1
|
Archer J, Cunningham LJ, Juhász A, Jones S, O’Ferrall AM, Rollason S, Mainga B, Chammudzi P, Kapira DR, Lally D, Namacha G, Makaula P, LaCourse JE, Kayuni SA, Webster BL, Musaya J, Stothard JR. Molecular epidemiology and population genetics of Schistosoma mansoni infecting school-aged children situated along the southern shoreline of Lake Malawi, Malawi. PLoS Negl Trop Dis 2024; 18:e0012504. [PMID: 39374309 PMCID: PMC11458004 DOI: 10.1371/journal.pntd.0012504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND In areas of low disease endemicity, highly sensitive diagnostic tools to identify, diagnose, and monitor intestinal schistosomiasis transmission are needed to reliably measure the burden and risk of infection. Here, we used highly sensitive molecular diagnostic methods to investigate Schistosoma mansoni prevalence and transmission along the southern shoreline of Lake Malawi, five years post-disease outbreak. METHODOLOGY AND PRINCIPAL FINDINGS Faecal and urine samples were provided by school-aged children situated along the southern shoreline of Lake Malawi. Kato-Katz faecal-egg microscopy and point-of-care circulating cathodic antigen (POC-CCA) rapid diagnostic tests were then performed to diagnose infection with S. mansoni. Urine-egg microscopy was also used to diagnose infection with Schistosoma haematobium. In addition, Schistosoma miracidia were isolated from faecal material using a standard miracidium hatching technique. A two-step real-time PCR approach was then used to diagnose infection with S. mansoni using DNA isolated from faecal samples. Furthermore, isolated miracidia were genotyped to species level through PCR and Sanger sequencing. Phylogenetic analyses were then carried out to identify which previously defined S. mansoni cox1 lineage group S. mansoni miracidia were most closely related to. The measured prevalence of S. mansoni infection varied considerably depending on which diagnostic assay was used. When compared to real-time PCR, faecal-egg microscopy had a sensitivity of 9% and a specificity of 100%. When POC-CCA 'trace' results were considered positive, POC-CCA had a sensitivity of 73% and a specificity of 81% when compared to real-time PCR. However, when considered negative, POC-CCA sensitivity was reduced to 56%, whereas specificity was increased to 90%. In addition, a high degree of S. haematobium DNA was detected in DNA isolated from faecal samples and motile S. haematobium miracidia were recovered from faecal samples. Schistosoma mansoni miracidia were closely related to two independent cox1 lineage groups, suggesting multiple recent introduction and colonisation events originating from surrounding east African countries. CONCLUSIONS AND SIGNIFICANCE Intestinal schistosomiasis is now highly prevalent along the southern shoreline of Lake Malawi just five years post-disease outbreak. In addition, a high prevalence of urogenital schistosomiasis persists. The revision of ongoing schistosomiasis control programmes in this area is therefore recommended. Our study also highlights the need for reliable diagnostic assays capable of distinguishing between Schistosoma species in multispecies co-endemic areas.
Collapse
Affiliation(s)
- John Archer
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, United Kingdom
| | - Lucas J. Cunningham
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alexandra Juhász
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Sam Jones
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angus M. O’Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sarah Rollason
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Bright Mainga
- Laboratory Department, Mangochi District Hospital, Mangochi, Malawi
| | - Priscilla Chammudzi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Donales R. Kapira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - David Lally
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Gladys Namacha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Peter Makaula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - James E. LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sekeleghe A. Kayuni
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, United Kingdom
| | - Janelisa Musaya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - J. Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
2
|
Moon M, Wu HW, Jiz M, Maldonado S, Kurtis JD, Friedman JF, Jarilla B, Park S. Evaluation of sensitivity and specificity of Kato-Katz and circulating cathodic antigen in terms of Schistosoma japonicum using latent class analysis. Sci Rep 2024; 14:8164. [PMID: 38589377 PMCID: PMC11001968 DOI: 10.1038/s41598-024-57863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Schistosoma japonicum is endemic in the Philippines. The Kato-Katz (KK) method was used to diagnose S. japonicum. This is impractical, particularly when the sample size is limited. Knowledge on point-of-care circulating cathodic antigen (CCA) test performance for S. japonicum is limited. Determining the sensitivity and specificity of new diagnostics is difficult when the gold standard test is less effective or absent. Latent class analysis (LCA) can address some limitations. A total of 484 children and 572 adults from the Philippines were screened for S. japonicum. We performed Bayesian LCA to estimate the infection prevalence, sensitivity and specificity of each test by stratifying them into two age groups. Observed prevalence assessed by KK was 50.2% and 31.8%, and by CCA was 89.9% and 66.8%, respectively. Using Bayesian LCA, among children, the sensitivity and specificity of CCA were 94.8% (88.7-99.4) and 21.5% (10.5-36.1) while those of KK were 66.0% (54.2-83.3) and 78.1% (61.1-91.3). Among adults, the sensitivity and specificity of CCA were 86.4% (76.6-96.9) and 62.8% (49.1-81.1) while those of KK were 43.6% (35.1-53.9) and 85.5% (75.8-94.6). Overall, CCA was more sensitive than KK, regardless of the age group at diagnosis, as KK was more specific. KK and CCA have different diagnostic performance, which should inform their use in the planning and implementation of S. japonicum control programs.
