1
|
Al-Osaimi HM, Kanan M, Marghlani L, Al-Rowaili B, Albalawi R, Saad A, Alasmari S, Althobaiti K, Alhulaili Z, Alanzi A, Alqarni R, Alsofiyani R, Shrwani R. A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Hum Vaccin Immunother 2024; 20:2337985. [PMID: 38602074 PMCID: PMC11017952 DOI: 10.1080/21645515.2024.2337985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Insect vector-borne diseases (VBDs) pose significant global health challenges, particularly in tropical and subtropical regions. The WHO has launched the "Global Vector Control Response (GVCR) 2017-2030" to address these diseases, emphasizing a comprehensive approach to vector control. This systematic review investigates the potential of malaria and dengue vaccines in controlling mosquito-borne VBDs, aiming to alleviate disease burdens and enhance public health. Following PRISMA 2020 guidelines, the review incorporated 39 new studies out of 934 identified records. It encompasses various studies assessing malaria and dengue vaccines, emphasizing the significance of vaccination as a preventive measure. The findings indicate variations in vaccine efficacy, duration of protection, and safety considerations for each disease, influencing public health strategies. The review underscores the urgent need for vaccines to combat the increasing burden of VBDs like malaria and dengue, advocating for ongoing research and investment in vaccine development.
Collapse
Affiliation(s)
- Hind M. Al-Osaimi
- Department of Pharmacy Services Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Kanan
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Lujain Marghlani
- Department of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Badria Al-Rowaili
- Pharmaceutical Services Department, Northern Area Armed Forces Hospital, King Khalid Military, Hafr Al Batin, Kingdom of Saudi Arabia
| | - Reem Albalawi
- Department of Medicine, Tabuk University, Tabuk, Kingdom of Saudi Arabia
| | - Abrar Saad
- Pharmacy Department, Royal Commission Hospital, Yanbu, Kingdom of Saudi Arabia
| | - Saba Alasmari
- Department of Clinical Pharmacy, King Khalid University, Jeddah, Kingdom of Saudi Arabia
| | - Khaled Althobaiti
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Zainab Alhulaili
- Department of Clinical Pharmacy, Dammam Medical Complex, Dammam, Kingdom of Saudi Arabia
| | - Abeer Alanzi
- Department of Medicine, King Abdulaziz Hospital, Makkah, Kingdom of Saudi Arabia
| | - Rawan Alqarni
- Department of Medicine and Surgery, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Razan Alsofiyani
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Reem Shrwani
- Department of Clinical Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Silburn A, Arndell J. The impact of dengue viruses: Surveillance, response, and public health implications in Queensland, Australia. PUBLIC HEALTH IN PRACTICE 2024; 8:100529. [PMID: 39071864 PMCID: PMC11282963 DOI: 10.1016/j.puhip.2024.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
This study examines dengue transmission, symptoms, vaccination efforts, treatment options, and global impact, focusing on Australia, especially Queensland. It evaluates current surveillance and response systems, identifies areas for improvement, and proposes strategies to enhance public health preparedness. Highlighting the socioeconomic impact of dengue outbreaks, the study underscores the need for integrated public health measures, effective vaccines, advanced surveillance methods, and sustainable mosquito control programs to mitigate the threat of dengue outbreaks and potential endemicity.
Collapse
Affiliation(s)
- Alan Silburn
- Western Sydney University, Campbelltown, 2560, NSW, Australia
| | - Joel Arndell
- Western Sydney University, Campbelltown, 2560, NSW, Australia
| |
Collapse
|
3
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
4
|
Mushtaq M, Siddiqui AR, Shafeeq S, Khalid A, Ul-Haq Z. Shifting paradigms: The promise of allosteric inhibitors against dengue virus protease. Int J Biol Macromol 2024:137056. [PMID: 39488315 DOI: 10.1016/j.ijbiomac.2024.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Dengue, a mosquito-borne viral infection caused by the dengue virus (DENV), is a global health challenge. Annually, approximately 400 million cases are reported worldwide, signaling a persistent upward trend from previous years and projected a manifold increase in the future. There is a growing need for innovative and integrated approaches aimed at effective disease management. In this regard, scientific efforts are underway to find a new antiviral inhibitor that is desperately needed due to the growing prevalence of dengue, along with inadequate vector control and few vaccinations. The NS2B-NS3 protease complex within the DENV genome holds significant importance, making it an attractive target for potential interventions. Many competitive inhibitors are not clinically relevant even after extensive study, and these early hits are often not followed up to viable leads. The current focus is on exploring alternative target sites for developing effective anti-dengue compounds, resulting in the identification of various allosteric sites in recent years. While previous reviews have extensively covered active site inhibitors, this is to the best of our knowledge the first comprehensive review discussing the allosteric sites and allosteric inhibitors in greater detail. The present survey may assist researchers in understanding the key aspects and identifying new antagonists targeting the allosteric site of DENV protease.
Collapse
Affiliation(s)
- Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ali Raza Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sehrish Shafeeq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Assad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
5
|
Bai S, Shi L, Yang K. Deep learning in disease vector image identification. PEST MANAGEMENT SCIENCE 2024. [PMID: 39422093 DOI: 10.1002/ps.8473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Vector-borne diseases (VBDs) represent a critical global public health concern, with approximately 80% of the world's population at risk of one or more VBD. Manual disease vector identification is time-consuming and expert-dependent, hindering disease control efforts. Deep learning (DL), widely used in image, text, and audio tasks, offers automation potential for disease vector identification. This paper explores the substantial potential of combining DL with disease vector identification. Our aim is to comprehensively summarize the current status of DL in disease vector identification, covering data collection, data preprocessing, model construction, evaluation methods, and applications in identification spanning from species classification to object detection and breeding site identification. We also discuss the challenges and possible prospects for DL in disease vector identification for further research. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaowen Bai
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Liang Shi
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Kun Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Davis C, Javor ER, Rebarber SI, Rychtář J, Taylor D. A mathematical model of visceral leishmaniasis transmission and control: Impact of ITNs on VL prevention and elimination in the Indian subcontinent. PLoS One 2024; 19:e0311314. [PMID: 39365771 PMCID: PMC11452004 DOI: 10.1371/journal.pone.0311314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Visceral Leishmaniasis (VL) is a deadly, vector-borne, parasitic, neglected tropical disease, particularly prevalent on the Indian subcontinent. Sleeping under the long-lasting insecticide-treated nets (ITNs) was considered an effective VL prevention and control measures, until KalaNet, a large trial in Nepal and India, did not show enough supporting evidence. In this paper, we adapt a biologically accurate, yet relatively simple compartmental ordinary differential equations (ODE) model of VL transmission and explicitly model the use of ITNs and their role in VL prevention and elimination. We also include a game-theoretic analysis in order to determine an optimal use of ITNs from the individuals' perspective. In agreement with the previous more detailed and complex model, we show that the ITNs coverage amongst the susceptible population has to be unrealistically high (over 96%) in order for VL to be eliminated. However, we also show that if the whole population, including symptomatic and asymptomatic VL cases adopt about 90% ITN usage, then VL can be eliminated. Our model also suggests that ITN usage should be accompanied with other interventions such as vector control.
Collapse
Affiliation(s)
- Cameron Davis
- Department of Mathematics, Fitchburg State University, Fitchburg, MA, United States of America
| | - Elizabeth R. Javor
- Department of Mathematics, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Sonja I. Rebarber
- Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA, United States of America
| | - Jan Rychtář
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Dewey Taylor
- Department of Mathematics, Rochester Institute of Technology, Rochester, NY, United States of America
| |
Collapse
|
7
|
Blyden K, Thomas J, Emami-Naeini P, Fashina T, Conrady CD, Albini TA, Carag J, Yeh S. Emerging Infectious Diseases and the Eye: Ophthalmic Manifestations, Pathogenesis, and One Health Perspectives. Int Ophthalmol Clin 2024; 64:39-54. [PMID: 39480207 PMCID: PMC11512616 DOI: 10.1097/iio.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infectious diseases may lead to ocular complications including uveitis, an ocular inflammatory condition with potentially sight-threatening sequelae, and conjunctivitis, inflammation of the conjunctiva. Emerging infectious pathogens with known ocular findings include Ebola virus, Zika virus, Avian influenza virus, Nipah virus, severe acute respiratory syndrome coronaviruses, and Dengue virus. Re-emerging pathogens with ocular findings include Toxoplasma gondii and Plasmodium species that lead to malaria. The concept of One Health involves a collaborative and interdisciplinary approach to achieve optimal health outcomes by combining human, animal, and environmental health factors. This approach examines the interconnected and often complex human-pathogen-intermediate host interactions in infectious diseases that may also result in ocular disease, including uveitis and conjunctivitis. Through a comprehensive review of the literature, we review the ophthalmic findings of emerging infectious diseases, pathogenesis, and One Health perspectives that provide further insight into the disease state. While eye care providers and vision researchers may often focus on key local aspects of disease process and management, additional perspective on host-pathogen-reservoir life cycles and transmission considerations, including environmental factors, may offer greater insight to improve outcomes for affected individuals and stakeholders.
Collapse
Affiliation(s)
- K’Mani Blyden
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Joanne Thomas
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Parisa Emami-Naeini
- Department of Ophthalmology, University of California, Davis, Sacramento, CA
| | - Tolulope Fashina
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
| | - Christopher D. Conrady
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Steven Yeh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
8
|
Kientega M, Clarkson CS, Traoré N, Hui TYJ, O'Loughlin S, Millogo AA, Epopa PS, Yao FA, Belem AMG, Brenas J, Miles A, Burt A, Diabaté A. Whole-genome sequencing of major malaria vectors reveals the evolution of new insecticide resistance variants in a longitudinal study in Burkina Faso. Malar J 2024; 23:280. [PMID: 39285410 PMCID: PMC11406867 DOI: 10.1186/s12936-024-05106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Intensive deployment of insecticide based malaria vector control tools resulted in the rapid evolution of phenotypes resistant to these chemicals. Understanding this process at the genomic level is important for the deployment of successful vector control interventions. Therefore, longitudinal sampling followed by whole genome sequencing (WGS) is necessary to understand how these evolutionary processes evolve over time. This study investigated the change in genetic structure and the evolution of the insecticide resistance variants in natural populations of Anopheles gambiae over time and space from 2012 to 2017 in Burkina Faso. METHODS New genomic data have been generated from An. gambiae mosquitoes collected from three villages in the western part of Burkina Faso between 2012 and 2017. The samples were whole-genome sequenced and the data used in the An. gambiae 1000 genomes (Ag1000G) project as part of the Vector Observatory. Genomic data were analysed using the analysis pipeline previously designed by the Ag1000G project. RESULTS The results showed similar and consistent nucleotide diversity and negative Tajima's D between An. gambiae sensu stricto (s.s.) and Anopheles coluzzii. Principal component analysis (PCA) and the fixation index (FST) showed a clear genetic structure in the An. gambiae sensu lato (s.l.) species. Genome-wide FST and H12 scans identified genomic regions under divergent selection that may have implications in the adaptation to ecological changes. Novel voltage-gated sodium channel pyrethroid resistance target-site alleles (V402L, I1527T) were identified at increasing frequencies alongside the established alleles (Vgsc-L995F, Vgsc-L995S and N1570Y) within the An. gambiae s.l. POPULATIONS Organophosphate metabolic resistance markers were also identified, at increasing frequencies, within the An. gambiae s.s. populations from 2012 to 2017, including the SNP Ace1-G280S and its associated duplication. Variants simultaneously identified in the same vector populations raise concerns about the long-term efficacy of new generation bed nets and the recently organophosphate pirimiphos-methyl indoor residual spraying in Burkina Faso. CONCLUSION These findings highlighted the benefit of genomic surveillance of malaria vectors for the detection of new insecticide resistance variants, the monitoring of the existing resistance variants, and also to get insights into the evolutionary processes driving insecticide resistance.
