1
|
Song KR, Chapagain RH, Tamrakar D, Shrestha R, Kanodia P, Chaudhary S, Wartel TA, Yang JS, Kim DR, Lee J, Park EL, Cho H, Lee J, Thaisrivichai P, Vemula S, Kim BM, Gupta B, Saluja T, Pansuriya RK, Ganapathy R, Baik YO, Lee YJ, Jeon S, Park Y, Her HL, Park Y, Lynch JA. Safety and immunogenicity of the Euvichol-S oral cholera vaccine for prevention of Vibrio cholerae O1 infection in Nepal: an observer-blind, active-controlled, randomised, non-inferiority, phase 3 trial. Lancet Glob Health 2024; 12:e826-e837. [PMID: 38614631 PMCID: PMC11027156 DOI: 10.1016/s2214-109x(24)00059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND In October, 2017, WHO launched a strategy to eliminate cholera by 2030. A primary challenge in meeting this goal is the limited global supply capacity of oral cholera vaccine and the worsening of cholera outbreaks since 2021. To help address the current shortage of oral cholera vaccine, a WHO prequalified oral cholera vaccine, Euvichol-Plus was reformulated by reducing the number of components and inactivation methods. We aimed to evaluate the immunogenicity and safety of Euvichol-S (EuBiologics, Seoul, South Korea) compared with an active control vaccine, Shanchol (Sanofi Healthcare India, Telangana, India) in participants of various ages in Nepal. METHODS We did an observer-blind, active-controlled, randomised, non-inferiority, phase 3 trial at four hospitals in Nepal. Eligible participants were healthy individuals aged 1-40 years without a history of cholera vaccination. Individuals with a history of hypersensitivity reactions to other preventive vaccines, severe chronic disease, previous cholera vaccination, receipt of blood or blood-derived products in the past 3 months or other vaccine within 4 weeks before enrolment, and pregnant or lactating women were excluded. Participants were randomly assigned (1:1:1:1) by block randomisation (block sizes of two, four, six, or eight) to one of four groups (groups A-D); groups C and D were stratified by age (1-5, 6-17, and 18-40 years). Participants in groups A-C were assigned to receive two 1·5 mL doses of Euvichol-S (three different lots) and participants in group D were assigned to receive the active control vaccine, Shanchol. All participants and site staff (with the exception of those who prepared and administered the study vaccines) were masked to group assignment. The primary immunogenicity endpoint was non-inferiority of immunogenicity of Euvichol-S (group C) versus Shanchol (group D) at 2 weeks after the second vaccine dose, measured by the seroconversion rate, defined as the proportion of participants who had achieved seroconversion (defined as ≥four-fold increase in V cholerae O1 Inaba and Ogawa titres compared with baseline). The primary immunogenicity endpoint was assessed in the per-protocol analysis set, which included all participants who received all their planned vaccine administrations, had no important protocol deviations, and who provided blood samples for all immunogenicity assessments. The primary safety endpoint was the number of solicited adverse events, unsolicited adverse events, and serious adverse events after each vaccine dose in all ages and each age stratum, assessed in all participants who received at least one dose of the Euvichol-S or Shanchol. Non-inferiority of Euvichol-S compared with Shanchol was shown if the lower limit of the 95% CI for the difference between the seroconversion rates in Euvichol-S group C versus Shanchol group D was above the predefined non-inferiority margin of -10%. The trial was registered at ClinicalTrials.gov, NCT04760236. FINDINGS Between Oct 6, 2021, and Jan 19, 2022, 2529 healthy participants (1261 [49·9%] males; 1268 [50·1%] females), were randomly assigned to group A (n=330; Euvichol-S lot number ES-2002), group B (n=331; Euvichol-S ES-2003), group C (n=934; Euvichol-S ES-2004]), or group D (n=934; Shanchol). Non-inferiority of Euvichol-S versus Shanchol in seroconversion rate for both serotypes at 2 weeks after the second dose was confirmed in all ages (difference in seroconversion rate for V cholerae O1 Inaba -0·00 [95% CI -1·86 to 1·86]; for V cholerae O1 Ogawa -1·62 [-4·80 to 1·56]). Treatment-emergent adverse events were reported in 244 (9·7%) of 2529 participants in the safety analysis set, with a total of 403 events; 247 events were reported among 151 (9·5%) of 1595 Euvichol-S recipients and 156 events among 93 (10·0%) of 934 Shanchol recipients. Pyrexia was the most common adverse event in both groups (57 events among 56 [3·5%] of 1595 Euvichol-S recipients and 37 events among 35 [3·7%] of 934 Shanchol recipients). No serious adverse events were deemed to be vaccine-related. INTERPRETATION A two-dose regimen of Euvichol-S vaccine was non-inferior to the active control vaccine, Shanchol, in terms of seroconversion rates 2 weeks after the second dose. The simplified formulation and production requirements of the Euvichol-S vaccine have the potential to increase the supply of oral cholera vaccine and reduce the gap between the current oral cholera vaccine supply and demand. FUNDING The Bill & Melinda Gates Foundation. TRANSLATION For the Nepali translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Katerina Rok Song
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea.
| | - Ram Hari Chapagain
- Department of Pediatric Medicine, Kanti Children's Hospital, Kathmandu, Nepal
| | - Dipesh Tamrakar
- Center for Clinical Trial Studies, Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - Rajeev Shrestha
- Center for Clinical Trial Studies, Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - Piush Kanodia
- Department of Pediatrics and Neonatology, Nepalgunj Medical College, Nepalgunj, Nepal
| | - Shipra Chaudhary
- Department of Pediatrics and Adolescent Medicine, BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - T Anh Wartel
- International Vaccine Institute, Stockholm, Sweden
| | - Jae Seung Yang
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Deok Ryun Kim
- Department of Biostatistics and Data Management, International Vaccine Institute, Seoul, South Korea
| | - Jinae Lee
- Department of Biostatistics and Data Management, International Vaccine Institute, Seoul, South Korea
| | - Eun Lyeong Park
- Department of Biostatistics and Data Management, International Vaccine Institute, Seoul, South Korea
| | - Haeun Cho
- Department of Biostatistics and Data Management, International Vaccine Institute, Seoul, South Korea
| | - Jiyoung Lee
- Department of Biostatistics and Data Management, International Vaccine Institute, Seoul, South Korea
| | | | - Sridhar Vemula
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea
| | - Bo Mi Kim
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea
| | - Birendra Gupta
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea
| | - Tarun Saluja
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea
| | - Ruchir Kumar Pansuriya
- Vaccine Process Development Unit, International Vaccine Institute, Seoul, South Korea; Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Ravi Ganapathy
- Research and Development, Hilleman Laboratories, Singapore
| | - Yeong Ok Baik
- Research and Development Division, EuBiologics, Seoul, South Korea
| | - Young Jin Lee
- Research and Development Division, EuBiologics, Seoul, South Korea
| | - Suhi Jeon
- Production Division, EuBiologics, Seoul, South Korea
| | | | - Howard L Her
- Research and Development Division, EuBiologics, Seoul, South Korea
| | | | - Julia A Lynch
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea
| |
Collapse
|
2
|
Dash P, Hakim A, Akter A, Banna HA, Kaisar MH, Aktar A, Jahan SR, Ferdous J, Basher SR, Kamruzzaman M, Chowdhury F, Akter A, Tauheed I, Weil AA, Charles RC, Calderwood SB, Ryan ET, LaRocque RC, Harris JB, Bhuiyan TR, Qadri F. Cholera toxin and O-specific polysaccharide immune responses after oral cholera vaccination with Dukoral in different age groups of Bangladeshi participants. mSphere 2024; 9:e0056523. [PMID: 38391226 PMCID: PMC10964428 DOI: 10.1128/msphere.00565-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 02/24/2024] Open
Abstract