Collapse
Affiliation(s)
- Mugyeom Moon
- Food and Agriculture Organization of the United Nations, Regional Office for Asia and Pacific, Bangkok, Thailand
| | - Hannah W Wu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pediatrics, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mario Jiz
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | | | - Jonathan D Kurtis
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jennifer F Friedman
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pediatrics, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Blanca Jarilla
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | - Sangshin Park
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
- Graduate School of Urban Public Health, University of Seoul, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Rivera J, Mu Y, Gordon CA, Jones MK, Cheng G, Cai P. Current and upcoming point-of-care diagnostics for schistosomiasis. Trends Parasitol 2024; 40:60-74. [PMID: 38000956 DOI: 10.1016/j.pt.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Point-of-care (POC) diagnostics are simple and effective portable tools that can be used for fast mapping of helminthic diseases and monitoring control programs. Most POC tests (POCTs) available for schistosomiasis diagnosis are lateral flow immunoassays (LFIAs). The emergence of simple and rapid DNA isolation methods, along with isothermal nucleic acid amplification strategies - for example, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) - and recent clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic methods facilitate the development of molecular-based POC diagnostics for schistosomiasis. Furthermore, smartphone-based techniques increase real-time connectivity and readout accuracy of POCTs. This review discusses the recent advances in immunological-, molecular-based POCTs and mobile phone microscopes for the diagnosis/screening of schistosomiasis.
Collapse
Affiliation(s)
- Jonas Rivera
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Catherine A Gordon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Malcolm K Jones
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Guofeng Cheng
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
4
|
Mesquita SG, Caldeira RL, Favre TC, Massara CL, Beck LCNH, Simões TC, de Carvalho GBF, dos Santos Neves FG, de Oliveira G, de Souza Barbosa Lacerda L, de Almeida MA, dos Santos Carvalho O, Moraes Mourão M, Oliveira E, Silva-Pereira RA, Fonseca CT. Assessment of the accuracy of 11 different diagnostic tests for the detection of Schistosomiasis mansoni in individuals from a Brazilian area of low endemicity using latent class analysis. Front Microbiol 2022; 13:1048457. [PMID: 36590409 PMCID: PMC9797737 DOI: 10.3389/fmicb.2022.1048457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 12/16/2022] Open
Abstract
Background Schistosomiasis is a parasitic disease associated with poverty. It is estimated that 7.1 million people are infected with Schistosoma mansoni in Latin America, with 95% of them living in Brazil. Accurate diagnosis and timely treatment are important measures to control and eliminate schistosomiasis, but diagnostic improvements are needed to detect infections, especially in areas of low endemicity. Methodology This research aimed to evaluate the performance of 11 diagnostic tests using latent class analysis (LCA). A cross-sectional survey was undertaken in a low endemicity area of the municipality of Malacacheta, Minas Gerais, Brazil. Feces, urine, and blood samples were collected from 400 residents older than 6 years of age, who had not been treated with praziquantel in the 12 months previous to the collection of their samples. The collected samples were examined using parasitological (Helm Test® kit Kato-Katz), nucleic acid amplification tests -NAATs (PCR, qPCR and LAMP on urine; PCR-ELISA, qPCR and LAMP on stool), and immunological (POC-CCA, the commercial anti-Schistosoma mansoni IgG ELISA kit from Euroimmun, and two in-house ELISA assays using either the recombinant antigen PPE or the synthetic peptide Smp150390.1) tests. Results The positivity rate of the 11 tests evaluated ranged from 5% (qPCR on urine) to 40.8% (commercial ELISA kit). The estimated prevalence of schistosomiasis was 12% (95% CI: 9-15%) according to the LCA. Among all tests assessed, the commercial ELISA kit had the highest estimated sensitivity (100%), while the Kato-Katz had the highest estimated specificity (99%). Based on the accuracy measures observed, we proposed three 2-step diagnostic approaches for the active search of infected people in endemic settings. The approaches proposed consist of combinations of commercial ELISA kit and NAATs tests performed on stool. All the approaches had higher sensitivity and specificity than the mean values observed for the 11 tests (70.4 and 89.5%, respectively). Conclusion We showed that it is possible to achieve high specificity and sensitivity rates with lower costs by combining serological and NAATs tests, which would assist in the decision-making process for appropriate allocation of public funding aiming to achieve the WHO target of eliminating schistosomiasis as a public health problem by 2030.
Collapse
Affiliation(s)
- Silvia Gonçalves Mesquita
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Roberta Lima Caldeira
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Tereza Cristina Favre
- Laboratório de Educação em Ambiente e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Cristiano Lara Massara
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | | | - Taynãna César Simões
- Núcleo de Estudos em Saúde Pública e Envelhecimento, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Gardênia Braz Figueiredo de Carvalho
- Grupo de Pesquisa em Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Flória Gabriela dos Santos Neves
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela de Oliveira
- Grupo de Pesquisa em Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Larisse de Souza Barbosa Lacerda
- Grupo de Pesquisa em Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus Alves de Almeida
- Grupo de Pesquisa em Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Omar dos Santos Carvalho
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Moraes Mourão
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Edward Oliveira
- Grupo de Pesquisa em Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Rosiane A. Silva-Pereira
