1
|
Cao Y, Tsuzuki M, Kiba A, Hikichi Y, Zhang Y, Ohnishi K. Sucrose and malic acid in the tobacco plant induce hrp regulon in a phytopathogen Ralstonia pseudosolanacearum. J Bacteriol 2025:e0027324. [PMID: 39902979 DOI: 10.1128/jb.00273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/05/2025] [Indexed: 02/06/2025] Open
Abstract
Genes encoding a type III secretion system in Ralstonia pseudosolanacearum are regulated by HrpB as an hrp regulon and induced only in plants. This study aimed to identify the plant signals that induce the hrp regulon and confirm the signal recognition mechanism. Signaling molecules that induce hrpB expression were screened using resting cells of the hrpB-lacZ reporter strain. Only the soluble fraction of smashed tobacco seedlings induced hrpB expression. The heated soluble fraction retained its hrpB-inducing activity, indicating that the signaling molecules were not proteins. When the soluble fraction was fractionated into acidic, neutral, and basic components, both the acidic and neutral fractions induced hrpB expression. As neutral compounds, sucrose, glucose, and fructose have been found to induce hrpB expression. Sucrose-induced hrpB expression was greatly reduced in the prhA mutant, indicating that the TonB-dependent receptor PrhA perceives sugars. Among the organic acids found in the acidic fractions, malic acid most efficiently induced hrpB expression, which was reduced by the mutation of a hybrid histidine kinase gene of a two-component system, rsc1598, indicating that Rsc1598 may sense malic acid. We demonstrated direct binding of Rsc1598 to malic acid using isothermal titration calorimetry.IMPORTANCESimilar to other Gram-negative plant pathogens, the type III secretion system (T3SS) is the most important virulence factor in Ralstonia pseudosolanacearum. The genes for the T3SS are regulated as an hrp regulon, activated only when the pathogen encounters the plants, indicating that the pathogen must sense plant signals. For the first time, we identified two signaling compounds, sucrose and malic acid, that are abundantly found in tobacco roots. The hrp operon was induced even in non-host plants, possibly because sucrose and malic acid are common in plants. We also found that R. pseudosolanacearum membrane proteins received sucrose and malic acid independently. As a next step, antagonists of signaling molecules can be screened.
Collapse
Affiliation(s)
- Yuzhu Cao
- The United Graduate School of Agricultural Sciences, Ehime University, Ehime, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| |
Collapse
|
2
|
Gasser MT, Liu A, Altamia M, Brensinger BR, Brewer SL, Flatau R, Hancock ER, Preheim SP, Filone CM, Distel DL. Membrane vesicles can contribute to cellulose degradation by Teredinibacter turnerae, a cultivable intracellular endosymbiont of shipworms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587001. [PMID: 38585906 PMCID: PMC10996688 DOI: 10.1101/2024.03.27.587001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by LC-MS/MS as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilization by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction, and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Mark T. Gasser
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Annie Liu
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Marvin Altamia
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| | - Bryan R. Brensinger
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Sarah L. Brewer
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Ron Flatau
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| | - Eric R. Hancock
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | | | - Claire Marie Filone
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Dan L. Distel
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| |
Collapse
|
3
|
Zhang L, Jiang J, Liu W, Wang L, Yao Z, Li H, Gong J, Kang C, Liu L, Xu Z, Shi J. Identification and Characterization of a Highly Active Hyaluronan Lyase from Enterobacter asburiae. Mar Drugs 2024; 22:399. [PMID: 39330280 PMCID: PMC11432990 DOI: 10.3390/md22090399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Hyaluronic acid (HA) is a well-known functional marine polysaccharide. The utilization and derivative development of HA are of great interest. Hyaluronan lyase has wide application prospects in the production of HA oligosaccharides and lower molecular weight HA. In this study, a strain of Enterobacter asburiae CGJ001 with high hyaluronan lyase activity was screened from industrial wastewater. This strain exhibited an impressive enzyme activity of 40,576 U/mL after being incubated for 14 h. Whole genome sequencing analysis revealed that E. asburiae CGJ001 contained a cluster of genes involved in HA degradation, transport, and metabolism. A newly identified enzyme responsible for glycosaminoglycan degradation was designated as HylEP0006. A strain of E. coli BL21(DE3)/pET-22b(+)-hylEP0006 was successfully constructed. HylEP0006 exhibited optimal degradation at 40 °C and pH 7.0, showing a high activity of 950,168.3 U/mg. HylEP0006 showed specific activity against HA. The minimum degradation fragment of HylEP0006 was hyaluronan tetrasaccharides, and HylEP0006 could efficiently degrade HA into unsaturated disaccharides (HA2), with HA2 as the final product. These characteristics indicate that HylEP0006 has a potential application prospect for the extraction and utilization of hyaluronic acid.
