1
|
Balingit JC, Denis D, Suzuki R, Hayati RF, Ngwe Tun MM, Takamatsu Y, Masyeni S, Sasmono RT, Morita K. Impact of pre-existing cross-reactive antibodies on cyclic dengue outbreaks in the hyperendemic region of Bali, Indonesia. Virus Res 2024; 348:199445. [PMID: 39089369 PMCID: PMC11342788 DOI: 10.1016/j.virusres.2024.199445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
The four serotypes of the dengue virus (DENV) cause a range of diseases ranging from mild fever to severe conditions. Understanding the immunological interactions among the four serotypes is crucial in comprehending the dynamics of serotype shifting during outbreaks in areas where all four serotypes co-circulate. Hence, we evaluated the neutralizing antibody and antibody-dependent enhancement responses against the four DENV serotypes using acute-phase plasma samples collected from 48 laboratory-confirmed dengue patients during a dengue outbreak in Bali, Indonesia in 2022. Employing single-round infectious particles to exclusively investigate immunogenicity to the structural surface proteins of DENV, which are the targets of antibodies, we found that individuals with a probable prior history of DENV-1 infection exhibited increased susceptibility to secondary DENV-3 infection, attributed to cross-reactive antibodies with limited neutralizing activity against DENV-3 (geometric mean 50 % neutralization titer (GMNT50) = 47.6 ± 11.5). This susceptibility was evident in vitro, with a mean fold enhancement of 28.4 ± 33.9. Neutralization titers against DENV-3 were significantly lower compared to other serotypes (DENV-1 GMNT50 = 678.1 ± 9.0; DENV-2 GMNT50 = 210.5 ± 8.7; DENV-4 GMNT50 = 95.14 ± 7.0). We demonstrate that prior immunity to one serotype provides limited cross-protection against the other serotypes, influencing the dominant serotype in subsequent outbreaks. These findings underscore the complexity of dengue immunity and its implications for vaccine design and transmission dynamics in hyperendemic regions.
Collapse
Affiliation(s)
- Jean Claude Balingit
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | | | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | - Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan
| | - Yuki Takamatsu
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Science, Universitas Warmadewa, Bali 80239, Indonesia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan.
| |
Collapse
|
2
|
Phadungsombat J, Nakayama EE, Shioda T. Unraveling Dengue Virus Diversity in Asia: An Epidemiological Study through Genetic Sequences and Phylogenetic Analysis. Viruses 2024; 16:1046. [PMID: 39066210 PMCID: PMC11281397 DOI: 10.3390/v16071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue. Although most infected individuals are asymptomatic or present with only mild symptoms, severe manifestations could potentially devastate human populations in tropical and subtropical regions. In hyperendemic regions such as South Asia and Southeast Asia (SEA), all four DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) have been prevalent for several decades. Each DENV serotype is further divided into multiple genotypes, reflecting the extensive diversity of DENV. Historically, specific DENV genotypes were associated with particular geographical distributions within endemic regions. However, this epidemiological pattern has changed due to urbanization, globalization, and climate change. This review comprehensively traces the historical and recent genetic epidemiology of DENV in Asia from the first time DENV was identified in the 1950s to the present. We analyzed envelope sequences from a database covering 16 endemic countries across three distinct geographic regions in Asia. These countries included Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka from South Asia; Cambodia, Laos, Myanmar, Thailand, and Vietnam from Mainland SEA; and Indonesia, the Philippines, Malaysia, and Singapore from Maritime SEA. Additionally, we describe the phylogenetic relationships among DENV genotypes within each serotype, along with their geographic distribution, to enhance the understanding of DENV dynamics.
Collapse
Affiliation(s)
| | | | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (J.P.); (E.E.N.)
| |
Collapse
|
3
|
Saraswati K, Tanganuchitcharnchai A, Ongchaikupt S, Mukaka M, Day NPJ, Baird JK, Antonjaya U, Myint KSA, Dewi YP, Yudhaputri FA, Haryanto S, Witari NPD, Blacksell SD. Scrub typhus in Indonesia: A cross-sectional analysis of archived fever studies samples. Trans R Soc Trop Med Hyg 2024; 118:321-327. [PMID: 38205975 PMCID: PMC11062201 DOI: 10.1093/trstmh/trad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/06/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Scrub typhus is an understudied vector-borne bacterial infection. METHODS We tested archived fever samples for scrub typhus seropositivity to begin charting its geographic distribution in Indonesia. We analysed 1033 serum samples from three sites. IgM and IgG enzyme-linked immunosorbent assay (ELISA) against Orientia tsutsugamushi was performed using Karp, Kato, Gilliam, TA 716 antigens. To determine the cutoff in the absence of a presumed unexposed population and gold standard tests, we identified the visual inflection point, performed change point analysis, and used finite mixture models. RESULTS The optical density cutoff values used for IgM and IgG were 0.49 and 0.13, respectively. Across all sites, IgM seropositivity was 4.6% (95% CI: 3.4 to 6.0%) while IgG seropositivity was 4.4% (95% CI: 3.3 to 5.8%). The overall seropositivity across sites was 8.8% (95% CI: 8.1 to 11.7%). The overall seropositivity for Jambi, Denpasar, Tabanan were 9.7% (95% CI: 7.0 to 13.3%), 8.0% (95% CI: 5.7 to 11.0%), 9.0% (95% CI: 6.1 to 13.0%), respectively. CONCLUSIONS We conclude that O. tsutsugamushi exposure in humans occurred at all sites analysed and could be the cause of illness in some cases. Though it was not the main cause of acute fever in these locations, it is still important to consider scrub typhus in cases not responding to beta-lactam antibiotics. Future seroprevalence surveys and testing for scrub typhus in acute febrile illness studies will be essential to understand its distribution and burden in Indonesia.
Collapse
Affiliation(s)
- Kartika Saraswati
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, 10430 Jakarta, Indonesia
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LG Oxford, UK
| | - Ampai Tanganuchitcharnchai
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand
| | - Sirada Ongchaikupt
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LG Oxford, UK
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LG Oxford, UK
| | - J Kevin Baird
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, 10430 Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LG Oxford, UK
| | - Ungke Antonjaya
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, 10430 Jakarta, Indonesia
| | | | - Yora P Dewi
- Exeins Health Initiative, 12870 Jakarta, Indonesia
| | | | - Sotianingsih Haryanto
- Raden Mattaher Hospital, 36122 Jambi, Indonesia
- Faculty of Medicine and Health Sciences, Universitas Jambi, 36361 Jambi, Indonesia
| | - N P Diah Witari
- Faculty of Medicine and Health Sciences, Warmadewa University, 80235 Denpasar, Bali, Indonesia
| | - Stuart D Blacksell
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LG Oxford, UK
| |
Collapse
|
4
|
Masyeni S, Fatawy RM, Paramasatiari AAAL, Maheraditya A, Dewi RK, Winianti NW, Santosa A, Setiabudy M, Sumadewi NT, Herawati S. Dengue seroprevalence study in Bali. PLoS One 2023; 18:e0271939. [PMID: 37450543 PMCID: PMC10348525 DOI: 10.1371/journal.pone.0271939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION Dengue infection poses significant public health problems in tropical and subtropical regions worldwide. The clinical manifestations of dengue vary from asymptomatic to severe dengue manifestations. This serological survey highlighted the high incidence of asymptomatic cases. This study aimed to determine the prevalence of dengue in healthy and ill adults in Bali. METHODS Cross-sectional seroprevalence surveys were performed between July 2020 and June 2021 among healthy and ill adults in Denpasar Bali. Blood samples were collected from 539 randomly selected urban sites in Denpasar. Immunoglobulin G antibodies against the dengue virus were detected in serum using a commercial enzyme-linked immunosorbent assay kit. RESULTS Overall, the dengue seroprevalence rate among the 539 clinically healthy and ill adults was high (85.5%). The median age was 34.1 (18-86.1). Most of the participants in the study were younger than 40 years (61.2%). Men were the dominant sex (54.5%). The study found a significant association between dengue seropositivity among people aged > 40 years and healthy status (p = 0.005; odds ratio [OR] = 0.459 and p < 0.001; OR = 0.336, respectively). The study reported that as many as 60% of the subjects had a history of previously suspected dengue infection. This study reflected the proportion of asymptomatic dengue patients requiring better assessment with a serological test. CONCLUSION The current study highlighted that real cases of dengue infection may be higher than reported, with a high prevalence of dengue seropositivity and a relatively dominant proportion of asymptomatic cases. The study guides physicians to be aware of every dengue infection in tropical countries and prevent the spread of the disease.
Collapse
Affiliation(s)
- Sri Masyeni
- Faculty of Medicine and Health Science, Department of Internal Medicine, University of Warmadewa, Bali, Indonesia
| | - Rois Muqsith Fatawy
- Faculty of Medicine, Infectious Disease and Immunology Research Center, Indonesia Medical Education and Research Institute, Universitas Indonesia, Jakarta, Indonesia
| | | | - Ananda Maheraditya
- Faculty of Medicine and Health Science, University of Warmadewa, Bali, Indonesia
| | - Ratna Kartika Dewi
- Faculty of Medicine and Health Science, University of Warmadewa, Bali, Indonesia
| | - N. W. Winianti
- Faculty of Medicine and Health Science, University of Warmadewa, Bali, Indonesia
| | - Agus Santosa
- Faculty of Medicine and Health Science, University of Warmadewa, Bali, Indonesia
| | - Marta Setiabudy
- Faculty of Medicine and Health Science, University of Warmadewa, Bali, Indonesia
| | | | | |
Collapse
|
5
|
Cheng D, Huang SW, Chin WX, Hung SJ, Tsai HP, Chu JJH, Chao CH, Wang JR. Impact of Intrahost NS5 Nucleotide Variations on Dengue Virus Replication. Front Microbiol 2022; 13:894200. [PMID: 35865937 PMCID: PMC9294511 DOI: 10.3389/fmicb.2022.894200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the nature of RNA viruses, their high mutation rates produce a population of closely related but genetically diverse viruses, termed quasispecies. To determine the role of quasispecies in DENV disease severity, 22 isolates (10 from mild cases, 12 from fatal cases) were obtained, amplified, and sequenced with Next Generation Sequencing using the Illumina MiSeq platform. Using variation calling, unique wildtype nucleotide positions were selected and analyzed for variant nucleotides between mild and fatal cases. The analysis of variant nucleotides between mild and fatal cases showed 6 positions with a significant difference of p < 0.05 with 1 position in the structural region, and 5 positions in the non-structural (NS) regions. All variations were found to have a higher percentage in fatal cases. To further investigate the genetic changes that affect the virus’s properties, reverse genetics (rg) viruses containing substitutions with the variations were generated and viral growth properties were examined. We found that the virus variant rgNS5-T7812G (G81G) had higher replication rates in both Baby hamster kidney cells (BHK-21) and Vero cells while rgNS5-C9420A (A617A) had a higher replication rate only in BHK-21 cells compared to wildtype virus. Both variants were considered temperature sensitive whereby the viral titers of the variants were relatively lower at 39°C, but was higher at 35 and 37°C. Additionally, the variants were thermally stable compared to wildtype at temperatures of 29, 37, and 39°C. In conclusion, viral quasispecies found in isolates from the 2015 DENV epidemic, resulted in variations with significant difference between mild and fatal cases. These variations, NS5-T7812G (G81G) and NS5-C9420A (A617A), affect viral properties which may play a role in the virulence of DENV.