Vaccination is important to prevent cholera. There are limited data comparing anti-O-specific polysaccharide (OSP) and anti-cholera toxin-specific immune responses following oral whole-cell with cholera toxin B-subunit (WC-rBS) vaccine (Dukoral, Valneva) administration in different age groups. An understanding of the differences is relevant because young children are less well protected by oral cholera vaccines than older children and adults. We compared responses in 50 adults and 49 children (ages 2 to <18) who were administered two doses of WC-rBS at a standard 14-day interval. All age groups had significant IgA and IgG plasma-blast responses to the OSP and cholera toxin B-subunit (CtxB) antigens that peaked 7 days after vaccination. However, in adults and older children (ages 5 to <18), antibody responses directed at the OSP antigen were largely IgA and IgG, with a minimal IgM response, while younger children (ages 2 to <5) mounted significant increases in IgM with minimal increases in IgA and IgG antibody responses 30 days after vaccination. In adults, anti-OSP and CtxB memory B-cell responses were detected after completion of the vaccination series, while children only mounted CtxB-specific IgG memory B-cell responses and no OSP-memory B-cell responses. In summary, children and adults living in a cholera endemic area mounted different responses to the WC-rBS vaccine, which may be a result of more prior exposure to Vibrio cholerae in older participants. The absence of class-switched antibody responses and memory B-cell responses to OSP may explain why protection wanes more rapidly after vaccination in young children compared to older vaccinees.IMPORTANCEVaccination is an important strategy to prevent cholera. Though immune responses targeting the OSP of V. cholerae are believed to mediate protection against cholera, there are limited data on anti-OSP responses after vaccination in different age groups, which is important as young children are not well protected by current oral cholera vaccines. In this study, we found that adults mounted memory B-cell responses to OSP, which were not seen in children. Adults and older children mounted class-switched (IgG and IgA) serum antibody responses to OSP, which were not seen in young children who had only IgM responses to OSP. The lack of class-switched antibody responses and memory B-cell responses to OSP in younger participants may be due to lack of prior exposure to V. cholerae and could explain why protection wanes more rapidly after vaccination in young children.
Collapse
Affiliation(s)
- Pinki Dash
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Al Hakim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Aklima Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Hasan Al Banna
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M. Hasanul Kaisar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Amena Aktar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sultana Rownok Jahan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jannatul Ferdous
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Salima Raiyan Basher
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Afroza Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ana A. Weil
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
3
|
Kelly M, Jeon S, Yun J, Lee B, Park M, Whang Y, Lee C, Charles RC, Bhuiyan TR, Qadri F, Kamruzzaman M, Cho S, Vann WF, Xu P, Kováč P, Ganapathy R, Lynch J, Ryan ET. Vaccination of Rabbits with a Cholera Conjugate Vaccine Comprising O-Specific Polysaccharide and a Recombinant Fragment of Tetanus Toxin Heavy Chain Induces Protective Immune Responses against Vibrio cholerae O1. Am J Trop Med Hyg 2023; 109:1122-1128. [PMID: 37783453 PMCID: PMC10622467 DOI: 10.4269/ajtmh.23-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/16/2023] [Indexed: 10/04/2023] Open
Abstract
There is a need for next-generation cholera vaccines that provide high-level and durable protection in young children in cholera-endemic areas. A cholera conjugate vaccine (CCV) is in development to address this need. This vaccine contains the O-specific polysaccharide (OSP) of Vibrio cholerae O1 conjugated via squaric acid chemistry to a recombinant fragment of the tetanus toxin heavy chain (OSP:rTTHc). This vaccine has been shown previously to be immunogenic and protective in mice and found to be safe in a recent preclinical toxicological analysis in rabbits. We took advantage of excess serum samples collected as part of the toxicological study and assessed the immunogenicity of CCV OSP:rTTHc in rabbits. We found that vaccination with CCV induced OSP-, lipopolysaccharide (LPS)-, and rTTHc-specific immune responses in rabbits, that immune responses were functional as assessed by vibriocidal activity, and that immune responses were protective against death in an established virulent challenge assay. CCV OSP:rTTHc immunogenicity in two animal model systems (mice and rabbits) is encouraging and supports further development of this vaccine for evaluation in humans.
Collapse
Affiliation(s)
- Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Suhi Jeon
- Eubiologics Ltd, Gangnam-gu, Seoul, South Korea
| | - Jeesun Yun
- Eubiologics Ltd, Gangnam-gu, Seoul, South Korea
| | - Byungman Lee
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | | | | | - Chankyu Lee
- Eubiologics Ltd, Gangnam-gu, Seoul, South Korea
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Taufiqur R. Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Somyoung Cho
- International Vaccine Institute, Seoul, South Korea
| | - Willie F. Vann
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Peng Xu
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Bioorganic Chemistry, NIH, Bethesda, Maryland
| | - Pavol Kováč
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Bioorganic Chemistry, NIH, Bethesda, Maryland
| | | | - Julia Lynch
- International Vaccine Institute, Seoul, South Korea
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
4
|
Jones FK, Bhuiyan TR, Muise RE, Khan AI, Slater DM, Hutt Vater KR, Chowdhury F, Kelly M, Xu P, Kováč P, Biswas R, Kamruzzaman M, Ryan ET, Calderwood SB, LaRocque RC, Lessler J, Charles RC, Leung DT, Qadri F, Harris JB, Azman AS. Identifying Recent Cholera Infections Using a Multiplex Bead Serological Assay. mBio 2022; 13:e0190022. [PMID: 36286520 PMCID: PMC9765614 DOI: 10.1128/mbio.01900-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Estimates of incidence based on medically attended cholera can be severely biased. Vibrio cholerae O1 leaves a lasting antibody signal and recent advances showed that these can be used to estimate infection incidence rates from cross-sectional serologic data. Current laboratory methods are resource intensive and challenging to standardize across laboratories. A multiplex bead assay (MBA) could efficiently expand the breadth of measured antibody responses and improve seroincidence accuracy. We tested 305 serum samples from confirmed cholera cases (4 to 1083 d postinfection) and uninfected contacts in Bangladesh using an MBA (IgG/IgA/IgM for 7 Vibrio cholerae O1-specific antigens) as well as traditional vibriocidal and enzyme-linked immunosorbent assays (2 antigens, IgG, and IgA). While postinfection vibriocidal responses were larger than other markers, several MBA-measured antibodies demonstrated robust responses with similar half-lives. Random forest models combining all MBA antibody measures allowed for accurate identification of recent cholera infections (e.g., past 200 days) including a cross-validated area under the curve (cvAUC200) of 92%, with simpler 3 IgG antibody models having similar accuracy. Across infection windows between 45 and 300 days, the accuracy of models trained on MBA measurements was non-inferior to models based on traditional assays. Our results illustrated a scalable cholera serosurveillance tool that can be incorporated into multipathogen serosurveillance platforms. IMPORTANCE Reliable estimates of cholera incidence are challenged by poor clinical surveillance and health-seeking behavior biases. We showed that cross-sectional serologic profiles measured with a high-throughput multiplex bead assay can lead to accurate identification of those infected with pandemic Vibrio cholerae O1, thus allowing for estimates of seroincidence. This provides a new avenue for understanding the epidemiology of cholera, identifying priority areas for cholera prevention/control investments, and tracking progress in the global fight against this ancient disease.