Collapse
Affiliation(s)
- Linjing Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiayu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lianlong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiyuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinsong Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Chuanli Kang
- Shandong Engineering Laboratory of Sodium Hyaluronate and Its Derivatives, Shandong Focusfreda Biotech Co., Ltd., Qufu 273165, China
| | - Lei Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and Its Derivatives, Shandong Focusfreda Biotech Co., Ltd., Qufu 273165, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Monnens TQ, Roux B, Cunnac S, Charbit E, Carrère S, Lauber E, Jardinaud MF, Darrasse A, Arlat M, Szurek B, Pruvost O, Jacques MA, Gagnevin L, Koebnik R, Noël LD, Boulanger A. Comparative transcriptomics reveals a highly polymorphic Xanthomonas HrpG virulence regulon. BMC Genomics 2024; 25:777. [PMID: 39123115 PMCID: PMC11316434 DOI: 10.1186/s12864-024-10684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Bacteria of the genus Xanthomonas cause economically significant diseases in various crops. Their virulence is dependent on the translocation of type III effectors (T3Es) into plant cells by the type III secretion system (T3SS), a process regulated by the master response regulator HrpG. Although HrpG has been studied for over two decades, its regulon across diverse Xanthomonas species, particularly beyond type III secretion, remains understudied. RESULTS In this study, we conducted transcriptome sequencing to explore the HrpG regulons of 17 Xanthomonas strains, encompassing six species and nine pathovars, each exhibiting distinct host and tissue specificities. We employed constitutive expression of plasmid-borne hrpG*, which encodes a constitutively active form of HrpG, to induce the regulon. Our findings reveal substantial inter- and intra-specific diversity in the HrpG* regulons across the strains. Besides 21 genes directly involved in the biosynthesis of the T3SS, the core HrpG* regulon is limited to only five additional genes encoding the transcriptional activator HrpX, the two T3E proteins XopR and XopL, a major facility superfamily (MFS) transporter, and the phosphatase PhoC. Interestingly, genes involved in chemotaxis and genes encoding enzymes with carbohydrate-active and proteolytic activities are variably regulated by HrpG*. CONCLUSIONS The diversity in the HrpG* regulon suggests that HrpG-dependent virulence in Xanthomonas might be achieved through several distinct strain-specific strategies, potentially reflecting adaptation to diverse ecological niches. These findings enhance our understanding of the complex role of HrpG in regulating various virulence and adaptive pathways, extending beyond T3Es and the T3SS.
Collapse
Affiliation(s)
- Thomas Quiroz Monnens
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Brice Roux
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Sébastien Cunnac
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Erika Charbit
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Sébastien Carrère
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Emmanuelle Lauber
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Marie-Françoise Jardinaud
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Armelle Darrasse
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Matthieu Arlat
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Boris Szurek
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Marie-Agnès Jacques
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Lionel Gagnevin
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, F-97410, France
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, F-34398, France
| | - Ralf Koebnik
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Laurent D Noël
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France.
| | - Alice Boulanger
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France.