Collapse
Affiliation(s)
- Dayna Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Wei-Xin Chin
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Su-Jhen Hung
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chiao-Hsuan Chao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- *Correspondence: Jen-Ren Wang,
| |
Collapse
|
6
|
Masyeni S, Nelwan EJ, Fatawy RM, Wibawa S, Nugraha PA, Antara J, Suparta A, Asmara DGW, Yenny LGS, Budhitresna AAG, Arimas D, Indriani D, Parwata K, Sutarjana K, Sugiartha E, Kahari S, Wardhana CA, Indraningrat AAG, Mulyantari K, Pasek AW, Putrawan O, Yustiani NT, Wardana G, Wijaya MI, Aryana S, Gayatri Y, Sukmawati DD, Suastika K, Merati TP, Bakta M, Widiana R. Clinical characteristics and outcomes of COVID-19 patients in Bali, Indonesia. PLoS One 2022; 17:e0269026. [PMID: 35687545 PMCID: PMC9187108 DOI: 10.1371/journal.pone.0269026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction The spectrum of illness and outcomes of coronavirus disease 2019 (COVID-19) patients may vary. This study reports the characteristics of COVID-19 patients in Bali, Indonesia, and evaluates the diagnostic value of their clinical symptoms. Method This observational study was conducted in eight hospitals. The patients were classified as non-severe COVID-19, severe COVID-19, and non-COVID-19. Demographics, clinical, laboratory, and radiologic characteristics, and outcomes of COVID-19 patients were collected. Factors associated with the severity and outcomes were assessed using the chi-squared test or ANOVA when appropriate. We also compared the clinical features of non-severe COVID-19 and non-COVID-19 patients to evaluate the diagnostic accuracy. Results This study included 92 patients: 41 non-COVID-19 and 51 COVID-19 patients, comprising 45 non-severe and six severe cases. The most common symptoms of COVID-19 were cough (47.1%), fever (31.0%), and dyspnea (25.3%). Cough, fatigue, and anosmia have high accuracy, and combining these complaints in clinical diagnostics offered a higher accuracy in predicting COVID-19 patients (60.1%). We found lower lymphocyte counts and interleukin-1R levels and higher levels of C-reactive protein, interleukin-6, and interleukin-8 in severe compared than in non-severe COVID-19 patients. Lactate dehydrogenase was associated with intensive care unit admission and ventilator use, while other markers such as neutrophil-lymphocyte ratio, C-reactive protein, and interleukin-6 were not. Conclusion A battery of symptoms, including cough, fatigue, and anosmia, is likely associated with COVID-19 in Bali. Clinicians should be aware of these symptoms to ensure a prompt diagnostic test for COVID-19, beyond other causes of acute febrile illnesses.
Collapse
Affiliation(s)
- Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, Indonesia
| | - Erni Juwita Nelwan
- Infectious Disease and Immunology Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- * E-mail: (EJN); (SA)
| | - Rois Muqsith Fatawy
- Infectious Disease and Immunology Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Putu Arya Nugraha
- Department of Internal Medicine, Pratama Giri Emas Hospital, Bali, Indonesia
| | - Jarwa Antara
- Department of Internal Medicine, Nyitdah Tabanan Hospital, Bali, Indonesia
| | | | - D. G. Wedha Asmara
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, Indonesia
| | - L. G. Sri Yenny
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, Indonesia
| | - A. A. G. Budhitresna
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, Indonesia
| | - Dewi Arimas
- Department of Clinical Pathology, Singaraja Hospital, Bali, Indonesia
| | | | - Kmg Parwata
- Klungkung Semarapura Hospital, Bali, Indonesia
| | | | | | - Siska Kahari
- Department of Internal Medicine, Nyitdah Tabanan Hospital, Bali, Indonesia
| | - Clareza Arief Wardhana
- Department of Clinical Pathology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - A. A. G. Indraningrat
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, Indonesia
| | - Kadek Mulyantari
- Department of Clinical Pathology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | | | | | | | | | - Made Indra Wijaya
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa/Sanjiwani Hospital, Bali, Indonesia
| | - Suka Aryana
- Department of Internal Medicine, Sanglah Hospital, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
- * E-mail: (EJN); (SA)
| | - Yuli Gayatri
- Department of Internal Medicine, Sanglah Hospital, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Dewi Dian Sukmawati
- Department of Internal Medicine, Sanglah Hospital, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Ketut Suastika
- Department of Internal Medicine, Sanglah Hospital, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Tuti Parwati Merati
- Department of Internal Medicine, Sanglah Hospital, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Made Bakta
- Department of Internal Medicine, Sanglah Hospital, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Raka Widiana
- Department of Internal Medicine, Sanglah Hospital, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| |
Collapse
|
7
|
Harapan H, Panta K, Michie A, Ernst T, McCarthy S, Muhsin M, Safarianti S, Zanaria TM, Mudatsir M, Sasmono RT, Imrie A. Hyperendemic Dengue and Possible Zika Circulation in the Westernmost Region of the Indonesian Archipelago. Viruses 2022; 14:219. [PMID: 35215813 PMCID: PMC8875625 DOI: 10.3390/v14020219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
The transmission of dengue and other medically important mosquito-borne viruses in the westernmost region of Indonesia is not well described. We assessed dengue and Zika virus seroprevalence in Aceh province, the westernmost area of the Indonesian archipelago. Serum samples collected from 199 randomly sampled healthy residents of Aceh Jaya in 2017 were analyzed for neutralizing antibodies by plaque reduction neutralization test (PRNT). Almost all study participants (198/199; 99.5%) presented with multitypic profiles of neutralizing antibodies to two or more DENV serotypes, indicating transmission of multiple DENV in the region prior to 2017. All residents were exposed to one or more DENV serotypes by the age of 30 years. The highest geometric mean titers were measured for DENV-4, followed by DENV-1, DENV-2 and DENV-3. Among a subset of 116 sera, 27 neutralized ZIKV with a high stringency (20 with PRNT90 > 10 and 7 with PRNT90 > 40). This study showed that DENV is hyperendemic in the westernmost region of the Indonesian archipelago and suggested that ZIKV may have circulated prior to 2017.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (H.H.); (M.M.)
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Kritu Panta
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Timo Ernst
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Suzi McCarthy
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
- Pathwest Laboratory Medicine, Nedlands, WA 6009, Australia
| | - Muhsin Muhsin
- Department of Internal Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Parasitology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.S.); (T.M.Z.)
| | - Safarianti Safarianti
- Department of Parasitology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.S.); (T.M.Z.)
| | - Tjut Mariam Zanaria
- Department of Parasitology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.S.); (T.M.Z.)
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (H.H.); (M.M.)
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| |
Collapse
|
8
|
Harapan H, Michie A, Ernst T, Panta K, Mudatsir M, Yohan B, Haryanto S, McCarthy S, Sasmono RT, Imrie A. Co-Circulation of Chikungunya and Multiple DENV Serotypes and Genotypes, Western Indonesia 2015-2016. Viruses 2022; 14:99. [PMID: 35062303 PMCID: PMC8779054 DOI: 10.3390/v14010099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Dengue is a mosquito-borne disease of public health concern affecting tropical and subtropical countries, including Indonesia. Although studies on dengue epidemiology have been undertaken in Indonesia, data are lacking in many areas of the country. The aim of this study was to determine dengue virus (DENV) and chikungunya virus (CHIKV) molecular epidemiology in western regions of the Indonesian archipelago. A one-year prospective study was conducted in Aceh and Jambi in 2015 and 2016, respectively, where patients with dengue-like illness were enrolled. Of 205 patients recruited, 29 and 27 were confirmed with dengue in Aceh and Jambi, respectively, and three from Jambi were confirmed with chikungunya. DENV-1 was the predominant serotype identified in Aceh while DENV-2 was predominant in Jambi. All DENV-1 and DENV-2 from both regions were classified as Genotype I and Cosmopolitan genotype, respectively, and all DENV-3 viruses from Jambi were Genotype I. Some viruses, in particular DENV-1, displayed a distinct lineage distribution, where two DENV-1 lineages from Aceh were more closely related to viruses from China instead of Jambi highlighting the role of travel and flight patterns on DENV transmission in the region. DENV-2 from both Aceh and Jambi and DENV-3 from Jambi were all closely related to Indonesian local strains. All three CHIKV belonged to Asian genotype and clustered closely with Indonesian CHIKV strains including those previously circulating in Jambi in 2015, confirming continuous and sustainable transmission of CHIKV in the region. The study results emphasize the importance of continuous epidemiological surveillance of arboviruses in Indonesia and simultaneous testing for CHIKV among dengue-suspected patients.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (H.H.); (M.M.)