Collapse
Affiliation(s)
- Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
- Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, Burkina Faso.
| | - Chris S Clarkson
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Nouhoun Traoré
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, Burkina Faso
| | - Tin-Yu J Hui
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Samantha O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Abdoul-Azize Millogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Institut des Sciences des Sociétés, 03 BP 7047, Ouagadougou 03, Burkina Faso
| | - Patric Stephane Epopa
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Franck A Yao
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | | | - Jon Brenas
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Alistair Miles
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
| |
Collapse
|
9
|
Salvioni Recalde OD, Rolón MS, Velázquez MC, Kowalewski MM, Alfonso Ruiz Diaz JJ, Rojas de Arias A, Moraes MO, Magdinier Gomes H, de Azevedo Baêta B, Dias Cordeiro M, Vega Gómez MC. Diversity of Anaplasmataceae Transmitted by Ticks (Ixodidae) and the First Molecular Evidence of Anaplasma phagocytophilum and Candidatus Anaplasma boleense in Paraguay. Microorganisms 2024; 12:1893. [PMID: 39338567 PMCID: PMC11433689 DOI: 10.3390/microorganisms12091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 09/30/2024] Open
Abstract
Anaplasmataceae bacteria are emerging infectious agents transmitted by ticks. The aim of this study was to identify the molecular diversity of this bacterial family in ticks and hosts, both domestic and wild, as well as blood meal sources of free-living ticks in northeastern Paraguay. The bacteria were identified using PCR-HRM, a method optimized for this purpose, while the identification of ticks and their blood meal was performed using conventional PCR. All amplified products were subsequently sequenced. The bacteria detected in the blood hosts included Ehrlichia canis, Anaplasma platys, and Anaplasma phagocytophilum, Candidatus Anaplasma boleense, and Wolbachia spp., which had not been previously reported in the country. Free-living and parasitic ticks on dogs (Canis lupus familiaris) and wild armadillos (Dasypus novemcinctus) were collected and identified as Rhipicephalus sanguineus and Amblyomma spp. The species E. canis, A. platys, A. phagocytophilum, and Ca. A. boleense were detected in domestic dog ticks, and E. canis and A. platys were found for the first time in armadillos and free-living ticks. Blood feeding sources detected in free-living ticks were rodents, humans, armadillos and dogs. Results show a high diversity of tick-borne pathogens circulating among domestic and wild animals in the northeastern region of Paraguay.
Collapse
Affiliation(s)
- Oscar Daniel Salvioni Recalde
- Center for the Development of Scientific Research (CEDIC), Manduvira 635, Asunción 1255, Paraguay; (O.D.S.R.); (M.S.R.); (J.J.A.R.D.); (A.R.d.A.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Miriam Soledad Rolón
- Center for the Development of Scientific Research (CEDIC), Manduvira 635, Asunción 1255, Paraguay; (O.D.S.R.); (M.S.R.); (J.J.A.R.D.); (A.R.d.A.)
| | | | - Martin M. Kowalewski
- Estación Biológica Corrientes CECOAL (Centro de Ecología Aplicada del Litoral) CONICET-UNNE, Corrientes 3400, Argentina;
| | - Jorge Javier Alfonso Ruiz Diaz
- Center for the Development of Scientific Research (CEDIC), Manduvira 635, Asunción 1255, Paraguay; (O.D.S.R.); (M.S.R.); (J.J.A.R.D.); (A.R.d.A.)
| | - Antonieta Rojas de Arias
- Center for the Development of Scientific Research (CEDIC), Manduvira 635, Asunción 1255, Paraguay; (O.D.S.R.); (M.S.R.); (J.J.A.R.D.); (A.R.d.A.)
| | - Milton Ozório Moraes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Manguinhos 21045-900, Brazil;
| | - Harrison Magdinier Gomes
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Manguinhos 21045-900, Brazil;
| | - Bruna de Azevedo Baêta
- Laboratory of Parasitic Diseases of the Federal Rural University of Rio de Janeiro (UFRRJ), Km 07, Seropédica, Rio de Janeiro 21040-900, Brazil; (B.d.A.B.); (M.D.C.)
| | - Matheus Dias Cordeiro
- Laboratory of Parasitic Diseases of the Federal Rural University of Rio de Janeiro (UFRRJ), Km 07, Seropédica, Rio de Janeiro 21040-900, Brazil; (B.d.A.B.); (M.D.C.)
| | - María Celeste Vega Gómez
- Center for the Development of Scientific Research (CEDIC), Manduvira 635, Asunción 1255, Paraguay; (O.D.S.R.); (M.S.R.); (J.J.A.R.D.); (A.R.d.A.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
10
|
Amaro FIF, Soares P, Velo E, Carvalho DO, Gomez M, Balestrino F, Puggioli A, Bellini R, Osório HC. Mark-Release-Recapture Trial with Aedes albopictus (Diptera, Culicidae) Irradiated Males: Population Parameters and Climatic Factors. INSECTS 2024; 15:685. [PMID: 39336653 PMCID: PMC11432691 DOI: 10.3390/insects15090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Aedes albopictus is considered one of the major invasive species in the world and can transmit viruses such as dengue, Zika, or chikungunya. The Sterile Insect Technique (SIT) can be used to suppress the native populations of Ae. albopictus. Mark-release-recapture (MRR) studies are crucial to support the development of the release strategy during the SIT application. Meanwhile, weather conditions can affect the MRR trial's results and it is critical to understand the influence of climatic factors on the results. In October 2022, 84,000 irradiated sterile males were released for three consecutive weeks in Faro, Southern Portugal. Mosquitoes were recaptured by human landing collection (HLC) one, two, four, and six days after release. Generalized linear models with a negative binomial family and log function were used to estimate the factors associated with the number of recaptured mosquitoes, prevalence ratios, and the 95% confidence intervals (CIs). A total of 84,000 sterile male mosquitoes were released, with 528 recaptured (0.8%) by HLC. The prevalence of recaptured mosquitoes was 23% lower when the wind intensity was moderate. Marked sterile males had an average median distance travelled of 88.7 m. The median probability of daily survival and the average life expectancy were 61.6% and 2.1 days, respectively. The wild male population estimate was 443.33 males/ha. Despite no statistically significant association being found with humidity, temperature, and precipitation, it is important to consider weather conditions during MRR trial analyses to obtain the best determinant estimation and a more efficient application of the SIT in an integrated vector management program.
Collapse
Affiliation(s)
- Fátima Isabel Falcão Amaro
- Centre for Vectors and Infectious Diseases Research Doutor Francisco Cambournac (CEVDI), National Institute of Health Doutor Ricardo Jorge (INSA), Avenida da Liberdade 5, 2965-575 Palmela, Portugal
- Environmental Health Institute (ISAMB), Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| | - Patricia Soares
- Centre for Vectors and Infectious Diseases Research Doutor Francisco Cambournac (CEVDI), National Institute of Health Doutor Ricardo Jorge (INSA), Avenida da Liberdade 5, 2965-575 Palmela, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, NOVA University Lisbon, 1070-312 Lisbon, Portugal
- Centre of Statistics and its Applications (CEAUL), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Enkelejda Velo
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana 1001, Albania
| | - Danilo Oliveira Carvalho
- Insect Pest Control Subprogramme, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Maylen Gomez
- Insect Pest Control Subprogramme, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria
| | - Fabrizio Balestrino
- Centro Agricoltura Ambiente "G. Nicoli", Department of Sanitary Entomology and Zoology, 40014 Crevalcore, Italy
| | - Arianna Puggioli
- Centro Agricoltura Ambiente "G. Nicoli", Department of Sanitary Entomology and Zoology, 40014 Crevalcore, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente "G. Nicoli", Department of Sanitary Entomology and Zoology, 40014 Crevalcore, Italy
| | - Hugo Costa Osório
- Centre for Vectors and Infectious Diseases Research Doutor Francisco Cambournac (CEVDI), National Institute of Health Doutor Ricardo Jorge (INSA), Avenida da Liberdade 5, 2965-575 Palmela, Portugal
- Environmental Health Institute (ISAMB), Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| |
Collapse
|
11
|
Charamis J, Balaska S, Ioannidis P, Dvořák V, Mavridis K, McDowell MA, Pavlidis P, Feyereisen R, Volf P, Vontas J. Comparative Genomics Uncovers the Evolutionary Dynamics of Detoxification and Insecticide Target Genes Across 11 Phlebotomine Sand Flies. Genome Biol Evol 2024; 16:evae186. [PMID: 39224065 PMCID: PMC11412322 DOI: 10.1093/gbe/evae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Sand flies infect more than 1 million people annually with Leishmania parasites and other bacterial and viral pathogens. Progress in understanding sand fly adaptations to xenobiotics has been hampered by the limited availability of genomic resources. To address this gap, we sequenced, assembled, and annotated the transcriptomes of 11 phlebotomine sand fly species. Subsequently, we leveraged these genomic resources to generate novel evolutionary insights pertaining to their adaptations to xenobiotics, including those contributing to insecticide resistance. Specifically, we annotated over 2,700 sand fly detoxification genes and conducted large-scale phylogenetic comparisons to uncover the evolutionary dynamics of the five major detoxification gene families: cytochrome P450s (CYPs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs), carboxyl/cholinesterases (CCEs), and ATP-binding cassette (ABC) transporters. Using this comparative approach, we show that sand flies have evolved diverse CYP and GST gene repertoires, with notable lineage-specific expansions in gene groups evolutionarily related to known xenobiotic metabolizers. Furthermore, we show that sand flies have conserved orthologs of (i) CYP4G genes involved in cuticular hydrocarbon biosynthesis, (ii) ABCB genes involved in xenobiotic toxicity, and (iii) two primary insecticide targets, acetylcholinesterase-1 (Ace1) and voltage gated sodium channel (VGSC). The biological insights and genomic resources produced in this study provide a foundation for generating and testing hypotheses regarding the molecular mechanisms underlying sand fly adaptations to xenobiotics.
Collapse
Affiliation(s)
- Jason Charamis
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Sofia Balaska
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vít Dvořák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Pavlos Pavlidis
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| |
Collapse
|
12
|
García-Suárez O, Tolsá-García MJ, Arana-Guardia R, Rodríguez-Valencia V, Talaga S, Pontifes PA, Machain-Williams C, Suzán G, Roiz D. Seasonal mosquito (Diptera: Culicidae) dynamics and the influence of environmental variables in a land use gradient from Yucatan, Mexico. Acta Trop 2024; 257:107275. [PMID: 38851624 DOI: 10.1016/j.actatropica.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Mosquito-borne diseases constitute a significant global impact on public and animal health. Climatic variables are recognized as major drivers in the mosquitoes' life history, principally rainfall and temperature, which directly influence mosquito abundance. Likewise, urbanization changes environmental conditions, and understanding how environmental variables and urbanization influence mosquito dynamics is crucial for the integrated management of mosquito-borne diseases, especially in the context of climate change. In this study, our aim was to observe the effect of temperature, rainfall, and the percentage of impervious surface on the abundance of mosquito species over a temporal scale of one complete year of fortnightly samplings, spanning from June 2021 to June 2022 in Yucatan, Mexico. We selected nine localities along an urbanization gradient (three natural, three rural, and three urban) from Mérida City to Reserva de la Biosfera Ría Celestún. Using BG-traps, mosquitoes were collected biweekly at each locality. Additionally, we estimated the percentage of impervious surface. Daily data of the maximum, mean and minimum temperatures, diurnal temperature range and rainfall were accumulated weekly. We calculated the accumulated quantities of temperatures and rainfall and lagged from one to four weeks before sampling for each locality. Generalized linear mixed models were then performed to study the influence of environmental variables and percentage of impervious surfaces on each of the 15 most abundant species. A total of 131,525 mosquitoes belonging to 11 genera and 49 species were sampled with BG-Sentinel traps baited with BG-lure and dry ice. The most frequently significative variable is the accumulated precipitation four weeks before the sampling. We observed a positive relationship between Cx. quinquefasciatus and Cx. thriambus with the diurnal temperature range. For Ae. aegypti, we observed a positive relationship with minimum temperature. Conversely, the percentage of impervious surface serves as a proxy of anthropogenic influence and helped us to distinguishing species exhibiting habitat preference for urban and rural environments, versus those preferring natural habitats. Our results characterize the species-specific effects of environmental variables (temperature, rainfall and impervious surface) on mosquito abundance.
Collapse
Affiliation(s)
- O García-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - M J Tolsá-García
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - R Arana-Guardia
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - V Rodríguez-Valencia
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - S Talaga
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité d'Entomologie Médicale, 23 Avenue Pasteur Guiana, Cayenne 97300, French
| | - P A Pontifes
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - C Machain-Williams
- Unidad Profesional Interdisciplinaria de Ingeniería Palenque (UPIIP), Instituto Politécnico Nacional, Carretera Federal 199, Nueva Esperanza, Palenque, Chiapas 29960, Mexico
| | - G Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - D Roiz
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
13
|
Rastegar M, Nazar E, Nasehi M, Sharafi S, Fakoor V, Shakeri MT. Bayesian estimation of the time-varying reproduction number for pulmonary tuberculosis in Iran: A registry-based study from 2018 to 2022 using new smear-positive cases. Infect Dis Model 2024; 9:963-974. [PMID: 38873589 PMCID: PMC11169078 DOI: 10.1016/j.idm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Tuberculosis (TB) is one of the most prevalent infectious diseases in the world, causing major public health problems in developing countries. The rate of TB incidence in Iran was estimated to be 13 per 100,000 in 2021. This study aimed to estimate the reproduction number and serial interval for pulmonary tuberculosis in Iran. Material and methods The present national historical cohort study was conducted from March 2018 to March 2022 based on data from the National Tuberculosis and Leprosy Registration Center of Iran's Ministry of Health and Medical Education (MOHME). The study included 30,762 tuberculosis cases and 16,165 new smear-positive pulmonary tuberculosis patients in Iran. We estimated the reproduction number of pulmonary tuberculosis in a Bayesian framework, which can incorporate uncertainty in estimating it. Statistical analyses were accomplished in R software. Results The mean age at diagnosis of patients was 52.3 ± 21.2 years, and most patients were in the 35-63 age group (37.1%). Among the data, 9121 (56.4%) cases were males, and 7044 (43.6%) were females. Among patients, 7459 (46.1%) had a delayed diagnosis between 1 and 3 months. Additionally, 3039 (18.8%) cases were non-Iranians, and 2978 (98%) were Afghans. The time-varying reproduction number for pulmonary tuberculosis disease was calculated at an average of 1.06 ± 0.05 (95% Crl 0.96-1.15). Conclusions In this study, the incidence and the time-varying reproduction number of pulmonary tuberculosis showed the same pattern. The mean of the time-varying reproduction number indicated that each infected person is causing at least one new infection over time, and the chain of transmission is not being disrupted.