| |
Collapse
|
5
|
Zhao Z, Amano C, Reinthaler T, Orellana MV, Herndl GJ. Substrate uptake patterns shape niche separation in marine prokaryotic microbiome. SCIENCE ADVANCES 2024; 10:eadn5143. [PMID: 38748788 PMCID: PMC11095472 DOI: 10.1126/sciadv.adn5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Marine heterotrophic prokaryotes primarily take up ambient substrates using transporters. The patterns of transporters targeting particular substrates shape the ecological role of heterotrophic prokaryotes in marine organic matter cycles. Here, we report a size-fractionated pattern in the expression of prokaryotic transporters throughout the oceanic water column due to taxonomic variations, revealed by a multi-"omics" approach targeting ATP-binding cassette (ABC) transporters and TonB-dependent transporters (TBDTs). Substrate specificity analyses showed that marine SAR11, Rhodobacterales, and Oceanospirillales use ABC transporters to take up organic nitrogenous compounds in the free-living fraction, while Alteromonadales, Bacteroidetes, and Sphingomonadales use TBDTs for carbon-rich organic matter and metal chelates on particles. The expression of transporter proteins also supports distinct lifestyles of deep-sea prokaryotes. Our results suggest that transporter divergency in organic matter assimilation reflects a pronounced niche separation in the prokaryote-mediated organic matter cycles.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Mónica V. Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Environmental and Climate Research Hub, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
6
|
Pena MM, Bhandari R, Bowers RM, Weis K, Newberry E, Wagner N, Pupko T, Jones JB, Woyke T, Vinatzer BA, Jacques MA, Potnis N. Genetic and Functional Diversity Help Explain Pathogenic, Weakly Pathogenic, and Commensal Lifestyles in the Genus Xanthomonas. Genome Biol Evol 2024; 16:evae074. [PMID: 38648506 PMCID: PMC11032200 DOI: 10.1093/gbe/evae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The genus Xanthomonas has been primarily studied for pathogenic interactions with plants. However, besides host and tissue-specific pathogenic strains, this genus also comprises nonpathogenic strains isolated from a broad range of hosts, sometimes in association with pathogenic strains, and other environments, including rainwater. Based on their incapacity or limited capacity to cause symptoms on the host of isolation, nonpathogenic xanthomonads can be further characterized as commensal and weakly pathogenic. This study aimed to understand the diversity and evolution of nonpathogenic xanthomonads compared to their pathogenic counterparts based on their cooccurrence and phylogenetic relationship and to identify genomic traits that form the basis of a life history framework that groups xanthomonads by ecological strategies. We sequenced genomes of 83 strains spanning the genus phylogeny and identified eight novel species, indicating unexplored diversity. While some nonpathogenic species have experienced a recent loss of a type III secretion system, specifically the hrp2 cluster, we observed an apparent lack of association of the hrp2 cluster with lifestyles of diverse species. We performed association analysis on a large data set of 337 Xanthomonas strains to explain how xanthomonads may have established association with the plants across the continuum of lifestyles from commensals to weak pathogens to pathogens. Presence of distinct transcriptional regulators, distinct nutrient utilization and assimilation genes, transcriptional regulators, and chemotaxis genes may explain lifestyle-specific adaptations of xanthomonads.
Collapse
Affiliation(s)
- Michelle M Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
- Present address: Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Rishi Bhandari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kylie Weis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Eric Newberry
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel Aviv, Israel
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Life and Environmental Sciences, University of California Merced, Merced, CA, USA
| | - Boris A Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Marie-Agnès Jacques
- Institut Agro, INRAE, IRHS, SFR QUASAV, University of Angers, Angers F-49000, France
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
7
|
Lauber E, González-Fuente M, Escouboué M, Vicédo C, Luneau JS, Pouzet C, Jauneau A, Gris C, Zhang ZM, Pichereaux C, Carrère S, Deslandes L, Noël LD. Bacterial host adaptation through sequence and structural variations of a single type III effector gene. iScience 2024; 27:109224. [PMID: 38439954 PMCID: PMC10909901 DOI: 10.1016/j.isci.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/02/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Molecular mechanisms underlying quantitative variations of pathogenicity remain elusive. Here, we identified the Xanthomonas campestris XopJ6 effector that triggers disease resistance in cauliflower and Arabidopsis thaliana. XopJ6 is a close homolog of the Ralstoniapseudosolanacearum PopP2 YopJ family acetyltransferase. XopJ6 is recognized by the RRS1-R/RPS4 NLR pair that integrates a WRKY decoy domain mimicking effector targets. We identified a XopJ6 natural variant carrying a single residue substitution in XopJ6 WRKY-binding site that disrupts interaction with WRKY proteins. This mutation allows XopJ6 to evade immune perception while retaining some XopJ6 virulence functions. Interestingly, xopJ6 resides in a Tn3-family transposon likely contributing to xopJ6 copy number variation (CNV). Using synthetic biology, we demonstrate that xopJ6 CNV tunes pathogen virulence on Arabidopsis through gene dosage-mediated modulation of xopJ6 expression. Together, our findings highlight how sequence and structural genetic variations restricted at a particular effector gene contribute to bacterial host adaptation.