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
| | - Timo Ernst
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
| | - Kritu Panta
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (H.H.); (M.M.)
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia; (B.Y.); (R.T.S.)
| | - Sotianingsih Haryanto
- Faculty of Medicine and Health Science, Universitas Jambi, Jambi 36361, Indonesia;
- Raden Mattaher Hospital, Jambi 36361, Indonesia
| | - Suzi McCarthy
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
- Pathwest Laboratory Medicine, Nedlands, WA 6009, Australia
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia; (B.Y.); (R.T.S.)
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.); (K.P.); (S.M.)
- Pathwest Laboratory Medicine, Nedlands, WA 6009, Australia
| |
Collapse
|
9
|
Hayati RF, Denis D, Tallo KT, Sirait T, Tukan J, Santoso MS, Yohan B, Haryanto S, Frost SDW, Stubbs SCB, Sasmono RT. Molecular epidemiology of dengue in a setting of low reported endemicity: Kupang, East Nusa Tenggara province, Indonesia. Trans R Soc Trop Med Hyg 2021; 115:1304-1316. [PMID: 34528099 DOI: 10.1093/trstmh/trab138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/17/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Most regions in Indonesia experience annual dengue epidemics. However, the province of East Nusa Tenggara has consistently reported low incidence. We conducted a dengue molecular epidemiology study in Kupang, the capital of the province. METHODS Dengue patients were recruited from May 2016 to September 2017. Dengue virus (DENV) screening was performed using NS1 and immunoglobulin G (IgG)/IgM detection. Serotype was determined using reverse transcription polymerase chain reaction and the envelope genes were sequenced to infer the genetic identity and phylogeny. RESULTS From 119 patients, dengue was confirmed in 62 (52%). Compared with official data, underreporting of dengue incidence was observed. The majority (36%) of patients were children <10 y of age. Most patients (80%) experienced mild fever. All serotypes were detected, with DENV-3 as the predominant (57%). Kupang DENV-1 isolate was classified as genotype IV, an old and endemic strain, DENV-2 as cosmopolitan, DENV-3 as genotype I and DENV-4 as genotype II. Most isolates showed relatively low evolutionary rates and are closely related with strains from Bali and Timor Leste. CONCLUSIONS The low dengue incidence was most likely caused by sustained local circulation of endemic viruses. This study provides information on the epidemiology of dengue in a low-endemicity setting that should help future mitigation and disease management.
Collapse
Affiliation(s)
- Rahma F Hayati
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | - Tuppak Sirait
- SK Lerik Regional Public Hospital, Kupang, Indonesia
| | - Joanita Tukan
- SK Lerik Regional Public Hospital, Kupang, Indonesia
| | | | | | | | - Simon D W Frost
- London School of Hygiene and Tropical Medicine, London, UK.,Microsoft Research, Redmond, WA, USA
| | | | | |
Collapse
|
10
|
Nonyong P, Ekalaksananan T, Phanthanawiboon S, Aromseree S, Phadungsombat J, Nakayama EE, Shioda T, Sawaswong V, Payungporn S, Thaewnongiew K, Overgaard HJ, Bangs MJ, Alexander N, Pientong C. Dengue virus in humans and mosquitoes and their molecular characteristics in northeastern Thailand 2016-2018. PLoS One 2021; 16:e0257460. [PMID: 34520486 PMCID: PMC8439490 DOI: 10.1371/journal.pone.0257460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Dengue is hyperendemic in most Southeast Asian countries including Thailand, where all four dengue virus serotypes (DENV-1 to -4) have circulated over different periods and regions. Despite dengue cases being annually reported in all regions of Thailand, there is limited data on the relationship of epidemic DENV infection between humans and mosquitoes, and about the dynamics of DENV during outbreaks in the northeastern region. The present study was conducted in this region to investigate the molecular epidemiology of DENV and explore the relationships of DENV infection in humans and in mosquitoes during 2016–2018. A total of 292 dengue suspected patients from 11 hospitals and 902 individual mosquitoes (at patient’s houses and neighboring houses) were recruited and investigated for DENV serotypes infection using PCR. A total of 103 patients and 149 individual mosquitoes were DENV -positive. Among patients, the predominant DENV serotypes in 2016 and 2018 were DENV-4 (74%) and DENV-3 (53%) respectively, whereas in 2017, DENV-1, -3 and -4 had similar prevalence (38%). Additionally, only 19% of DENV infections in humans and mosquitoes at surrounding houses were serotypically matched, while 81% of infections were serotypically mismatched, suggesting that mosquitoes outside the residence may be an important factor of endemic dengue transmission. Phylogenetic analyses based on envelope gene sequences showed the genotype I of both DENV-1 and DENV-4, and co-circulation of the Cosmopolitan and Asian I genotypes of DENV-2. These strains were closely related to concurrent strains in other parts of Thailand and also similar to strains in previous epidemiological profiles in Thailand and elsewhere in Southeast Asia. These findings highlight genomic data of DENV in this region and suggest that people’s movement in urban environments may result in mosquitoes far away from the residential area being key determinants of DENV epidemic dynamics.
Collapse
Affiliation(s)
- Patcharaporn Nonyong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | | | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Emi E Nakayama
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kesorn Thaewnongiew
- Department of Disease Control, Office of Disease Prevention and Control, Region 7 Khon Kaen, Ministry of Public Health, Khon Kaen, Thailand
| | - Hans J Overgaard
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Michael J Bangs
- Public Health & Malaria Control, PT Freeport Indonesia/International SOS, Kuala Kencana, Papua, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Neal Alexander
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
11
|
Poltep K, Phadungsombat J, Nakayama EE, Kosoltanapiwat N, Hanboonkunupakarn B, Wiriyarat W, Shioda T, Leaungwutiwong P. Genetic Diversity of Dengue Virus in Clinical Specimens from Bangkok, Thailand, during 2018-2020: Co-Circulation of All Four Serotypes with Multiple Genotypes and/or Clades. Trop Med Infect Dis 2021; 6:tropicalmed6030162. [PMID: 34564546 PMCID: PMC8482112 DOI: 10.3390/tropicalmed6030162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Dengue is an arboviral disease highly endemic in Bangkok, Thailand. To characterize the current genetic diversity of dengue virus (DENV), we recruited patients with suspected DENV infection at the Hospital for Tropical Diseases, Bangkok, during 2018-2020. We determined complete nucleotide sequences of the DENV envelope region for 111 of 276 participant serum samples. All four DENV serotypes were detected, with the highest proportion being DENV-1. Although all DENV-1 sequences were genotype I, our DENV-1 sequences were divided into four distinct clades with different distributions in Asian countries. Two genotypes of DENV-2 were identified, Asian I and Cosmopolitan, which were further divided into two and three distinct clades, respectively. In DENV-3, in addition to the previously dominant genotype III, a cluster of 6 genotype I viruses only rarely reported in Thailand was also observed. All of the DENV-4 viruses belonged to genotype I, but they were separated into three distinct clades. These results indicated that all four serotypes of DENV with multiple genotypes and/or clades co-circulate in Bangkok. Continuous investigation of DENV is warranted to further determine the relationship between DENV within Thailand and neighboring countries in Southeast Asia and Asia.
Collapse
Affiliation(s)
- Kanaporn Poltep
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.P.); (N.K.)
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Emi E. Nakayama
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.P.); (N.K.)
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
- Correspondence: (T.S.); (P.L.)
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.P.); (N.K.)
- Correspondence: (T.S.); (P.L.)
| |
Collapse
|
12
|
Molecular epidemiology of dengue in North Kalimantan, a province with the highest incidence rates in Indonesia in 2019. INFECTION GENETICS AND EVOLUTION 2021; 95:105036. [PMID: 34411743 DOI: 10.1016/j.meegid.2021.105036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Dengue is endemic to Indonesia, a country that has largely varied geographical and demographic conditions across different regions. In 2019, dengue epidemic occurred in North Kalimantan province and recorded as the highest incidence rate in Indonesia. This study aims to investigate the molecular epidemiology of dengue during outbreak in the province and compare the epidemiological characteristics between two cities/towns in North Kalimantan, namely Malinau, an inland town surrounded by a dense rainforest, and Tarakan, an island city. METHODS A cross sectional study was conducted between September 2018 and July 2019. Dengue-like illness patients were recruited in hospitals and tested for dengue NS1 and IgG/IgM. Serological prevalence was measured using IgG ELISA, dengue virus (DENV) serotyping was conducted using RT-PCR and Envelope gene sequencing was performed to infer the virus origins and phylogeny. Clinical, demographical, and diagnostics data were also recorded and analyzed. RESULTS We recruited 523 patients, 261 from Malinau and 262 from Tarakan. Among them, 349 patients were confirmed dengue. Cases in Malinau had a higher proportion of confirmed dengue (82.0%) compared to those in Tarakan (51.5%). Cases in Malinau were more likely to be dengue hemorrhagic fever with more severe hematological features compared to those in Tarakan. All four DENV serotypes were detected in both cities, the most prevalent serotype being DENV-2. The genetic characteristics of the viruses in the two towns was similar except for DENV-3. No sylvatic DENV was detected as well as alphaviruses and non-dengue flaviviruses during the outbreak. CONCLUSIONS The molecular epidemiology of dengue in North Kalimantan revealed the similar virological characteristics but different clinical and demographic aspects in Malinau and Tarakan. The distinct dengue dynamics between different regions of Indonesia is prominent and this knowledge will be important for understanding future patterns of DENV transmission in the region.