Collapse
Affiliation(s)
- Maryam Rastegar
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eisa Nazar
- Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahshid Nasehi
- Centre for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Saeed Sharafi
- Centre for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahid Fakoor
- Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Taghi Shakeri
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Ojianwuna CC, Enwemiwe VN, Esiwo E, Mekunye F, Anidiobi A, Oborayiruvbe TE. Susceptibility status and synergistic activity of DDT and Lambda-cyhalothrin on Anopheles gambiae and Aedes aegypti in Delta State, Nigeria. PLoS One 2024; 19:e0309199. [PMID: 39208076 PMCID: PMC11361428 DOI: 10.1371/journal.pone.0309199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The detection of insecticide resistance in male mosquitoes has been treated with less importance in monitoring insecticide resistance spread in mosquitoes. There are no studies on the susceptibility and synergistic activity of DDT and lambda-cyhalothrin on male Anopheles gambiae and Aedes aegypti in Delta State, Nigeria. Even though studies have extensively reported resistance in female mosquitoes, the susceptibility of male mosquitoes to insecticide classes should be ascertained. In this study, we tested the susceptibility status and synergistic activity of DDT and Lambda-cyhalothrin on An. gambiae and Ae. aegypti in Delta State, Nigeria, in order to ascertain the level of resistance and knockdown. In addition, we modelled the knockdown time using Probit analysis model. WHO bioassay method was used to expose two days old adult mosquitoes to 4% DDT and 0.05% lambda-cyhalothrin. The results showed that An. gambiae mosquitoes exposed to DDT and lambda-cyhalothrin were confirmed resistant (61% and 53% respectively). However, pre-exposing the resistant mosquito population to piperonyl butoxide (4%) showed an increase in mortality to 90% (possible resistance) in DDT and 98% (susceptible) in lambda-cyhalothrin. Ae. aegypti mosquitoes exposed to DDT were susceptible (98%) while those exposed to lambda-cyhalothrin were confirmed resistant (87%) and this increased to complete mortality (100%) in PBO+lambda-cyhalothrin population. Furthermore, the results showed that the knockdown time (KDT50 and KDT95) in An. gambiae exposed to DDT was 39.5-71.2 minutes and 124.5-146.4 minutes respectively, while that of lambda-cyhalothrin was 33.0-81.8 minutes and 64.0-124.4 minutes respectively. In Ae. aegypti, KDT50 and KDT95 was 23.9 and 61.7minutes for DDT exposure whereas it was 5.6-15.3 minutes and 36.1-72.3 minutes for lambda-cyhalothrin exposure. It can be concluded that male An. gambiae mosquitoes exposed to the insecticides were resistant and the causes may be linked to certain resistant genes in the mosquitoes. The chances of transferring resistance are possible in wild species and molecular-based studies on the resistant gene in male mosquitoes as well as the tendencies of transfer are required to establish this focus.
Collapse
Affiliation(s)
- Chioma C. Ojianwuna
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Victor N. Enwemiwe
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Eric Esiwo
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Favour Mekunye
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Ann Anidiobi
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Treasure E. Oborayiruvbe
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| |
Collapse
|
15
|
Awal SK, Swu AK. Beyond the Bite: Detailed findings on Chikungunya and Dengue co-detection in Punjab, North India - clinical insights and diagnostic challenges. Braz J Microbiol 2024:10.1007/s42770-024-01493-w. [PMID: 39222222 DOI: 10.1007/s42770-024-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES The co-circulation of Chikungunya virus (CHIKV) and Dengue virus (DENV) in India poses a challenge for the diagnosing clinician, as they share similar clinical signs and symptoms and geographical distribution. Both arthropod-borne viruses are maintained in the environment by the Aedes mosquito, commonly found in tropical countries including India. Here we aim to investigate the clinical and laboratory aspects of Chikungunya/Dengue suspected cases in Punjab, India during 2021-2022, focusing on the differential diagnosis of Dengue. METHODS All suspected cases were submitted to serological differential diagnosis approaches to arboviruses like Chikungunya and Dengue. For the detection of Chikungunya Infection, CHIK IgM Capture ELISA was employed. Whereas, for Dengue NS1 antigen ELISA and IgM Capture ELISA assays were employed. RESULTS A total of 370 cases suspected of arboviral infection were investigated and 38.3% (142/370) were confirmed as Chikungunya. Chikungunya cases were slightly more prevalent in males (54%) and the most frequently affected age group was adults between 16 and 30 years old (45.7%). Polyarthralgia affected 79.5% of patients, 63.3% exhibited headache and 50% presented with retro-orbital pain. 28.9% (107/370) had serological evidence of DENV exposure by detection of specific anti-DENV IgM or NS1 and 9.1% (34/370) cases of co-detection of Chikungunya and Dengue were reported. Urban populations had a higher infection rate of co-detection of Chikungunya and Dengue than rural populations with 83% versus 17%, respectively. CONCLUSIONS Despite an initial clinical diagnosis of Dengue, most patients with fever and arthralgia were serologically confirmed as Chikungunya cases, with a notable prevalence of CHIKV/DENV co-detection. Strengthening differential diagnosis of circulating arboviruses is crucial for improving patient care and enhancing vector control and environmental management strategies.
Collapse
Affiliation(s)
- Sampreet Kaur Awal
- Department of Microbiology, Manipal Tata Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - Anato K Swu
- Consultant Microbiologist & Head of Laboratory Services Putuonuo Hospital, Kohima, Nagaland, India
| |
Collapse
|
16
|
Kayesh MEH, Nazneen H, Kohara M, Tsukiyama-Kohara K. An effective pan-serotype dengue vaccine and enhanced control strategies could help in reducing the severe dengue burden in Bangladesh-A perspective. Front Microbiol 2024; 15:1423044. [PMID: 39228383 PMCID: PMC11368799 DOI: 10.3389/fmicb.2024.1423044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Dengue is an important vector-borne disease occurring globally. Dengue virus (DENV) infection can result in a potentially life-threatening disease. To date, no DENV-specific antiviral treatment is available. Moreover, an equally effective pan-serotype dengue virus vaccine is not available. Recently, two DENV vaccines, Dengvaxia and Qdenga, were licensed for limited use. However, none of them have been approved in Bangladesh. DENV is transmitted by Aedes mosquitoes, and global warming caused by climate change favoring Aedes breeding plays an important role in increasing DENV infections in Bangladesh. Dengue is a serious public health concern in Bangladesh. In the year 2023, Bangladesh witnessed its largest dengue outbreak, with the highest number of dengue cases (n = 321,179) and dengue-related deaths (n = 1,705) in a single epidemic year. There is an increased risk of severe dengue in individuals with preexisting DENV-specific immunoglobulin G if the individuals become infected with different DENV serotypes. To date, vector control has remained the mainstay for controlling dengue; therefore, an immediate, strengthened, and effective vector control program is critical and should be regularly performed for controlling dengue outbreaks in Bangladesh. In addition, the use of DENV vaccine in curbing dengue epidemics in Bangladesh requires more consideration and judgment by the respective authority of Bangladesh. This review provides perspectives on the control and prevention of dengue outbreaks. We also discuss the challenges of DENV vaccine use to reduce dengue epidemics infection in Bangladesh.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Humayra Nazneen
- Department of Haematology, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
17
|
Cerda-Apresa D, Gutierrez-Rodriguez SM, Davila-Barboza JA, Lopez-Monroy B, Rodriguez-Sanchez IP, Saavedra-Rodriguez KL, Flores AE. Repurposing Insecticides for Mosquito Control: Evaluating Spiromesifen, a Lipid Synthesis Inhibitor against Aedes aegypti (L.). Trop Med Infect Dis 2024; 9:184. [PMID: 39195622 PMCID: PMC11360630 DOI: 10.3390/tropicalmed9080184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
The growing resistance of Aedes aegypti (L.) to conventional insecticides presents a major challenge in arbovirus control, necessitating the exploration of alternative insecticidal chemistries. Spiromesifen, derived from spirocyclic tetronic acids, is widely used against agricultural pests and is crucial in resistance management due to its unique lipid synthesis inhibition. This study evaluates the insecticidal activity of spiromesifen against temephos-resistant Ae. aegypti populations, focusing on larval body weight, volume, biochemical composition, and adult female reproductive potential. Spiromesifen demonstrated effective larvicidal activity, significantly reducing adult emergence. Resistance to spiromesifen was not observed, with resistance ratios (RR50, RR90) ranging from 0.36- to 3.31-fold. Larvae exposed to LC50 showed significant reductions in body weight and volume, and reduced carbohydrate, lipid, and protein contents. Enhanced catalase activity and malondialdehyde levels indicated increased oxidative stress and lipid peroxidation, highlighting its effects on lipid metabolism. Spiromesifen also exhibited sterilizing effects, significantly reducing fecundity and fertility in adult females, thereby impacting Ae. aegypti reproductive capacity. These findings highlight the potential of spiromesifen as a component of integrated vector management strategies, especially in regions with prevalent insecticide resistance in Ae. aegypti, serving as an effective larvicide and impacting adult reproductive outcomes.
Collapse
Affiliation(s)
- Daniela Cerda-Apresa
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Selene M. Gutierrez-Rodriguez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Jesus A. Davila-Barboza
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Beatriz Lopez-Monroy
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Iram P. Rodriguez-Sanchez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Karla L. Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Adriana E. Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| |
Collapse
|
18
|
Liang Y, Dai X. The global incidence and trends of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Front Microbiol 2024; 15:1458166. [PMID: 39206366 PMCID: PMC11349664 DOI: 10.3389/fmicb.2024.1458166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Flavivirus pose a continued threat to global health, yet their worldwide burden and trends remain poorly quantified. We aimed to evaluate the global, regional, and national incidence of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Methods Data on the number and rate of incidence for the three common flavivirus infection in 204 countries and territories were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021. The estimated annual percent change (EAPC) was calculated to quantify the temporal trend during 2011-2016, 2016-2019, and 2019-2021, respectively. Results In 2021, an estimated 59,220,428 individuals were infected globally, comprising 58,964,185 cases of dengue, 86,509 cases of yellow fever, and 169,734 cases of Zika virus infection. The age-standardized incidence rate (ASIR) of the three common flavivirus infections increased by an annual average of 5.08% (95% CI 4.12 to 6.05) globally from 2011 to 2016, whereas decreased by an annual average of -8.37% (95% CI -12.46 to -4.08) per year between 2016 to 2019. The ASIR remained stable during 2019-2021, with an average change of 0.69% (95% CI -0.96 to 2.37) per year globally for the three common flavivirus infections. Regionally, the burden of the three common flavivirus infections was primarily concentrated in those regions with middle income, such as South Asia, Southeast Asia, and Tropical Latin America. Additionally, at the country level, there was an inverted "U" relationship between the SDI level and the ASI. Notably, an increase in the average age of infected cases has been observed worldwide, particularly in higher-income regions. Conclusion Flavivirus infections are an expanding public health concern worldwide, with considerable regional and demographic variation in the incidence. Policymakers and healthcare providers must stay vigilant regarding the impact of COVID-19 and other environmental factors on the risk of flavivirus infection and be prepared for potential future outbreaks.