- Grupo de Pesquisa em Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Cristina Toscano Fonseca
- Grupo de Pesquisa em Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Bartlett AW, Sousa-Figueiredo JC, van Goor RC, Monaghan P, Lancaster W, Mugizi R, Mendes EP, Nery SV, Lopes S. Burden and factors associated with schistosomiasis and soil-transmitted helminth infections among school-age children in Huambo, Uige and Zaire provinces, Angola. Infect Dis Poverty 2022; 11:73. [PMID: 35752864 PMCID: PMC9233808 DOI: 10.1186/s40249-022-00975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Schistosomiasis and soil-transmitted helminths (STHs) contribute high disease burdens amongst the neglected tropical diseases (NTDs) and are public health problems in Angola. This study reports the prevalence, intensity and risk factors for schistosomiasis and STH infection in Huambo, Uige and Zaire provinces, Angola, to inform a school-based preventive chemotherapy program. METHODS A two-stage cluster design was used to select schools and schoolchildren to participate in parasitological and water, sanitation and hygiene (WASH) surveys across Huambo, Uige, and Zaire provinces. Point-of-care circulating cathodic antigen and urinalysis rapid diagnostic tests (RDTs) were used to determine the prevalence of Schistosoma mansoni and S. haematobium, respectively. Kato-Katz was used to identify and quantify STH species and quantify and compare with RDTs for S. mansoni. Urine filtration was used to quantify and compare with RDTs for S. haematobium. Descriptive statistics were used for prevalence and infection intensity of schistosomiasis and STH infection. Performance of RDTs was assessed through specificity and Cohen's Kappa agreement with microscopy. A multivariate regression analysis was used to determine demographic and WASH factors associated with schistosomiasis and STH infection. RESULTS A total 575 schools and 17,093 schoolchildren participated in the schistosomiasis survey, of which 121 schools and 3649 schoolchildren participated in the STH survey. Overall prevalence of S. mansoni was 21.2% (municipality range 0.9-74.8%) and S. haematobium 13.6% (range 0-31.2%), with an overall prevalence of schistosomiasis of 31.4% (range 5.9-77.3%). Overall prevalence of Ascaris lumbricoides was 25.1% (range 0-89.7%), hookworm 5.2% (range 0-42.6%), and Trichuris trichiura 3.6% (range 0-24.2%), with an overall prevalence of STH infection of 29.5% (range 0.8-89.7%). Ecological zone and ethnicity were factors associated with schistosomiasis and STH infection, with older age and female sex additional risk factors for S. haematobium. CONCLUSIONS Most municipalities met World Health Organization defined prevalence thresholds for a schistosomiasis preventive chemotherapy program. A STH preventive chemotherapy program is indicated for nearly all municipalities in Uige and select municipalities in Huambo and Zaire. The association between ecological zone and ethnicity with schistosomiasis and STH infection necessitates further evaluation of home and school environmental, sociodemographic and behavioural factors to inform targeted control strategies to complement preventive chemotherapy programs.
Collapse
Affiliation(s)
- Adam W Bartlett
- Global Health Program, Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Jose C Sousa-Figueiredo
- Department of Life Sciences, Natural History Museum, Wolfson Wellcome Biomedical Laboratories, London, UK
- Health Research Center Angola, Hospital Provincial, Bengo, Angola
| | | | | | | | | | - Elsa P Mendes
- Section for Control of Neglected Tropical Diseases, Department of Disease Control, National Directorate of Public Health, Ministry of Health, Luanda, Angola
| | - Susana Vaz Nery
- Global Health Program, Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Sergio Lopes
- The Mentor Initiative, Luanda, Angola.
- The Mentor Initiative, 4Th Floor (South Suite), Burns House, Harlands Road, Haywards Heath, R16 1PG, UK.
| |
Collapse
|
6
|
Clark J, Moses A, Nankasi A, Faust CL, Moses A, Ajambo D, Besigye F, Atuhaire A, Wamboko A, Carruthers LV, Francoeur R, Tukahebwa EM, Prada JM, Lamberton PHL. Reconciling Egg- and Antigen-Based Estimates of Schistosoma mansoni Clearance and Reinfection: A Modeling Study. Clin Infect Dis 2022; 74:1557-1563. [PMID: 34358299 PMCID: PMC9070857 DOI: 10.1093/cid/ciab679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Despite decades of interventions, 240 million people have schistosomiasis. Infections cannot be directly observed, and egg-based Kato-Katz thick smears lack sensitivity, affected treatment efficacy and reinfection rate estimates. The point-of-care circulating cathodic antigen (referred to from here as POC-CCA+) test is advocated as an improvement on the Kato-Katz method, but improved estimates are limited by ambiguities in the interpretation of trace results. METHOD We collected repeated Kato-Katz egg counts from 210 school-aged children and scored POC-CCA tests according to the manufacturer's guidelines (referred to from here as POC-CCA+) and the externally developed G score. We used hidden Markov models parameterized with Kato-Katz; Kato-Katz and POC-CCA+; and Kato-Katz and G-Scores, inferring latent clearance and reinfection probabilities at four timepoints over six-months through a more formal statistical reconciliation of these diagnostics than previously conducted. Our approach required minimal but robust assumptions regarding trace interpretations. RESULTS Antigen-based models estimated higher infection prevalence across all timepoints compared with the Kato-Katz model, corresponding to lower clearance and higher reinfection estimates. Specifically, pre-treatment prevalence estimates were 85% (Kato-Katz; 95% CI: 79%-92%), 99% (POC-CCA+; 97%-100%) and 98% (G-Score; 95%-100%). Post-treatment, 93% (Kato-Katz; 88%-96%), 72% (POC-CCA+; 64%-79%) and 65% (G-Score; 57%-73%) of those infected were estimated to clear infection. Of those who cleared infection, 35% (Kato-Katz; 27%-42%), 51% (POC-CCA+; 41%-62%) and 44% (G-Score; 33%-55%) were estimated to have been reinfected by 9-weeks. CONCLUSIONS Treatment impact was shorter-lived than Kato-Katz-based estimates alone suggested, with lower clearance and rapid reinfection. At 3 weeks after treatment, longer-term clearance dynamics are captured. At 9 weeks after treatment, reinfection was captured, but failed clearance could not be distinguished from rapid reinfection. Therefore, frequent sampling is required to understand these important epidemiological dynamics.