Collapse
|
13
|
Evolution, heterogeneity and global dispersal of cosmopolitan genotype of Dengue virus type 2. Sci Rep 2021; 11:13496. [PMID: 34188091 PMCID: PMC8241877 DOI: 10.1038/s41598-021-92783-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue virus type 2 (DENV-2) contributes substantially to the dengue burden and dengue-related mortality in the tropics and sub-tropics. DENV-2 includes six genotypes, among which cosmopolitan genotype is the most widespread. The present study investigated the evolution, intra-genotype heterogeneity and dispersal of cosmopolitan genotype to understand unique genetic characteristics that have shaped the molecular epidemiology and distribution of cosmopolitan lineages. The spatial analysis demonstrated a wide geo-distribution of cosmopolitan genotype through an extensive inter-continental network, anchored in Southeast Asia and Indian sub-continent. Intra-genotype analyses using 3367 envelope gene sequences revealed six distinct lineages within the cosmopolitan genotype, namely the Indian sub-continent lineage and five other lineages. Indian sub-continent lineage was the most diverged among six lineages and has almost reached the nucleotide divergence threshold of 6% within E gene to qualify as a separate genotype. Genome wide amino acid signatures and selection pressure analyses further suggested differences in evolutionary characteristics between the Indian sub-continent lineage and other lineages. The present study narrates a comprehensive genomic analysis of cosmopolitan genotype and presents notable genetic characteristics that occurred during its evolution and global expansion. Whether those characteristics conferred a fitness advantage to cosmopolitan genotype in different geographies warrant further investigations.
Collapse
|
14
|
Masyeni S, Kuntaman K, Aryati A, Sofro MAU, Hadi U, Mastutik G, Purnomo W, Santosa A, Yohan B, Nelwan EJ, Sasmono RT. Correlation of miR-150, hsa-let-7e, and miR- 146a and gene expression of IL-6, IL-8, IP-10, and MIP-1β during dengue virus infection. NARRA J 2021; 1:e31. [PMID: 38449776 PMCID: PMC10914058 DOI: 10.52225/narraj.v1i1.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 10/16/2023]
Abstract
Growing evidence suggests that microRNAs (miRNAs) play a pivotal role in viral infection. The objective of this study was to assess the association between the expression of miR- 150, hsa-let-7e, and miR-146a on cytokine expression during dengue infection. Dengue virus (DENV) strain SJN-006, a serotype 2 DENV strain of the Cosmopolitan genotype, isolated in Bali, Indonesia, was used to infect peripheral blood mononuclear cells (PBMCs) isolated from healthy individuals. The relative gene expressions of miR-150, hsa-let-7e, and miR-146a as well as the gene expression of cytokines (IL-6, IL-8, IP-10, and MIP-1β) were determined using quantitative real time - polymerase chain reaction (qRT-PCR) at 6, 12 and 24 hours post infection (hpi). Correlations between the microRNAs and cytokines were analyzed by means of causality tests. Our data suggests that miR-150 and hsa-let-7e were significantly higher in infected-PBMCs after 12 hpi compared to the uninfected-PBMCs (p<0.05). The causality tests demonstrated that miR-150 and has-let- 7e were negatively correlated with IL-8 expression, meanwhile miR-146a was the contrast. DENV infection was negatively and positively correlated with miR-150 and hsa-let-7e, respectively, after 24 hpi. In conclusion, our data demonstrates the vital role of miR-150, hsa-let-7e, and miR-146a in regulating IL-8 expression with possible different pathways.
Collapse
Affiliation(s)
- Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Bali, Indonesia
- Department of Internal Medicine, Sanjiwani Hospital, Bali, Indonesia
| | - Kuntaman Kuntaman
- Department of Medical Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Department of Medical Microbiology, Dr. Soetomo Hospital, Surabaya, Indonesia
| | - Aryati Aryati
- Clinical Pathology Department, School of Medicine and Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Muchlis Achsan Udji Sofro
- Department of Internal Medicine, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Department of Internal Medicine, Dr Kariadi Hospital, Semarang, Indonesia
| | - Usman Hadi
- Department of Internal Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo Hospital, Surabaya, Indonesia
| | - Gondo Mastutik
- Department of Anatomical Pathologic, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Windu Purnomo
- Department of Biostatistics, Faculty of Public Health, Universitas Airlangga Surabaya, Indonesia
| | - Agus Santosa
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Bali, Indonesia
| | | | - Erni Juwita Nelwan
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
- Infectious Disease and Immunology Research Center, Indonesia Medical and Education Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | |
Collapse
|
15
|
Outbreak of severe dengue associated with DENV-3 in the city of Manado, North Sulawesi, Indonesia. Int J Infect Dis 2021; 106:185-196. [PMID: 33774189 DOI: 10.1016/j.ijid.2021.03.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In early 2019, an outbreak of severe dengue was reported in Manado, North Sulawesi Province, Indonesia. This epidemic raised public concern and recorded the highest number of cases in the last 10 years. This study aimed to determine the clinical spectrum, disease aetiology and virological characteristics associated with this outbreak of severe dengue. METHODS Dengue was diagnosed using non-structural protein 1 detection, reverse transcription polymerase chain reaction and immunoglobulin (Ig)G/IgM serology. Envelope gene sequencing was conducted to determine the phylogeny of the dengue virus (DENV). RESULTS In total, 146 patients with a median age of 8 years (interquartile range IQR 5-11 years) were recruited. Most patients experienced expanded dengue syndrome, characterized by severe organ involvement including liver enlargement, stomach ache and coagulation problems. During the outbreak, DENV-3 was the dominant serotype (75.9%). Smaller numbers of DENV-1, -2 and -4 were also detected. Phylogenetically, the dominant DENV-3 strains were grouped in multiple clusters and were related to other Indonesian strains, suggesting the emergence of heterogenous local viruses. CONCLUSION The occurrence of an outbreak of severe dengue in Manado was confirmed, and DENV-3 was found to be the dominant serotype during the outbreak. This study shows the benefits of virological surveillance in understanding the aetiological agents responsible for outbreaks of severe dengue.
Collapse
|
16
|
Pasaribu AP, Tsheten T, Yamin M, Maryani Y, Fahmi F, Clements ACA, Gray DJ, Wangdi K. Spatio-Temporal Patterns of Dengue Incidence in Medan City, North Sumatera, Indonesia. Trop Med Infect Dis 2021; 6:tropicalmed6010030. [PMID: 33807820 PMCID: PMC8006016 DOI: 10.3390/tropicalmed6010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 01/04/2023] Open
Abstract
Dengue has been a perennial public health problem in Medan city, North Sumatera, despite the widespread implementation of dengue control. Understanding the spatial and temporal pattern of dengue is critical for effective implementation of dengue control strategies. This study aimed to characterize the epidemiology and spatio-temporal patterns of dengue in Medan City, Indonesia. Data on dengue incidence were obtained from January 2016 to December 2019. Kulldorff’s space-time scan statistic was used to identify dengue clusters. The Getis-Ord Gi* and Anselin Local Moran’s I statistics were used for further characterisation of dengue hotspots and cold spots. Results: A total of 5556 cases were reported from 151 villages across 21 districts in Medan City. Annual incidence in villages varied from zero to 439.32 per 100,000 inhabitants. According to Kulldorf’s space-time scan statistic, the most likely cluster was located in 27 villages in the south-west of Medan between January 2016 and February 2017, with a relative risk (RR) of 2.47. Getis-Ord Gi* and LISA statistics also identified these villages as hotpot areas. Significant space-time dengue clusters were identified during the study period. These clusters could be prioritized for resource allocation for more efficient prevention and control of dengue.
Collapse
Affiliation(s)
- Ayodhia Pitaloka Pasaribu
- Department of Pediatrics, Medical School, Universitas Sumatera Utara, Medan 20155, North Sumatera, Indonesia
- Correspondence: ; Tel.: +62-8126024392
| | - Tsheten Tsheten
- Department of Global Health, Research School of Population Health, The Australian National University, Acton, Canberra, ACT 2601, Australia; (T.T.); (D.J.G.); (K.W.)
| | - Muhammad Yamin
- Medical School, Universitas Sumatera Utara, Medan 20155, North Sumatera, Indonesia;
| | - Yulia Maryani
- North Sumatera Provincial Health Office, Medan 20232, North Sumatera, Indonesia;
| | - Fahmi Fahmi
- Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, North Sumatera, Indonesia;
| | - Archie C. A. Clements
- Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia;
- Telethon Kids Institute, Nedlands, WA 6009, Australia
| | - Darren J. Gray
- Department of Global Health, Research School of Population Health, The Australian National University, Acton, Canberra, ACT 2601, Australia; (T.T.); (D.J.G.); (K.W.)
| | - Kinley Wangdi
- Department of Global Health, Research School of Population Health, The Australian National University, Acton, Canberra, ACT 2601, Australia; (T.T.); (D.J.G.); (K.W.)
| |
Collapse
|
17
|
Correlation of Clinical Severity and Laboratory Parameters with Various Serotypes in Dengue Virus: A Hospital-Based Study. Int J Microbiol 2020; 2020:6658445. [PMID: 33488722 PMCID: PMC7803134 DOI: 10.1155/2020/6658445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/05/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives Dengue fever, being hyperendemic with analogous presentations as in many other acute febrile illnesses, poses a challenge in diagnosis during the acute stage. Additionally, the coexistence of multiple serotypes further complicates the disease prognosis. The study was undertaken to determine the dengue virus serotypes, clinical, and laboratory markers as predictors in the severity of infection. Methods A prospective study was conducted among 106 patients admitted with acute febrile illness having positive NS1 antigen/IgM ELISA. Clinical data were extracted from medical records including demographics, presence of comorbid conditions, clinical presentation, laboratory investigations, and course including length of hospital stay and outcome. Detection of dengue serotypes was done by multiplex reverse transcriptase polymerase chain reaction (RT_PCR). Results Out of 106 RT-PCR-confirmed cases, DENV-3 was the most common serotype found in 56 (52.8%) patients, followed by DENV-3 and DENV-4 coinfection in 27 (25.4%) patients. Coinfection with more than one serotype was witnessed in our study. Raised liver enzymes and increased ferritin are good biomarkers in differentiating dengue from severe dengue with cutoff levels for AST (134 U/L), ALT (88 U/L), and ferritin (3670 ng/ml). Musculoskeletal, followed by gastrointestinal, manifestations were comparatively higher than respiratory and cutaneous manifestations. Conclusion This study provides more information on the dengue serotypes. The clinical spectrum along with laboratory parameters such as ferritin, liver enzymes, platelet can be used as potential biomarkers in prediction of dengue severity. The data demonstrated will be useful in early detection and monitoring of the disease.