Collapse
Affiliation(s)
- Yuanhao Liang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Paz S. The potential of climatic suitability indicator for Leishmania transmission modelling in Europe: insights and suggested directions. THE LANCET REGIONAL HEALTH. EUROPE 2024; 43:100995. [PMID: 39045126 PMCID: PMC11263619 DOI: 10.1016/j.lanepe.2024.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Shlomit Paz
- School of Environmental Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
20
|
Hayes CC, Schal C. Review on the impacts of indoor vector control on domiciliary pests: good intentions challenged by harsh realities. Proc Biol Sci 2024; 291:20240609. [PMID: 39043243 PMCID: PMC11265923 DOI: 10.1098/rspb.2024.0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Arthropod vectored diseases have been a major impediment to societal advancements globally. Strategies to mitigate transmission of these diseases include preventative care (e.g. vaccination), primary treatment and most notably, the suppression of vectors in both indoor and outdoor spaces. The outcomes of indoor vector control (IVC) strategies, such as long-lasting insecticide-treated nets (LLINs) and indoor residual sprays (IRSs), are heavily influenced by individual and community-level perceptions and acceptance. These perceptions, and therefore product acceptance, are largely influenced by the successful suppression of non-target nuisance pests such as bed bugs and cockroaches. Adoption and consistent use of LLINs and IRS is responsible for immense reductions in the prevalence and incidence of malaria. However, recent observations suggest that failed control of indoor pests, leading to product distrust and abandonment, may threaten vector control programme success and further derail already slowed progress towards malaria elimination. We review the evidence of the relationship between IVC and nuisance pests and discuss the dearth of research on this relationship. We make the case that the ancillary control of indoor nuisance and public health pests needs to be considered in the development and implementation of new technologies for malaria elimination.
Collapse
Affiliation(s)
- Christopher C. Hayes
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC27695-7613, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC27695-7613, USA
| |
Collapse
|
21
|
Clare G, Kempen JH, Pavésio C. Infectious eye disease in the 21st century-an overview. Eye (Lond) 2024; 38:2014-2027. [PMID: 38355671 PMCID: PMC11269619 DOI: 10.1038/s41433-024-02966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Infectious diseases affecting the eye often cause unilateral or asymmetric visual loss in children and people of working age. This group of conditions includes viral, bacterial, fungal and parasitic diseases, both common and rare presentations which, in aggregate, may account for a significant portion of the global visual burden. Diagnosis is frequently challenging even in specialist centres, and many disease presentations are highly regional. In an age of globalisation, an understanding of the various modes of transmission and the geographic distribution of infections can be instructive to clinicians. The impact of eye infections on global disability is currently not sufficiently captured in global prevalence studies on visual impairment and blindness, which focus on bilateral disease in the over-50s. Moreover, in many cases it is hard to differentiate between infectious and immune-mediated diseases. Since infectious eye diseases can be preventable and frequently affect younger people, we argue that in future prevalence studies they should be considered as a separate category, including estimates of disability-adjusted life years (DALY) as a measure of overall disease burden. Numbers of ocular infections are uniquely affected by outbreaks as well as endemic transmission, and their control frequently relies on collaborative partnerships that go well beyond the remit of ophthalmology, encompassing domains as various as vaccination, antibiotic development, individual healthcare, vector control, mass drug administration, food supplementation, environmental and food hygiene, epidemiological mapping, and many more. Moreover, the anticipated impacts of global warming, conflict, food poverty, urbanisation and environmental degradation are likely to magnify their importance. While remote telemedicine can be a useful aide in the diagnosis of these conditions in resource-poor areas, enhanced global reporting networks and artificial intelligence systems may ultimately be required for disease surveillance and monitoring.
Collapse
Affiliation(s)
| | - John H Kempen
- Department of Ophthalmology and Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary; and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Sight for Souls, Bellevue, WA, USA
- MCM Eye Unit; MyungSung Christian Medical Center (MCM) Comprehensive Specialized Hospital and MyungSung Medical College, Addis Ababa, Ethiopia
- Department of Ophthalmology, Addis Ababa University School of Medicine, Addis Ababa, Ethiopia
| | | |
Collapse
|
22
|
Naidoo K, Oliver SV. Gene drives: an alternative approach to malaria control? Gene Ther 2024:10.1038/s41434-024-00468-8. [PMID: 39039203 DOI: 10.1038/s41434-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control by genetic modifications to reduce mosquito populations or create mosquitoes that are refractory to infection with pathogens are less developed. The advent of CRISPR-Cas9-mediated gene drives may advance this mechanism of control. In this review, use and progress of gene drives for vector control, particularly for malaria, is discussed. A brief history of population suppression and replacement gene drives in mosquitoes, rapid advancement of the field over the last decade and how genetic modification fits into the current scope of vector control are described. Mechanisms of alternative vector control by genetic modification to modulate mosquitoes' immune responses and anti-parasite effector molecules as part of a combinational strategy to combat malaria are considered. Finally, the limitations and ethics of using gene drives for mosquito control are discussed.
Collapse
Affiliation(s)
- Kubendran Naidoo
- SAMRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa.
- Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shüné V Oliver
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
23
|
da Costa MV, Rodrigues GD, de Lima HIL, Krolow TK, Krüger RF. Tabanidae (Diptera) collected on horses in a Cerrado biome in the state of Tocantins, Brazil. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e001924. [PMID: 39016348 PMCID: PMC11296682 DOI: 10.1590/s1984-29612024036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 07/18/2024]
Abstract
Tabanidae (Diptera), popularly known as horse flies, is an important vector group. This is the first study to ascertain the abundance and diversity of horse flies in horses at the cerrado biome of the state of Tocantins, Brazil. Collecting took place in typical Cerrado, and sampling occurred in the dry and rainy seasons. The horseflies were collected from horses using an entomological net. A total of 249 individuals were collected and spread over 25 species. The prevalent species were Stypommisa aripuana (25.8%) and Catachlorops rufescens (6.4%), in the dry period, and Fidena lissorhina (22.5%), Tabanus occidentalis var. dorsovittatus (10%) and Poeciloderas quadripunctatus (6.4%), in the rainy season. The results suggest that tabanids attack horses throughout the dry and rainy seasons, posing a constant threat to their health in the Cerrado of Tocantins.
Collapse
Affiliation(s)
- Mariana Vaz da Costa
- Programa de Pós-graduação em Biodiversidade, Ecologia e Conservação, Universidade Federal do Tocantins – UFT, Porto Nacional, TO, Brasil
| | - Gratchela Dutra Rodrigues
- Programa de Pós-graduação em Biodiversidade Animal, Universidade Federal de Pelotas – UFPel, Pelotas, RS, Brasil
| | - Helena Iris Leite de Lima
- Programa de Pós-graduação em Entomologia, Universidade Federal de Pelotas – UFPel, Pelotas, RS, Brasil
| | | | | |
Collapse
|
24
|
Hayes CC, Schal C. Repellency of N,N-diethyl-3-methylbenzamide (DEET) during host-seeking behavior of bed bugs (Hemiptera: Cimicidae) in binary choice olfactometer assays. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1016-1025. [PMID: 38839102 PMCID: PMC11239792 DOI: 10.1093/jme/tjae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The bed bug (Cimex lectularius L.) is one of the most prolific and burdensome indoor pests, and suppression of bed bug populations is a global priority. Understanding bed bug behavior is important to the development of new tactics for their control. Major gaps exist in our understanding of how host cues, insecticide resistance, and exposure modality impact the repellency of formulated products to bed bugs. Here, we validate the use of a binary choice olfactometer for assessing bed bug repellency behaviors using N,N-diethyl-3-methylbenzamide (DEET) in a dose-dependent manner, while considering the role of host-associated stimuli (with vs. without CO2), exposure modality (olfactory vs. olfactory and contact), and resistance status (susceptible vs. resistant) on repellency. We observed that host-seeking insecticide-susceptible bed bugs were repelled only when olfactorily exposed to high concentrations of DEET. However, exposure to DEET by contact repelled insecticide-susceptible bed bugs at 100-fold lower dose of DEET. Further, we demonstrate for the first time that insecticide-resistant bed bugs were significantly more responsive to DEET than susceptible bed bugs. We conclude that the 2-choice olfactometer is an effective tool for assessing the behavioral responses of bed bugs to spatial and contact repellents.
Collapse
Affiliation(s)
- Christopher C Hayes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
25
|
Roiz D, Pontifes PA, Jourdain F, Diagne C, Leroy B, Vaissière AC, Tolsá-García MJ, Salles JM, Simard F, Courchamp F. The rising global economic costs of invasive Aedes mosquitoes and Aedes-borne diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173054. [PMID: 38729373 DOI: 10.1016/j.scitotenv.2024.173054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Invasive Aedes aegypti and Aedes albopictus mosquitoes transmit viruses such as dengue, chikungunya and Zika, posing a huge public health burden as well as having a less well understood economic impact. We present a comprehensive, global-scale synthesis of studies reporting these economic costs, spanning 166 countries and territories over 45 years. The minimum cumulative reported cost estimate expressed in 2022 US$ was 94.7 billion, although this figure reflects considerable underreporting and underestimation. The analysis suggests a 14-fold increase in costs, with an average annual expenditure of US$ 3.1 billion, and a maximum of US$ 20.3 billion in 2013. Damage and losses were an order of magnitude higher than investment in management, with only a modest portion allocated to prevention. Effective control measures are urgently needed to safeguard global health and well-being, and to reduce the economic burden on human societies. This study fills a critical gap by addressing the increasing economic costs of Aedes and Aedes-borne diseases and offers insights to inform evidence-based policy.
Collapse
Affiliation(s)
- David Roiz
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico.
| | - Paulina A Pontifes
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico
| | - Fréderic Jourdain
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; Santé Publique France (French National Public Health Agency), Montpellier, France
| | - Christophe Diagne
- CBGP, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34988 Montferrier-sur-Lez, France
| | - Boris Leroy
- Unité Biologie des Organismes et Écosystèmes Aquatiques (BOREA, UMR 7208), Muséum national d'Histoire naturelle, Sorbonne Université, Université de Caen Normandie, CNRS, IRD, Université des Antilles, Paris, France
| | - Anne-Charlotte Vaissière
- CNRS, AgroParisTech, Écologie Systématique et Évolution, Université Paris-Saclay, Gif-sur-Yvette, 91190, France; ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, CNRS, Université de Rennes, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - María José Tolsá-García
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico
| | - Jean-Michel Salles
- CEE-M, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Franck Courchamp
- CNRS, AgroParisTech, Écologie Systématique et Évolution, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| |
Collapse
|
26
|
Boanyah GY, Koekemoer LL, Herren JK, Bukhari T. Effect of Microsporidia MB infection on the development and fitness of Anopheles arabiensis under different diet regimes. Parasit Vectors 2024; 17:294. [PMID: 38982472 PMCID: PMC11234536 DOI: 10.1186/s13071-024-06365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Microsporidia MB (MB) is a naturally occurring symbiont of Anopheles and has recently been identified as having a potential to inhibit the transmission of Plasmodium in mosquitoes. MB intensity is high in mosquito gonads, with no fitness consequences for the mosquito, and is linked to horizontal (sexual) and vertical (transovarial) transmission from one mosquito to another. Maximising MB intensity and transmission is important for maintaining heavily infected mosquito colonies for experiments and ultimately for mosquito releases. We have investigated how diet affects the MB-Anopheles arabiensis symbiosis phenotypes, such as larval development and mortality, adult size and survival, as well as MB intensity in both larvae and adults. METHODS F1 larvae of G0 females confirmed to be An. arabiensis and infected with MB were either combined (group lines [GLs]) or reared separately (isofemale lines [IMLs]) depending on the specific experiment. Four diet regimes (all mg/larva/day) were tested on F1 GLs: Tetramin 0.07, Tetramin 0.3, Gocat 0.3 and Cerelac 0.3. GLs reared on Tetramin 0.3 mg/larva/day were then fed either a 1% or 6% glucose diet to determine adult survival. Larvae of IMLs were fed Tetramin 0.07 mg and Tetramin 0.3 mg for larval experiments. The mosquitoes in the adult experiments with IMLs were reared on 1% or 6% glucose. RESULTS Amongst the four larval diet regimes tested on An. arabiensis development in the presence of MB, the fastest larval development highest adult emergence, largest body size of mosquitoes, highest prevalence and highest density of MB occurred in those fed Tetramin 0.3 mg/larva/day. Although adult MB-positive mosquitoes fed on 6% glucose survived longer than MB-negative mosquitoes, there was no such effect for those fed on the 1% glucose diet. Development time, wing length and adult survival were not significantly different between MB-infected and uninfected An. arabiensis fed on the Tetramin 0.07 mg/larva/day diet, demonstrating that the MB-conferred fitness advantage was diet-dependent. CONCLUSIONS Microsporidia MB does not adversely impact the development and fitness of An. arabiensis, even under limited dietary conditions. The diet regime of Tetramin 0.3 mg/larva/day + 6% glucose for adults is the superior diet for the mass rearing of MB-infected An. arabiensis mosquitoes. These results are important for rearing MB-infected An. arabiensis in the laboratory for experiments and the mass rearing required for field releases.