Collapse
Affiliation(s)
- Forrest K. Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Taufiqur R. Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rachel E. Muise
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ashraful I. Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Damien M. Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kian Robert Hutt Vater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peng Xu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajib Biswas
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
- University of North Carolina Population Center, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Daniel T. Leung
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew S. Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Global Health, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Kim EJ, Bae J, Ju YJ, Ju DB, Lee D, Son S, Choi H, Ramamurthy T, Yun CH, Kim DW. Inactivated Vibrio cholerae Strains That Express TcpA via the toxT-139F Allele Induce Antibody Responses against TcpA. J Microbiol Biotechnol 2022; 32:1396-1405. [PMID: 36317425 PMCID: PMC9720071 DOI: 10.4014/jmb.2209.09001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Cholera remains a major global public health problem, for which oral cholera vaccines (OCVs) being a valuable strategy. Patients, who have recovered from cholera, develop antibody responses against LPS, cholera toxin (CT), toxin-coregulated pilus (TCP) major subunit A (TcpA) and other antigens; thus, these responses are potentially important contributors to immunity against Vibrio cholerae infection. However, assessments of the efficacy of current OCVs, especially inactivated OCVs, have focused primarily on O-antigen-specific antibody responses, suggesting that more sophisticated strategies are required for inactivated OCVs to induce immune responses against TCP, CT, and other antigens. Previously, we have shown that the toxT-139F allele enables V. cholerae strains to produce CT and TCP under simple laboratory culture conditions. Thus, we hypothesized that V. cholerae strains that express TCP via the toxT-139F allele induce TCP-specific antibody responses. As anticipated, V. cholerae strains that expressed TCP through the toxT-139F allele elicited antibody responses against TCP when the inactivated bacteria were delivered via a mouse model. We have further developed TCP-expressing V. cholerae strains that have been used in inactivated OCVs and shown that they effect an antibody response against TcpA in vivo, suggesting that V. cholerae strains with the toxT-139F allele are excellent candidates for cholera vaccines.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Young-Jun Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Bin Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | | | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea,Corresponding authors C.-H. Yun Phone: + 82-2-880-4802 E-mail:
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea,Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea,
D.W. Kim Phone: +82-31-400-5806 E-mail:
| |
Collapse
|
6
|
Jensen O, Trivedi S, Li K, Aubé J, Hale JS, Ryan ET, Leung DT. Use of a MAIT-Activating Ligand, 5-OP-RU, as a Mucosal Adjuvant in a Murine Model of Vibrio cholerae O1 Vaccination. Pathog Immun 2022; 7:122-144. [PMID: 36072570 PMCID: PMC9438945 DOI: 10.20411/pai.v7i1.525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in the mucosa with capacity for B-cell help. We hypothesize that targeting MAIT cells, using a MAIT-activating ligand as an adjuvant, could improve mucosal vaccine responses to bacterial pathogens such as Vibrio cholerae. Methods We utilized murine models of V. cholerae vaccination to test the adjuvant potential of the MAIT-activating ligand, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU). We measured V. cholerae-specific antibody and antibody-secreting cell responses and used flow cytometry to examine MAIT-cell and B-cell phenotype, in blood, bronchoalveolar lavage fluid (BALF), and mucosal tissues, following intranasal vaccination with live V. cholerae O1 or a V. cholerae O1 polysaccharide conjugate vaccine. Results We report significant expansion of MAIT cells in the lungs (P < 0.001) and BALF (P < 0.001) of 5-OP-RU treated mice, and higher mucosal (BALF, P = 0.045) but not systemic (serum, P = 0.21) V. cholerae O-specific-polysaccharide IgG responses in our conjugate vaccine model when adjuvanted with low-dose 5-OP-RU. In contrast, despite significant MAIT cell expansion, no significant differences in V. cholerae-specific humoral responses were found in our live V. cholerae vaccination model. Conclusions Using a murine model, we demonstrate the potential, as well as the limitations, of targeting MAIT cells to improve antibody responses to mucosal cholera vaccines. Our study highlights the need for future research optimizing MAIT-cell targeting for improving mucosal vaccines.
Collapse
Affiliation(s)
- Owen Jensen
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Shubhanshi Trivedi
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J. Scott Hale
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Edward T. Ryan
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Daniel T. Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
7
|
Rashidijahanabad Z, Kelly M, Kamruzzaman M, Qadri F, Bhuiyan TR, McFall-Boegeman H, Wu D, Piszczek G, Xu P, Ryan ET, Huang X. Virus-like Particle Display of Vibrio choleraeO-Specific Polysaccharide as a Potential Vaccine against Cholera. ACS Infect Dis 2022; 8:574-583. [PMID: 35170309 PMCID: PMC9119010 DOI: 10.1021/acsinfecdis.1c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vibrio cholerae, a noninvasive mucosal pathogen, is endemic in more than 50 countries. Oral cholera vaccines, based on killed whole-cell strains of Vibrio cholerae, can provide significant protection in adults and children for 2-5 years. However, they have relatively limited direct protection in young children. To overcome current challenges, in this study, a potential conjugate vaccine was developed by linking O-specific polysaccharide (OSP) antigen purified from V. cholerae O1 El Tor Inaba strain PIC018 with Qβ virus-like particles efficiently via squarate chemistry. The Qβ-OSP conjugate was characterized with mass photometry (MP) on the whole particle level. Pertinent immunologic display of OSP was confirmed by immunoreactivity of the conjugate with convalescent phase samples from humans with cholera. Mouse immunization with the Qβ-OSP conjugate showed that the construct generated prominent and long-lasting IgG antibody responses against OSP, and the resulting antibodies could recognize the native lipopolysaccharide from Vibrio cholerae O1 Inaba. This was the first time that Qβ was conjugated with a bacterial polysaccharide for vaccine development, broadening the scope of this powerful carrier.
Collapse
Affiliation(s)
- Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Mohammad Kamruzzaman
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Taufiqur R Bhuiyan
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Hunter McFall-Boegeman
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Xu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
McCarty J, Bedell L, De Lame PA, Cassie D, Lock M, Bennett S, Haney D. Update on CVD 103-HgR single-dose, live oral cholera vaccine. Expert Rev Vaccines 2021; 21:9-23. [PMID: 34775892 DOI: 10.1080/14760584.2022.2003709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cholera remains endemic in >50 countries, putting millions at risk, especially young children for whom killed vaccines offer limited protection. An oral, live attenuated vaccine - CVD 103-HgR (Vaxchora vaccine) - was licensed by the US FDA in 2016 for adults aged 18-64 years traveling to endemic regions, based on clinical trials in human volunteers showing the vaccine was well tolerated and conferred 90% efficacy within 10 days. The evidence base for Vaxchora vaccine has expanded with additional clinical trial data, in older adults (aged 46-64 years) and children (aged 2-17 years), demonstrating that the vaccine produces a strong vibriocidal antibody response. Over 68,000 doses have been administered in the United States, with no new safety signals. The dose volume has been reduced in children to improve acceptability, and cold chain requirements are less st ringent, at +2°C─+8°C. The vaccine has recently been licensed in the Untied States for children aged 2-17 years, in Europe for individuals aged ≥2 years, and for home administration in Europe. Next steps include a Phase 4 study in infants (6-23 months). Additional information is needed regarding duration of immunity, the need for and timing of revaccination, and efficacy data from lower-middle-income countries.
