1
|
Zhang Y, Shen C, Zhu X, Leow CY, Ji M, Xu Z. Helminth-derived molecules: pathogenic and pharmacopeial roles. J Biomed Res 2024; 38:1-22. [PMID: 39314046 PMCID: PMC11629161 DOI: 10.7555/jbr.38.20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Parasitic helminths, taxonomically comprising trematodes, cestodes, and nematodes, are multicellular invertebrates widely disseminated in nature and have afflicted people continuously for a long time. Helminths play potent roles in the host through generating a variety of novel molecules, including some excretory/secretory products and others that are involved in intracellular material exchange and information transfer as well as the initiation or stimulation of immune and metabolic activation. The helminth-derived molecules have developed powerful and diverse immunosuppressive effects to achieve immune evasion for parasite survival and establish chronic infections. However, they also improve autoimmune and allergic inflammatory responses and promote metabolic homeostasis by promoting metabolic reprogramming of various immune functions, and then inducing alternatively activated macrophages, T helper 2 cells, and regulatory T cells-mediated immune responses. Therefore, a deeper exploration of the immunopathogenic mechanism and immune regulatory mechanisms of helminth-derived molecules exerted in the host is crucial for understanding host-helminth interactions as well as the development of therapeutic drugs for infectious or non-infectious diseases. In this review, we focus on the properties of helminth-derived molecules to give an overview of the most recent scientific knowledge about their pathogenic and pharmacopeial roles in immune-metabolic homeostasis.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
2
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Li X, Liu Y, Zou Y, Zhang J, Wang Y, Ding Y, Shi Z, Guo X, Zhang S, Yin H, Guo A, Wang S. Echinococcus multilocularis serpin regulates macrophage polarization and reduces gut dysbiosis in colitis. Infect Immun 2024; 92:e0023224. [PMID: 39037247 PMCID: PMC11320943 DOI: 10.1128/iai.00232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Helminths serve as principal regulators in modulating host immune responses, and their excretory-secretory proteins are recognized as potential therapeutic agents for inflammatory bowel disease. Nevertheless, our comprehension of the mechanisms underlying immunoregulation remains restricted. This investigation delves into the immunomodulatory role of a secretory protein serpin (Emu-serpin), within the larval stage of Echinococcus multilocularis. Our observations indicate that Emu-serpin effectively alleviates dextran sulfate sodium-induced colitis, yielding a substantial reduction in immunopathology and an augmentation of anti-inflammatory cytokines. Furthermore, this suppressive regulatory effect is concomitant with the reduction of gut microbiota dysbiosis linked to colitis, as evidenced by a marked impediment to the expansion of the pathobiont taxa Enterobacteriaceae. In vivo experiments demonstrate that Emu-serpin facilitates the expansion of M2 phenotype macrophages while concurrently diminishing M1 phenotype macrophages, alongside an elevation in anti-inflammatory cytokine levels. Subsequent in vitro investigations involving RAW264.7 and bone marrow macrophages reveal that Emu-serpin induces a conversion of M2 macrophage populations from a pro-inflammatory to an anti-inflammatory phenotype through direct inhibition. Adoptive transfer experiments reveal the peritoneal macrophages induced by Emu-serpin alleviate colitis and gut microbiota dysbiosis. In summary, these findings propose that Emu-serpin holds the potential to regulate macrophage polarization and maintain gut microbiota homeostasis in colitis, establishing it as a promising candidate for developing helminth therapy for preventing inflammatory diseases.
Collapse
Affiliation(s)
- Xiaolu Li
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yihui Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yang Zou
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Jiayun Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yugui Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yingying Ding
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Zhiqi Shi
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Xiaola Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Shaohua Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Aijiang Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Shuai Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Salang R, Phadungsil W, Geadkaew-Krenc A, Grams R. Investigation of a Serine Protease Inhibitor Active in the Infectious Stage of the Human Liver Fluke Opisthorchis viverrini. Pathogens 2024; 13:678. [PMID: 39204278 PMCID: PMC11356884 DOI: 10.3390/pathogens13080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Serine protease inhibitors (serpins) participate in the regulation of inflammation, blood coagulation, and complement activation in humans. This research aimed to identify and characterize such inhibitors of the human liver fluke Opisthorchis viverrini. Parasite proteins that might contribute to the modulation of host physiology are of particular interest, especially as chronic opisthorchiasis increases the risk of developing biliary cancer. BLAST was used to find hypothetical serpins predicted from the parasite genome data. RNA extraction and reverse transcriptase PCR were used to isolate a serpin cDNA and to determine developmental transcript abundance. The evolutionary relation to other trematode serpins was revealed by phylogenetic analysis. Recombinant serpin was expressed in Escherichia coli and used to test the immunoreactivity of human opisthorchiasis sera and the inhibition of human serine proteases. A substantial serpin family with high sequence divergence among the members was found in the genus Opisthorchis. A serpin, different from previously analyzed trematode serpins, was cloned. The transcript was only detected in metacercariae and newly excysted juveniles. Human opisthorchiasis sera showed statistically significant reactivity to recombinant serpin. The serpin caused moderate inhibition of thrombin and low inhibition of kallikrein and chymotrypsin. This parasite serpin could be further evaluated as a diagnostic tool for early infection. Kallikrein and thrombin are involved in fibrinolysis; therefore, further research should explore the effects of the parasite serpin on this process.
