna
- MIVEGEC, IRD, CNRS, Univ. Montpellier, BP 64501, 34394 Montpellier, France.
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), BP 1500 Bouaké, Côte d'Ivoire.
| | - Mabo C Yobo
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), BP 1500 Bouaké, Côte d'Ivoire
- UFR Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire, BP 801 Abidjan, Côte d'Ivoire
| | - Emmanuel Elanga Ndille
- MIVEGEC, IRD, CNRS, Univ. Montpellier, BP 64501, 34394 Montpellier, France.
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroun.
| | - Franck Remoue
- MIVEGEC, IRD, CNRS, Univ. Montpellier, BP 64501, 34394 Montpellier, France.
| |
Collapse
|
31
|
Mathieu-Daudé F, Claverie A, Plichart C, Boulanger D, Mphande FA, Bossin HC. Specific human antibody responses to Aedes aegypti and Aedes polynesiensis saliva: A new epidemiological tool to assess human exposure to disease vectors in the Pacific. PLoS Negl Trop Dis 2018; 12:e0006660. [PMID: 30040826 PMCID: PMC6075770 DOI: 10.1371/journal.pntd.0006660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/03/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aedes mosquitoes severely affect the health and wellbeing of human populations by transmitting infectious diseases. In French Polynesia, Aedes aegypti is the main vector of dengue, chikungunya and Zika, and Aedes polynesiensis the primary vector of Bancroftian filariasis and a secondary vector of arboviruses. Tools for assessing the risk of disease transmission or for measuring the efficacy of vector control programmes are scarce. A promising approach to quantify the human-vector contact relies on the detection and the quantification of antibodies directed against mosquito salivary proteins. METHODOLOGY/PRINCIPAL FINDINGS An ELISA test was developed to detect and quantify the presence of immunoglobulin G (IgG) directed against proteins from salivary gland extracts (SGE) of Ae. aegypti and Ae. polynesiensis in human populations exposed to either species, through a cross-sectional study. In Tahiti and Moorea islands where Ae. aegypti and Ae. polynesiensis are present, the test revealed that 98% and 68% of individuals have developed IgG directed against Ae. aegypti and Ae. polynesiensis SGE, respectively. By comparison, ELISA tests conducted on a cohort of people from metropolitan France, not exposed to these Aedes mosquitoes, indicated that 97% of individuals had no IgG directed against SGE of either mosquito species. The analysis of additional cohorts representing different entomological Aedes contexts showed no ELISA IgG cross-reactivity between Ae. aegypti and Ae. polynesiensis SGE. CONCLUSIONS/SIGNIFICANCE The IgG response to salivary gland extracts seems to be a valid and specific biomarker of human exposure to the bites of Ae. aegypti and Ae. polynesiensis. This new immuno-epidemiological tool will enhance our understanding of people exposure to mosquito bites, facilitate the identification of areas where disease transmission risk is high and permit to evaluate the efficacy of novel vector control strategies in Pacific islands and other tropical settings.
Collapse
Affiliation(s)
- Françoise Mathieu-Daudé
- UMR MIVEGEC, IRD, CNRS, UM, Institut de Recherche pour le Développement, Nouméa, Nouvelle-Calédonie
- UMR MIVEGEC IRD, CNRS, UM, Institut de Recherche pour le Développement, Montpellier, France
| | - Aurore Claverie
- Pôle de recherche et de veille sur les maladies infectieuses émergentes, Institut Louis Malardé, Papeete, Tahiti, Polynésie française
- Laboratoire d’entomologie médicale, Institut Louis Malardé, Paea, Tahiti, Polynésie française
| | - Catherine Plichart
- Pôle de recherche et de veille sur les maladies infectieuses émergentes, Institut Louis Malardé, Papeete, Tahiti, Polynésie française
| | - Denis Boulanger
- UMR MIVEGEC IRD, CNRS, UM, Institut de Recherche pour le Développement, Montpellier, France
| | - Fingani A. Mphande
- UMR MIVEGEC, IRD, CNRS, UM, Institut de Recherche pour le Développement, Nouméa, Nouvelle-Calédonie
| | - Hervé C. Bossin
- Laboratoire d’entomologie médicale, Institut Louis Malardé, Paea, Tahiti, Polynésie française
| |
Collapse
|
32
|
Overgaard HJ, Pientong C, Thaewnongiew K, Bangs MJ, Ekalaksananan T, Aromseree S, Phanitchat T, Phanthanawiboon S, Fustec B, Corbel V, Cerqueira D, Alexander N. Assessing dengue transmission risk and a vector control intervention using entomological and immunological indices in Thailand: study protocol for a cluster-randomized controlled trial. Trials 2018; 19:122. [PMID: 29458406 PMCID: PMC5819278 DOI: 10.1186/s13063-018-2490-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background Dengue fever is the most common and widespread mosquito-borne arboviral disease in the world. There is a compelling need for cost-effective approaches and practical tools that can reliably measure real-time dengue transmission dynamics that enable more accurate and useful predictions of incidence and outbreaks. Sensitive surveillance tools do not exist today, and only a small handful of new control strategies are available. Vector control remains at the forefront for combating dengue transmission. However, the effectiveness of many current vector control interventions is fraught with inherent weaknesses. No single vector control method is effective enough to control both vector populations and disease transmission. Evaluations of novel larval and adult control interventions are needed. Methods/design A cluster-randomized controlled trial will be carried out between 2017 and 2019 in urban community clusters in Khon Kaen and Roi Et cities, northeastern Thailand. The effectiveness of a pyriproxyfen/spinosad combination treatment of permanent water storage containers will be evaluated on epidemiological and entomological outcomes, including dengue incidence, number of female adult dengue vectors infected or not infected with dengue virus (DENV), human exposure to Aedes mosquito bites, and several other indices. These indices will also be used to develop predictive models for dengue transmission and impending outbreaks. Epidemiological and entomological data will be collected continuously for 2 years, with the intervention implemented after 1 year. Discussion The aims of the trial are to simultaneously evaluate the efficacy of an innovative dengue vector control intervention and developing predictive dengue models. Assessment of human exposure to mosquito bites by detecting antibodies generated against Aedes saliva proteins in human blood samples has, so far, not been applied in dengue epidemiological risk assessment and disease surveillance methodologies. Likewise, DENV detection in mosquitoes (adult and immature stages) has not been used in any practical way for routine disease surveillance strategies. The integration of multiple outcome measures will assist health authorities to better predict outbreaks for planning and applying focal and timely interventions. The trial outcomes will not only be important for Thailand, but also for the entire Southeast Asian region and further afield. Trial registration ISRCTN, ISRCTN73606171. Registered on 23 June 2017. Electronic supplementary material The online version of this article (10.1186/s13063-018-2490-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Chamsai Pientong
- Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | | | - Michael J Bangs
- PT Freeport Indonesia/International SOS Indonesia, Kuala Kencana, Indonesia.,Kasetsart University, Bangkok, Thailand
| | - Tipaya Ekalaksananan
- Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Sirinart Aromseree
- Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | | | - Supranee Phanthanawiboon
- Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Benedicte Fustec
- Khon Kaen University, Khon Kaen, Thailand.,Université de Montpellier, Montpellier, France
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC, UM1-CNRS 5290-IRD 224), Montpellier, France
| | | | | |
Collapse
|