Collapse
Affiliation(s)
- Emmanuelle Lauber
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Manuel González-Fuente
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Maxime Escouboué
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Céline Vicédo
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Julien S. Luneau
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Cécile Pouzet
- TRI-FRAIB Imaging Platform Facilities, FRAIB, Université de Toulouse, CNRS, UPS, 31320 Castanet-Tolosan, France
| | - Alain Jauneau
- TRI-FRAIB Imaging Platform Facilities, FRAIB, Université de Toulouse, CNRS, UPS, 31320 Castanet-Tolosan, France
| | - Carine Gris
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FRAIB), Université de Toulouse, CNRS, Université de Toulouse III - Paul Sabatier (UT3), Auzeville-Tolosane, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université de Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, FR 2048, Toulouse, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| |
Collapse
|
8
|
Naka H, Haygood MG. The dual role of TonB genes in turnerbactin uptake and carbohydrate utilization in the shipworm symbiont Teredinibacter turnerae. Appl Environ Microbiol 2023; 89:e0074423. [PMID: 38009998 PMCID: PMC10734418 DOI: 10.1128/aem.00744-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/01/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE This study highlights diversity in iron acquisition and regulation in bacteria. The mechanisms of iron acquisition and its regulation in Teredinibacter turnerae, as well as its connection to cellulose utilization, a hallmark phenotype of T. turnerae, expand the paradigm of bacterial iron acquisition. Two of the four TonB genes identified in T. turnerae exhibit functional redundancy and play a crucial role in siderophore-mediated iron transport. Unlike typical TonB genes in bacteria, none of the TonB genes in T. turnerae are clearly iron regulated. This unusual regulation could be explained by another important finding in this study, namely, that the two TonB genes involved in iron transport are also essential for cellulose utilization as a carbon source, leading to the expression of TonB genes even under iron-rich conditions.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Medicinal Chemistry, The University of Utah, Salt Lake City, Utah, USA
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Margo G. Haygood
- Department of Medicinal Chemistry, The University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Bonfim IM, Paixão DA, Andrade MDO, Junior JM, Persinoti GF, de Giuseppe PO, Murakami MT. Plant structural and storage glucans trigger distinct transcriptional responses that modulate the motility of Xanthomonas pathogens. Microbiol Spectr 2023; 11:e0228023. [PMID: 37855631 PMCID: PMC10714752 DOI: 10.1128/spectrum.02280-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Xanthomonas bacteria can affect a variety of economically relevant crops causing losses in productivity, limiting commercialization and requiring phytosanitary measures. These plant pathogens exhibit high level of host and tissue specificity through multiple molecular strategies including several secretion systems, effector proteins, and a broad repertoire of carbohydrate-active enzymes (CAZymes). Many of these CAZymes act on the plant cell wall and storage carbohydrates, such as cellulose and starch, releasing products used as nutrients and modulators of transcriptional responses to support host colonization by mechanisms yet poorly understood. Here, we reveal that structural and storage β-glucans from the plant cell function as spatial markers, providing distinct chemical stimuli that modulate the transition between higher and lower motility states in Xanthomonas citri, a key virulence trait for many bacterial pathogens.
Collapse
Affiliation(s)
- Isabela Mendes Bonfim
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Molecular and Morphofunctional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Douglas Alvarez Paixão
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Maxuel de Oliveira Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Joaquim Martins Junior
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Mário Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| |
Collapse
|
10
|
Goettelmann F, Koebnik R, Roman-Reyna V, Studer B, Kölliker R. High genomic plasticity and unique features of Xanthomonas translucens pv. graminis revealed through comparative analysis of complete genome sequences. BMC Genomics 2023; 24:741. [PMID: 38053038 DOI: 10.1186/s12864-023-09855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Xanthomonas translucens pv. graminis (Xtg) is a major bacterial pathogen of economically important forage grasses, causing severe yield losses. So far, genomic resources for this pathovar consisted mostly of draft genome sequences, and only one complete genome sequence was available, preventing comprehensive comparative genomic analyses. Such comparative analyses are essential in understanding the mechanisms involved in the virulence of pathogens and to identify virulence factors involved in pathogenicity. RESULTS In this study, we produced high-quality, complete genome sequences of four strains of Xtg, complementing the recently obtained complete genome sequence of the Xtg pathotype strain. These genomic resources allowed for a comprehensive comparative analysis, which revealed a high genomic plasticity with many chromosomal rearrangements, although the strains were highly related. A high number of transposases were exclusively found in Xtg and corresponded to 413 to 457 insertion/excision transposable elements per strain. These mobile genetic elements are likely to be involved in the observed genomic plasticity and may play an important role in the adaptation of Xtg. The pathovar was found to lack a type IV secretion system, and it possessed the smallest set of type III effectors in the species. However, three XopE and XopX family effectors were found, while in the other pathovars of the species two or less were present. Additional genes that were specific to the pathovar were identified, including a unique set of minor pilins of the type IV pilus, 17 TonB-dependent receptors (TBDRs), and 11 plant cell wall degradative enzymes. CONCLUSION These results suggest a high adaptability of Xtg, conferred by the abundance of mobile genetic elements, which could play a crucial role in pathogen adaptation. The large amount of such elements in Xtg compared to other pathovars of the species could, at least partially, explain its high virulence and broad host range. Conserved features that were specific to Xtg were identified, and further investigation will help to determine genes that are essential to pathogenicity and host adaptation of Xtg.