Collapse
Affiliation(s)
- Jessica Clark
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Christina L Faust
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Adriko Moses
- Vector Control Division, Ministry of Health, Uganda
| | - Diana Ajambo
- Vector Control Division, Ministry of Health, Uganda
| | - Fred Besigye
- Vector Control Division, Ministry of Health, Uganda
| | | | | | - Lauren V Carruthers
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Rachel Francoeur
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Faculty of Science & Engineering, University of Chester, Chester, United Kingdom
| | | | - Joaquin M Prada
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Poppy H L Lamberton
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Clark J, Moses A, Nankasi A, Faust CL, Adriko M, Ajambo D, Besigye F, Atuhaire A, Wamboko A, Rowel C, Carruthers LV, Francoeur R, Tukahebwa EM, Lamberton PHL, Prada JM. Translating From Egg- to Antigen-Based Indicators for Schistosoma mansoni Elimination Targets: A Bayesian Latent Class Analysis Study. FRONTIERS IN TROPICAL DISEASES 2022; 3:825721. [PMID: 35784267 PMCID: PMC7612949 DOI: 10.3389/fitd.2022.825721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Schistosomiasis is a parasitic disease affecting over 240-million people. World Health Organization (WHO) targets for Schistosoma mansoni elimination are based on Kato-Katz egg counts, without translation to the widely used, urine-based, point-of-care circulating cathodic antigen diagnostic (POC-CCA). We aimed to standardize POC-CCA score interpretation and translate them to Kato-Katz-based standards, broadening diagnostic utility in progress towards elimination. A Bayesian latent-class model was fit to data from 210 school-aged-children over four timepoints pre- to six-months-post-treatment. We used 1) Kato-Katz and established POC-CCA scoring (Negative, Trace, +, ++ and +++), and 2) Kato-Katz and G-Scores (a new, alternative POC-CCA scoring (G1 to G10)). We established the functional relationship between Kato-Katz counts and POC-CCA scores, and the score-associated probability of true infection. This was combined with measures of sensitivity, specificity, and the area under the curve to determine the optimal POC-CCA scoring system and positivity threshold. A simulation parametrized with model estimates established antigen-based elimination targets. True infection was associated with POC-CCA scores of ≥ + or ≥G3. POC-CCA scores cannot predict Kato-Katz counts because low infection intensities saturate the POC-CCA cassettes. Post-treatment POC-CCA sensitivity/specificity fluctuations indicate a changing relationship between egg excretion and antigen levels (living worms). Elimination targets can be identified by the POC-CCA score distribution in a population. A population with ≤2% ++/+++, or ≤0.5% G7 and above, indicates achieving current WHO Kato-Katz-based elimination targets. Population-level POC-CCA scores can be used to access WHO elimination targets prior to treatment. Caution should be exercised on an individual level and following treatment, as POC-CCAs lack resolution to discern between WHO Kato-Katz-based moderate- and high-intensity-infection categories, with limited use in certain settings and evaluations.
Collapse
Affiliation(s)
- Jessica Clark
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Arinaitwe Moses
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Andrina Nankasi
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Christina L. Faust
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Moses Adriko
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Diana Ajambo
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Fred Besigye
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Arron Atuhaire
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Aidah Wamboko
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Candia Rowel
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Lauren V. Carruthers
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Rachel Francoeur
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Faculty of Science and Engineering, University of Chester, Chester, United Kingdom
| | | | - Poppy H. L. Lamberton
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Joaquin M. Prada
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
8
|
Koukounari A, Jamil H, Erosheva E, Shiff C, Moustaki I. Latent Class Analysis: Insights about design and analysis of schistosomiasis diagnostic studies. PLoS Negl Trop Dis 2021; 15:e0009042. [PMID: 33539357 PMCID: PMC7888681 DOI: 10.1371/journal.pntd.0009042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 02/17/2021] [Accepted: 12/18/2020] [Indexed: 11/18/2022] Open
Abstract
Various global health initiatives are currently advocating the elimination of schistosomiasis within the next decade. Schistosomiasis is a highly debilitating tropical infectious disease with severe burden of morbidity and thus operational research accurately evaluating diagnostics that quantify the epidemic status for guiding effective strategies is essential. Latent class models (LCMs) have been generally considered in epidemiology and in particular in recent schistosomiasis diagnostic studies as a flexible tool for evaluating diagnostics because assessing the true infection status (via a gold standard) is not possible. However, within the biostatistics literature, classical LCM have already been criticised for real-life problems under violation of the conditional independence (CI) assumption and when applied to a small number of diagnostics (i.e. most often 3-5 diagnostic tests). Solutions of relaxing the CI assumption and accounting for zero-inflation, as well as collecting partial gold standard information, have been proposed, offering the potential for more robust model estimates. In the current article, we examined such approaches in the context of schistosomiasis via analysis of two real datasets and extensive simulation studies. Our main conclusions highlighted poor model fit in low prevalence settings and the necessity of collecting partial gold standard information in such settings in order to improve the accuracy and reduce bias of sensitivity and specificity estimates. Accurate schistosomiasis diagnosis is essential to assess the impact of large scale and repeated mass drug administration to control or even eliminate this disease. However, in schistosomiasis diagnostic studies, several inherent study design issues pose a real challenge for the currently available statistical tools used for diagnostic modelling and associated data analysis and conclusions. More specifically, those study design issues are: 1) the inclusion of small number of diagnostic tests (i.e. most often five), 2) non formal consensus about a schistosomiasis gold standard, 3) the contemporary use of relatively small sample sizes in relevant studies due to lack of research funding, 4) the differing levels of prevalence of the studied disease even within the same area of one endemic country and 5) other real world factors such as: the lack of appropriate equipment, the variability of certain methods due to biological phenomena and training of technicians across the endemic countries because of scarce financial resources contributing to the existing lack of a schistosomiasis gold standard. The current study aims to caution practitioners from blindly applying statistical models with small number of diagnostic tests and sample sizes, proposing design guidelines of future schistosomiasis diagnostic accuracy studies with recommendations for further research. While our study is centred around the diagnosis of schistosomiasis, we feel that the recommendations can be adapted to other major tropical infectious diseases as well.