Collapse
Affiliation(s)
| | | | | | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand; (R.S.); (W.P.); (A.G.-K.)
| |
Collapse
|
5
|
O'Kelly E, Cwiklinski K, De Marco Verissimo C, Calvani NED, López Corrales J, Jewhurst H, Flaus A, Lalor R, Serrat J, Dalton JP, González-Miguel J. Moonlighting on the Fasciola hepatica tegument: Enolase, a glycolytic enzyme, interacts with the extracellular matrix and fibrinolytic system of the host. PLoS Negl Trop Dis 2024; 18:e0012069. [PMID: 39213442 PMCID: PMC11392403 DOI: 10.1371/journal.pntd.0012069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Enolase is a 47 kDa enzyme that functions within the glycolysis and gluconeogenesis pathways involved in the reversible conversion of D-2-phosphoglycerate (2PGA) to phosphoenolpyruvate (PEP). However, in the context of host-pathogen interactions, enolase from different species of parasites, fungi and bacteria have been shown to contribute to adhesion processes by binding to proteins of the host extracellular matrix (ECM), such as fibronectin (FN) or laminin (LM). In addition, enolase is a plasminogen (PLG)-binding protein and induces its activation to plasmin, the main protease of the host fibrinolytic system. These secondary 'moonlighting' functions of enolase are suggested to facilitate pathogen migration through host tissues. This study aims to uncover the moonlighting role of enolase from the parasite Fasciola hepatica, shedding light on its relevance to host-parasite interactions in fasciolosis, a global zoonotic disease of increasing concern. A purified recombinant form of F. hepatica enolase (rFhENO), functioning as an active homodimeric glycolytic enzyme of ~94 kDa, was successfully obtained, fulfilling its canonical role. Immunoblotting studies on adult worm extracts showed that the enzyme is present in the tegument and the excretory/secretory products of the parasite, which supports its key role at the host-parasite interface. Confocal immunolocalisation studies of the protein in newly excysted juveniles and adult worms also localised its expression within the parasite tegument. Finally, we showed by ELISA that rFhENO can act as a parasitic adhesin by binding host LM, but not FN. rFhENO also binds PLG and enhances its conversion to plasmin in the presence of the tissue-type and urokinase-type PLG activators (t-PA and u-PA). This moonlighting adhesion-like function of the glycolytic protein enolase could contribute to the mechanisms by which F. hepatica efficiently invades and migrates within its host and encourages further research efforts that are designed to impede this function by vaccination or drug design.
Collapse
Affiliation(s)
- Eve O'Kelly
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | | | | | - Jesús López Corrales
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Andrew Flaus
- Centre for Chromosome Biology, School of Natural Science, University of Galway, H91 TK33 Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - John P Dalton
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
6
|
Lee CN, Hall BA, Sanford L, Molehin AJ. Molecular Characterization and Functional Analysis of a Schistosoma mansoni Serine Protease Inhibitor, Smserpin-p46. Microorganisms 2024; 12:1164. [PMID: 38930546 PMCID: PMC11205507 DOI: 10.3390/microorganisms12061164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Serine protease inhibitors are a superfamily of proteins that regulate various physiological processes including fibrinolysis, inflammation and immune responses. In parasite systems, serpins are believed to play important roles in parasite colonization, inhibition of host immune serine proteases and penetration of defensive barriers. However, serpins are less well characterized in schistosomes. In this study, a Schistosoma mansoni serpin (Smserpin-p46) containing a 1360 base pair open reading frame, was cloned, expressed and functionally characterized. Bioinformatics analysis revealed that Smserpin-p46 contains the key residues, structural domains and motifs characteristic of inhibitory serpins. Gene expression profiling demonstrated stage-specific expression of Smserpin-p46 with the highest expression in adult male worms. Recombinant Smserpin-p46 (rSmserpin-p46) inhibited both human neutrophil cathepsin G and elastase, key serine proteases involved in NETosis, a program for the formation of neutrophil extracellular traps. Using specific rabbit antiserum, Smserpin-p46 was detected in soluble worm antigen preparation and was localized to the adult worm tegument. Cumulatively, the expression of Smserpin-p46 on the parasite tegument and its ability to inhibit proteases involved in NETosis highlights the importance of this serpin in parasite-host interactions and encourages its further investigation as a candidate vaccine antigen for the control of schistosomiasis.
Collapse
Affiliation(s)
- Christine N. Lee
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Brooke Ashlyn Hall
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Leah Sanford
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Adebayo J. Molehin
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| |
Collapse
|
7
|
Tanabe MB, Caravedo MA, Clinton White A, Cabada MM. An Update on the Pathogenesis of Fascioliasis: What Do We Know? Res Rep Trop Med 2024; 15:13-24. [PMID: 38371362 PMCID: PMC10874186 DOI: 10.2147/rrtm.s397138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/27/2024] [Indexed: 02/20/2024] Open
Abstract
Fasciola hepatica is a trematode parasite distributed worldwide. It is known to cause disease in mammals, producing significant economic loses to livestock industry and burden to human health. After ingestion, the parasites migrate through the liver and mature in the bile ducts. A better understanding of the parasite's immunopathogenesis would help to develop efficacious therapeutics and vaccines. Currently, much of our knowledge comes from in vitro and in vivo studies in animal models. Relatively little is known about the host-parasite interactions in humans. Here, we provide a narrative review of what is currently know about the pathogenesis and host immune responses to F. hepatica summarizing the evidence available from the multiple hosts that this parasite infects.