Collapse
Affiliation(s)
- Florian Goettelmann
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Veronica Roman-Reyna
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Roland Kölliker
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Pollet RM, Foley MH, Kumar SS, Elmore A, Jabara NT, Venkatesh S, Vasconcelos Pereira G, Martens EC, Koropatkin NM. Multiple TonB homologs are important for carbohydrate utilization by Bacteroides thetaiotaomicron. J Bacteriol 2023; 205:e0021823. [PMID: 37874167 PMCID: PMC10662123 DOI: 10.1128/jb.00218-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.
Collapse
Affiliation(s)
- Rebecca M. Pollet
- Department of Chemistry, Vassar College, Poughkeepsie, New York, USA
- Biochemistry Program, Vassar College, Poughkeepsie, New York, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew H. Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Supriya Suresh Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amanda Elmore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Sameeksha Venkatesh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Mashraqi MM, Alzamami A, Alturki NA, Almasaudi HH, Ahmed I, Alshamrani S, Basharat Z. Chimeric vaccine design against the conserved TonB-dependent receptor-like β-barrel domain from the outer membrane tbpA and hpuB proteins of Kingella kingae ATCC 23330. Front Mol Biosci 2023; 10:1258834. [PMID: 38053576 PMCID: PMC10694214 DOI: 10.3389/fmolb.2023.1258834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023] Open
Abstract
Kingella kingae is a Gram-negative bacterium that primarily causes pediatric infections such as septicemia, endocarditis, and osteoarticular infections. Its virulence is attributed to the outer membrane proteins having implications in bacterial adhesion, invasion, nutrition, and host tissue damage. TonB-dependent receptors (TBDRs) play an important role in nutrition and were previously implicated as vaccine targets in other bacteria. Therefore, we targeted the conserved β-barrel TBDR domain of these proteins for designing a vaccine construct that could elicit humoral and cellular immune responses. We used bioinformatic tools to mine TBDR-containing proteins from K. kingae ATCC 23330 and then predict B- and T-cell epitopes from their conserved β-barrel TDR domain. A chimeric vaccine construct was designed using three antigenic epitopes, covering >98% of the world population and capable of inciting humoral and adaptive immune responses. The final construct elicited a robust immune response. Docking and dynamics simulation showed good binding affinity of the vaccine construct to various receptors of the immune system. Additionally, the vaccine was predicted to be safe and non-allergenic, making it a promising candidate for further development. In conclusion, our study demonstrates the potential of immunoinformatics approaches in designing chimeric vaccines against K. kingae infections. The chimeric vaccine we designed can serve as a blueprint for future experimental studies to develop an effective vaccine against this pathogen, which can serve as a potential strategy to prevent K. kingae infections.