Collapse
Affiliation(s)
- Artemis Koukounari
- Product Development Personalized Health Care, F. Hoffmann-La Roche Ltd., Welwyn Garden, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Haziq Jamil
- Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Elena Erosheva
- Department of Statistics, School of Social Work, Center for Statistics and the Social Sciences, University of Washington, Seattle, Washington, United States of America
| | - Clive Shiff
- Molecular Microbiology and Immunology Department, John Hopkins Bloomberg School of Public Health
| | - Irini Moustaki
- Department of Statistics, London School of Economics and Political Science, London, United Kingdom
| |
Collapse
|
9
|
Colley DG, Fleming FM, Matendechero SH, Knopp S, Rollinson D, Utzinger J, Castleman JD, Kittur N, King CH, Campbell CH, Kabole FM, Kinung'hi S, Ramzy RMR, Binder S. Contributions of the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) to Schistosomiasis Control and Elimination: Key Findings and Messages for Future Goals, Thresholds, and Operational Research. Am J Trop Med Hyg 2020; 103:125-134. [PMID: 32400345 PMCID: PMC7351304 DOI: 10.4269/ajtmh.19-0787] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Herein, we summarize what we consider are major contributions resulting from the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) program, including its key findings and key messages from those findings. Briefly, SCORE's key findings are as follows: i) biennial mass drug administration (MDA) with praziquantel can control schistosomiasis to moderate levels of prevalence; ii) MDA alone will not achieve elimination; iii) to attain and sustain control throughout endemic areas, persistent hotspots need to be identified following a minimal number of years of annual MDA and controlled through adaptive strategies; iv) annual MDA is more effective than biennial MDA in high-prevalence areas; v) the current World Health Organization thresholds for decision-making based on the prevalence of heavy infections should be redefined; and vi) point-of-care circulating cathodic antigen urine assays are useful for Schistosoma mansoni mapping in low-to-moderate prevalence areas. The data and specimens collected and curated through SCORE efforts will continue to be critical resource for future research. Besides providing useful information for program managers and revision of guidelines for schistosomiasis control and elimination, SCORE research and outcomes have identified additional questions that need to be answered as the schistosomiasis community continues to implement effective, evidence-based programs. An overarching contribution of SCORE has been increased cohesiveness within the schistosomiasis field-oriented community, thereby fostering new and productive collaborations. Based on SCORE's findings and experiences, we propose new approaches, thresholds, targets, and goals for control and elimination of schistosomiasis, and recommend research and evaluation activities to achieve these targets and goals.
Collapse
Affiliation(s)
- Daniel G Colley
- Department of Microbiology, University of Georgia, Athens, Georgia.,Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Fiona M Fleming
- Department of Infectious Disease Epidemiology, Schistosomiasis Control Initiative, London, United Kingdom
| | - Sultani H Matendechero
- Division of Communicable Disease Prevention and Control, Neglected Tropical Diseases Unit, Ministry of Health, Nairobi, Kenya
| | - Stefanie Knopp
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - David Rollinson
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - Jürg Utzinger
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jennifer D Castleman
- Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Nupur Kittur
- Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Charles H King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio.,Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Carl H Campbell
- Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Fatma M Kabole
- Neglected Diseases Programme, Ministry of Health of Zanzibar, Zanzibar, United Republic of Tanzania
| | - Safari Kinung'hi
- National Institute for Medical Research (NIMR), Mwanza Centre, Mwanza, United Republic of Tanzania
| | - Reda M R Ramzy
- National Nutrition Institute, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Sue Binder
- Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| |
Collapse
|
10
|
Diab RG, Tolba MM, Ghazala RA, Abu-Sheasha GA, Webster BL, Mady RF. Intestinal schistosomiasis: Can a urine sample decide the infection? Parasitol Int 2020; 80:102201. [PMID: 33010472 DOI: 10.1016/j.parint.2020.102201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/19/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022]
Abstract
Intestinal schistosomiasis, one of the neglected tropical diseases whose control depends on accurate diagnosis of the disease prevalence. The use of low sensitive Kato Katz (KK) fecal egg detection method as a reference gold standard is not an accurate indication especially in low transmission areas. Latent class analysis frameworks especially the Bayesian could be used instead to compare between different diagnostic tests without the use of a gold standard method as a reference. Thus, this study compared two urine-based tests for the detection of circulating antigen and cell free DNA of Schistosoma mansoni versus KK method using the Bayesian latent class analytical framework and in two models where the trace results of point of contact - assay of circulating cathodic antigen (POC-CCA) were once estimated as positive, and as negative in the other model. The Bayesian framework in the trace CCA positive model showed an estimate of disease prevalence of 26% (95% BCI:0 to 60%). POC-CCA showed the highest sensitivity (74% with BCI: 9 to 91%) and lowest specificity for (20% with BCI: 0% to 37%) and the reverse for KK. For POC-CCA with traces considered negative, it was found that results between the three tests were moderated where the positivity for infection by Schistosoma antigen detection and PCR for cell free DNA approached that estimated by the Bayesian framework (44%), and the specificity for point of contact assay(81%; 95%BCI: 59% to 100%) rose in hand with its sensitivity(77%, 95% BCI:53% to 100%) and with results for PCR test (sensitivity = 80%; 95% BCI: 61% to 100%, specificity = 69%; 95% BIC: 47% to 100%). KK remains with the highest specificity while its sensitivity in the two models never exceeded 22%. Thus, we conclude that the use of a single urine sample could be very sensitive and highly specific in the diagnosis of intestinal schistosomiasis using either the trace negative model of point of contact assay, or conventional PCR, when compared to the fecal egg detection using duplicate KK. However, the use of a single tool restricts the management of the disease in areas of low endemicity.