Collapse
Affiliation(s)
- Melinda B Tanabe
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria A Caravedo
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - A Clinton White
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
- Cusco Branch – Alexander von Humboldt Tropical Medicine Institute, Universidad Peruana Cayetano Heredia, Cusco, Peru
| | - Miguel M Cabada
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
- Cusco Branch – Alexander von Humboldt Tropical Medicine Institute, Universidad Peruana Cayetano Heredia, Cusco, Peru
| |
Collapse
|
8
|
Zhen JB, Wang RB, Zhang YH, Sun F, Lin LH, Li ZX, Han Y, Lu YX. Effects of Trichinella spiralis and its serine protease inhibitors on autophagy of host small intestinal cells. Infect Immun 2023; 91:e0010323. [PMID: 37874164 PMCID: PMC10652968 DOI: 10.1128/iai.00103-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 10/25/2023] Open
Abstract
In eukaryotes, autophagy is induced as an innate defense mechanism against pathogenic microorganisms by self-degradation. Although trichinellosis is a foodborne zoonotic disease, there are few reports on the interplay between Trichinella spiralissurvival strategies and autophagy-mediated host defense. Therefore, this study focused on the association between T. spiralis and autophagy of host small intestinal cells. In this study, the autophagy-related indexes of host small intestinal cells after T. spiralis infection were detected using transmission electron microscopy, hematoxylin and eosin staining, immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blotting. The results showed that autophagosomes and autolysosomes were formed in small intestinal cells, intestinal villi appeared edema, epithelial compactness was decreased, microtubule-associated protein 1A/1B-light chain 3B (LC3B) was expressed in lamina propria stromal cells of small intestine, and the expression of autophagy-related genes and proteins was changed significantly, indicating that T. spiralis induced autophagy of host small intestinal cells. Then, the effect of T. spiralis on autophagy-related pathways was explored by Western blotting. The results showed that the expression of autophagy-related pathway proteins was changed, indicating that T. spiralis regulated autophagy by affecting autophagy-related pathways. Finally, the roles of T. spiralis serine protease inhibitors (TsSPIs), such as T. spiralis Kazal-type SPI (TsKaSPI) and T. spiralis Serpin-type SPI (TsAdSPI), were further discussed in vitro and in vivo experiments. The results revealed that TsSPIs induced autophagy by influencing autophagy-related pathways, and TsAdSPI has more advantages. Overall, our results indicated that T. spiralis induced autophagy of host small intestinal cells, and its TsSPIs play an important role in enhancing autophagy flux by affecting autophagy-related pathways. These findings lay a foundation for further exploring the pathogenesis of intestinal dysfunction of host after T. spiralis infection, and also provide some experimental and theoretical basis for the prevention and treatment of trichinellosis.
Collapse
Affiliation(s)
- Jing-Bo Zhen
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Rui-Biao Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yu-Heng Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Feng Sun
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li-Hao Lin
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhi-Xin Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Han
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yi-Xin Lu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Wang Z, Jia X, Ma J, Zhang Y, Sun Y, Bo X. Global profiling of the proteome, phosphoproteome, and N-glycoproteome of protoscoleces and adult worms of Echinococcus granulosus. Front Vet Sci 2023; 10:1275486. [PMID: 38026665 PMCID: PMC10654641 DOI: 10.3389/fvets.2023.1275486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Cystic echinococcosis (CE) is a chronic zoonosis caused by infection with the metacestode of the Echinococcus granulosus. A unique characteristic of E. granulosus protoscolex (PSC) is their ability to develop bidirectionally into an adult worm in the definitive host or a secondary hydatid cyst in the intermediate host. Furthermore, cestodes have a complex life cycle involving different developmental stages; however, the mechanisms underlying this development remain unknown. Several studies have demonstrated that certain matrix proteins undergo posttranslational modifications (PTMs), including phosphorylation and glycosylation, which have important regulatory effects on their functional properties. Methods Systematic analyses of the proteome, phosphorylated modified proteome, and glycosylated modified proteome of protoscoleces (PSCs) and adult worms were performed using a proteomic strategy. Data are available via ProteomeXchange with identifier PXD043166. Results In total, 6,407 phosphorylation sites and 1757 proteins were quantified. Of these, 2032 phosphorylation sites and 770 proteins were upregulated, and 2,993 phosphorylation sites and 1,217 proteins were downregulated in adult worms compared to PSCs. A total of 612 N-glycosylation sites were identified in the 392 N-glycoproteins. Of these, 355 N-glycosylation sites and 212 N-glycoproteins were quantified. Of these, 90 N-glycosylation sites and 64 N-glycoproteins were upregulated, and 171 N-glycosylation sites and 126 N-glycoproteins were downregulated in adult worms compared to PSCs. GO enrichment analysis indicated that the differentially expressed phosphoproteins were mainly enriched in the regulation of oxidoreduction coenzyme metabolic processes, myelin sheath, and RNA helicase activity, whereas the differentially expressed N-glycoproteins were enriched in the cellular response to unfolded proteins, endoplasmic reticulum lumen, and nucleic acid binding. KEGG enrichment analysis indicated that the differently expressed phosphoproteins were mainly enriched in RNA transport, hypertrophic cardiomyopathy (HCM), glycolysis/gluconeogenesis, HIF-1 signaling pathway and pyruvate metabolism. Differentially expressed N-glycoproteins were enriched in the PI3K-Akt signaling pathway, ECM-receptor interactions, and protein processing in the endoplasmic reticulum. Discussion To our knowledge, this study is the first global phosphoproteomic and N-glycoproteomic analysis of E. granulosus, which provides valuable information on the expression characteristics of E. granulosus and provides a new perspective to elucidate the role of protein phosphorylation and N-glycosylation in the development of E. granulosus.