Collapse
|
18
|
Dengue Virus Serotype 4 Is Responsible for the Outbreak of Dengue in East Java City of Jember, Indonesia. Viruses 2020; 12:v12090913. [PMID: 32825262 PMCID: PMC7551817 DOI: 10.3390/v12090913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
Outbreaks of dengue virus (DENV) in Indonesia have been mainly caused by the DENV serotype-1; -2; or -3. The DENV-4 was the least-reported serotype in Indonesia during the last five decades. We recently conducted a molecular epidemiology study of dengue in the Jember regency, East Java province, Indonesia. Dengue is endemic in the region and outbreaks occur annually. We investigated the clinical characteristics and etiology of dengue-like febrile illness in this regency to understand the disease dynamics. A total of 191 patients with clinical symptoms similar to dengue were recruited during an 11-month study in 2019-2020. Children accounted for the majority of cases and dengue burden was estimated in 41.4% of the cases based on NS1 antigen, viral RNA, and IgG/IgM antibody detection with the majority (73.4%) being primary infections. Secondary infection was significantly associated with a higher risk of severe dengue manifestation. All four DENV serotypes were detected in Jember. Strikingly, we observed the predominance of DENV-4, followed by DENV-3, DENV-1, and DENV-2. Genotype determination using Envelope gene sequence revealed the classification into Genotype I, Cosmopolitan Genotype, Genotype I, and Genotype II for DENV-1, -2, -3, and -4, respectively. The predominance of DENV-4 in Jember may be associated with a new wave of DENV infections and spread in a non-immune population lacking a herd-immunity to this particular serotype.
Collapse
|
19
|
Ma’roef CN, Dhenni R, Megawati D, Fadhilah A, Lucanus A, Artika IM, Masyeni S, Lestarini A, Sari K, Suryana K, Yudhaputri FA, Jaya UA, Sasmono RT, Ledermann JP, Powers AM, Myint KSA. Japanese encephalitis virus infection in non-encephalitic acute febrile illness patients. PLoS Negl Trop Dis 2020; 14:e0008454. [PMID: 32663209 PMCID: PMC7360021 DOI: 10.1371/journal.pntd.0008454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022] Open
Abstract
Although Japanese encephalitis virus (JEV) is considered endemic in Indonesia, there are only limited reports of JEV infection from a small number of geographic areas within the country with the majority of these being neuroinvasive disease cases. Here, we report cases of JEV infection in non-encephalitic acute febrile illness patients from Bali, Indonesia. Paired admission (S1) and discharge (S2) serum specimens from 144 acute febrile illness patients (without evidence of acute dengue virus infection) were retrospectively tested for anti-JEV IgM antibody and confirmed by plaque reduction neutralization test (PRNT) for JEV infection. Twenty-six (18.1%) patients were anti-JEV IgM-positive or equivocal in their S2 specimens, of which 5 (3.5%) and 8 (5.6%) patients met the criteria for confirmed and probable JEV infection, respectively, based on PRNT results. Notably, these non-encephalitic JE cases were less likely to have thrombocytopenia, leukopenia, and lower hematocrit compared with confirmed dengue cases of the same cohort. These findings highlight the need to consider JEV in the diagnostic algorithm for acute febrile illnesses in endemic areas and suggest that JEV as a cause of non-encephalitic disease has likely been underestimated in Indonesia. Japanese encephalitis virus (JEV) is an important cause of central nervous system (CNS) infections in Asia and is considered endemic in Indonesia. However, reports of JEV infection in non-encephalitic disease cases are lacking because diagnosis is difficult to confirm and JEV is rarely considered as a cause of non-encephalitic disease. Here, with robust serological testing, we identified cases of JEV infection in patients presenting at a regency hospital in Bali with fever but without symptoms of CNS infection. This finding supports the need to include JEV in routine clinical diagnostic algorithms for patients with fever in endemic areas.
Collapse
Affiliation(s)
- Chairin Nisa Ma’roef
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Rama Dhenni
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dewi Megawati
- Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Bali, Indonesia
| | - Araniy Fadhilah
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Anton Lucanus
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - I Made Artika
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Sri Masyeni
- Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Bali, Indonesia
| | - Asri Lestarini
- Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Bali, Indonesia
| | - Kartika Sari
- Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Bali, Indonesia
| | | | | | - Ungke Anton Jaya
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology Jakarta, Indonesia
| | - R. Tedjo Sasmono
- Dengue Research Unit, Eijkman Institute for Molecular Biology Jakarta, Indonesia
| | - Jeremy P. Ledermann
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Ann M. Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Khin Saw Aye Myint
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- * E-mail: ,
| |
Collapse
|
20
|
Christofferson RC, Parker DM, Overgaard HJ, Hii J, Devine G, Wilcox BA, Nam VS, Abubakar S, Boyer S, Boonnak K, Whitehead SS, Huy R, Rithea L, Sochantha T, Wellems TE, Valenzuela JG, Manning JE. Current vector research challenges in the greater Mekong subregion for dengue, Malaria, and Other Vector-Borne Diseases: A report from a multisectoral workshop March 2019. PLoS Negl Trop Dis 2020; 14:e0008302. [PMID: 32730249 PMCID: PMC7392215 DOI: 10.1371/journal.pntd.0008302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Daniel M. Parker
- University of California, Irvine, California, United States of America
| | | | | | - Gregor Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bruce A. Wilcox
- ASEAN Institute for Health Development, Mahidol University, Nakhon Pathom, Thailand
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Sazaly Abubakar
- Tropical Infectious Diseases Research and Education Center, Kuala Lumpur, Malaysia
| | | | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stephen S. Whitehead
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Rekol Huy
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Leang Rithea
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Tho Sochantha
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jesus G. Valenzuela
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jessica E. Manning
- US National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| |
Collapse
|
21
|
Alkaff AH, Yohan B, Tambunan USF, Sasmono RT. Zika, chikungunya, and dengue viral infections in human peripheral blood mononuclear cells: cell susceptibility and gene expression. MEDICAL JOURNAL OF INDONESIA 2020. [DOI: 10.13181/mji.oa.193548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Infections of Zika (ZIKV), dengue (DENV), and chikungunya viruses (CHIKV) are presented with similar clinical symptoms; these often lead to misdiagnosis. Viremia levels and host immune responses may contribute to disease severity. This study was aimed to characterize the ability of ZIKV, CHIKV, and DENV to infect human peripheral blood mononuclear cells (PBMCs) and assess the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-10, and interferon gamma-induced protein (IP)- 10 genes in response to the viral infections.
METHODS PBMCs were isolated from healthy donors using gradient centrifugation. Cells were infected with Indonesian isolates of ZIKV, CHIKV, and DENV for 48 hours. Plaque assays were performed to measure viable virus titers, while viral genomic RNA and the gene expression of TNF-α, IL-10, and IP-10 were determined using real-time quantitative reverse transcription-polymerase chain reaction.
RESULTS The susceptibility of PBMCs to ZIKV, CHIKV, and DENV infection was observed, and the viable virus titer and viral genome quantity were found to be significantly higher in ZIKV and CHIKV. All viruses induced the expression of immune-related proteins. The TNF-α gene was upregulated by all viruses to relatively similar levels. IL-10 expression was highest in response to ZIKV, followed by CHIKV. In contrast, IP-10 expression was highly upregulated in DENV-infected cells and only moderately expressed in ZIKV- and CHIKV-infected cells.
CONCLUSIONS ZIKV, CHIKV, and DENV clinical isolates infected PBMCs with different levels of virus infectivity. The gene expression of IL-10 was highly upregulated in ZIKV infection and IP-10 in DENV infection.
Collapse
|
22
|
Dewi BE, Nainggolan L, Sudiro TM, Chenderawasi S, Goentoro PL, Sjatha F. Circulation of Various Dengue Serotypes in a Community-Based Study in Jakarta, Indonesia. Jpn J Infect Dis 2020; 74:17-22. [PMID: 32611971 DOI: 10.7883/yoken.jjid.2019.431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dengue virus (DENV) infection remains to be a serious health problem in Indonesia. Community-based dengue studies to determine circulating DENV serotypes based on the geography and season are limited owing to the expensive cost and significant effort required. Many patients with DENV infection are not hospitalized and many visit the hospital in the later phase of the disease. In this study, we performed active DENV surveillance in a community in Jakarta to study the circulating dengue serotypes; adult febrile patients with fever less than 48 hours were recruited. Disease severity was defined using the World Health Organization (WHO) 1997 guidelines. Rapid NS1 dengue antigen detection was used to screen patients with DENV in the community. Viral culture using the C6/36 cell line, an increased antibody titer on hemagglutination inhibition test and enzyme linked immunosorbent assay, or detection of the viral genome on reverse transcription-polymerase chain reaction was used to confirm DENV infection. Of the 102 patients, 68 (66.7%) were confirmed to have DENV infection, with DENV-2 being the most dominant serotype, followed by DENV-3, DENV-1, and DENV-4, in concordance with several reports of mixed DENV infection. Interestingly, in terms of disease severity, although DENV-3 infection was not the predominant circulating serotype, infection with it tended to cause a more severe disease than infection with DENV-2.