Collapse
Affiliation(s)
- Radwa Galal Diab
- Medical Parasitology Department, Faculty of Medicine, University of Alexandria, Egypt.
| | - Mona Mohamed Tolba
- Parasitology Department, Medical Research Institute, University of Alexandria, Egypt.
| | | | - Ghada Ahmed Abu-Sheasha
- Department of Biomedical Informatics and Medical Statistics, Medical Research Institute, University of Alexandria, Egypt.
| | | | - Rasha Fadly Mady
- Medical Parasitology Department, Faculty of Medicine, University of Alexandria, Egypt.
| |
Collapse
|
11
|
Sousa SRMD, Nogueira JFC, Dias IHL, Fonseca ÁLS, Favero V, Geiger SM, Enk MJ. The use of the circulating cathodic antigen (CCA) urine cassette assay for the diagnosis and assessment of cure of Schistosoma mansoni infections in an endemic area of the Amazon region. Rev Soc Bras Med Trop 2020; 53:e20190562. [PMID: 32997046 PMCID: PMC7523523 DOI: 10.1590/0037-8682-0562-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Schistosomiasis is a poverty-related disease that affects people in 78
countries worldwide. This study aimed to evaluate the point-of-care
circulating cathodic antigen (POC-CCA) test performance using sensitive
parasitological methods as a reference standard (RS) in individuals before
and after treatment. METHODS The RS was established by combining the results of 16 Kato-Katz slides and
the Helmintex® method. Positivity rates of the POC-CCA test and
Kato-Katz and Helmintex® methods were calculated before treatment
and 30 days afterward. Furthermore, the sensitivity, specificity, accuracy,
and kappa coefficient before treatment were determined by
comparing the methods. The cure rate was defined 30 days after treatment.
RESULTS Among the 217 participants, the RS detected a total of 63 (29.0%) positive
individuals. The POC-CCA test identified 79 (36.4%) infections. The
evaluation of POC-CCA test performance in relation to the RS revealed a
sensitivity of 61.9%, specificity of 74.0%, accuracy of 70.5%, and
kappa coefficient of 0.33. Out of the 53 remaining
participants after treatment, a total of 45 (81.1%) showed egg negative
results, and 8 (18.9%) were egg positive according to the RS. A total of 5
(9.4%) egg-positive and 37 (69.8%) egg-negative individuals were positive by
the POC-CCA test. CONCLUSIONS Our data show that the POC-CCA test has potential as an auxiliary tool for
the diagnosis of Schistosoma mansoni infection, yielding
better results than 16 Kato-Katz slides from three different stool samples.
However, the immunochromatographic test lacks sufficient specificity and
sensitivity for verifying the cure rate after treatment.
Collapse
Affiliation(s)
| | | | | | | | - Vivian Favero
- Pontifícia Universidade Católica do Rio Grande do Sul, Brasil
| | | | | |
Collapse
|
12
|
Insights from quantitative and mathematical modelling on the proposed WHO 2030 goal for schistosomiasis. Gates Open Res 2019; 3:1517. [PMID: 31701091 DOI: 10.12688/gatesopenres.13052.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis remains one of the neglected tropical diseases (NTDs) impacting millions of people around the world. The World Health Organization (WHO) recently proposed a goal of elimination as a public health problem (EPHP) for schistosomiasis to be reached by 2030. Current WHO treatment guidelines for achieving EPHP focus on targeting school-aged children. The NTD Modelling Consortium has developed mathematical models to study schistosomiasis transmission dynamics and the impact of control measures. Our modelling insights on Schistosoma mansoni have shown that EPHP is likely to be attainable in low to moderate prevalence settings using the current guidelines. However, as prevalence rises within high prevalence settings, EPHP is less likely to be achieved unless both school-aged children and adults are treated (with coverage levels increasing with the adult burden of infection). We highlight the challenges that are faced by treatment programmes, such as non-adherence to treatment and resurgence, which can hinder progress towards achieving and maintaining EPHP. Additionally, even though EPHP may be reached, prevalence can still be high due to persisting infections. Therefore, without interruption of transmission, treatment will likely have to continue to maintain EPHP. Further modelling work is being carried out, including extending our results to S. haematobium. By providing these modelling insights, we aim to inform discussions on the goals and treatment guidelines for schistosomiasis.
Collapse
|
13
|
Insights from quantitative and mathematical modelling on the proposed WHO 2030 goal for schistosomiasis. Gates Open Res 2019; 3:1517. [PMID: 31701091 PMCID: PMC6820450 DOI: 10.12688/gatesopenres.13052.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis remains one of the neglected tropical diseases (NTDs) impacting millions of people around the world. The World Health Organization (WHO) recently proposed a goal of elimination as a public health problem (EPHP) for schistosomiasis to be reached by 2030. Current WHO treatment guidelines for achieving EPHP focus on targeting school-aged children. The NTD Modelling Consortium has developed mathematical models to study schistosomiasis transmission dynamics and the impact of control measures. Our modelling insights on
Schistosoma mansoni have shown that EPHP is likely to be attainable in low to moderate prevalence settings using the current guidelines. However, as prevalence rises within high prevalence settings, EPHP is less likely to be achieved unless both school-aged children and adults are treated (with coverage levels increasing with the adult burden of infection). We highlight the challenges that are faced by treatment programmes, such as non-adherence to treatment and resurgence, which can hinder progress towards achieving and maintaining EPHP. Additionally, even though EPHP may be reached, prevalence can still be high due to persisting infections. Therefore, without interruption of transmission, treatment will likely have to continue to maintain EPHP. Further modelling work is being carried out, including extending our results to
S. haematobium. By providing these modelling insights, we aim to inform discussions on the goals and treatment guidelines for schistosomiasis.