Collapse
Affiliation(s)
- Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xinyue Jia
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Ma
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yan Sun
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Cwiklinski K, McEvoy A, López Corrales J, Jewhurst H, Calvani NED, De Marco Verissimo C, Dorey AL, Keane OM, Dalton JP, Lalor R. Fasciola hepatica antioxidant and protease-inhibitor cocktail recombinant vaccines administered five times elicit potent and sustained immune responses in sheep but do not confer protection. Vet Parasitol 2023; 323:110049. [PMID: 37826973 DOI: 10.1016/j.vetpar.2023.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Our laboratory's vaccine development strategy against the livestock parasite Fasciola hepatica centres around disrupting key biological processes by combining groups of antigens with similar/complementary functional actions into a single vaccine cocktail. In this study the focus was on antioxidant protein vaccines and a protease inhibitor vaccine aimed at disrupting the parasite's ability to defend against oxidative stress and protease-inhibitor balance, respectively. Two combinations of recombinantly expressed antioxidants were assessed, namely peroxiredoxin (rFhPrx), thioredoxin (rFhTrx) and thioredoxin-glutathione reductase (rFhTGR) (Group 1) and rFhPrx, rFhTrx, and two superoxide dismutases (rFhSOD1 and rFhSOD3) (Group 2). The protease inhibitor vaccine cocktail included representatives of each of the key secreted protease inhibitor families, namely a Kunitz-type inhibitor (rFhKT1), a serpin (rFhSrp1) and a stefin, (rFhStf1) (Group 3). The vaccine combinations were formulated in adjuvant Montanide 61VG administered at five timepoints; two before experimental challenge with 60 F. hepatica metacercariae and three after infection. The vaccine combinations did not reduce the liver fluke burden, and only Group 2 displayed a marginal reduction in egg viability (8.2%). Despite previous results showing an effect of liver fluke vaccines on overall weight gain in infected animals, no significant (P value >0.05) impact on weight gain was observed in this study. Antibodies were elicited against all the vaccine antigens within the cocktails and were maintained at high levels to the end of the trial, due to our strategy of continuing vaccine administration after infection. However, these responses were not boosted by the challenge F. hepatica infection. A comparative analysis with previous vaccine data using a protease inhibitor vaccine found no repeat of the promising outcomes associated with this vaccine, indicating that the addition of rFhSrp1 to the vaccine cocktail did not improve vaccine efficacy. Assessment of liver pathology across the two trials using a modified liver enzyme score (glutamate dehydrogenase to platelet ratio) at eight weeks post infection suggests an association with liver fluke burden above 45 flukes, which could be used to predict liver pathology in future trials. The results reported in this study highlight the ambiguousness in liver fluke vaccine development and the difficulty in obtaining consistent and repeatable protection. This work stresses the need for repetition of trials and the use of sufficiently sized groups to assess vaccine efficacy with adequate statistical power.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK.
| | - Amanda McEvoy
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Amber Louise Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Orla M Keane
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
11
|
Liu JQ, Wang J, Huang XL, Liang TY, Zhou X, Mo ST, Xie HX, Yang KJ, Zhu GZ, Su H, Liao XW, Long LL, Peng T. A radiomics model based on magnetic resonance imaging to predict cytokeratin 7/19 expression and liver fluke infection of hepatocellular carcinoma. Sci Rep 2023; 13:17553. [PMID: 37845287 PMCID: PMC10579381 DOI: 10.1038/s41598-023-44773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. HCC with liver fluke infection could harbor unique biological behaviors. This study was aimed at investigating radiomics features of HCC with liver fluke infection and establishing a model to predict the expression of cytokeratin 7 (CK7) and cytokeratin 19 (CK19) as well as prognosis at the same time. A total of 134 HCC patients were included. Gadoxetic acid-enhanced magnetic resonance imaging (MRI) images of all patients were acquired. Radiomics features of the tumor were extracted and then data dimensionality was reduced. The radiomics model was established to predict liver fluke infection and the radiomics score (Radscore) was calculated. There were 11 features in the four-phase combined model. The efficiency of the combined model increased significantly compared to each single-phase MRI model. Radscore was an independent predictor of liver fluke infection. It was also significantly different between different expression of CK7/ CK19. Meanwhile, liver fluke infection was associated with CK7/CK19 expression. A cut-off value was set up and all patients were divided into high risk and low risk groups of CK7/CK19 positive expression. Radscore was also an independent predictor of these two biomarkers. Overall survival (OS) and recurrence free survival (RFS) of negative liver fluke infection group were significantly better than the positive group. OS and RFS of negative CK7 and CK19 expression were also better, though not significantly. Positive liver fluke infection and CK19 expression prediction groups harbored significantly worse OS and RFS, survival of positive CK7 expression prediction was unsatisfying as well. A radiomics model was established to predict liver fluke infection among HCC patients. This model could also predict CK7 and CK19 expression. OS and RFS could be foreseen by this model at the same time.