Collapse
Affiliation(s)
- Godfred Yaw Boanyah
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic & Parasitic Diseases, Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Tullu Bukhari
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
| |
Collapse
|
27
|
Kancharlapalli SJ, Brelsfoard CL. The impact of non-lethal doses of pyriproxyfen on male and female Aedes albopictus reproductive fitness. FRONTIERS IN INSECT SCIENCE 2024; 4:1430422. [PMID: 39015484 PMCID: PMC11250599 DOI: 10.3389/finsc.2024.1430422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
Introduction Control of the mosquito Aedes albopictus is confounded by its behavior due to females preferring to oviposition in small natural and artificial containers that are often difficult to remove or treat with insecticides. Autodissemination strategies utilizing highly potent insect growth regulators (IGRs) have emerged as promising tools for the control of this container-inhabiting species. The intended goal of autodissemination approaches is to use mosquitoes to self-deliver an IGR to these cryptic oviposition locations. Previous studies have focused on the efficacy of these approaches to impact natural populations, but little focus has been placed on the impacts on mosquitoes when exposed to non-lethal doses of IGRs similar to the levels they would be exposed to with autodissemination approaches. Methods In this study, the impact of non-lethal doses of pyriproxyfen (PPF) on the reproductive fitness of Ae. albopictus was investigated. Female and male Ae. albopictus mosquitoes were exposed to non-lethal doses of PPF and their fecundity and fertility were measured. To examine the impact of non-lethal doses of PPF, the expression of the ecdysone-regulated genes USP, HR3, and Vg, which are involved in vitellogenesis, was determined. Results Our results demonstrated a significant reduction in female fecundity and in the blood feeding and egg hatching rates upon exposure to non-lethal doses of PPF. Oocyte development was also delayed in PPF-treated females. Furthermore, exposure to non-lethal doses of PPF altered the expression of the genes involved in vitellogenesis, indicating disruption of hormonal regulation. Interestingly, PPF exposure also reduced the sperm production in males, suggesting a potential semi-sterilization effect. Discussion These findings suggest that non-lethal doses of PPF could enhance the efficacy of autodissemination approaches by impacting the reproductive fitness of both males and females. However, further research is needed to validate these laboratory findings in field settings and to assess their practical implications for vector control strategies.
Collapse
Affiliation(s)
| | - Corey L. Brelsfoard
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
28
|
Mandal U, Suman M, Dutta J, Dixit V, Suman DS. Surveillance of mosquitoes harnessing their buzzing sound. Acta Trop 2024; 255:107221. [PMID: 38642695 DOI: 10.1016/j.actatropica.2024.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Mosquito surveillance for vector-borne disease management relies on traditional morphological and molecular techniques, which are tedious, time-consuming, and costly. The present study describes a simple and efficient recording device that analyzes mosquito sound to estimate species composition, male-female ratio, fed-unfed status, and harmonic convergence interaction using fundamental frequency (F0) bandwidth, harmonics, amplitude, and combinations of these parameters. The study examined a total of 19 mosquito species, including 3 species of Aedes, 7 species of Anopheles, 1 species of Armigeres, 5 species of Culex, 1 species of Hulecoetomyia, and 2 species of Mansonia. Among them, the F0 ranges between 269.09 ± 2.96 Hz (Anopheles culiciformis) to 567.51 ± 3.82 Hz (Aedes vittatus) and the harmonic band (hb) number ranges from 5 (An. culiciformis) to 12 (Ae. albopictus). In terms of species identification, the success rate was 95.32 % with F0, 84.79 % with F0-bandwidth, 84.79 % with harmonic band (hb) diversity, and 49.7 % with amplitude (dB). The species identification rate has gone up to 96.50 % and 97.66 % with the ratio and multiplication of F0 and hb, respectively. This is because of the matrices that combine multiple sound attributes. Comparatively, combinations of the amplitude of the F0 and the higher harmonic frequency band were non-significant for species identification (60.82 %). The fed females have shown a considerable increase in F0 in comparison to the unfed. The males of all the species possessed significantly higher frequencies with respect to the females. Interestingly, the presence of male-female of Ae. vittatus together showed harmonic convergence between the 2nd and 3rd harmonic bands. In conclusion, the sound-based technology is simple, precise, and cost-effective and provides better resolution for species, sex, and fed-unfed status detection in comparison to conventional methods. Real-time surveillance of mosquitoes could potentially utilize this technology.
Collapse
Affiliation(s)
- Udita Mandal
- Estuarine Biology Regional Center (EBRC), Zoological Survey of India (ZSI), (Ministry of Environment, Forest, Climate Change GoI), Gopalpur-on-Sea, Ganjam, Odisha 761002, India; Lovely Professional University, Phagwara, Punjab 144402, India
| | - Maanas Suman
- Lovely Professional University, Phagwara, Punjab 144402, India
| | - Joydeep Dutta
- Lovely Professional University, Phagwara, Punjab 144402, India
| | - Vivek Dixit
- Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Devi Shankar Suman
- Estuarine Biology Regional Center (EBRC), Zoological Survey of India (ZSI), (Ministry of Environment, Forest, Climate Change GoI), Gopalpur-on-Sea, Ganjam, Odisha 761002, India.
| |
Collapse
|
29
|
Zhang WX, Zhou Y, Tembo E, Du J, Zhang SS, Wei TT, Liu YQ, Wang C, Zulu R, Hamainza B, Cui F, Lu QB. Association between indoor residual spraying and the malaria burden in Zambia and factors associated with IRS refusals: a case-control study in Vubwi District. Parasit Vectors 2024; 17:274. [PMID: 38937791 PMCID: PMC11210042 DOI: 10.1186/s13071-024-06328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) has been implemented to prevent malaria in Zambia for several decades, but its effectiveness has not been evaluated long term and in Vubwi District yet. This study aimed to assess the association between IRS and the malaria burden in Zambia and Vubwi District and to explore the factors associated with refusing IRS. METHODS A retrospective study was used to analyze the association between IRS and malaria incidence in Zambia in 2001-2020 and in Vubwi District in 2014-2020 by Spearman correlation analysis. A case-control study was used to explore the factors associated with IRS refusals by households in Vubwi District in 2021. A logistic regression model was performed to identify factors associated with IRS refusals. RESULTS The malaria incidence reached its peak (391/1000) in 2001 and dropped to the lowest (154/1000) in 2019. The annual percentage change in 2001-2003, 2003-2008, 2008-2014, 2014-2018 and 2018-2020 was - 6.54%, - 13.24%, 5.04%, - 10.28% and 18.61%, respectively. A significantly negative correlation between the percentage of population protected by the IRS against the total population in Zambia (coverage) and the average malaria incidence in the whole population was observed in 2005-2020 (r = - 0.685, P = 0.003) and 2005-2019 (r = - 0.818, P < 0.001). Among 264 participants (59 in the refuser group and 205 in the acceptor group), participants with specific occupations (self-employed: OR 0.089, 95% CI 0.022-0.364; gold panning: OR 0.113, 95% CI 0.022-0.574; housewives: OR 0.129, 95% CI 0.026-0.628 and farmers: OR 0.135, 95% CI 0.030-0.608 compared to employees) and no malaria case among household members (OR 0.167; 95% CI 0.071-0.394) had a lower risk of refusing IRS implementation, while those with a secondary education level (OR 3.690, 95% CI 1.245-10.989) had a higher risk of refusing IRS implementation compared to those who had never been to school. CONCLUSIONS Increasing coverage with IRS was associated with decreasing incidence of malaria in Zambia, though this was not observed in Vubwi District, possibly because of the special geographical location of Vubwi District. Interpersonal communication and targeted health education should be implemented at full scale to ensure household awareness and gain community trust.
Collapse
Affiliation(s)
- Wan-Xue Zhang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Yiguo Zhou
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Elijah Tembo
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Ministry of Health, Vubwi District, Lusaka, Zambia
| | - Juan Du
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Shan-Shan Zhang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Ting-Ting Wei
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Ya-Qiong Liu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Chao Wang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Reuben Zulu
- National Malaria Elimination Centre, Lusaka, Zambia
| | | | - Fuqiang Cui
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China.
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China.
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| |
Collapse
|
30
|
Rahman MM, Morshed MN, Adnan SM, Howlader MTH. Assessment of biorational larvicides and botanical oils against Culex quinquefasciatus Say (Diptera: Culicidae) larvae in laboratory conditions. Heliyon 2024; 10:e31453. [PMID: 38832263 PMCID: PMC11145214 DOI: 10.1016/j.heliyon.2024.e31453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Mosquitoes are known vectors that transmit deadly diseases to millions of people across the globe. The reliance on synthetic insecticides has been the sole way to combat mosquito vectors for decades. In recent years, the extensive use of conventional insecticides in mosquito suppression has led to significant pesticide resistance and serious human health hazards. In this light, investigating the potential application of biorational compounds for vector management has drawn significant attention. We, hereby, evaluated the efficacy of three microbial derivative biorational insecticides, abamectin, spinosad, and buprofezin, and two botanical oils, neem (Azadirachta indica A. Juss) and karanja oil (Pongamia pinnata Linn.) against the Culex quinquefasciatus under laboratory conditions. The fourth-instar C. quinquefasciatus larvae were exposed to different concentrations of the selected larvicides and lethality was estimated based on LC50 and LT50 with Probit analysis. All larvicides showed concentration-dependent significant effects on survival and demonstrated larvicidal activity against C. quinquefasciatus larvae. However, abamectin exerted the highest toxicity (LC50 = 10.36 ppm), exhibited statistically significant effects on C. quinquefasciatus larval mortality, followed by spinosad (LC50 = 21.32 ppm) and buprofezin (LC50 = 56.34 ppm). Abamectin caused larval mortality ranged from 30.00 to 53.33 % and 53.00-70.00 % at 06 and 07 h after treatment (HAT), respectively. In the case of botanicals, karanja oil (LC50 = 216.61 ppm) was more lethal (more than 1.5 times) and had a shorter lethal time than neem oil (LC50 = 330.93 ppm) and showed a classic pattern of relationship between concentrations and mortality over time. Overall, the present study highlighted the potential of deploying new generation biorational pesticides and botanicals in mosquito vector control programs.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Lecturer, Department of Entomology, EXIM Bank Agricultural University Bangladesh, Nawabganj-6300, Bangladesh
| | - Md Niaz Morshed
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Scientific Officer, Adaptive Research Division, Bangladesh Rice Research Institute (BRRI), Gazipur-1701, Bangladesh
| | - Saleh Mohammad Adnan
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Research Entomologist, New South Wales Department of Primary Industries, Australia
| | | |
Collapse
|
31
|
Omokungbe B, Centurión A, Stiehler S, Morr A, Vilcinskas A, Steinbrink A, Hardes K. Gene silencing in the aedine cell lines C6/36 and U4.4 using long double-stranded RNA. Parasit Vectors 2024; 17:255. [PMID: 38863029 PMCID: PMC11167938 DOI: 10.1186/s13071-024-06340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.
Collapse
Affiliation(s)
- Bodunrin Omokungbe
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Alejandra Centurión
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Sabrina Stiehler
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Antonia Morr
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany.
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
32
|
Taracena-Agarwal ML, Walter-Nuno AB, Bottino-Rojas V, Mejia APG, Xu K, Segal S, Dotson EM, Oliveira PL, Paiva-Silva GO. Juvenile Hormone as a contributing factor in establishing midgut microbiota for fecundity and fitness enhancement in adult female Aedes aegypti. Commun Biol 2024; 7:687. [PMID: 38839829 PMCID: PMC11153597 DOI: 10.1038/s42003-024-06334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the factors influencing mosquitoes' fecundity and longevity is important for designing better and more sustainable vector control strategies, as these parameters can impact their vectorial capacity. Here, we address how mating affects midgut growth in Aedes aegypti, what role Juvenile Hormone (JH) plays in this process, and how it impacts the mosquito's immune response and microbiota. Our findings reveal that mating and JH induce midgut growth. Additionally, the establishment of a native bacterial population in the midgut due to JH-dependent suppression of the immune response has important reproductive outcomes. Specific downregulation of AMPs with an increase in bacteria abundance in the gut results in increased egg counts and longer lifespans. Overall, these findings provide evidence of a cross-talk between JH response, gut epithelial tissue, cell cycle regulation, and the mechanisms governing the trade-offs between nutrition, immunity, and reproduction at the cellular level in the mosquito gut.