Collapse
Affiliation(s)
- Beti Ernawati Dewi
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Indonesia.,Community Based Dengue Study, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Indonesia.,Cluster of Infectious Diseases and Immunology. Indonesian Medical Education and Research Institute (IMERI), Indonesia
| | - Leonard Nainggolan
- Departement of Internal Medicine, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Indonesia.,Community Based Dengue Study, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Indonesia
| | - Tjahjani Mirawati Sudiro
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Indonesia.,Cluster of Infectious Diseases and Immunology. Indonesian Medical Education and Research Institute (IMERI), Indonesia
| | - Settrin Chenderawasi
- Community Based Dengue Study, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Indonesia
| | - Patricia Lukas Goentoro
- Community Based Dengue Study, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Indonesia
| | - Fithriyah Sjatha
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Indonesia.,Cluster of Infectious Diseases and Immunology. Indonesian Medical Education and Research Institute (IMERI), Indonesia
| |
Collapse
|
23
|
Agustiningrum I, Nugraha J, Kahar H. MCP-1 LEVELS AND ATYPICAL LYMPHOCYTES IN EARLY FEVER OF DENGUE VIRUS INFECTION WITH NON-STRUCTURAL PROTEIN 1 (NS-1) ANTIGEN TEST IN dr DARSONO HOSPITAL, PACITAN. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2020. [DOI: 10.20473/ijtid.v8i1.12696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue infection caused by DENV and transmitted by mosquitoes Aedes aegypti and Aedes albopictus is a major health problem in the world, including Indonesia. Clinical manifestations of dengue infection are very widely, from asymptomatic until dengue shock syndrome (DSS). DENV will attack macrophages and dendritic cells (DC) and replicate them. Monocytes are macrophages in the blood (±10% leukocytes). Macrophages produce cytokines and chemokines such as monocyte chemotactic protein-1 (MCP-1)/CCL2. The monocytes that are infected with DENV will express MCP-1, which will increase the permeability of vascular endothelial cells so that they have a risk of developing DHF/DSS. Macrophages and DC secrete NS1 proteins, which are the co-factors that are needed for viral replication and can be detected in the early phase of fever. The increased MCP-1 levels in dengue infection followed by an increase in the number of atypical lymphocytes indicate the arrival of macrophages and monocytes to the site of inflammation which triggers proliferation rather than lymphocytes. This is an observational analytical study with a cross-sectional design to determine the MCP-1 level in dengue infection patients with 1st until the 4th day of fever and the presence of atypical lymphocytes. Dengue infection was determined by rapid tests NS1 positive or negative and MCP-1 levels were measured using by ELISA sandwich method.MCP-1 level of sixty patients dengue infection NS-1 rapid positive or negative with 2nd until 4rt fever were significantly higher than healthy subjects (420.263±158,496vs29, 475±23.443;p=0.000), but there was no significant difference in subjects with DF, DHF or DSS (436,47±225,59 vs422,77±170,55vs 448,50±117,39; p =0.844). Atypicallymphosite differs significantly in healthy subjects than subjects infected with DENV an average of 2% (p= 0,000). In conclusion, this shows the arrival of macrophages and monocytes to the site of inflammation, which triggers the proliferation of lymphocytes.
Collapse
|
24
|
Serotype‐specific differences in the laboratory parameters among hospitalized children with dengue and genetic diversity of dengue viruses circulating in Tamil Nadu, India during 2017. J Med Virol 2019; 92:1013-1022. [DOI: 10.1002/jmv.25639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
|
25
|
Utama IMS, Lukman N, Sukmawati DD, Alisjahbana B, Alam A, Murniati D, Utama IMGDL, Puspitasari D, Kosasih H, Laksono I, Karyana M, Karyanti MR, Hapsari MMDEAH, Meutia N, Liang CJ, Wulan WN, Lau CY, Parwati KTM. Dengue viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from an observational cohort study. PLoS Negl Trop Dis 2019; 13:e0007785. [PMID: 31634352 PMCID: PMC6822776 DOI: 10.1371/journal.pntd.0007785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/31/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) infection is a major cause of acute febrile illness in Indonesia. Diagnostic inaccuracy may occur due to its varied and non-specific presentation. Characterization of DENV epidemiology, clinical presentation, and virology will facilitate appropriate clinical management and public health policy. METHODOLOGY/PRINCIPAL FINDINGS A multicenter observational cohort study was conducted in Indonesia to assess causes of acute fever requiring hospitalization. Clinical information and specimens were collected at enrollment, 14-28 days, and 3 months from 1,486 children and adults. Total of 468 (31.9%) cases of DENV infection were confirmed by reference laboratory assays. Of these, 414 (88.5%) were accurately diagnosed and 54 had been misdiagnosed as another infection by sites. One hundred initially suspected dengue cases were finally classified as 'non-dengue'; other pathogens were identified in 58 of those cases. Mortality of DENV infection was low (0.6%). Prior DENV exposure was found in 92.3% of subjects >12 years. DENV circulated year-round in all cities, with higher incidence from January to March. DENV-3 and DENV-1 were the predominant serotypes. This study identified DENV-1 with TS119(C→T) substitution in the serotyping primer annealing site, leading to failure of serotype determination. CONCLUSIONS/SIGNIFICANCE DENV is a common etiology of acute febrile illness requiring hospitalization in Indonesia. Diagnostic accuracy at clinical sites merits optimization since misdiagnosis of DENV infection and over-estimation of dengue can negatively impact management and outcomes. Mutation at the annealing site of the serotyping primer may confound diagnosis. Clinicians should consider following diagnostic algorithms that include DENV confirmatory testing. Policy-makers should prioritize development of laboratory capacity for diagnosis of DENV.
Collapse
Affiliation(s)
| | - Nurhayati Lukman
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | | | - Bachti Alisjahbana
- Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Anggraini Alam
- Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Dewi Murniati
- Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia
| | | | - Dwiyanti Puspitasari
- Department of Child Health, Faculty of Medicine, Dr. Soetomo Hospital, Airlangga University, Surabaya, Indonesia
| | - Herman Kosasih
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | | | - Muhammad Karyana
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
- National Institute of Health Research and Development (NIHRD), Ministry of Health Republic of Indonesia, Jakarta, Indonesia
| | | | | | - Ninny Meutia
- Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - C Jason Liang
- National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wahyu Nawang Wulan
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | - Chuen-Yen Lau
- National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
| | | |
Collapse
|
26
|
Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study. Travel Med Infect Dis 2019; 32:101437. [PMID: 31362115 DOI: 10.1016/j.tmaid.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/27/2019] [Accepted: 06/19/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Dengue fever control in the tropical island of Bali in Indonesia carries important significance both nationally and globally, as it is one of the most endemic islands in Indonesia and a worldwide popular travel destination. Despite its importance, the spatial and temporal heterogeneity in dengue risk and factors associated with its variation in risk across the island has not been not well explored. This study was aimed to analyze for the first time the geographical and temporal patterns of the incidence of dengue and to quantify the role of environmental and social factors on the spatial heterogeneity of dengue incidence in Bali. METHODS We analyzed retrospective dengue notification data at the sub-district level (Kecamatan) from January 2012 to December 2017 which obtained from the Indonesian Ministry of Health. Seasonality in notified dengue incidence was assessed by seasonal trend decomposition analysis with Loess (STL) smoothing. Crude standardized morbidity rates (SMRs) of dengue were calculated. Moran's I and local indicators of spatial autocorrelation (LISA) analysis were employed to assess spatial clustering and high-risk areas over the period studied. Bayesian spatial and temporal conditional autoregressive (CAR) modeling was performed to quantify the effects of rainfall, temperature, elevation, and population density on the spatial distribution of risk of dengue in Bali. RESULTS Strong seasonality of dengue incidence was observed with most cases notified during January to May. Dengue incidence was spatially clustered during the period studied with high-risk kecamatans concentrated in the south of the island, but since 2014, the high-risk areas expanded toward the eastern part of the island. The best-fitted CAR model showed increased dengue risk in kecamatans with high total annual rainfall (relative risk (RR): 1.16 for each 1-mm increase in rainfall; 95% Credible interval (CrI): 1.03-1.31) and high population density (RR: 7.90 per 1000 people/sq.km increase; 95% CrI: 3.01-20.40). The RR of dengue was decreased in kecamatans with higher elevation (RR: 0.73 for each 1-m increase in elevation; 95% CrI: 0.55-0.98). No significant association was observed between dengue RR and year except in 2014, where the dengue RR was significantly lower (RR: 0.53; 95% CrI: 0.30-0.92) relative to 2012. CONCLUSIONS Dengue incidence was strongly seasonal and spatially clustered in Bali. High-risk areas were spread from kecamatans in Badung and Denpasar toward Karangasem and Klungkung. The spatial heterogeneity of dengue risk across Bali was influenced by rainfall, elevation, and population density. Surveillance and targeted intervention strategies should be prioritized in the high-risk kecamatans identified in this study to better control dengue transmission in this most touristic island in Indonesia. Local health authorities should recommend travelers to use personal protective measures, especially during the peak epidemic period, before visiting Bali.
Collapse
|
27
|
Multiple introductions of dengue virus strains contribute to dengue outbreaks in East Kalimantan, Indonesia, in 2015-2016. Virol J 2019; 16:93. [PMID: 31345242 PMCID: PMC6659258 DOI: 10.1186/s12985-019-1202-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/18/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue fever is a febrile disease caused by dengue virus (DENV), which affects people throughout the tropical and subtropical regions of the world, including Indonesia. East Kalimantan (Borneo) province suffered a dramatic increase in dengue cases in 2015 and 2016, making it the province with the second highest incidence of dengue in Indonesia. Despite this, dengue in East Kalimantan is understudied; leaving transmission dynamics of the disease in the area are mostly unknown. In this study, we investigate the factors contributing to the outbreaks in East Kalimantan. METHODS Prospective clinical and molecular virology study was conducted in two main cities in the province, namely Samarinda and Balikpapan, in 2015-2016. Patients' clinical, hematological, and demographic data were recorded. Dengue detection and confirmation was performed using NS1-antigen and IgG/IgM antibody detection. RT-PCR was conducted to determine the serotypes of the virus. Phylogenetic analysis was performed based on envelope gene sequences. RESULTS Three hundred patients with suspected dengue were recruited. Among these, 132 (44%) were diagnosed with dengue by NS1 antigen and/or nucleic acid detection. The majority of the infections (60%) were primary, with dengue hemorrhagic fever (DHF) the predominant manifestation (71.9%). Serotyping detected all four DENV serotypes in 112 (37.3%) cases, with the majority of patients (58.9%) infected by DENV-3. Phylogenetic analysis based on envelope gene sequences revealed the genotypes of the viruses as DENV-1 Genotype I, DENV-2 Cosmopolitan, and DENV-3 Genotype I. Most virus strains were closely-related to strains from cities in Indonesia. CONCLUSIONS Our observations indicate that multiple introductions of endemic DENV from surrounding cities in Indonesia, coupled with relatively low herd immunity, were likely responsible for the outbreak of the dominant viruses. The study provides information on the clinical spectrum of the disease, together with serology, viral genetics, and demographic data, which will be useful for better understanding of dengue disease in Borneo.