Collapse
Affiliation(s)
- James McCarty
- Stanford University School of Medicine, 291 Campus Drive, Stanford, California, USA
| | - Lisa Bedell
- Emergent Travel Health, Redwood City, California, USA
| | | | - David Cassie
- Emergent Travel Health, Redwood City, California, USA
| | - Michael Lock
- Emergent Travel Health, Redwood City, California, USA
| | - Sean Bennett
- Adjuvance Technologies, Inc., Lincoln, Nebraska, USA
| | - Douglas Haney
- Emergent Travel Health, Redwood City, California, USA
| |
Collapse
|
9
|
Scalable production and immunogenicity of a cholera conjugate vaccine. Vaccine 2021; 39:6936-6946. [PMID: 34716040 PMCID: PMC8609181 DOI: 10.1016/j.vaccine.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/05/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022]
Abstract
There is a need to develop cholera vaccines that are protective in young children under 5 years of age, which induce long-term immunity, and which can be incorporated into the Expanded Programme of Immunization (EPI) in cholera-endemic countries. The degree of protection afforded by currently available oral cholera vaccines (OCV) to young children is significantly lower than that induced by vaccination of older vaccine recipients. Immune responses that protect against cholera target the O-specific polysaccharide (OSP) of Vibrio cholerae, and young children have poor immunological responses to bacterial polysaccharides, which are T cell independent antigens. To overcome this, we have developed a cholera conjugate vaccine (CCV) containing the OSP of V. cholerae O1, the main cause of endemic and epidemic cholera. Here, we describe production of CCV through a scalable manufacturing process and preclinical evaluation of immunogenicity in the presence and absence of aluminum phosphate (alum) as an adjuvant. The vaccine displays V. cholerae O1 Inaba OSP in sun-burst display via single point attachment of core oligosaccharide to a recombinant tetanus toxoid heavy chain fragment (rTTHc). Two different pilot-scale production batches of non-GMP CCV were manufactured and characterized in terms of physico-chemical properties and immunogenicity. In preclinical testing, the vaccine induced OSP- and lipopolysaccharide (LPS)-specific IgG and IgM responses, vibriocidal responses, memory B cell responses, and protection in a V. cholerae O1 challenge model. The addition of alum to the administered vaccine increased OSP-specific immune responses. These results support evaluation of CCV in humans.
Collapse
|
10
|
Svennerholm AM, Qadri F, Lundgren A, Kaim J, Rahman Bhuiyan T, Akhtar M, Maier N, Louis Bourgeois A, Walker RI. Induction of mucosal and systemic immune responses against the common O78 antigen of an oral inactivated ETEC vaccine in Bangladeshi children and infants. Vaccine 2021; 40:380-389. [PMID: 34772542 DOI: 10.1016/j.vaccine.2021.10.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
We tested an oral enterotoxigenic Escherichia coli (ETEC) vaccine, ETVAX, consisting of inactivated E. coli overexpressing the most prevalent ETEC colonization factors (CFs) and a toxoid (LCTBA), in Bangladeshi children for capacity to induce mucosal and plasma immune responses against O78 lipopolysaccharide (LPS) expressed on the vaccine strains. The vaccine was given ± double-mutant heat-labile toxin (dmLT) adjuvant. We evaluated the impact of dmLT on anti-O78 LPS immune responses and whether such responses can predict responses against the CFs as a marker for vaccine "take". Two fractionated doses of ETVAX ± different amounts of dmLT were administered biweekly to groups of children 24-59 (n = 125), 12-23 (n = 97) and 6-11 (n = 158) months of age. Immune responses were evaluated in antibody in lymphocyte supernatants (ALS), fecal extracts and plasma. ALS IgA responses against O78 LPS were induced in 44-49% of the children aged 12-59 months. The magnitudes of the ALS responses were significantly higher in children receiving a half-dose (5 × 1010 bacteria) of ETVAX ± dmLT than in placebo recipients. <10% of the vaccinees aged 6-11 months mounted ALS responses against O78 LPS. However, 49% of the infants developed fecal secretory IgA responses which were significantly more frequent in those receiving a quarter-dose (2.5 × 1010 bacteria) of vaccine + dmLT (62%) compared to a quarter-dose alone (36%). Plasma IgA antibody responses were induced in 80% of older children and 36% of infants. The frequencies of O78 LPS responses in plasma and feces were comparable or higher than against the vaccine CFs in infants. Our findings show that ETVAX induced mucosal and systemic immune responses against O78 LPS in all age groups and that dmLT improved intestinal immune responses among infants. These observations may have implications for more successful use of other oral vaccines based on O antigens in children.
Collapse
Affiliation(s)
- Ann-Mari Svennerholm
- Dept. of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden.
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Anna Lundgren
- Dept. of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Joanna Kaim
- Dept. of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Taufiqur Rahman Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Marjahan Akhtar
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | | | | | | |
Collapse
|
11
|
Ryan ET, Leung DT, Jensen O, Weil AA, Bhuiyan TR, Khan AI, Chowdhury F, LaRocque RC, Harris JB, Calderwood SB, Qadri F, Charles RC. Systemic, Mucosal, and Memory Immune Responses following Cholera. Trop Med Infect Dis 2021; 6:192. [PMID: 34842841 PMCID: PMC8628923 DOI: 10.3390/tropicalmed6040192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 01/13/2023] Open
Abstract
Vibrio cholerae O1, the major causative agent of cholera, remains a significant public health threat. Although there are available vaccines for cholera, the protection provided by killed whole-cell cholera vaccines in young children is poor. An obstacle to the development of improved cholera vaccines is the need for a better understanding of the primary mechanisms of cholera immunity and identification of improved correlates of protection. Considerable progress has been made over the last decade in understanding the adaptive and innate immune responses to cholera disease as well as V. cholerae infection. This review will assess what is currently known about the systemic, mucosal, memory, and innate immune responses to clinical cholera, as well as recent advances in our understanding of the mechanisms and correlates of protection against V. cholerae O1 infection.
Collapse
Affiliation(s)
- Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel T. Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (D.T.L.); (O.J.)
| | - Owen Jensen
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (D.T.L.); (O.J.)
| | - Ana A. Weil
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA;
| | - Taufiqur Rahman Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA 02114, USA
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02115, USA
- Division of Pediatric Global Health, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
12
|
Dissecting serotype-specific contributions to live oral cholera vaccine efficacy. Proc Natl Acad Sci U S A 2021; 118:2018032118. [PMID: 33558237 DOI: 10.1073/pnas.2018032118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The O1 serogroup of Vibrio cholerae causes pandemic cholera and is divided into the Ogawa and Inaba serotypes. The O-antigen is V. cholerae's immunodominant antigen, and the two serotypes, which differ by the presence or absence of a terminally methylated O-antigen, likely influence development of immunity to cholera and oral cholera vaccines (OCVs). However, there is no consensus regarding the relative immunological potency of each serotype, in part because previous studies relied on genetically heterogeneous strains. Here, we engineered matched serotype variants of a live OCV candidate, HaitiV, and used a germfree mouse model to evaluate the immunogenicity and protective efficacy of each vaccine serotype. By combining vibriocidal antibody quantification with single- and mixed-strain infection assays, we found that all three HaitiV variants-InabaV, OgawaV, and HikoV (bivalent Inaba/Ogawa)-were immunogenic and protective. None of the vaccine serotypes were superior across both of these vaccine metrics, suggesting that the impact of O1-serotype variation in OCV design, although detectable, is subtle. However, all three live vaccines significantly outperformed formalin-killed HikoV, supporting the idea that live OCV usage will bolster current cholera control practices. The potency of OCVs was found to be challenge strain-dependent, emphasizing the importance of appropriate strain selection for cholera challenge studies. Our findings and experimental approaches will be valuable for guiding the development of live OCVs and oral vaccines for additional pathogens.