Collapse
Affiliation(s)
- Jun-Qi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jing Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xia-Ling Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tian-Yi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shu-Tian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hai-Xiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ke-Jian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li-Ling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Rd. 6#, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Key Laboratory of Early Prevention & Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
12
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
13
|
Ran M, Shi Y, Li B, Xiang H, Tao M, Meng X, Li T, Li C, Bao J, Pan G, Zhou Z. Genome-Wide Characterization and Comparative Genomic Analysis of the Serpin Gene Family in Microsporidian Nosema bombycis. Int J Mol Sci 2022; 24:ijms24010550. [PMID: 36613990 PMCID: PMC9820262 DOI: 10.3390/ijms24010550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Microsporidia are ubiquitous in the environment, infecting almost all invertebrates, vertebrates, and some protists. The microsporidian Nosema bombycis causes silkworms pébrine disease and leads to huge economic losses. Parasite secreted proteins play vital roles in pathogen-host interactions. Serine protease inhibitors (serpins), belonging to the largest and most broadly distributed protease inhibitor superfamily, are also found in Microsporidia. In this study, we characterized 19 serpins (NbSPNs) in N. bombycis; eight of them were predicted with signal peptides. All NbSPN proteins contain a typical conserved serpin (PF00079) domain. The comparative genomic analysis revealed that microsporidia serpins were only found in the genus Nosema. In addition to N. bombycis, a total of 34 serpins were identified in another six species of Nosema including N. antheraeae (11), N. granulosis (8), Nosema sp. YNPr (3), Nosema sp. PM-1 (3), N. apis (4), and N. ceranae (5). Serpin gene duplications in tandem obviously occurred in Nosema antheranae. Notably, the NbSPNs were phylogenetically clustered with serpins from the Chordopoxvirinae, the subfamily of Poxvirus. All 19 NbSPN transcripts were detected in the infected midgut and fat body, while 19 NbSPN genes except for NbSPN12 were found in the transcriptome of the infected silkworm embryonic cell line BmE-SWU1. Our work paves the way for further study of serpin function in microsporidia.
Collapse
Affiliation(s)
- Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yulian Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Boning Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Meilin Tao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Correspondence: (G.P.); (Z.Z.)
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Correspondence: (G.P.); (Z.Z.)
| |
Collapse
|
14
|
Cwiklinski K, Dalton JP. Omics tools enabling vaccine discovery against fasciolosis. Trends Parasitol 2022; 38:1068-1079. [PMID: 36270885 DOI: 10.1016/j.pt.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
In the past decade significant advances in our understanding of liver fluke biology have been made through in-depth interrogation and analysis of evolving Fasciola hepatica and Fasciola gigantica omics datasets. This information is crucial for developing novel control strategies, particularly vaccines necessitated by the global spread of anthelmintic resistance. Distilling them down to a manageable number of testable vaccines requires combined rational, empirical, and collaborative approaches. Despite a lack of clear outstanding vaccine candidate(s), we must continue to identify salient parasite-host interacting molecules, likely in the secretory products, tegument, or extracellular vesicles, and perform robust trials especially in livestock, using present and emerging vaccinology technologies to discover that elusive liver fluke vaccine. Omics tools are bringing this prospect ever closer.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health (MPL), Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
15
|
Exploiting Comparative Omics to Understand the Pathogenic and Virulence-Associated Protease: Anti-Protease Relationships in the Zoonotic Parasites Fasciola hepatica and Fasciola gigantica. Genes (Basel) 2022; 13:genes13101854. [PMID: 36292739 PMCID: PMC9601652 DOI: 10.3390/genes13101854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The helminth parasites, Fasciola hepatica and Fasciola gigantica, are the causative agents of fasciolosis, a global and economically important disease of people and their livestock. Proteases are pivotal to an array of biological processes related to parasitism (development, feeding, immune evasion, virulence) and therefore their action requires strict regulation by parasite anti-proteases (protease inhibitors). By interrogating the current publicly available Fasciola spp. large sequencing datasets, including several genome assemblies and life cycle stage-specific transcriptome and proteome datasets, we reveal the complex profile and structure of proteases and anti-proteases families operating at various stages of the parasite's life cycle. Moreover, we have discovered distinct profiles of peptidases and their cognate inhibitors expressed by the parasite stages in the intermediate snail host, reflecting the different environmental niches in which they move, develop and extract nutrients. Comparative genomics revealed a similar cohort of peptidase inhibitors in F. hepatica and F. gigantica but a surprisingly reduced number of cathepsin peptidases genes in the F. gigantica genome assemblies. Chromosomal location of the F. gigantica genes provides new insights into the evolution of these gene families, and critical data for the future analysis and interrogation of Fasciola spp. hybrids spreading throughout the Asian and African continents.
Collapse
|
16
|
Two Distinct Superoxidase Dismutases (SOD) Secreted by the Helminth Parasite Fasciola hepatica Play Roles in Defence against Metabolic and Host Immune Cell-Derived Reactive Oxygen Species (ROS) during Growth and Development. Antioxidants (Basel) 2022; 11:antiox11101968. [PMID: 36290692 PMCID: PMC9598480 DOI: 10.3390/antiox11101968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The antioxidant superoxide dismutase (SOD) catalyses the dismutation of superoxide, a dangerous oxygen free radical, into hydrogen peroxide and molecular oxygen. Superoxide generation during the oxidative burst of the innate immune system is considered a key component of the host defence against invading pathogens. We demonstrate the presence and differential expression of two SODs in Fasciola hepatica, a leaderless cytosolic (FhSOD1) and an extracellular (FhSOD3) form containing a secretory signal peptide, suggesting that the parasites exploit these enzymes in distinct ways to counteract reactive oxygen species (ROS) produced by cellular metabolism and immune defences. Both enzymes are highly expressed by the infective newly excysted juvenile (NEJ) stages and are found in abundance in their excretory–secretory products (ES), but only FhSOD1 is present in adult ES, suggesting that the antioxidants have different functions and pathways of secretion, and are under separate temporal expression control during the migration, growth, and development of the parasite. Functionally, the recombinant FhSOD1 and FhSOD3 exhibit similar activity against superoxide to their mammalian counterparts. Confocal immuno-localisation studies demonstrated the presence of FhSOD1 and FhSOD3 on the NEJ tegument and parenchyma, supporting our suggestion that these enzymes are secreted during host invasion to protect the parasites from the harmful oxidative bursts produced by the activated innate immune response. By producing superoxide enzymatically in vitro, we were able to demonstrate robust killing of F. hepatica NEJ within 24 h post-excystment, and that the lethal effect of ROS was nullified with the addition of SOD and catalase (the antioxidant enzyme responsible for the dismutation of hydrogen peroxide, a by-product of the SOD reaction). This study further elucidates the mechanism by which F. hepatica protects against ROS derived from cellular metabolism and how the parasite could mitigate damage caused by the host’s immune response to benefit its survival.