Collapse
Affiliation(s)
- Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan H. Almasaudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
13
|
Marzorati F, Rossi R, Bernardo L, Mauri P, Silvestre DD, Lauber E, Noël LD, Murgia I, Morandini P. Arabidopsis thaliana Early Foliar Proteome Response to Root Exposure to the Rhizobacterium Pseudomonas simiae WCS417. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:737-748. [PMID: 37470457 DOI: 10.1094/mpmi-05-23-0071-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Pseudomonas simiae WCS417 is a plant growth-promoting rhizobacterium that improves plant health and development. In this study, we investigate the early leaf responses of Arabidopsis thaliana to WCS417 exposure and the possible involvement of formate dehydrogenase (FDH) in such responses. In vitro-grown A. thaliana seedlings expressing an FDH::GUS reporter show a significant increase in FDH promoter activity in their roots and shoots after 7 days of indirect exposure (without contact) to WCS417. After root exposure to WCS417, the leaves of FDH::GUS plants grown in the soil also show an increased FDH promoter activity in hydathodes. To elucidate early foliar responses to WCS417 as well as FDH involvement, the roots of A. thaliana wild-type Col and atfdh1-5 knock-out mutant plants grown in soil were exposed to WCS417, and proteins from rosette leaves were subjected to proteomic analysis. The results reveal that chloroplasts, in particular several components of the photosystems PSI and PSII, as well as members of the glutathione S-transferase family, are among the early targets of the metabolic changes induced by WCS417. Taken together, the alterations in the foliar proteome, as observed in the atfdh1-5 mutant, especially after exposure to WCS417 and involving stress-responsive genes, suggest that FDH is a node in the early events triggered by the interactions between A. thaliana and the rhizobacterium WCS417. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Francesca Marzorati
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Rossana Rossi
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Letizia Bernardo
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Emmanuelle Lauber
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Laurent D Noël
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Irene Murgia
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Pollet RM, Foley MH, Kumar SS, Elmore A, Jabara NT, Venkatesh S, Pereira GV, Martens EC, Koropatkin NM. Multiple TonB Homologs are Important for Carbohydrate Utilization by Bacteroides thetaiotaomicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548152. [PMID: 37461508 PMCID: PMC10350073 DOI: 10.1101/2023.07.07.548152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The human gut microbiota is able to degrade otherwise undigestible polysaccharides, largely through the activity of the Bacteroides. Uptake of polysaccharides into Bacteroides is controlled by TonB-dependent transporters (TBDT) whose transport is energized by an inner membrane complex composed of the proteins TonB, ExbB, and ExbD. Bacteroides thetaiotaomicron (B. theta) encodes 11 TonB homologs which are predicted to be able to contact TBDTs to facilitate transport. However, it is not clear which TonBs are important for polysaccharide uptake. Using strains in which each of the 11 predicted tonB genes are deleted, we show that TonB4 (BT2059) is important but not essential for proper growth on starch. In the absence of TonB4, we observed an increase in abundance of TonB6 (BT2762) in the membrane of B. theta, suggesting functional redundancy of these TonB proteins. Growth of the single deletion strains on pectin galactan, chondroitin sulfate, arabinan, and levan suggests a similar functional redundancy of the TonB proteins. A search for highly homologous proteins across other Bacteroides species and recent work in B. fragilis suggests that TonB4 is widely conserved and may play a common role in polysaccharide uptake. However, proteins similar to TonB6 are found only in B. theta and closely related species suggesting that the functional redundancy of TonB4 and TonB6 may be limited across the Bacteroides. This study extends our understanding of the protein network required for polysaccharide utilization in B. theta and highlights differences in TonB complexes across Bacteroides species.
Collapse
Affiliation(s)
- Rebecca M Pollet
- Department of Chemistry, Vassar College, Poughkeepsie, NY, 12604, USA
- Biochemistry Program, Vassar College, Poughkeepsie, NY, 12604, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew H Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Supriya Suresh Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amanda Elmore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nisrine T Jabara
- Biochemistry Program, Vassar College, Poughkeepsie, NY, 12604, USA
| | - Sameeksha Venkatesh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Li R, Peng J, Liu Q, Chang Z, Huang Y, Tang J, Lu G. Xanthomonas campestris VemR enhances the transcription of the T3SS key regulator HrpX via physical interaction with HrpG. MOLECULAR PLANT PATHOLOGY 2023; 24:232-247. [PMID: 36626275 PMCID: PMC9923393 DOI: 10.1111/mpp.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
VemR is a response regulator of the two-component signalling systems (TCSs). It consists solely of a receiver domain. Previous studies have shown that VemR plays an important role in influencing the production of exopolysaccharides and exoenzymes, cell motility, and virulence of Xanthomonas campestris pv. campestris (Xcc). However, whether VemR is involved in the essential pathogenicity determinant type III secretion system (T3SS) is unclear. In this work, we found by transcriptome analysis that VemR modulates about 10% of Xcc genes, which are involved in various cellular processes including the T3SS. Further experiments revealed that VemR physically interacts with numerous proteins, including the TCS sensor kinases HpaS and RavA, and the TCS response regulator HrpG, which directly activates the transcription of HrpX, a key regulator controlling T3SS expression. It has been demonstrated previously that HpaS composes a TCS with HrpG or VemR to control the expression of T3SS or swimming motility, while RavA and VemR form a TCS to control the expression of flagellar genes. Mutation analysis and in vitro transcription assay revealed that phosphorylation might be essential for the function of VemR and phosphorylated VemR could significantly enhance the activation of hrpX transcription by HrpG. We infer that the binding of VemR to HrpG can modulate the activity of HrpG to the hrpX promoter, thereby enhancing hrpX transcription. Although further studies are required to validate this inference and explore the detailed functional mechanism of VemR, our findings provide some insights into the complex regulatory cascade of the HpaS/RavA-VemR/HrpG-HrpX signal transduction system in the control of T3SS.