Collapse
|
13
|
Uddin MI, Hossain M, Islam S, Akter A, Nishat NS, Nila TA, Rafique TA, Leung DT, Calderwood SB, Ryan ET, Harris JB, LaRocque RC, Bhuiyan TR, Qadri F. An assessment of potential biomarkers of environment enteropathy and its association with age and microbial infections among children in Bangladesh. PLoS One 2021; 16:e0250446. [PMID: 33886672 PMCID: PMC8061931 DOI: 10.1371/journal.pone.0250446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
Interventional studies targeting environment enteropathy (EE) are impeded by the lack of appropriate, validated, non-invasive biomarkers of EE. Thus, we aimed to validate the association of potential biomarkers for EE with enteric infections and nutritional status in a longitudinal birth cohort study. We measured endotoxin core antibody (EndoCab) and soluble CD14 (sCD14) in serum, and myeloperoxidase (MPO) in feces using commercially available enzyme-linked immunosorbent assay (ELISA) kits. We found that levels of serum EndoCab and sCD14 increase with the cumulative incidence of enteric infections. We observed a significant correlation between the fecal MPO level in the children at 24 months of age with the total number of bacterial and viral infections, the total number of parasitic infections, and the total number of diarrheal episodes and diarrheal duration. We observed that the levels of serum EndoCab, sCD14, and fecal MPO at 3 months of age were significantly associated with whether children were malnourished at 18 months of age or not. Biomarkers such as fecal MPO, serum EndoCab and sCD14 in children at an early age may be useful as a measure of cumulative burden of preceding enteric infections, which are predictive of subsequent malnutrition status and may be useful non-invasive biomarkers for EE.
Collapse
Affiliation(s)
| | | | - Shahidul Islam
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Aklima Akter
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | | | | | | | - Daniel T. Leung
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Firdausi Qadri
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- * E-mail: (FQ); (TRB)
| |
Collapse
|
14
|
Akter A, Kelly M, Charles RC, Harris JB, Calderwood SB, Bhuiyan TR, Biswas R, Xu P, Kováč P, Qadri F, Ryan ET. Parenteral Vaccination with a Cholera Conjugate Vaccine Boosts Vibriocidal and Anti-OSP Responses in Mice Previously Immunized with an Oral Cholera Vaccine. Am J Trop Med Hyg 2021; 104:2024-2030. [PMID: 33872211 PMCID: PMC8176512 DOI: 10.4269/ajtmh.20-1511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
Oral cholera vaccination protects against cholera; however, responses in young children are low and of short duration. The best current correlates of protection against cholera target Vibrio cholerae O-specific polysaccharide (anti-OSP), including vibriocidal responses. A cholera conjugate vaccine has been developed that induces anti-OSP immune responses, including memory B-cell responses. To address whether cholera conjugate vaccine would boost immune responses following oral cholera vaccination, we immunized mice with oral cholera vaccine Inaba CVD 103-HgR or buffer only (placebo) on day 0, followed by parenteral boosting immunizations on days 14, 42, and 70 with cholera conjugate vaccine Inaba OSP: recombinant tetanus toxoid heavy chain fragment or phosphate buffered saline (PBS)/placebo. Compared with responses in mice immunized with oral vaccine alone or intramuscular cholera conjugate vaccine alone, mice receiving combination vaccination developed significantly higher vibriocidal, IgM OSP-specific serum responses and OSP-specific IgM memory B-cell responses. A combined vaccination approach, which includes oral cholera vaccination followed by parenteral cholera conjugate vaccine boosting, results in increased immune responses that have been associated with protection against cholera. These results suggest that such an approach should be evaluated in humans.
Collapse
Affiliation(s)
- Aklima Akter
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Meagan Kelly
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Richelle C Charles
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,3Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jason B Harris
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,4Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,5Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts
| | - Stephen B Calderwood
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,3Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Taufiqur R Bhuiyan
- 2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Rajib Biswas
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Peng Xu
- 6NIDDK, LBC, National Institutes of Health, Bethesda, Maryland
| | - Pavol Kováč
- 6NIDDK, LBC, National Institutes of Health, Bethesda, Maryland
| | - Firdausi Qadri
- 2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Edward T Ryan
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,3Department of Medicine, Harvard Medical School, Boston, Massachusetts.,7Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
15
|
Transient Intestinal Colonization by a Live-Attenuated Oral Cholera Vaccine Induces Protective Immune Responses in Streptomycin-Treated Mice. J Bacteriol 2020; 202:JB.00232-20. [PMID: 32540930 DOI: 10.1128/jb.00232-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Current mouse models for evaluating the efficacy of live oral cholera vaccines (OCVs) have important limitations. Conventionally raised adult mice are resistant to intestinal colonization by Vibrio cholerae, but germfree mice can be colonized and have been used to study OCV immunogenicity. However, germfree animals have impaired immune systems and intestinal physiology; also, live OCVs colonize germfree mice for many months, which does not mimic the clearance kinetics of live OCVs in humans. In this study, we leveraged antibiotic-treated, conventionally raised adult mice to study the effects of transient intestinal colonization by a live OCV V. cholerae strain. In a single-dose vaccination regimen, we found that HaitiV, a live-attenuated OCV candidate, was cleared by streptomycin-treated adult mice within 2 weeks after oral inoculation. This transient colonization elicited far stronger adaptive immune correlates of protection against cholera than did inactivated whole-cell HaitiV. Infant mice from HaitiV-vaccinated dams were also significantly more protected from choleric disease than pups from inactivated-HaitiV-vaccinated dams. Our findings establish the benefits of antibiotic-treated mice for live-OCV studies as well as their limitations and underscore the immunogenicity of HaitiV.IMPORTANCE Oral cholera vaccines (OCVs) are being deployed to combat cholera, but current killed OCVs require multiple doses and show little efficacy in young children. Live OCVs have the potential to overcome these limitations, but small-animal models for testing OCVs have shortcomings. We used an antibiotic treatment protocol for conventional adult mice to study the effects of short-term colonization by a single dose of HaitiV, a live-OCV candidate. Vaccinated mice developed vibriocidal antibodies against V. cholerae and delivered pups that were resistant to cholera, whereas mice vaccinated with inactivated HaitiV did not. These findings demonstrate HaitiV's immunogenicity and suggest that this antibiotic treatment protocol will be useful for evaluating the efficacy of live OCVs.