Collapse
|
28
|
Harapan H, Michie A, Mudatsir M, Sasmono RT, Imrie A. Epidemiology of dengue hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease Surveillance. BMC Res Notes 2019; 12:350. [PMID: 31221186 PMCID: PMC6587249 DOI: 10.1186/s13104-019-4379-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Objective To provide a national incidence rate and case fatality rate of dengue hemorrhagic fever in Indonesia through an analysis of the National Disease Surveillance database from the Directorate General of Disease Prevention and Control of Ministry of Health. Results Available data has indicated an increasing trend of dengue hemorrhagic fever incidence in Indonesia over the past 50 years. Incidence rates appear to be cyclic, peaking approximately every 6–8 years. In contrast, the case fatality rate has decreased approximately by half each decade, since 1980. Java Island contributed the highest average number of dengue hemorrhagic fever cases each year. In recent years, Bali and Borneo (Kalimantan) have had the highest incidence while Papua Island, the easternmost region of the Indonesian archipelago, has had the lowest incidence.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia. .,School of Biomedical Sciences, University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia. .,Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - R Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta, 10430, Indonesia
| | - Allison Imrie
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| |
Collapse
|
29
|
Agarwal A, Gupta S, Chincholkar T, Singh V, Umare IK, Ansari K, Paliya S, Yadav AK, Chowdhary R, Purwar S, Biswas D. Co-circulation of dengue virus serotypes in Central India: Evidence of prolonged viremia in DENV-2. INFECTION GENETICS AND EVOLUTION 2019; 70:72-79. [DOI: 10.1016/j.meegid.2019.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023]
|
30
|
Harapan H, Michie A, Yohan B, Shu P, Mudatsir M, Sasmono RT, Imrie A. Dengue viruses circulating in Indonesia: A systematic review and phylogenetic analysis of data from five decades. Rev Med Virol 2019; 29:e2037. [DOI: 10.1002/rmv.2037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
| | - Alice Michie
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
| | | | - Pei‐Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease ControlMinistry of Health and Welfare Taiwan Republic of China
| | - Mudatsir Mudatsir
- Medical Research Unit, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
- Department of Microbiology, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
| | | | - Allison Imrie
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
- Pathwest Laboratory Medicine Nedlands Western Australia Australia
| |
Collapse
|
31
|
Concurrent infections of dengue virus serotypes in Bali, Indonesia. BMC Res Notes 2019; 12:129. [PMID: 30871630 PMCID: PMC6419402 DOI: 10.1186/s13104-019-4164-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/06/2019] [Indexed: 11/10/2022] Open
Abstract
Objective To describe cases of dengue virus (DENV) concurrent infections in patients from both local and international traveler visiting Bali, Indonesia. Results During a hospital-based study, 260 patients (from 161 local and 99 international traveler patients) were recruited. Among them, 190 were positive by DENV RT-PCR in which eight patients (five local and three international travelers) detected as having concurrent infections by two different DENV serotypes. Among the eight patients, the common dengue symptoms diagnosed were fever, headache, and myalgia. Six cases (75%) were diagnosed with dengue fever (DF) while two cases (25%) manifested with bleeding and were diagnosed with dengue hemorrhagic fever (DHF) grade 1. The DENVs concurrent infections involved all four DENV serotypes known to be circulating in Bali. Although cases of DENV concurrent infections have been implicated with severe manifestation, we observed that most of concurrent infections cases in our study were of mild clinical manifestation, that may be related to the changing of DENV serotype predominance which is occurring in Bali, Indonesia.
Collapse
|
32
|
Palomares-Reyes C, Silva-Caso W, Del Valle LJ, Aguilar-Luis MA, Weilg C, Martins-Luna J, Viñas-Ospino A, Stimmler L, Mallqui Espinoza N, Aquino Ortega R, Espinoza Espíritu W, Misaico E, Del Valle-Mendoza J. Dengue diagnosis in an endemic area of Peru: Clinical characteristics and positive frequencies by RT-PCR and serology for NS1, IgM, and IgG. Int J Infect Dis 2019; 81:31-37. [PMID: 30660797 DOI: 10.1016/j.ijid.2019.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Huánuco is a central eastern region of Peru whose geography includes high forest and low jungle, as well as a mountain range that constitutes the inter-Andean valleys. It is considered a region endemic for dengue due to the many favorable conditions that facilitate transmission of the virus. METHODS A total of 268 serum samples from patients in Huánuco, Peru with an acute febrile illness were assessed for the presence of dengue virus (DENV) via RT-PCR and NS1, IgM, and IgG ELISA during December 2015 and March 2016. RESULTS DENV was detected in 25% of samples via RT-PCR, 19% of samples by NS1 antigen ELISA, and 10.5% of samples by IgM ELISA. DENV IgG was detected in 15.7% of samples by ELISA. The most frequent symptoms associated with fever across all groups were headache, myalgia, and arthralgia, with no significant difference between the four test methods CONCLUSIONS: In this study, DENV was identified in up to 25% of the samples using the standard laboratory method. In addition, a correlation was established between the frequency of positive results and the serological tests that determine NS1, IgM, and IgG. There is an increasing need for point-of-care tests to strengthen epidemiological surveillance in Peru.
Collapse
Affiliation(s)
- Carlos Palomares-Reyes
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru; Centro de Salud las Palmas, Red de Salud Leoncio Prado, Tingo María, Peru
| | - Luis J Del Valle
- Barcelona Research Center for Multiscale Science and Engineering, Departament d'Enginyeria Quıímica EEBE, Universidad Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru; Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru; Instituto de Investigación de Enfermedades Infecciosas, Lima, Peru
| | - Claudia Weilg
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Johanna Martins-Luna
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Adriana Viñas-Ospino
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Luciana Stimmler
- Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | | | - Ronald Aquino Ortega
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | | | - Erika Misaico
- Hospital de Tingo María, Ministerio de Salud del Peru, Huánuco, Peru
| | - Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru; Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru.
| |
Collapse
|
33
|
Masyeni S, Yohan B, Somia IKA, Myint KSA, Sasmono RT. Dengue infection in international travellers visiting Bali, Indonesia. J Travel Med 2018; 25:5065180. [PMID: 30113689 PMCID: PMC6118167 DOI: 10.1093/jtm/tay061] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dengue, an acute febrile illness caused by infection with dengue virus (DENV), is endemic in Bali, Indonesia. As one of the world's most popular tourist destinations, Bali is regularly visited by domestic and international travellers, who are prone to infection by endemic pathogens, including DENV. Currently, limited data are available on the characteristics of dengue in travellers visiting Bali. Information on the epidemiology and virological aspects of dengue in these tourists is important to gain a better understanding of the dengue disease in international travellers. METHODS We performed a prospective cross-sectional dengue study involving foreign travellers visiting Bali, Indonesia in the period of 2015-17. Patients presenting at Kasih Ibu Hospital with fever and clinical symptoms of dengue were asked to participate in the study. Clinical and laboratory assessments were performed and sera were collected for molecular analysis, which included DENV serotyping, genome sequencing and phylogenetic analysis. RESULTS Among the 201 patients recruited, dengue was confirmed in 133 (66.2%) of them, based on detection of NS1 antigen and/or viral RNA. Of these, 115 (86.5%) manifested dengue fever (DF) and 18 (13.5%) dengue haemorrhagic fever (DHF). The temporal predominance of infecting DENV serotype was DENV-2 (48.7%), followed by DENV-3 (36.1%), DENV-1 (9.2%) and DENV-4 (3.4%). Phylogenetic analysis of DENV based on envelope gene sequences revealed that the source of DENVs was local endemic viruses. CONCLUSION Our study confirms that dengue is one of the causes of fever in travellers visiting Bali. Although it is a cause of significant morbidity, the majority of patients only experienced mild DF, with only a small proportion developing DHF. We revealed that DENVs isolated were autochthonous. Accurate diagnosis, preventive measures and continuous disease surveillance will be useful for better management of dengue infection in travellers.
Collapse
Affiliation(s)
- Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Bali, Indonesia
| | | | - I Ketut Agus Somia
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Udayana University, Denpasar, Bali, Indonesia
| | - Khin S A Myint
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | |
Collapse
|
34
|
Dengue virus serotype distribution based on serological evidence in pediatric urban population in Indonesia. PLoS Negl Trop Dis 2018; 12:e0006616. [PMID: 29953438 PMCID: PMC6040755 DOI: 10.1371/journal.pntd.0006616] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/11/2018] [Accepted: 06/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dengue is a febrile illness transmitted by mosquitoes, causing disease across the tropical and sub-tropical world. Antibody prevalence data and serotype distributions describe population-level risk and inform public health decision-making. METHODOLOGY/PRINCIPAL FINDINGS In this cross-sectional study we used data from a pediatric dengue seroprevalence study to describe historical dengue serotype circulation, according to age and geographic location. A sub-sample of 780 dengue IgG-positive sera, collected from 30 sites across urban Indonesia in 2014, were tested by the plaque reduction neutralization test (PRNT) to measure the prevalence and concentration of serotype-specific neutralizing antibodies according to subject age and geography. PRNT results were obtained from 776 subjects with mean age of 9.6 years. 765 (98.6%) neutralized one or more dengue serotype at a threshold of >10 (1/dil). Multitypic profiles were observed in 50.9% of the samples; a proportion which increased to 63.1% in subjects aged 15-18 years. Amongst monotypic samples, the highest proportion was reactive against DENV-2, followed by DENV-1, and DENV-3, with some variation across the country. DENV-4 was the least common serotype. The highest anti-dengue antibody titers were recorded against DENV-2, and increased with age to a geometric mean of 516.5 [1/dil] in the oldest age group. CONCLUSIONS/SIGNIFICANCE We found that all four dengue serotypes have been widely circulating in most of urban Indonesia, and more than half of children had already been exposed to >1 dengue serotype, demonstrating intense transmission often associated with more severe clinical episodes. These data will help inform policymakers and highlight the importance of dengue surveillance, prevention and control.