Collapse
|
17
|
Becerro-Recio D, Serrat J, López-García M, Molina-Hernández V, Pérez-Arévalo J, Martínez-Moreno Á, Sotillo J, Simón F, González-Miguel J, Siles-Lucas M. Study of the migration of Fasciola hepatica juveniles across the intestinal barrier of the host by quantitative proteomics in an ex vivo model. PLoS Negl Trop Dis 2022; 16:e0010766. [PMID: 36112664 PMCID: PMC9518905 DOI: 10.1371/journal.pntd.0010766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/28/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Fasciola hepatica is a trematode parasite that infects animals and humans causing fasciolosis, a worldwide-distributed disease responsible for important economic losses and health problems. This disease is of growing public health concern since parasite isolates resistant to the current treatment (triclabendazole) have increasingly been described. F. hepatica infects its vertebrate host after ingestion of the encysted parasite (metacercariae), which are found in the water or attached to plants. Upon ingestion, newly excysted juveniles of F. hepatica (FhNEJ) emerge in the intestinal lumen and cross the intestinal barrier, reach the peritoneum and migrate to the biliary ducts, where adult worms fully develop. Despite the efforts made to develop new therapeutic and preventive tools, to date, protection against F. hepatica obtained in different animal models is far from optimal. Early events of host-FhNEJ interactions are of paramount importance for the infection progress in fasciolosis, especially those occurring at the host-parasite interface. Nevertheless, studies of FhNEJ responses to the changing host environment encountered during migration across host tissues are still scarce. Here, we set-up an ex vivo model coupled with quantitative SWATH-MS proteomics to study early host-parasite interaction events in fasciolosis. After comparing tegument and somatic fractions from control parasites and FhNEJ that managed to cross a mouse intestinal section ex vivo, a set of parasite proteins whose expression was statistically different were found. These included upregulation of cathepsins L3 and L4, proteolytic inhibitor Fh serpin 2, and a number of molecules linked with nutrient uptake and metabolism, including histone H4, H2A and H2B, low density lipoprotein receptor, tetraspanin, fatty acid binding protein a and glutathione-S-transferase. Downregulated proteins in FhNEJ after gut passage were more numerous than the upregulated ones, and included the heath shock proteins HSP90 and alpha crystallin, amongst others. This study brings new insights into early host-parasite interactions in fasciolosis and sheds light on the proteomic changes in FhNEJ triggered upon excystment and intestinal wall crossing, which could serve to define new targets for the prevention and treatment of this widespread parasitic disease. Fasciolosis caused by the helminth parasite Fasciola hepatica is a serious health and economic problem worldwide. Treatment and prevention of this disease pose several drawbacks that have so far not been solved. The definition of suitable parasite molecular targets to overcome such drawbacks should be based on thoroughly deciphering host-parasite interactions, and in this regard most studies have focused on the adult stages of F. hepatica. Nevertheless, in this context, the study of the transient juvenile stages of this parasite could be of higher utility due to the importance of early interactions with the host for parasite migration and the successful establishment of infection. In this work, we set-up an ex vivo model and performed a quantitative proteomics approach to study the changes in F. hepatica juveniles upon gut passage. We found that the parasite tegument and somatic compartments experienced deep changes in their composition and showed that the host triggers the expression of specific molecules that are important for parasite migration and survival at this stage. The molecules described here could serve to better understand host-parasite interactions and to define new targets against fasciolosis.
Collapse
Affiliation(s)
- David Becerro-Recio
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Judit Serrat
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Marta López-García
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - José Pérez-Arévalo
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Álvaro Martínez-Moreno
- Departamento de Sanidad Animal (Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier González-Miguel
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Mar Siles-Lucas
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
18
|
De Marco Verissimo C, Jewhurst HL, Dobó J, Gál P, Dalton JP, Cwiklinski K. Fasciola hepatica is refractory to complement killing by preventing attachment of mannose binding lectin (MBL) and inhibiting MBL-associated serine proteases (MASPs) with serpins. PLoS Pathog 2022; 18:e1010226. [PMID: 35007288 PMCID: PMC8782513 DOI: 10.1371/journal.ppat.1010226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/21/2022] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heather L. Jewhurst
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - John P. Dalton
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
19
|
Lalor R, Cwiklinski K, Calvani NED, Dorey A, Hamon S, Corrales JL, Dalton JP, De Marco Verissimo C. Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola Gigantica that cause the zoonosis Fasciolosis. Virulence 2021; 12:2839-2867. [PMID: 34696693 PMCID: PMC8632118 DOI: 10.1080/21505594.2021.1996520] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite’s excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke’s survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.