Collapse
Affiliation(s)
- Mabel L Taracena-Agarwal
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA.
| | - Ana Beatriz Walter-Nuno
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | | | - Kelsey Xu
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Steven Segal
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Ellen M Dotson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Gabriela O Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
| |
Collapse
|
33
|
Heneghan J, John DC, Bartsch SM, Piltch-Loeb R, Gilbert C, Kass D, Chin KL, Dibbs A, Shah TD, O'Shea KJ, Scannell SA, Martinez MF, Lee BY. A Systems Map of the Challenges of Climate Communication. JOURNAL OF HEALTH COMMUNICATION 2024; 29:77-88. [PMID: 38845202 PMCID: PMC11414781 DOI: 10.1080/10810730.2024.2361842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Over the past sixty years, scientists have been warning about climate change and its impacts on human health, but evidence suggests that many may not be heeding these concerns. This raises the question of whether new communication approaches are needed to overcome the unique challenges of communicating what people can do to slow or reverse climate change. To better elucidate the challenges of communicating about the links between human activity, climate change and its effects, and identify potential solutions, we developed a systems map of the factors and processes involved based on systems mapping sessions with climate change and communication experts. The systems map revealed 27 communication challenges such as "Limited information on how individual actions contribute to collective human activity," "Limited information on how present activity leads to long-term effects," and "Difficult to represent and communicate complex relationships." The systems map also revealed several themes among the identified challenges that exist in communicating about climate change, including a lack of available data and integrated databases, climate change disciplines working in silos, a need for a lexicon that is easily understood by the public, and the need for new communication strategies to describe processes that take time to manifest.
Collapse
Affiliation(s)
- Jessie Heneghan
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Danielle C John
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Pandemic Response Institute, New York City, New York, USA
| | - Sarah M Bartsch
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Rachael Piltch-Loeb
- Environmental, Occupational, and Geospatial Health Sciences, City University of New York Graduate School of Public Health and Health Policy, New York City, New York, USA
| | - Christine Gilbert
- School of Communication & Journalism, Stony Brook University, Stony Brook, New York, USA
- Alan Alda Center for Communicating Science, Stony Brook University, Stony Brook, New York, USA
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Dan Kass
- Vital Strategies, New York, New York, USA
| | - Kevin L Chin
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Alexis Dibbs
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Tej D Shah
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Kelly J O'Shea
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Sheryl A Scannell
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Marie F Martinez
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Bruce Y Lee
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
- Pandemic Response Institute, New York City, New York, USA
| |
Collapse
|
34
|
Facile V, Sabetti MC, Balboni A, Urbani L, Tirolo A, Magliocca M, Lunetta F, Dondi F, Battilani M. Detection of Anaplasma spp. and Ehrlichia spp. in dogs from a veterinary teaching hospital in Italy: a retrospective study 2012-2020. Vet Res Commun 2024; 48:1727-1740. [PMID: 38536514 PMCID: PMC11147850 DOI: 10.1007/s11259-024-10358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 06/04/2024]
Abstract
Anaplasma phagocytophilum, Anaplasma platys and Ehrlichia canis, responsible of diseases in dogs, are tick-borne pathogens with a proven or potential zoonotic role that have shown increasing prevalence worldwide. The aims of this retrospective study were to assess the frequency of Anaplasma spp. and Ehrlichia spp. exposure in dogs tested in a veterinary teaching hospital in Italy over a 9-year period, to compare the performance of the diagnostic tests used, to evaluate correlations with clinical data, and to genetically analyse the identified bacteria. During the study period, 1322 dogs tested by at least one of the rapid immunoenzymatic test, indirect immunofluorescent antibody test or end-point PCR assay for Anaplasmataceae detection were included. Dogs were tested if they had clinical signs or clinicopathological alteration or risk factors related to infection, and if they were potential blood-donor animals. Ninety-four of 1322 (7.1%) dogs tested positive for at least one pathogen: 53 (4.3%) for A. phagocytophilum, one (0.1%) for A. platys and 63 (4.6%) for E. canis. The number of dogs tested increased and the positivity rate progressively declined over the years. Comparison of tests showed a near-perfect agreement between serological tests and a poor agreement between PCR and indirect assays. A breed predisposition has been highlighted for A. phagocytophilum infection in hunting breed dogs and for E. canis infection in mixed breed dogs. Phylogeny confirmed potential zoonotic implications for A. phagocytophilum and showed no correlation of the identified bacteria with the geographical origin. Our study provides new insights into possible risk factors in dogs and evidenced discordant results between different tests, suggesting that a combination of serological and molecular assays is preferable for a correct diagnosis.
Collapse
Affiliation(s)
- Veronica Facile
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Maria Chiara Sabetti
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma, 43126, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Alessandro Tirolo
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma, 43126, Italy
| | - Martina Magliocca
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Francesco Lunetta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy.
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| |
Collapse
|
35
|
Rao P, Ninama J, Dudhat M, Goswami D, Rawal RM. Curcumin interferes with chitin synthesis in Aedes aegypti: a computational and experimental investigation. Mol Divers 2024; 28:1505-1529. [PMID: 37358753 DOI: 10.1007/s11030-023-10672-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Throughout history, vector-borne diseases have consistently posed significant challenges to human health. Among the strategies for vector control, chemical insecticides have seen widespread use since their inception. Nevertheless, their effectiveness is continually undermined by the steady growth of insecticide resistance within these vector populations. As such, the demand for more robust, efficient, and cost-effective natural insecticides has become increasingly pressing. One promising avenue of research focuses on chitin, a crucial structural component of mosquitoes' exoskeletons and other insects. Chitin not only provides protection and rigidity but also lends flexibility to the insect body. It undergoes substantial transformations during insect molting, a process known as ecdysis. Crucially, the production of chitin is facilitated by an enzyme known as chitin synthase, making it an attractive target for potential novel insecticides. Our recent study delved into the impacts of curcumin, a natural derivative of turmeric, on chitin synthesis and larval development in Aedes aegypti, a mosquito species known to transmit dengue and yellow fever. Our findings demonstrate that even sub-lethal amounts of curcumin can significantly reduce overall chitin content and disrupt the cuticle development in the 4th instar larvae of Aedes aegypti. Further to this, we utilized computational analyses to investigate how curcumin interacts with chitin synthase. Techniques such as molecular docking, pharmacophore feature mapping, and molecular dynamics (MD) simulations helped to illustrate that curcumin binds to the same site as polyoxin D, a recognized inhibitor of chitin synthase. These findings point to curcumin's potential as a natural, bioactive larvicide that targets chitin synthase in mosquitoes and potentially other insects.
Collapse
Affiliation(s)
- Priyashi Rao
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Jinal Ninama
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mansi Dudhat
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
36
|
Tia JPB, Tchicaya ESF, Zahouli JZB, Ouattara AF, Vavassori L, Assamoi JB, Small G, Koudou BG. Combined use of long-lasting insecticidal nets and Bacillus thuringiensis israelensis larviciding, a promising integrated approach against malaria transmission in northern Côte d'Ivoire. Malar J 2024; 23:168. [PMID: 38812003 PMCID: PMC11137964 DOI: 10.1186/s12936-024-04953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The recent reduction in malaria burden in Côte d'Ivoire is largely attributable to the use of long-lasting insecticidal nets (LLINs). However, this progress is threatened by insecticide resistance and behavioral changes in Anopheles gambiae sensu lato (s.l.) populations and residual malaria transmission, and complementary tools are required. Thus, this study aimed to assess the efficacy of the combined use of LLINs and Bacillus thuringiensis israelensis (Bti), in comparison with LLINs. METHODS This study was conducted in the health district of Korhogo, northern Côte d'Ivoire, within two study arms (LLIN + Bti arm and LLIN-only arm) from March 2019 to February 2020. In the LLIN + Bti arm, Anopheles larval habitats were treated every fortnight with Bti in addition to the use of LLINs. Mosquito larvae and adults were sampled and identified morphologically to genus and species using standard methods. The members of the An. gambiae complex were determined using a polymerase chain reaction technique. Plasmodium infection in An. gambiae s.l. and malaria incidence in local people was also assessed. RESULTS Overall, Anopheles spp. larval density was lower in the LLIN + Bti arm 0.61 [95% CI 0.41-0.81] larva/dip (l/dip) compared with the LLIN-only arm 3.97 [95% CI 3.56-4.38] l/dip (RR = 6.50; 95% CI 5.81-7.29; P < 0.001). The overall biting rate of An. gambiae s.l. was 0.59 [95% CI 0.43-0.75] biting/person/night in the LLIN + Bti arm against 2.97 [95% CI 2.02-3.93] biting/person/night in LLIN-only arm (P < 0.001). Anopheles gambiae s.l. was predominantly identified as An. gambiae sensu stricto (s.s.) (95.1%, n = 293), followed by Anopheles coluzzii (4.9%; n = 15). The human-blood index was 80.5% (n = 389) in study area. EIR was 1.36 infected bites/person/year (ib/p/y) in the LLIN + Bti arm against 47.71 ib/p/y in the LLIN-only arm. Malaria incidence dramatically declined from 291.8‰ (n = 765) to 111.4‰ (n = 292) in LLIN + Bti arm (P < 0.001). CONCLUSIONS The combined use of LLINs with Bti significantly reduced the incidence of malaria. The LLINs and Bti duo could be a promising integrated approach for effective vector control of An. gambiae for elimination of malaria.
Collapse
Affiliation(s)
- Jean-Philippe B Tia
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.
| | - Emile S F Tchicaya
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Péléforo Gon Coulibaly, Korhogo, Côte d'Ivoire
| | - Julien Z B Zahouli
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Centre d'Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Allassane F Ouattara
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Laura Vavassori
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | | | - Graham Small
- Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Benjamin G Koudou
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
37
|
Zhang Y, Wang D, Shi W, Zhou J, Xiang Y, Guan Y, Kong X, Liang W, Hu Y. Resistance to pyrethroids and the relationship between adult resistance and knockdown resistance (kdr) mutations in Aedes albopictus in dengue surveillance areas of Guizhou Province, China. Sci Rep 2024; 14:12216. [PMID: 38806622 PMCID: PMC11133427 DOI: 10.1038/s41598-024-63138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
The Ae. albopictus mosquito has gained global attention due to its ability to transmit viruses, including the dengue and zika. Mosquito control is the only effective way to manage dengue fever, as no effective treatments or vaccines are available. Insecticides are highly effective in controlling mosquito densities, which reduces the chances of virus transmission. However, Ae. albopictus has developed resistance to pyrethroids in several provinces in China. Pyrethroids target the voltage-gated sodium channel gene (VGSC), and mutations in this gene may result in knockdown resistance (kdr). Correlation studies between resistance and mutations can assist viruses in managing Ae. albopictus, which has not been studied in Guizhou province. Nine field populations of Ae. albopictus at the larval stage were collected from Guizhou Province in 2022 and reared to F1 to F2 generations. Resistance bioassays were conducted against permethrin, beta-cypermethrin, and deltamethrin for both larvae and adults of Ae. albopictus. Kdr mutations were characterized by PCR and sequencing. Additionally, the correlation between the kdr allele and pyrethroid resistance was analyzed. All nine populations of Ae. albopictus larvae and adults were found to be resistant to three pyrethroid insecticides. One kdr mutant allele at codon 1016, one at 1532 and three at 1534 were identified with frequencies of 13.86% (V1016G), 0.53% (I1532T), 58.02% (F1534S), 11.69% (F1534C), 0.06% (F1534L) and 0.99% (F1534P), respectively. Both V1016G and F1534S mutation mosquitoes were found in all populations. The kdr mutation F1534S was positively correlated with three pyrethroid resistance phenotypes (OR > 1, P < 0.05), V1016G with deltamethrin and beta-cypermethrin resistance (OR > 1, P < 0.05) and F1534C only with beta-cypermethrin resistance (OR > 1, P < 0.05). Current susceptibility status of wild populations of Ae. albopictus to insecticides and a higher frequency of kdr mutations from dengue-monitored areas in Guizhou Province are reported in this paper. Outcomes of this study can serve as data support for further research and development of effective insecticidal interventions against Ae. albopictus populations in Guizhou Province.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Vector Surveillance, Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, China
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Dan Wang
- Department of Vector Surveillance, Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, China
| | - Weifang Shi
- Department of Vector Surveillance, Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, China
| | - Jingzhu Zhou
- Department of Vector Surveillance, Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, China
| | - Yulong Xiang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yuwei Guan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xuexue Kong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Wenqin Liang
- Department of Vector Surveillance, Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, China.