Collapse
|
35
|
Masyeni S, Hadi U, Kuntaman K, Dewi Y. Profiling of Microrna Expression within the Cells of Peripheral Blood Mononuclear after an Infection with Serotype-2 of Dengue Virus: Preliminary Study. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2018; 11:923-927. [DOI: 10.13005/bpj/1449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
The role of microRiboNucleic Acids (miRNA), a small-non coding RNA has been associated with immune regulation in various viral infectionincluding dengue infection. The microRNA will bind a specific protein target in order to encourage an explosive expression of various cytokines, known as cytokines storm in Dengue infection.The objective of this study aimed to determine and evaluate themicroRNAs profile expression withinperipheral blood mononuclear cells having been infected with one of the dengue virus serotype.To obtained the PBMCs from a healthy donor, Ficoll density gradient centrifugation was used to isolate the PBMCs and then followed infecting it with a DENV-2 clinical isolate. Prior to PBMCs isolation, the virus has been propagated and having titration to get an optimal virus titer. We conducted the infection at the multiplication of infections 4 PFU/106 cells.MiRCURYLNATMExiqon was utilized on purpose to extract the RNA. Quantitative Real-Time PCR was applied in order for the miRNAs relative expression to be measured. The preliminary result reveals that miR-150, miR-146a, hsa-let-7e expression were increased 1.74 folds, 2 folds, and 1.49 foldsrespectively at 12 hours post-infection on PBMCs upon DENV-2 infection.The expression of microRNAswas discovered to behigher inPBMCsat the time of infection withDENV-2.ThemiRNAs expression in the uninfected PMBCs was lower than that of the miRNA. This high expression of miRNAsin dengue infection may proceedto dengue infection pathogenesis.
Collapse
Affiliation(s)
- Sri Masyeni
- Faculty of Medicine and Health Science, University of Warmadewa, JlTerompong 24, Denpasar-Bali,Indonesia
| | - Usman Hadi
- Faculty of Medicine, University of Airlangga, JlMayjen Prof. Dr. Moestopo 47, Pacar Kembang, Surabaya, Kota SBY, Jawa Timur, Indonesia
| | - K Kuntaman
- Faculty of Medicine, University of Airlangga, JlMayjen Prof. Dr. Moestopo 47, Pacar Kembang, Surabaya, Kota SBY, Jawa Timur, Indonesia
| | - Yorapermata Dewi
- Faculty of Medicine and Health Science, University of Warmadewa, JlTerompong 24, Denpasar-Bali,Indonesia
| |
Collapse
|
36
|
Mendonça MCLD, Mares-Guia MA, Rodrigues CDDS, Santos CCD, Chalhoub FLL, Araújo ESM, Chieppe AO, Nogueira RMR, Filippis AMBD. Imported case of Dengue virus 3 genotype I in Rio de Janeiro state, Brazil. Mem Inst Oswaldo Cruz 2018; 113:e180036. [PMID: 29947712 PMCID: PMC6014721 DOI: 10.1590/0074-02760180036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
The dengue virus (DENV), of the genus Flavivirus (Flaviviridae), has four antigenically distinct serotypes, of which DENV-3 is classified into five genotypes. Here, we describe the detection of DENV-3 genotype I in sera of a Brazilian patient travelling from Singapore to Rio de Janeiro, Brazil, by using multiplex real-time RT-PCR, DNA sequencing of the whole envelope protein gene, and phylogenetic analysis. The virus shares ancestry with those identified in Bali, Indonesia, in 2015. It is possible that arboviruses such as Chikungunya ECSA genotype, DENV-4 genotype I, and Zika were introduced in Brazil from other continents during the multiple international events hosted by the country over the last four years, including World Youth Day, the Soccer World Cup, and the Summer Olympics.
Collapse
Affiliation(s)
| | - Maria Angelica Mares-Guia
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Flavivírus, Rio de Janeiro, RJ, Brasil
| | | | - Carolina Cardoso Dos Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Flavivírus, Rio de Janeiro, RJ, Brasil
| | - Flavia Lowen Levy Chalhoub
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Flavivírus, Rio de Janeiro, RJ, Brasil
| | | | | | - Rita Maria Ribeiro Nogueira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Flavivírus, Rio de Janeiro, RJ, Brasil
| | - Ana Maria Bispo de Filippis
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Flavivírus, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
37
|
Quinn EJ, Cheong AHC, Calvert JK, Higgins G, Hahesy T, Gordon DL, Carr JM. Clinical Features and Laboratory Findings of Travelers Returning to South Australia with Dengue Virus Infection. Trop Med Infect Dis 2018; 3:tropicalmed3010006. [PMID: 30274405 PMCID: PMC6136603 DOI: 10.3390/tropicalmed3010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 11/16/2022] Open
Abstract
Reported cases of dengue are rising in South Australia (SA) in travellers returning from dengue-endemic regions. We have undertaken a retrospective analysis to identify the clinical and laboratory characteristics of patients returning to SA with suspected dengue virus (DENV) infection. From 488 requests, 49 (10%) were defined by serology as acute dengue, with the majority of patients (75%) testing as non-structural protein 1 (NS1) and/or IgM positive. Dengue was most commonly acquired in Indonesia (42.9%) with clinical features of fever (95%), headache (41%) and myalgia/arthralgia (56%). The presence of rash (36%) and laboratory findings of neutropenia, leukopenia, thrombocytopenia, but not elevated C-reactive protein, were distinct from findings in DENV-seronegative patients. Available dengue seropositive samples were analysed by RT-PCR, with 14/32 (43.8%) positive by a serotype non-specific DENV assay, but 28/32 positive (87.5%) when also assessed by serotype-specific RT-PCR. Serotype analysis revealed the predominance of DENV-1 and DENV-2 and the presence of DENV-3, but not DENV-4 or Zika virus (ZIKV). Thus, dengue in returned travellers in SA presents in a manner consistent with World Health Organization (WHO) definitions, with symptoms, travel history and laboratory results useful in prioritising the likelihood of dengue. This definition will assist the future management in DENV-non-endemic regions, such as SA.
Collapse
Affiliation(s)
- Emma J Quinn
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Adelaide SA 5042, Australia.
| | - Allena H-C Cheong
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Adelaide SA 5042, Australia.
| | - Julie K Calvert
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Adelaide SA 5042, Australia.
| | - Geoffrey Higgins
- Infectious Diseases Laboratories SA Pathology, Adelaide, SA 5000, Australia.
| | - Trish Hahesy
- Infectious Diseases Laboratories SA Pathology, Adelaide, SA 5000, Australia.
| | - David L Gordon
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Adelaide SA 5042, Australia.
| | - Jillian M Carr
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Adelaide SA 5042, Australia.
| |
Collapse
|
38
|
Kusmintarsih ES, Hayati RF, Turnip ON, Yohan B, Suryaningsih S, Pratiknyo H, Denis D, Sasmono RT. Molecular characterization of dengue viruses isolated from patients in Central Java, Indonesia. J Infect Public Health 2017; 11:617-625. [PMID: 29056517 DOI: 10.1016/j.jiph.2017.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/14/2017] [Accepted: 09/09/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Dengue is hyper-endemic in Indonesia. Purwokerto city in Central Java province is routinely ravaged by the disease. Despite the endemicity of dengue in this city, there is still no data on the virological aspects of dengue in the city. We conducted a molecular surveillance study of the circulating dengue viruses (DENV) in Purwokerto city to gain information on the virus origin, serotype and genotype distribution, and phylogenetic characteristics of DENV. METHODS A cross-sectional dengue molecular surveillance study was conducted in Purwokerto. Sera were collected from dengue-suspected patients attending three hospitals in the city. Diagnosis was performed using dengue NS1 antigen and IgG/IgM antibodies detection. DENV serotyping was performed using Simplexa Dengue real-time RT-PCR. Sequencing was conducted to obtain full-length DENV Envelope (E) gene sequences, which were then used in phylogenetic and genotypic analyses. Patients' clinical and demographic data were collected and analyzed. RESULTS A total of 105 dengue-suspected patients' sera were collected, in which 80 (76.2%) were positive for IgM and/or IgG, and 57 (54.2%) were confirmed as dengue by NS1 antigen and/or DENV RNA detection using RT-PCR. Serotyping was successful for 47 isolates. All four serotypes circulated in the area with DENV-3 as the predominant serotype. Phylogenetic analyses grouped the isolates into Genotype I for DENV-1, Cosmopolitan genotype for DENV-2, and Genotype I and II for DENV-3 and -4, respectively. The analyses also revealed the close relatedness of Purwokerto isolates to other DENV strains from Indonesia and neighboring countries. CONCLUSION We reveal the molecular and virological characteristics of DENV in Purwokerto, Banyumas regency, Central Java. The genotype and phylogenetic analyses indicate the endemicity of the circulating DENV in the city. Our serotype and genotype data provide references for future dengue molecular epidemiology studies and disease management in the region.
Collapse
Affiliation(s)
- Endang S Kusmintarsih
- Fakultas Biologi, Universitas Jenderal Soedirman, Jl. dr. Soeparno No. 63, Purwokerto, 53122, Indonesia
| | - Rahma F Hayati
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta, 10430, Indonesia
| | - Oktaviani N Turnip
- Fakultas Biologi, Universitas Jenderal Soedirman, Jl. dr. Soeparno No. 63, Purwokerto, 53122, Indonesia; Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta, 10430, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta, 10430, Indonesia
| | - Suhestri Suryaningsih
- Fakultas Biologi, Universitas Jenderal Soedirman, Jl. dr. Soeparno No. 63, Purwokerto, 53122, Indonesia
| | - Hery Pratiknyo
- Fakultas Biologi, Universitas Jenderal Soedirman, Jl. dr. Soeparno No. 63, Purwokerto, 53122, Indonesia
| | - Dionisius Denis
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta, 10430, Indonesia
| | - R Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta, 10430, Indonesia.
| |
Collapse
|