Collapse
Affiliation(s)
- Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
20
|
López Corrales J, Cwiklinski K, De Marco Verissimo C, Dorey A, Lalor R, Jewhurst H, McEvoy A, Diskin M, Duffy C, Cosby SL, Keane OM, Dalton JP. Diagnosis of sheep fasciolosis caused by Fasciola hepatica using cathepsin L enzyme-linked immunosorbent assays (ELISA). Vet Parasitol 2021; 298:109517. [PMID: 34271318 DOI: 10.1016/j.vetpar.2021.109517] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 02/01/2023]
Abstract
Fasciolosis, a global parasitic disease of agricultural livestock, is caused by the liver fluke Fasciola hepatica. Management and strategic control of fasciolosis on farms depends on early assessment of the extent of disease so that control measures can be implemented quickly. Traditionally, this has relied on the detection of eggs in the faeces of animals, a laborious method that lacks sensitivity, especially for sub-clinical infections, and identifies chronic infections only. Enzyme linked immunosorbent assays (ELISA) offer a quicker and more sensitive serological means of diagnosis that could detect early acute infection before significant liver damage occurs. The performance of three functionally-active recombinant forms of the major F. hepatica secreted cathepsins L, rFhCL1, rFhCL2, rFhCL3, and a cathepsin B, rFhCB3, were evaluated as antigens in an indirect ELISA to serologically diagnose liver fluke infection in experimentally and naturally infected sheep. rFhCL1 and rFhCL3 were the most effective of the four antigens detecting fasciolosis in sheep as early as three weeks after experimental infection, at least five weeks earlier than both coproantigen and faecal egg tests. In addition, the rFhCL1 and rFhCL3 ELISAs had a very low detection limit for liver fluke in lambs exposed to natural infection on pastures and thus could play a major role in the surveillance of farms and a 'test and treat' approach to disease management. Finally, antibodies to all three cathepsin L proteases remain high throughout chronic infection but decline rapidly after drug treatment with the flukicide, triclabendazole, implying that the test may be adapted to trace the effectiveness of drug treatment.
Collapse
Affiliation(s)
- Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amanda McEvoy
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Michael Diskin
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Catherine Duffy
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, UK
| | - S Louise Cosby
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, UK
| | - Orla M Keane
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
21
|
Dorey A, Cwiklinski K, Rooney J, De Marco Verissimo C, López Corrales J, Jewhurst H, Fazekas B, Calvani NED, Hamon S, Gaughan S, Dalton JP, Lalor R. Autonomous Non Antioxidant Roles for Fasciola hepatica Secreted Thioredoxin-1 and Peroxiredoxin-1. Front Cell Infect Microbiol 2021; 11:667272. [PMID: 34026663 PMCID: PMC8131638 DOI: 10.3389/fcimb.2021.667272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/22/2021] [Indexed: 01/07/2023] Open
Abstract
Trematode parasites of the genus Fasciola are the cause of liver fluke disease (fasciolosis) in humans and their livestock. Infection of the host involves invasion through the intestinal wall followed by migration in the liver that results in extensive damage, before the parasite settles as a mature egg-laying adult in the bile ducts. Genomic and transcriptomic studies revealed that increased metabolic stress during the rapid growth and development of F. hepatica is balanced with the up-regulation of the thiol-independent antioxidant system. In this cascade system thioredoxin/glutathione reductase (TGR) reduces thioredoxin (Trx), which then reduces and activates peroxiredoxin (Prx), whose major function is to protect cells against the damaging hydrogen peroxide free radicals. F. hepatica expresses a single TGR, three Trx and three Prx genes; however, the transcriptional expression of Trx1 and Prx1 far out-weighs (>50-fold) other members of their family, and both are major components of the parasite secretome. While Prx1 possesses a leader signal peptide that directs its secretion through the classical pathway and explains why this enzyme is found freely soluble in the secretome, Trx1 lacks a leader peptide and is secreted via an alternative pathway that packages the majority of this enzyme into extracellular vesicles (EVs). Here we propose that F. hepatica Prx1 and Trx1 do not function as part of the parasite’s stress-inducible thiol-dependant cascade, but play autonomous roles in defence against the general anti-pathogen oxidative burst by innate immune cells, in the modulation of host immune responses and regulation of inflammation.