Collapse
|
14
|
Mapping Schistosoma mansoni endemicity in Rwanda: a critical assessment of geographical disparities arising from circulating cathodic antigen versus Kato-Katz diagnostics. PLoS Negl Trop Dis 2019; 13:e0007723. [PMID: 31568504 PMCID: PMC6786642 DOI: 10.1371/journal.pntd.0007723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 08/20/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Intervention relies on identifying high-risk regions, yet rapid Schistosoma diagnostics (Kato-Katz stool assays (KK) and circulating cathodic antigen urine assays (CCA)) yield different prevalence estimates. We mapped S. mansoni prevalence and delineated at-risk regions using a survey of schoolchildren in Rwanda, where S. mansoni is an endemic parasite. We asked if different diagnostics resulted in disparities in projected infection risk. METHODS Infection data was obtained from a 2014 Rwandan school-based survey that used KK and CCA diagnostics. Across 386 schools screened by CCA (N = 19,217). To allow for uncertainty when interpreting ambiguous CCA trace readings, which accounted for 28.8% of total test results, we generated two presence-absence datasets: CCA trace as positive and CCA trace as negative. Samples (N = 9,175) from 185 schools were also screened by KK. We included land surface temperature (LST) and the Normalized Difference Vegetation and Normalized Difference Water Indices (NDVI, NDWI) as predictors in geostatistical regressions. FINDINGS Across 8,647 children tested by both methods, prevalence was 35.93% for CCA trace as positive, 7.21% for CCA trace as negative and 1.95% for KK. LST was identified as a risk factor using KK, whereas NDVI was a risk factor for CCA models. Models predicted high endemicity in Northern and Western regions of Rwanda, though the CCA trace as positive model identified additional high-risk areas that were overlooked by the other methods. Estimates of current burden for children at highest risk (boys aged 5-9 years) varied by an order of magnitude, with 671,856 boys projected to be infected by CCA trace as positive and only 60,453 projected by CCA trace as negative results. CONCLUSIONS Our findings show that people in Rwanda's Northern, Western and capital regions are at high risk of S. mansoni infection. However, variation in identification of environmental risk factors and delineation of at-risk regions using different diagnostics likely provides confusing messages to disease intervention managers. Further research and statistical analyses, such as latent class analysis, can be used to improve CCA result classification and assess its use in guiding treatment regimes.
Collapse
|
15
|
Exum NG, Kibira SPS, Ssenyonga R, Nobili J, Shannon AK, Ssempebwa JC, Tukahebwa EM, Radloff S, Schwab KJ, Makumbi FE. The prevalence of schistosomiasis in Uganda: A nationally representative population estimate to inform control programs and water and sanitation interventions. PLoS Negl Trop Dis 2019; 13:e0007617. [PMID: 31412023 PMCID: PMC6709927 DOI: 10.1371/journal.pntd.0007617] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 08/26/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background To improve schistosomiasis control programs in Uganda, where intestinal schistosomiasis is a widespread public health problem, a country-wide assessment of the disease prevalence among all age ranges is needed. Few studies have aimed to quantify the relationships between disease prevalence and water and sanitation characteristics across Uganda to understand the potential to interrupt disease transmission with an integrated package of interventions. Methodology/Principal findings A nationally representative survey was undertaken that included a household and individual questionnaire followed by disease testing based on detection of worm antigens (circulating cathodic antigen–CCA), diagnosis and treatment. A comprehensive set of questions was asked of randomly sampled individuals, two years of age and above, to understand their water and sanitation infrastructure, open defecation behaviors, exposure to surface water bodies, and knowledge of schistosomiasis. From a set of 170 randomly sampled, geographically diverse enumeration areas, a total of 9,183 study participants were included. After adjustment with sample weights, the national prevalence of schistosomiasis was 25.6% (95% confidence interval (CI): 22.3, 29.0) with children ages two to four most at risk for the disease with 36.1% infected (95% CI: 30.1, 42.2). The defecation behaviors of an individual were more strongly associated with infection status than the household water and sanitation infrastructure, indicating the importance of incorporating behavior change into community-led total sanitation coverage. Conclusions/Significance Our results highlight the importance of incorporating monitoring and evaluation data into control programs in Uganda to understand the geographic distribution of schistosomiasis prevalence outside of communities where endemicity is known to be high. The high prevalence of schistosomiasis among the youngest age group, ineligible to receive drug treatment, shows the imperative to develop a child-appropriate drug protocol that can be safely administered to preschool-aged children. Water and sanitation interventions should be considered an essential investment for elimination alongside drug treatment. Schistosomiasis is a neglected tropical disease in sub-Saharan Africa that has remained intractable despite efforts to eliminate it through mass drug administration. The transmission cycle is perpetuated when sanitation infrastructure does not adequately capture infected urine or feces and local water bodies, with snail vectors, are contaminated. Schistosomiasis has been linked with stunting and cognitive deficits and there is particular concern for the most vulnerable age group under five years old who are undergoing critical intestinal development but are ineligible to receive drug treatment. Efforts to reduce the disease have focused on children and young adolescents in endemic areas, near water bodies where transmission is known to be high. In Uganda, where fresh water bodies are abundant and intestinal schistosomiasis is endemic, very little is understood about the disease prevalence at a national level. We conducted a large, nationally representative survey and found a national prevalence of 25.6% where the 2–4 year old children had the highest prevalence for schistosomiasis with 36.1% infected. The most significant risk-factor for the disease was an individual’s open defecation behaviors in surface waters. This emphasizes the need to include water and sanitation investments alongside drug treatment and behavior change to control schistosomiasis in Uganda.