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Yong Hu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
38
|
Odero JO, Nambunga IH, Masalu JP, Mkandawile G, Bwanary H, Hape EE, Njalambaha RM, Tungu P, Ngowo HS, Kaindoa EW, Mapua SA, Kahamba NF, Nelli L, Wondji C, Koekemoer LL, Weetman D, Ferguson HM, Baldini F, Okumu FO. Genetic markers associated with the widespread insecticide resistance in malaria vector Anopheles funestus populations across Tanzania. Parasit Vectors 2024; 17:230. [PMID: 38760849 PMCID: PMC11100202 DOI: 10.1186/s13071-024-06315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Anopheles funestus is a leading vector of malaria in most parts of East and Southern Africa, yet its ecology and responses to vector control remain poorly understood compared with other vectors such as Anopheles gambiae and Anopheles arabiensis. This study presents the first large-scale survey of the genetic and phenotypic expression of insecticide resistance in An. funestus populations in Tanzania. METHODS We performed insecticide susceptibility bioassays on An. funestus mosquitoes in nine regions with moderate-to-high malaria prevalence in Tanzania, followed by genotyping for resistance-associated mutations (CYP6P9a, CYP6P9b, L119F-GSTe2) and structural variants (SV4.3 kb, SV6.5 kb). Generalized linear models were used to assess relationships between genetic markers and phenotypic resistance. An interactive R Shiny tool was created to visualize the data and support evidence-based interventions. RESULTS Pyrethroid resistance was universal but reversible by piperonyl-butoxide (PBO). However, carbamate resistance was observed in only five of the nine districts, and dichloro-diphenyl-trichloroethane (DDT) resistance was found only in the Kilombero valley, south-eastern Tanzania. Conversely, there was universal susceptibility to the organophosphate pirimiphos-methyl in all sites. Genetic markers of resistance had distinct geographical patterns, with CYP6P9a-R and CYP6P9b-R alleles, and the SV6.5 kb structural variant absent or undetectable in the north-west but prevalent in all other sites, while SV4.3 kb was prevalent in the north-western and western regions but absent elsewhere. Emergent L119F-GSTe2, associated with deltamethrin resistance, was detected in heterozygous form in districts bordering Mozambique, Malawi and the Democratic Republic of Congo. The resistance landscape was most complex in western Tanzania, in Tanganyika district, where all five genetic markers were detected. There was a notable south-to-north spread of resistance genes, especially CYP6P9a-R, though this appears to be interrupted, possibly by the Rift Valley. CONCLUSIONS This study underscores the need to expand resistance monitoring to include An. funestus alongside other vector species, and to screen for both the genetic and phenotypic signatures of resistance. The findings can be visualized online via an interactive user interface and could inform data-driven decision-making for resistance management and vector control. Since this was the first large-scale survey of resistance in Tanzania's An. funestus, we recommend regular updates with greater geographical and temporal coverage.
Collapse
Affiliation(s)
- Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Ismail H Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - John P Masalu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Gustav Mkandawile
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Hamis Bwanary
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Emmanuel E Hape
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa
| | - Rukiyah M Njalambaha
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Patrick Tungu
- Amani Medical Research Centre, National Institute for Medical Research, Muheza, Tanzania
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Biotechnology, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Salum A Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Najat F Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Luca Nelli
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Charles Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé 5, Cameroon
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa
- Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Heather M Ferguson
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francesco Baldini
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Life Science and Biotechnology, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| |
Collapse
|
39
|
Fodjo BK, Tchicaya E, Yao LA, Edi C, Ouattara AF, Kouassi LB, Yokoly FN, Benjamin KG. Efficacy of Pirikool® 300 CS used for indoor residual spraying on three different substrates in semi-field experimental conditions. Malar J 2024; 23:148. [PMID: 38750468 PMCID: PMC11097411 DOI: 10.1186/s12936-024-04912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Vector control using insecticides is a key prevention strategy against malaria. Unfortunately, insecticide resistance in mosquitoes threatens all progress in malaria control. In the perspective of managing this resistance, new insecticide formulations are being tested to improve the effectiveness of vector control tools. METHODS The efficacy and residual activity of Pirikool® 300 CS was evaluated in comparison with Actellic® 300 CS in experimental huts at the Tiassalé experimental station on three substrates including cement, wood and mud. The mortality, blood-feeding inhibition, exiting behaviour and deterrency of free-flying wild mosquitoes was evaluated. Cone bioassay tests with susceptible and resistant mosquito strains were conducted in the huts to determine residual efficacy. RESULTS A total of 20,505 mosquitoes of which 10,979 (53%) wild female Anopheles gambiae were collected for 112 nights. Residual efficacy obtained from monthly cone bioassay was higher than 80% with the susceptible, laboratory-maintained An. gambiae Kisumu strain, from the first to the tenth study period on all three types of treated substrate for both Actellic® 300CS and Pirikool® 300CS. This residual efficacy on the wild Tiassalé strain was over 80% until the 4th month of study on Pirikool® 300CS S treated substrates. Overall 24-h mortalities of wild free-flying An. gambiae sensu lato which entered in the experimental huts over the 8-months trial on Pirikool® 300CS treatment was 50.5%, 75.9% and 52.7%, respectively, on cement wall, wood wall and mud wall. The positive reference product Actellic® 300CS treatment induced mortalities of 42.0%, 51.8% and 41.8% on cement wall, wood wall and mud wall. CONCLUSION Pirikool® 300CS has performed really well against resistant strains of An. gambiae using indoor residual spraying method in experimental huts. It could be an alternative product for indoor residual spraying in response to the vectors' resistance to insecticides.
Collapse
Affiliation(s)
- Behi Kouadio Fodjo
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire.
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.
| | - Emile Tchicaya
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
- Université Peleforo Gon Coulibaly (UPGC), Korhogo, Côte d'Ivoire
| | - Laurence Aya Yao
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
| | - Constant Edi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
| | - Alassane Foungoye Ouattara
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Loukou Bernard Kouassi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
| | - Firmain N'dri Yokoly
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Koudou Guibéhi Benjamin
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| |
Collapse
|
40
|
Ahmed AD, Kebede IA, Gebremeskel HF, Beriso TE. Epidemiological study on cattle trypanosomiasis and its vectors distributions in the Gambella regional state, southwestern Ethiopia. Res Vet Sci 2024; 171:105227. [PMID: 38513458 DOI: 10.1016/j.rvsc.2024.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
African animal trypanosomosis is a parasitic disease that causes significant economic losses in livestock due to anaemia, loss of condition, emaciation, and mortality. It is a key impediment to increased cattle output and productivity in Ethiopia. Cross-sectional entomological and parasitological studies were performed in the Gambella Region state of southwestern Ethiopia to estimate the prevalence of bovine trypanosomosis, apparent fly density, and potential risk factors. Blood samples were taken from 546 cattle for the parasitological study and analyzed using the buffy coat technique and stained with Giemsa. A total of 189 biconical (89) and NGU (100) traps were deployed in the specified districts for the entomological survey. The overall prevalence of trypanosomosis at the animal level was 5.5% (95% CI: 3.86-7.75). Trypanosoma vivax (50.0%), T. congolense (30.0%), T. brucei (20.0%), and no mixed trypanosome species were found. The prevalence of trypanosomosis was significantly (p < 0.05) affected by altitude, body score conditions, age, mean packed cell volume (PCV), and peasant associations, while sex and coat color had no significant effect. According to the entomological survey results, a total of 2303 flies were captured and identified as tsetse (Glossina pallidipes (5.3%)) and G. fuscipes fuscipes (3.3%) and other biting flies (Tabanus (60.1%) and Stomoxys (31.3%)). In the current study, the overall apparent density was 4.1 flies/trap/day. This study shows that trypanosomosis remains a significant cattle disease in the Gambella regional state even during the dry season. Thus, the findings support the necessity to improve vector and parasite control measures in the area.
Collapse
|
41
|
Chaves LF, Friberg MD, Pascual M, Calzada JE, Luckhart S, Bergmann LR. Community-serving research addressing climate change impacts on vector-borne diseases. Lancet Planet Health 2024; 8:e334-e341. [PMID: 38729673 PMCID: PMC11323095 DOI: 10.1016/s2542-5196(24)00049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024]
Abstract
The impacts of climate change on vector-borne diseases are uneven across human populations. This pattern reflects the effect of changing environments on the biology of transmission, which is also modulated by social and other inequities. These disparities are also linked to research outcomes that could be translated into tools for transmission reduction, but are not necessarily actionable in the communities where transmission occurs. The transmission of vector-borne diseases could be averted by developing research that is both hypothesis-driven and community-serving for populations affected by climate change, where local communities interact as equal partners with scientists, developing and implementing research projects with the aim of improving community health. In this Personal View, we share five principles that have guided our research practice to serve the needs of communities affected by vector-borne diseases.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Department of Environmental and Occupational Health, School of Public Health and Department of Geography, Indiana University, Bloomington, IN, USA; Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama.
| | - Mariel D Friberg
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA; Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Mercedes Pascual
- Department of Biology and Department of Environmental Studies, New York University, New York, NY, USA
| | - Jose E Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Luke R Bergmann
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Hoek Spaans R, Mkumbwa A, Nasoni P, Jones CM, Stanton MC. Impact of four years of annually repeated indoor residual spraying (IRS) with Actellic 300CS on routinely reported malaria cases in an agricultural setting in Malawi. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002264. [PMID: 38656965 PMCID: PMC11042720 DOI: 10.1371/journal.pgph.0002264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Indoor residual spraying (IRS) is one of the main vector control tools used in malaria prevention. This study evaluates IRS in the context of a privately run campaign conducted across a low-lying, irrigated, sugarcane estate from Illovo Sugar, in the Chikwawa district of Malawi. The effect of Actellic 300CS annual spraying over four years (2015-2018) was assessed using a negative binomial mixed effects model, in an area where pyrethroid resistance has previously been identified. With an unadjusted incidence rate ratio (IRR) of 0.38 (95% CI: 0.32-0.45) and an adjusted IRR of 0.50 (95% CI: 0.42-0.59), IRS has significantly contributed to a reduction in case incidence rates at Illovo, as compared to control clinics and time points outside of the six month protective period. This study shows how the consistency of a privately run IRS campaign can improve the health of employees. More research is needed on the duration of protection and optimal timing of IRS programmes.
Collapse
Affiliation(s)
- Remy Hoek Spaans
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | - Christopher M. Jones
- Illovo Sugar Malawi, Nchalo, Malawi
- Malawi-Liverpool-Wellcome Trust, Blantyre, Malawi
| | | |
Collapse
|
43
|
Rios T, Bomfim L, Pereira J, Miranda K, Majerowicz D, Pane A, Ramos I. Knockdown of Sec16 causes early lethality and defective deposition of the protein Rp30 in the eggshell of the vector Rhodnius prolixus. Front Cell Dev Biol 2024; 12:1332894. [PMID: 38711619 PMCID: PMC11070790 DOI: 10.3389/fcell.2024.1332894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
In nearly every species of insect, embryonic development takes place outside of the mother's body and is entirely dependent on the elements that the mother had previously stored within the eggs. It is well known that the follicle cells (FCs) synthesize the eggshell (chorion) components during the process of choriogenesis, the final step of oogenesis before fertilization. These cells have developed a specialization in the massive production of chorion proteins, which are essential for the protection and survival of the embryo. Here, we investigate the function of Sec16, a protein crucial for the endoplasmic reticulum (ER) to Golgi traffic, in the oocyte development in the insect Rhodnius prolixus. We discovered that Sec16 is strongly expressed in vitellogenic females' ovaries, particularly in the choriogenic oocyte and it is mainly associated with the FCs. Silencing of Sec16 by RNAi caused a sharp decline in oviposition rates, F1 viability, and longevity in adult females. In the FCs, genes involved in the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy were massively upregulated, whereas the mRNAs of Rp30 and Rp45-which code for the two major chorion proteins - were downregulated as a result of Sec16 silencing, indicating general proteostasis disturbance. As a result, the outer surface ultrastructure of Sec16-silenced chorions was altered, with decreased thickness, dityrosine crosslinking, sulfur signals, and lower amounts of the chorion protein Rp30. These findings collectively demonstrate the critical role Sec16 plays in the proper functioning of the FCs, which impacts the synthesis and deposition of particular components of the chorion as well as the overall reproduction of this vector.
Collapse
Affiliation(s)
- Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Bomfim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Attilio Pane
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Alanazi NAH, Alamri AA, Mashlawi AM, Almuzaini N, Mohamed G, Salama SA. Gas Chromatography-Mass Spectrometry Chemical Profiling of Commiphora myrrha Resin Extracts and Evaluation of Larvicidal, Antioxidant, and Cytotoxic Activities. Molecules 2024; 29:1778. [PMID: 38675598 PMCID: PMC11051918 DOI: 10.3390/molecules29081778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Plant extracts and essential oils can be alternative environmentally friendly agents to combat pathogenic microbes and malaria vectors. Myrrh is an aromatic oligum resin that is extracted from the stem of Commiphora spp. It is used in medicine as an insecticide, cytotoxic, and aromatic. The current study assessed the effect of Commiphora myrrha resin extracts on the biological potency of the third larval stage of Aedes aegypti, as well as its antioxidant and cytotoxic properties against two types of tumor cells (HepG-2 and Hela cell lines). It also used GC-MS to determine the chemical composition of the C. myrrha resin extracts. Fifty components from the extracted plant were tentatively identified using the GC-MS method, with curzerene (33.57%) typically listed as the primary ingredient, but other compounds also make up a significant portion of the mixture, including 1-Methoxy-3,4,5,7-tetramethylnaphthalene (15.50%), β-Elemene (5.80%), 2-Methoxyfuranodiene (5.42%), 2-Isopropyl-4,7-Dimethyl-1-Naphthol (4.71%), and germacrene B (4.35%). The resin extracts obtained from C. myrrha exhibited significant efficacy in DPPH antioxidant activity, as evidenced by an IC50 value of 26.86 mg/L and a radical scavenging activity percentage of 75.06%. The 50% methanol extract derived from C. myrrha resins exhibited heightened potential for anticancer activity. It demonstrated substantial cytotoxicity against HepG-2 and Hela cells, with IC50 values of 39.73 and 29.41 µg mL-1, respectively. Notably, the extract showed non-cytotoxic activity against WI-38 normal cells, with an IC50 value exceeding 100 µg mL-1. Moreover, the selectivity index for HepG-2 cancer cells (2.52) was lower compared to Hela cancer cells (3.40). Additionally, MeOH resin extracts were more efficient against the different growth stages of the mosquito A. aegypti, with lower LC50, LC90, and LC95 values of 251.83, 923.76, and 1293.35 mg/L, respectively. In comparison to untreated groups (1454 eggs/10 females), the average daily number of eggs deposited (424 eggs/L) decreases at higher doses (1000 mg/L). Finally, we advise continued study into the possible use of C. myrrha resins against additional pests that have medical and veterinary value, and novel chemicals from this extract should be isolated and purified for use in medicines.