Collapse
Affiliation(s)
- Amber Dorey
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - James Rooney
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Barbara Fazekas
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Siobhán Gaughan
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
22
|
Host-Parasite Relationships in Porcine Ascariosis: Anticoagulant Potential of the Third Larval Stage of Ascaris suum as a Possible Survival Mechanism. Animals (Basel) 2021; 11:ani11030804. [PMID: 33805634 PMCID: PMC8002170 DOI: 10.3390/ani11030804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Ascaris suum parasitises pigs all over the world causing a disease responsible for producing reductions in weight gains and damages to several organs of the infected animals that incur huge economic losses for the swine industry. While adult worms of this parasite are located in the small intestine of the host, their larval stages migrate through the bloodstream as an evolutionary advantageous strategy within a hostile environment that confronts host responses such as blood clots formation. The aim of this work is to study the ability of A. suum larvae to inhibit blood coagulation as a possible mechanism to control blood clots formation and facilitate their migration. The results showed that these larvae inhibited host blood coagulation and possessed molecules similar to those responsible for inhibiting blood coagulation in pigs. The anticoagulant effect of A. suum larvae could constitute a potential survival mechanism for the parasite. Therefore, developing new control strategies directed at this and similar processes could avoid A. suum larval migration and the establishment of adult worms in their definitive location, which is necessary to confront the damages and economic losses produced by this parasitosis. Abstract In order to evade the response of their hosts, helminth parasites have evolved precise and highly regulated mechanisms, including migration strategies of the larval stages. In regard to porcine ascariosis caused by Ascaris suum, its infective third-stage larvae (AsL3) undergo a complex migratory route through the bloodstream of their host before establishing in the small intestine to reach maturation. Despite the benefits attributed to this migration, blood clots formation could compromise larvae survival. The aim of this work was to study the interaction between the cuticle and excretory/secretory antigens of AsL3 and the host coagulation cascade. Larvae were obtained after incubating and hatching A. suum eggs, after which the antigenic extracts were produced. Their ability to disrupt the coagulation cascade was studied using anticoagulation and chromogenic assays, and techniques based on electrophoresis. The obtained results showed that both antigenic extracts possessed anticoagulant potential, being able to inhibit the intrinsic, extrinsic and/or common pathways of the blood coagulation cascade as well as the activated factor X. Moreover, three A. suum serpin proteins were identified as candidates to inhibit this host coagulation factor. To the best of our knowledge, this study shows, for the first time, the anticoagulant potential of the infective larvae of A. suum, which could be used by the parasite as a mechanism to facilitate its invasion and survival in the host.
Collapse
|
23
|
Cwiklinski K, Robinson MW, Donnelly S, Dalton JP. Complementary transcriptomic and proteomic analyses reveal the cellular and molecular processes that drive growth and development of Fasciola hepatica in the host liver. BMC Genomics 2021; 22:46. [PMID: 33430759 PMCID: PMC7797711 DOI: 10.1186/s12864-020-07326-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background The major pathogenesis associated with Fasciola hepatica infection results from the extensive tissue damage caused by the tunnelling and feeding activity of immature flukes during their migration, growth and development in the liver. This is compounded by the pathology caused by host innate and adaptive immune responses that struggle to simultaneously counter infection and repair tissue damage. Results Complementary transcriptomic and proteomic approaches defined the F. hepatica factors associated with their migration in the liver, and the resulting immune-pathogenesis. Immature liver-stage flukes express ~ 8000 transcripts that are enriched for transcription and translation processes reflective of intensive protein production and signal transduction pathways. Key pathways that regulate neoblast/pluripotent cells, including the PI3K-Akt signalling pathway, are particularly dominant and emphasise the importance of neoblast-like cells for the parasite’s rapid development. The liver-stage parasites display different secretome profiles, reflecting their distinct niche within the host, and supports the view that cathepsin peptidases, cathepsin peptidase inhibitors, saposins and leucine aminopeptidases play a central role in the parasite’s destructive migration, and digestion of host tissue and blood. Immature flukes are also primed for countering immune attack by secreting immunomodulating fatty acid binding proteins (FABP) and helminth defence molecules (FhHDM). Combined with published host microarray data, our results suggest that considerable immune cell infiltration and subsequent fibrosis of the liver tissue exacerbates oxidative stress within parenchyma that compels the expression of a range of antioxidant molecules within both host and parasite. Conclusions The migration of immature F. hepatica parasites within the liver is associated with an increase in protein production, expression of signalling pathways and neoblast proliferation that drive their rapid growth and development. The secretion of a defined set of molecules, particularly cathepsin L peptidases, peptidase-inhibitors, saponins, immune-regulators and antioxidants allow the parasite to negotiate the liver micro-environment, immune attack and increasing levels of oxidative stress. This data contributes to the growing F. hepatica -omics information that can be exploited to understand parasite development more fully and for the design of novel control strategies to prevent host liver tissue destruction and pathology.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,The School of Life Sciences, University of Technology, Sydney, Australia
| | - John P Dalton
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
24
|
Proteomic Profiling of the Liver, Hepatic Lymph Nodes, and Spleen of Buffaloes Infected with Fasciola gigantica. Pathogens 2020; 9:pathogens9120982. [PMID: 33255373 PMCID: PMC7759843 DOI: 10.3390/pathogens9120982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
In the present study, we used an isobaric tag for relative and absolute quantitation (iTRAQ) proteomics technology to characterize the differentially expressed proteins (DEPs) in the liver, hepatic lymph nodes (hLNs), and spleen of buffaloes infected with Fasciola gigantica (F. gigantica). We also used the parallel reaction monitoring (PRM) method to verify the expression levels of the DEPs in the three infected tissues. At three days post-infection (dpi), 225, 1821, and 364 DEPs were detected in the liver, hLNs, and spleen, respectively. At 42 dpi, 384, 252, and 214 DEPs were detected in the liver, hLNs, and spleen, respectively. At 70 dpi, 125, 829, and 247 DEPs were detected in the liver, hLNs, and spleen, respectively. Downregulation of metabolism was prominent in infected livers at all time points, and upregulation of immune responses was marked in the hLNs during early infection (three dpi); however, no changes in the immune response were detected at the late stages of infection (42 and 70 dpi). Compared to the hLNs, there was no significant upregulation in the levels of immune responses in the infected spleen. All the identified DEPs were used to predict the subcellular localization of the proteins, which were related to extracellular space and membrane and were involved in host immune responses. Further PRM analysis confirmed the expression of 18 proteins. These data provide the first simultaneous proteomic profiles of multiple organs of buffaloes experimentally infected with F. gigantica.
Collapse
|