Collapse
Affiliation(s)
- Natalie G. Exum
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| | - Simon P. S. Kibira
- Department of Community Health and Behavioral Sciences, School of Public Health, Makerere University, Kampala, Uganda
| | - Ronald Ssenyonga
- Department of Epidemiology and Biostatistics, School of Public Health, Makerere University, Kampala, Uganda
| | - Julien Nobili
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Alexandra K. Shannon
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - John C. Ssempebwa
- Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Scott Radloff
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Kellogg J. Schwab
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Fredrick E. Makumbi
- Department of Epidemiology and Biostatistics, School of Public Health, Makerere University, Kampala, Uganda
| |
Collapse
|
16
|
Cavalcanti MG, Cunha AFA, Peralta JM. The Advances in Molecular and New Point-of-Care (POC) Diagnosis of Schistosomiasis Pre- and Post-praziquantel Use: In the Pursuit of More Reliable Approaches for Low Endemic and Non-endemic Areas. Front Immunol 2019; 10:858. [PMID: 31191512 PMCID: PMC6546849 DOI: 10.3389/fimmu.2019.00858] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
Like soil-transmitted helminth infections, schistosomiasis is an important neglected tropical disease (NTD) related to poverty with a major impact on public health in developing countries. Diagnosis of active infection is crucial for surveillance of controlled or post-elimination schistosomiasis areas. In addition, the use of conventional diagnostic tools in non-exposed populations (such as travelers) results in misdiagnoses in the prepatent period of infection. Also, the accuracy of standard tests applied in low-endemicity areas (LEAs) decreases after several rounds of treatment. We aimed to determine whether it would be necessary to replace schistosomiasis conventional diagnostic tests such as parasitological methods in LEAs. Also, we evaluate the use of new tools in non-endemic areas. Reliable, cheap and easy-to-use diagnostic tools are needed to respond to the demands of a new era of elimination and eradication of schistosomiasis. To this end, molecular diagnosis-including nucleic acid-based assays (loop-mediated isothermal amplification, polymerase chain reaction) and circulating cathodic and anodic antigen detection tests have become promising strategies. In this review, we attempt to address the use of alternative diagnostic tests for active infection detection and drug-monitoring after specific schistosomiasis treatment.
Collapse
Affiliation(s)
- Marta G Cavalcanti
- Serviço de Doenças Infecciosas e Parasitárias, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departmento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Fernandes Araujo Cunha
- Departmento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Mauro Peralta
- Departmento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Young Adults in Endemic Areas: An Untreated Group in Need of School-Based Preventive Chemotherapy for Schistosomiasis Control and Elimination. Trop Med Infect Dis 2018; 3:tropicalmed3030100. [PMID: 30274496 PMCID: PMC6160920 DOI: 10.3390/tropicalmed3030100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/16/2018] [Accepted: 08/31/2018] [Indexed: 11/30/2022] Open
Abstract
Parasitologic surveys of young adults in college and university settings are not commonly done, even in areas known to be endemic for schistosomiasis and soil-transmitted helminths. We have done a survey of 291 students and staff at the Kisumu National Polytechnic in Kisumu, Kenya, using the stool microscopy Kato-Katz (KK) method and the urine point-of-care circulating cathodic antigen (POC-CCA) test. Based on three stools/two KK slides each, in the 208 participants for whom three consecutive stools were obtained, Schistosoma mansoni prevalence was 17.8%. When all 291 individuals were analyzed based on the first stool, as done by the national neglected tropical disease (NTD) program, and one urine POC-CCA assay (n = 276), the prevalence was 13.7% by KK and 23.2% by POC-CCA. Based on three stools, 2.5% of 208 participants had heavy S. mansoni infections (≥400 eggs/gram feces), with heavy S. mansoni infections making up 13.5% of the S. mansoni cases. The prevalence of the soil-transmitted helminths (STH: Ascaris lumbricoides, Trichuris trichiura and hookworm) by three stools was 1.4%, 3.1%, and 4.1%, respectively, and by the first stool was 1.4%, 2.4% and 1.4%, respectively. This prevalence and intensity of infection with S. mansoni in a college setting warrants mass drug administration with praziquantel. This population of young adults is ‘in school’ and is both approachable and worthy of inclusion in national schistosomiasis control and elimination programs.
Collapse
|
18
|
Ajibola O, Gulumbe BH, Eze AA, Obishakin E. Tools for Detection of Schistosomiasis in Resource Limited Settings. Med Sci (Basel) 2018; 6:medsci6020039. [PMID: 29789498 PMCID: PMC6024580 DOI: 10.3390/medsci6020039] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a debilitating disease affecting over 200 million people, with the highest burden of morbidity and mortality in African countries. Despite its huge impact on the health and socio-economic burden of the society, it remains a neglected tropical disease, with limited attention from governments and stakeholders in healthcare. One of the critical areas that is hugely under-developed is the development of accurate diagnostics for both intestinal and urogenital schistosomiasis. Diagnosis of schistosomiasis is important for the detection and treatment of disease in endemic and non-endemic settings. A conclusive detection method is also an indispensable part of treatment, both in the clinic and during mass drug administration (MDA), for the monitoring efficacy of treatment. Here, we review the available diagnostic methods and discuss the challenges encountered in diagnosis in resource limited settings. We also present the available diagnostics and cost implications for deployment in resource limited settings. Lastly, we emphasize the need for more funding directed towards the development of affordable diagnostic tools that is affordable for endemic countries as we work towards the elimination of the disease.
Collapse
Affiliation(s)
- Olumide Ajibola
- Department of Microbiology, Federal University Birnin Kebbi, P.M.B. 1157 Kalgo Road, Birnin Kebbi 860222, Kebbi State, Nigeria.
| | - Bashar Haruna Gulumbe
- Department of Microbiology, Federal University Birnin Kebbi, P.M.B. 1157 Kalgo Road, Birnin Kebbi 860222, Kebbi State, Nigeria.
| | - Anthonius Anayochukwu Eze
- Department of Medical Biochemistry, University of Nigeria, Enugu Campus, Enugu 400241, Enugu State, Nigeria.
| | - Emmanuel Obishakin
- Biotechnology Division, National Veterinary Research Institute, P.M.B. 001, Vom, Jos, 930281, Plateau State, Nigeria.
| |
Collapse
|