Collapse
|
16
|
Humans Surviving Cholera Develop Antibodies against Vibrio cholerae O-Specific Polysaccharide That Inhibit Pathogen Motility. mBio 2020; 11:mBio.02847-20. [PMID: 33203761 PMCID: PMC7683404 DOI: 10.1128/mbio.02847-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cholera is a severe dehydrating illness of humans caused by Vibrio cholerae. V. cholerae is a highly motile bacterium that has a single flagellum covered in lipopolysaccharide (LPS) displaying O-specific polysaccharide (OSP), and V. cholerae motility correlates with its ability to cause disease. The mechanisms of protection against cholera are not well understood; however, since V. cholerae is a noninvasive intestinal pathogen, it is likely that antibodies that bind the pathogen or its products in the intestinal lumen contribute to protection from infection. Here, we demonstrate that OSP-specific antibodies isolated from humans surviving cholera in Bangladesh inhibit V. cholerae motility and are associated with protection against challenge in a motility-dependent manner. The mechanism of protection against cholera afforded by previous illness or vaccination is currently unknown. We have recently shown that antibodies targeting O-specific polysaccharide (OSP) of Vibrio cholerae correlate highly with protection against cholera. V. cholerae is highly motile and possesses a flagellum sheathed in OSP, and motility of V. cholerae correlates with virulence. Using high-speed video microscopy and building upon previous animal-related work, we demonstrate that sera, polyclonal antibody fractions, and OSP-specific monoclonal antibodies recovered from humans surviving cholera block V. cholerae motility at both subagglutinating and agglutinating concentrations. This antimotility effect is reversed by preadsorbing sera and polyclonal antibody fractions with purified OSP and is associated with OSP-specific but not flagellin-specific monoclonal antibodies. Fab fragments of OSP-specific polyclonal antibodies do not inhibit motility, suggesting a requirement for antibody-mediated cross-linking in motility inhibition. We show that OSP-specific antibodies do not directly affect V. cholerae viability, but that OSP-specific monoclonal antibody highly protects against death in the murine cholera model. We used in vivo competitive index studies to demonstrate that OSP-specific antibodies impede colonization and survival of V. cholerae in intestinal tissues and that this impact is motility dependent. Our findings suggest that the impedance of motility by antibodies targeting V. cholerae OSP contributes to protection against cholera.
Collapse
|
17
|
Cao L, Yuan Z, Liu M, Stock C. (Patho-)Physiology of Na +/H + Exchangers (NHEs) in the Digestive System. Front Physiol 2020; 10:1566. [PMID: 32009977 PMCID: PMC6974801 DOI: 10.3389/fphys.2019.01566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are expressed in virtually all human tissues and organs. Two major tasks of those NHE isoforms that are located in plasma membranes are cell volume control by Na+-uptake and cellular pH regulation by H+-extrusion. Several NHEs, particularly NHE 1–4 and 8, are involved in the pathogenesis of diseases of the digestive system such as inflammatory bowel disease (ulcerative colitis, Crohn’s disease) and gastric and colorectal tumorigenesis. In the present review, we describe the physiological purposes, possible malfunctions and pathophysiological effects of the different NHE isoforms along the alimentary canal from esophagus to colon, including pancreas, liver and gallbladder. Particular attention is paid to the functions of NHEs in injury repair and to the role of NHE1 in Barrett’s esophagus. The impact of NHEs on gut microbiota and intestinal mucosal integrity is also dealt with. As the hitherto existing findings are not always consistent, sometimes even controversial, they are compared and critically discussed.
Collapse
Affiliation(s)
- Li Cao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christian Stock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
18
|
Hossain M, Islam K, Kelly M, Mayo Smith LM, Charles RC, Weil AA, Bhuiyan TR, Kováč P, Xu P, Calderwood SB, Simon JK, Chen WH, Lock M, Lyon CE, Kirkpatrick BD, Cohen M, Levine MM, Gurwith M, Leung DT, Azman AS, Harris JB, Qadri F, Ryan ET. Immune responses to O-specific polysaccharide (OSP) in North American adults infected with Vibrio cholerae O1 Inaba. PLoS Negl Trop Dis 2019; 13:e0007874. [PMID: 31743334 PMCID: PMC6863522 DOI: 10.1371/journal.pntd.0007874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Background Antibodies targeting O-specific polysaccharide (OSP) of Vibrio cholerae may protect against cholera; however, little is known about this immune response in infected immunologically naïve humans. Methodology We measured serum anti-OSP antibodies in adult North American volunteers experimentally infected with V. cholerae O1 Inaba El Tor N16961. We also measured vibriocidal and anti-cholera toxin B subunit (CtxB) antibodies and compared responses to those in matched cholera patients in Dhaka, Bangladesh, an area endemic for cholera. Principal findings We found prominent anti-OSP antibody responses following initial cholera infection: these responses were largely IgM and IgA, and highest to infecting serotype with significant cross-serotype reactivity. The anti-OSP responses peaked 10 days after infection and remained elevated over baseline for ≥ 6 months, correlated with vibriocidal responses, and may have been blunted in blood group O individuals (IgA anti-OSP). We found significant differences in immune responses between naïve and endemic zone cohorts, presumably reflecting previous exposure in the latter. Conclusions Our results define immune responses to O-specific polysaccharide in immunologically naive humans with cholera, find that they are largely IgM and IgA, may be blunted in blood group O individuals, and differ in a number of significant ways from responses in previously humans. These differences may explain in part varying degrees of protective efficacy afforded by cholera vaccination between these two populations. Trial registration number ClinicalTrials.gov NCT01895855. Cholera is an acute, secretory diarrheal disease caused by Vibrio cholerae O1. There is a growing body of evidence that immune responses targetting the O-specific polysaccharide (OSP) of V. cholerae are associated with protecton against cholera. Despite this, little is known about immune responses targeting OSP in immunologically naive individals. Cholera affects populations in severely resource-limited areas. To address this, we assessed anti-OSP immune responses in North American volunteers experimentally infected with wild type V. cholerae O1 El Tor Inaba strain N16961. We found that antibody responses were largely IgM and IgA, cross-reacted to both Inaba and Ogawa serotypes, and correlated with vibriocidal responses. We found no association of responses to severity of disease, but did find that blood group O individuals mounted lower IgA fold-changes to OSP than did non-blood group O individuals. Individuals with blood group O are at particular risk for severe cholera, and are less well protected against cholera following oral vaccination. We also compared anti-OSP responses in previously unexposed individuals to responses in matched endemic zone patients, and found a number of significant differences. Such differences may explain in part the varying degrees of protective efficacy afforded by cholera vaccination between these two populations.