Collapse
Affiliation(s)
- Naimah Asid H. Alanazi
- Department of Biology, College of Science, University of Hail, Hail 2240, Saudi Arabia; (N.A.H.A.); (N.A.)
| | - Abdullah A. Alamri
- Physical Sciences Department, College of Science, Jazan University, Jazan 45142, Saudi Arabia;
- Nanotechnology Research Unit, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Abadi M. Mashlawi
- Biology Department, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Nujud Almuzaini
- Department of Biology, College of Science, University of Hail, Hail 2240, Saudi Arabia; (N.A.H.A.); (N.A.)
| | - Gamal Mohamed
- Human Anatomy Department, Faculty of Medicine, Jazan University, Jazan 82817, Saudi Arabia;
| | - Salama A. Salama
- Biology Department, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
45
|
Patt JM, Makagon A, Norton B, Marvit M, Rutschman P, Neligeorge M, Salesin J. An optical system to detect, surveil, and kill flying insect vectors of human and crop pathogens. Sci Rep 2024; 14:8174. [PMID: 38589427 PMCID: PMC11002038 DOI: 10.1038/s41598-024-57804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sustainable and effective means to control flying insect vectors are critically needed, especially with widespread insecticide resistance and global climate change. Understanding and controlling vectors requires accurate information about their movement and activity, which is often lacking. The Photonic Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, and interdict vectors in flight. The PF examines an insect's outline, flight speed, and other flight parameters and if these match those of a targeted vector species, then a low-power, retina-safe laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of photonic energy, rather than chemicals, to control flying vectors.
Collapse
Affiliation(s)
- Joseph M Patt
- United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, 34945, USA.
| | - Arty Makagon
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Bryan Norton
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Maclen Marvit
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Phillip Rutschman
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Matt Neligeorge
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Jeremy Salesin
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| |
Collapse
|
46
|
Durrance-Bagale A, Hoe N, Lai J, Liew JWK, Clapham H, Howard N. Dengue vector control in high-income, city settings: A scoping review of approaches and methods. PLoS Negl Trop Dis 2024; 18:e0012081. [PMID: 38630673 PMCID: PMC11023197 DOI: 10.1371/journal.pntd.0012081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Dengue virus (DENV) is endemic to many parts of the world and has serious health and socioeconomic effects even in high-income countries, especially with rapid changes in the climate globally. We explored the literature on dengue vector control methods used in high-income, city settings and associations with dengue incidence, dengue prevalence, or mosquito vector densities. METHODS Studies of any design or year were included if they reported effects on human DENV infection or Aedes vector indices of dengue-specific vector control interventions in high-income, city settings. RESULTS Of 24 eligible sources, most reported research in the United States (n = 8) or Australia (n = 5). Biocontrol (n = 12) and chemical control (n = 13) were the most frequently discussed vector control methods. Only 6 sources reported data on the effectiveness of a given method in reducing human DENV incidence or prevalence, 2 described effects of larval and adult control on Aedes DENV positivity, 20 reported effectiveness in reducing vector density, using insecticide, larvicide, source reduction, auto-dissemination of pyriproxyfen and Wolbachia, and only 1 described effects on human-vector contact. CONCLUSIONS As most studies reported reductions in vector densities, rather than any effects on human DENV incidence or prevalence, we can draw no clear conclusions on which interventions might be most effective in reducing dengue in high-income, city areas. More research is needed linking evidence on the effects of different DENV vector control methods with dengue incidence/prevalence or mosquito vector densities in high-income, city settings as this is likely to differ from low-income settings. This is a significant evidence gap as climate changes increase the global reach of DENV. The importance of community involvement was clear in several studies, although it is impossible to tease out the relative contributions of this from other control methods used.
Collapse
Affiliation(s)
- Anna Durrance-Bagale
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- London School of Hygiene & Tropical Medicine, Department of Global Health & Development, London, United Kingdom
| | - Nirel Hoe
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jane Lai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Natasha Howard
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- London School of Hygiene & Tropical Medicine, Department of Global Health & Development, London, United Kingdom
| |
Collapse
|
47
|
Paz S. Climate change: A driver of increasing vector-borne disease transmission in non-endemic areas. PLoS Med 2024; 21:e1004382. [PMID: 38574178 PMCID: PMC11025906 DOI: 10.1371/journal.pmed.1004382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 04/18/2024] [Indexed: 04/06/2024] Open
Abstract
In this Perspective, Shlomit Paz discusses the link between climate change and transmission of vector-borne diseases in non-endemic areas.
Collapse
Affiliation(s)
- Shlomit Paz
- School of Environmental Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
48
|
van den Berg H, Bashar K, Chowdhury R, Bhatt RM, Gupta HP, Kumar A, Sabesan S, Shriram AN, Konuganti HKR, Sinha ATS, Sedaghat MM, Enayati A, Hassan HM, Najmee AS, Saleem S, Uranw S, Kusumawathie PHD, Perera D, Esmail MA, Carrington LB, Al-Eryani SM, Kumari R, Nagpal BN, Sultana S, Velayudhan R, Yadav RS. Perceived needs of disease vector control programs: A review and synthesis of (sub)national assessments from South Asia and the Middle East. PLoS Negl Trop Dis 2024; 18:e0011451. [PMID: 38630832 PMCID: PMC11075900 DOI: 10.1371/journal.pntd.0011451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 05/07/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Systems for disease vector control should be effective, efficient, and flexible to be able to tackle contemporary challenges and threats in the control and elimination of vector-borne diseases. As a priority activity towards the strengthening of vector control systems, it has been advocated that countries conduct a vector-control needs assessment. A review was carried out of the perceived needs for disease vector control programs among eleven countries and subnational states in South Asia and the Middle East. In each country or state, independent teams conducted vector control needs assessment with engagement of stakeholders. Important weaknesses were described for malaria, dengue and leishmaniases regarding vector surveillance, insecticide susceptibility testing, monitoring and evaluation of operations, entomological capacity and laboratory infrastructure. In addition, community mobilization and intersectoral collaboration showed important gaps. Countries and states expressed concern about insecticide resistance that could reduce the continued effectiveness of interventions, which demands improved monitoring. Moreover, attainment of disease elimination necessitates enhanced vector surveillance. Vector control needs assessment provided a useful planning tool for systematic strengthening of vector control systems. A limitation in conducting the vector control needs assessment was that it is time- and resource-intensive. To increase the feasibility and utility of national assessments, an abridged version of the guidance should focus on operationally relevant topics of the assessment. Similar reviews are needed in other regions with different contextual conditions.
Collapse
Affiliation(s)
- Henk van den Berg
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands
| | - Kabirul Bashar
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Rajib Chowdhury
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, and Department of Public Health, Independent University Bangladesh, Dhaka, Bangladesh
- World Health Organization Country Office for Bangladesh, Dhaka, Bangladesh
| | | | | | - Ashwani Kumar
- ICMR-Vector Control Research Centre, Puducherry, India
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | | | | | | | | | - Ahmadali Enayati
- School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | | | - Surendra Uranw
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Devika Perera
- Retired Regional Malaria Officer, Colombo, Sri Lanka
| | - Mohammed A. Esmail
- National Malaria Control Program, Ministry of Public Health & Population, Sana’a, Yemen
| | | | - Samira M. Al-Eryani
- Regional Office for the Eastern Mediterranean, World Health Organization, Cairo, Egypt
| | - Roop Kumari
- World Health Organization Country Office for India, New Delhi, India
| | - Bhupender N. Nagpal
- Regional Office for South-East Asia, World Health Organization, New Delhi, India
| | - Sabera Sultana
- World Health Organization Country Office for Bangladesh, Dhaka, Bangladesh
| | - Raman Velayudhan
- Veterinary Public Health, Vector Control and Environment Unit, Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Rajpal S. Yadav
- Veterinary Public Health, Vector Control and Environment Unit, Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
- Academy of Public Health Entomology, Udaipur, India
| |
Collapse
|
49
|
Radwan IT, Khater HF, Mohammed SH, Khalil A, Farghali MA, Mahmoud MG, Selim A, Manaa EA, Bagato N, Baz MM. Synthesis of eco-friendly layered double hydroxide and nanoemulsion for jasmine and peppermint oils and their larvicidal activities against Culex pipiens Linnaeus. Sci Rep 2024; 14:6884. [PMID: 38519561 PMCID: PMC10959945 DOI: 10.1038/s41598-024-56802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Mosquito-borne diseases represent a growing health challenge over time. Numerous potential phytochemicals are target-specific, biodegradable, and eco-friendly. The larvicidal activity of essential oils, a jasmine blend consisting of Jasmine oil and Azores jasmine (AJ) (Jasminum sambac and Jasminum azoricum) and peppermint (PP) Mentha arvensis and their nanoformulations against 2nd and 4th instar larvae of Culex pipiens, was evaluated after subjecting to different concentrations (62.5, 125, 250, 500, 1000, and 2000 ppm). Two forms of phase-different nanodelivery systems of layered double hydroxide LDH and oil/water nanoemulsions were formulated. The synthesized nanoemulsions showed particle sizes of 199 and 333 nm for AJ-NE and PP-NE, with a polydispersity index of 0.249 and 0.198, respectively. Chemical and physiochemical analysis of TEM, SEM, XRD, zeta potential, drug loading capacity, and drug release measurements were done to confirm the synthesis and loading efficiencies of essential oils' active ingredients. At high concentrations of AJ and PP nanoemulsions (2000 ppm), O/W nanoemulsions showed higher larval mortality than both LDH conjugates and crude oils. The mortality rate reached 100% for 2nd and 4th instar larvae. The relative toxicities revealed that PP nanoemulsion (MA-NE) was the most effective larvicide, followed by AJ nanoemulsion (AJ-NE). There was a significant increase in defensive enzymes, phenoloxidase, and α and β-esterase enzymes in the treated groups. After treatment of L4 with AJ, AJ-NE, PP, and PP-NE, the levels of phenoloxidase were 545.67, 731.00, 700.00, and 799.67 u/mg, respectively, compared with control 669.67 u/mg. The activity levels of α-esterase were 9.71, 10.32, 8.91, and 10.55 mg α-naphthol/min/mg protein, respectively. It could be concluded that the AJ-NE and PP-NE nanoformulations have promising larvicidal activity and could act as safe and effective alternatives to chemical insecticides.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Hanem F Khater
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Shaimaa H Mohammed
- Zoology and Entomology Department, Faculty of Science, Al-Azhar, University (Girls Branch), Cairo, Egypt
| | - Abdelwahab Khalil
- Entomology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni -Suef, 62521, Egypt
| | - Mohamed A Farghali
- Nanotechnology and Advanced Materials Central Lab (NAMCL), Regional Center for Food & Feed (RCFF), Agricultural Research Center (ARC), Giza, Egypt
| | - Mohammed G Mahmoud
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Eman A Manaa
- Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Noha Bagato
- Egyptian Petroleum Research Institute (EPRI), PO Box 11727, Nasr City, Cairo, Egypt
| | - Mohamed M Baz
- Departments of Entomology, Faculty of Science, Benha University, Benha, 13518, Egypt.
| |
Collapse
|
50
|
Wu-Chuang A, Rojas A, Bernal C, Cardozo F, Valenzuela A, Romero C, Mateos-Hernández L, Cabezas-Cruz A. Influence of microbiota-driven natural antibodies on dengue transmission. Front Immunol 2024; 15:1368599. [PMID: 38558802 PMCID: PMC10978734 DOI: 10.3389/fimmu.2024.1368599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Rojas
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Adriana Valenzuela
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cristina Romero
- Universidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo, Paraguay
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|