Collapse
Affiliation(s)
- Motaher Hossain
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- * E-mail:
| | - Kamrul Islam
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Leslie M. Mayo Smith
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ana A. Weil
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Pavol Kováč
- National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry (LBC), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peng Xu
- National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry (LBC), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jakub K. Simon
- Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Wilbur H. Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michael Lock
- PaxVax, Inc., Redwood City, California, United States of America
| | - Caroline E. Lyon
- Vaccine Testing Center, Departments of Medicine and Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Beth D. Kirkpatrick
- Vaccine Testing Center, Departments of Medicine and Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Mitchell Cohen
- Cincinnati Children’s Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Myron M. Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marc Gurwith
- PaxVax, Inc., Redwood City, California, United States of America
| | - Daniel T. Leung
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Andrew S. Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
19
|
Akter A, Dash P, Aktar A, Jahan SR, Afrin S, Basher SR, Hakim A, Lisa AK, Chowdhury F, Khan AI, Xu P, Charles RC, Kelly M, Kováč P, Harris JB, Bhuiyan TR, Calderwood SB, Ryan ET, Qadri F. Induction of systemic, mucosal and memory antibody responses targeting Vibrio cholerae O1 O-specific polysaccharide (OSP) in adults following oral vaccination with an oral killed whole cell cholera vaccine in Bangladesh. PLoS Negl Trop Dis 2019; 13:e0007634. [PMID: 31369553 PMCID: PMC6692040 DOI: 10.1371/journal.pntd.0007634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/13/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oral cholera vaccine (OCV) containing killed Vibrio cholerae O1 and O139 organisms (Bivalent-OCV; Biv-OCV) are playing a central role in global cholera control strategies. OCV is currently administered in a 2-dose regimen (day 0 and 14). There is a growing body of evidence that immune responses targeting the O-specific polysaccharide (OSP) of V. cholerae mediate protection against cholera. There are limited data on anti-OSP responses in recipients of Biv-OCV. We assessed serum antibody responses against O1 OSP, as well as antibody secreting cell (ASC) responses (a surrogate marker for mucosal immunity) and memory B cell responses in blood of adult recipients of Biv-OCV in Dhaka, Bangladesh. METHODOLOGY/PRINCIPAL FINDINGS We enrolled 30 healthy adults in this study and administered two doses of OCV (Shanchol) at days 0 and 14. Blood samples were collected before vaccination (day 0) and 7 days after each vaccination (day 7 and day 21), as well as on day 44. Serum responses were largely IgA with minimal IgG and IgM responses in this population. There was no appreciable boosting following day 14 vaccination. There were significant anti-OSP IgA ASC responses on day 7 following the first vaccination, but none after the second immunization. Anti-OSP IgA memory B cell responses were detectable 30 days after completion of the vaccination series, with no evident induction of IgG memory responses. In this population, anti-Ogawa OSP responses were more prominent than anti-Inaba responses, perhaps reflecting impact of previous exposure. Serum anti-OSP responses returned to baseline within 30 days of completing the vaccine series. CONCLUSION Our results call into question the utility of the 2-dose regimen separated by 14 days in adults in cholera endemic areas, and also suggest that Biv-OCV-induced immune responses targeting OSP are largely IgA in this highly endemic cholera area. Studies in children in cholera-endemic areas need to be performed. Protective efficacy that extends for more than a month after vaccination presumably is mediated by direct mucosal immune response which is not assessed in this study. Our results suggest a single dose of OCV in adults in a cholera endemic zone may be sufficient to mediate at least short-term protection.
Collapse
Affiliation(s)
- Aklima Akter
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Pinki Dash
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Amena Aktar
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sultana Rownok Jahan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sadia Afrin
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Salima Raiyan Basher
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Al Hakim
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Asura Khanam Lisa
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Fahima Chowdhury
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Ashraful I. Khan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Global Health, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Taufiqur Rahman Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW In this review, we will examine updates in cholera epidemiology, advances in our understanding of pathogenesis and protective immunity, and changes to prevention strategies. RECENT FINDINGS New modeling techniques and molecular epidemiology have led to advancements in our understanding of how Vibrio cholerae has persisted and re-emerged in new areas during the seventh pandemic. Use of next-generation sequencing has shed new light on immune responses to disease and vaccination, and the role of the gut microbiome in cholera. Increased efficacy and availability of vaccines have made long-term goals of global control of cholera more achievable. SUMMARY Advancements in our understanding of immunity and susceptibility to V. cholerae, in addition to an increased global commitment to disease prevention, have led to optimism for the future of cholera prevention.
Collapse
|
21
|
Rashid MI, Rehman S, Ali A, Andleeb S. Fishing for vaccines against Vibrio cholerae using in silico pan-proteomic reverse vaccinology approach. PeerJ 2019; 7:e6223. [PMID: 31249730 PMCID: PMC6589079 DOI: 10.7717/peerj.6223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cholera, an acute enteric infection, is a serious health challenge in both the underdeveloped and the developing world. It is caused by Vibrio cholerae after ingestion of fecal contaminated food or water. Cholera outbreaks have recently been observed in regions facing natural calamities (i.e., earthquake in Haiti 2010) or war (i.e., ongoing civil war in Yemen 2016) where healthcare and sanitary setups have been disrupted as a consequence. Whole-cell oral cholera vaccines (OCVs) have been in market but their regimen efficacy has been questioned. A reverse vaccinology (RV) approach has been applied as a successful anti-microbial measure for many infectious diseases. METHODOLOGY With the aim of finding new protective antigens for vaccine development, the V. cholerae O1 (biovar eltr str. N16961) proteome was computationally screened in a sequential prioritization approach that focused on determining the antigenicity of potential vaccine candidates. Essential, accessible, virulent and immunogenic proteins were selected as potential candidates. The predicted epitopes were filtered for effective binding with MHC alleles and epitopes binding with greater MHC alleles were selected. RESULTS In this study, we report lipoprotein NlpD, outer membrane protein OmpU, accessory colonization factor AcfA, Porin, putative and outer membrane protein OmpW as potential candidates qualifying all the set criteria. These predicted epitopes can offer a potential for development of a reliable peptide or subunit vaccine for V. cholerae.
Collapse
Affiliation(s)
- Muhammad I. Rashid
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Sammia Rehman
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
22
|
Oral immunization with a probiotic cholera vaccine induces broad protective immunity against Vibrio cholerae colonization and disease in mice. PLoS Negl Trop Dis 2019; 13:e0007417. [PMID: 31150386 PMCID: PMC6561597 DOI: 10.1371/journal.pntd.0007417] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023] Open
Abstract
Oral cholera vaccines (OCVs) are being increasingly employed, but current killed formulations generally require multiple doses and lack efficacy in young children. We recently developed a new live-attenuated OCV candidate (HaitiV) derived from a Vibrio cholerae strain isolated during the 2010 Haiti cholera epidemic. HaitiV exhibited an unexpected probiotic-like activity in infant rabbits, preventing intestinal colonization and disease by wild-type V. cholerae before the onset of adaptive immunity. However, it remained unknown whether HaitiV would behave similarly to other OCVs to stimulate adaptive immunity against V. cholerae. Here, we orally immunized adult germ-free female mice to test HaitiV’s immunogenicity. HaitiV safely and stably colonized vaccinated mice and induced known adaptive immune correlates of cholera protection within 14 days of administration. Pups born to immunized mice were protected against lethal challenges of both homologous and heterologous V. cholerae strains. Cross-fostering experiments revealed that protection was not dependent on vaccine colonization in or transmission to the pups. These findings demonstrate the protective immunogenicity of HaitiV and support its development as a new tool for limiting cholera. Oral cholera vaccines are increasingly used as public health tools for prevention of cholera and curtailing the spread of outbreaks. However, current killed vaccines provide minimal protection in young children, who are especially susceptible to this diarrheal disease, and require ~7–14 days between vaccination and development of protective immunity. We recently created HaitiV, a live-attenuated oral cholera vaccine candidate derived from a clinical isolate from the Haiti cholera outbreak. Unexpectedly, HaitiV protected against cholera-like illness in infant rabbits within 24 hours of administration, before the onset of adaptive immunity. However, HaitiV’s capacity to stimulate adaptive immune responses against the cholera pathogen were not investigated. Here, we report that HaitiV induces immunological correlates of protection against cholera in adult germ-free mice and leads to protection against disease in their offspring. Protection against disease was transferable through the milk of the immunized mice and was not due to transmission or colonization of HaitiV in this model. Coupling the immunogenicity data presented here with our previous observation that HaitiV can protect from cholera prior to the induction of adaptive immunity, we propose that HaitiV may provide both rapid-onset short-term protection from disease while eliciting stable and long-lasting immunity against cholera.
Collapse
|
23
|
Echazarreta MA, Klose KE. Vibrio Flagellar Synthesis. Front Cell Infect Microbiol 2019; 9:131. [PMID: 31119103 PMCID: PMC6504787 DOI: 10.3389/fcimb.2019.00131] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Vibrio spp. are highly motile Gram-negative bacteria, ubiquitously found in aquatic environments. Some Vibrios are responsible for disease and morbidity of marine invertebrates and humans, while others are studied for their symbiotic interactions. Vibrio spp. are motile due to synthesis of flagella that rotate and propel the bacteria. Many Vibrio spp. synthesize monotrichous polar flagella (e.g., V. cholerae, V. alginolyticus); however, some synthesize peritrichous or lophotrichous flagella. Flagellar-mediated motility is intimately connected to biological and cellular processes such as chemotaxis, biofilm formation, colonization, and virulence of Vibrio spp. This review focuses on the polar flagellum and its regulation in regard to Vibrio virulence and environmental persistence.
Collapse
Affiliation(s)
- Mylea A Echazarreta
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Karl E Klose
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
24
|
McCarty JM, Lock MD, Bennett S, Hunt KM, Simon JK, Gurwith M. Age-related immunogenicity and reactogenicity of live oral cholera vaccine CVD 103-HgR in a randomized, controlled clinical trial. Vaccine 2019; 37:1389-1397. [PMID: 30772070 DOI: 10.1016/j.vaccine.2019.01.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
Aging is accompanied by a decline in immune function which can lead to decreased responses to vaccines. Attenuated recombinant Vibrio cholerae O1 vaccine strain CVD 103-HgR elicits a rapid serum vibriocidal antibody (SVA) response and protects against cholera diarrhea in volunteer challenge studies but has not been studied in older adults. We evaluated CVD 103-HgR (PXVX0200) in adults age 46-64, compared them to previously studied adults age 18-45, and studied age-related immunogenicity across adults 18-64 years of age. Volunteers were randomized to receive a single dose of 1 × 109 CFU of PXVX0200 or placebo. Immunogenicity endpoints included SVA and anti-cholera toxin (CT) antibody levels on days 1, 11, 29, 91 and 181 and lipopolysaccharide (LPS) and CT-specific IgA and IgG memory B cells on days 1, 91 and 181. Safety was assessed by comparing solicited signs and symptoms on days 1-8 and other adverse events through day 181. 2979 volunteers received vaccine, including 291 age 45-64. Day 11 seroconversion occurred in 90.4% of older adults vs 93.5%% of younger adults and met the endpoint of demonstrating non-inferiority between the two groups. Significant increases in LPS-specific IgG and IgA and CT-specific memory IgG memory B cells were seen at days 91 and 181. There appeared to be a continuous age-related decline in SVA seroconversion and geometric mean titers, but not memory B cell responses, across the 18-64 year age range. Most reactogenicity was mild and was more common in the placebo group. PXVX0200 appears safe and immunogenic in older adults. Clinical Trials Registration: clinicaltrials.gov NCT02100631.
Collapse
Affiliation(s)
- James M McCarty
- Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305 USA.
| | - Michael D Lock
- PaxVax, Inc., 555 Twin Dolphin Drive, Ste. 360, Redwood City, CA 94065 USA
| | - Sean Bennett
- PaxVax, Inc., 555 Twin Dolphin Drive, Ste. 360, Redwood City, CA 94065 USA
| | - Kristin M Hunt
- PaxVax, Inc., 555 Twin Dolphin Drive, Ste. 360, Redwood City, CA 94065 USA
| | - Jakub K Simon
- PaxVax, Inc., 555 Twin Dolphin Drive, Ste. 360, Redwood City, CA 94065 USA
| | - Marc Gurwith
- PaxVax, Inc., 555 Twin Dolphin Drive, Ste. 360, Redwood City, CA 94065 USA
| |
Collapse
|
25
|
Falkard B, Charles RC, Matias WR, Mayo-Smith LM, Jerome JG, Offord ES, Xu P, Kováč P, Ryan ET, Qadri F, Franke MF, Ivers LC, Harris JB. Bivalent oral cholera vaccination induces a memory B cell response to the V. cholerae O1-polysaccharide antigen in Haitian adults. PLoS Negl Trop Dis 2019; 13:e0007057. [PMID: 30703094 PMCID: PMC6372202 DOI: 10.1371/journal.pntd.0007057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 02/12/2019] [Accepted: 12/05/2018] [Indexed: 11/19/2022] Open
Abstract
The bivalent killed whole-cell oral cholera vaccine (BivWC) is being increasingly used to prevent cholera. The presence of O-antigen-specific memory B cells (MBC) has been associated with protective immunity against cholera, yet MBC responses have not been evaluated after BivWC vaccination. To address this knowledge gap, we measured V. cholerae O1-antigen MBC responses following BivWC vaccination. Adults in St. Marc, Haiti, received 2 doses of the BivWC vaccine, Shanchol, two weeks apart. Participants were invited to return at days 7, 21, 44, 90, 180 and 360 after the initial vaccination. Serum antibody and MBC responses were assessed at each time-point before and following vaccination. We observed that vaccination with BivWC resulted in significant O-antigen specific MBC responses to both Ogawa and Inaba serotypes that were detected by day 21 and remained significantly elevated over baseline for up to 12 months following vaccination. The BivWC oral cholera vaccine induces durable MBC responses to the V. cholerae O1-antigen. This suggests that long-term protection observed following vaccination with BivWC could be mediated or maintained by MBC responses. Oral cholera vaccines are being increasingly used throughout the world as a key component of cholera prevention programs. While several recent studies suggest oral cholera vaccines may provide durable protection, the potential mechanism that generates this long lasting immune memory and protection are unknown. Unlike antibody and antibody secreting cell responses, memory B cells are thought to be an important part of the immune responses because although these cells do not produce antibody, they are long lived and can be rapidly stimulated to produce antibodies upon re-exposure to infection. Previous studies have shown that memory B cell responses to the Vibrio cholerae O-antigen are associated with protection against cholera infection. In this study, we found that oral cholera vaccine generated long lasting antibody and memory B cell responses to the Vibrio cholerae O-antigen that remained elevated for 6 to 12 months. These findings show that oral cholera vaccination does induce a strong memory B cell response, which could play a role in the generation and maintenance of long-term protection following BivWC vaccination.
Collapse
Affiliation(s)
- Brie Falkard
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Wilfredo R. Matias
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Leslie M. Mayo-Smith
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
| | | | - Evan S. Offord
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
| | - Peng Xu
- NIDDK, LBC, Section on Carbohydrates, National Institutes of Health, Bethesda, MD, United States of America
| | - Pavol Kováč
- NIDDK, LBC, Section on Carbohydrates, National Institutes of Health, Bethesda, MD, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Firdausi Qadri
- Infectious Diseases Division, icddr,b, (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Molly F. Franke
- Department of Global Health & Social Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Louise C. Ivers
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- Partners In Health, Boston, MA, United States of America
- Department of Global Health & Social Medicine, Harvard Medical School, Boston, MA, United States of America
- Center for Global Health, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
- Division of Pediatric Global Health, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|