Collapse
Affiliation(s)
- Rui‐Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research Institute, Guangxi Academy of Agricultural SciencesNanningChina
| | - Jian‐Ling Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Qian‐Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Zheng Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Yi‐Xin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| |
Collapse
|
16
|
Newberry EA, Minsavage GV, Holland A, Jones JB, Potnis N. Genome-Wide Association to Study the Host-Specificity Determinants of Xanthomonas perforans. PHYTOPATHOLOGY 2023; 113:400-412. [PMID: 36318253 DOI: 10.1094/phyto-08-22-0294-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Xanthomonas perforans and X. euvesicatoria are the causal agents of bacterial spot disease of tomato and pepper, endemic to the Southeastern United States. Although very closely related, the two bacterial species differ in host specificity, where X. perforans is the dominant pathogen of tomato and X. euvesicatoria that of pepper. This is in part due to the activity of avirulence proteins that are secreted by X. perforans strains and elicit effector-triggered immunity in pepper leaves, thereby restricting pathogen growth. In recent years, the emergence of several pepper-pathogenic X. perforans lineages has revealed variability within the bacterial species to multiply and cause disease in pepper, even in the absence of avirulence gene activity. Here, we investigated the basal evolutionary processes underlying the host range of this species using multiple genome-wide association analyses. Surprisingly, we identified two novel gene candidates that were significantly associated with pepper-pathogenic X. perforans and X. euvesicatoria. Both candidates were predicted to be involved in the transport/acquisition of nutrients common to the plant cell wall or apoplast and included a TonB-dependent receptor, which was disrupted through independent mutations within the X. perforans lineage. The other included a symporter of protons/glutamate, gltP, enriched with pepper-associated mutations near the promoter and start codon of the gene. Functional analysis of these candidates revealed that only the TonB-dependent receptor had a minor effect on the symptom development and growth of X. perforans in pepper leaves, indicating that pathogenicity to this host might have evolved independently within the bacterial species and is likely a complex, multigenic trait.
Collapse
Affiliation(s)
- Eric A Newberry
- Department of Entomology and Plant Pathology, Auburn University, AL 36849
| | | | - Auston Holland
- Department of Entomology and Plant Pathology, Auburn University, AL 36849
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, AL 36849
| |
Collapse
|
17
|
Naka H, Haygood MG. The dual role of TonB genes in turnerbactin uptake and carbohydrate utilization in the shipworm symbiont Teredinibacter turnerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529781. [PMID: 36865190 PMCID: PMC9980095 DOI: 10.1101/2023.02.23.529781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Teredinibacter turnerae is an intracellular bacterial symbiont that resides in the gills of shipworms, wood-eating bivalve mollusks. This bacterium produces a catechol siderophore, turnerbactin, required for the survival of this bacterium under iron limiting conditions. The turnerbactin biosynthetic genes are contained in one of the secondary metabolite clusters conserved among T. turnerae strains. However, Fe(III)-turnerbactin uptake mechanisms are largely unknown. Here, we show that the first gene of the cluster, fttA a homologue of Fe(III)-siderophore TonB-dependent outer membrane receptor (TBDR) genes is indispensable for iron uptake via the endogenous siderophore, turnerbactin, as well as by an exogenous siderophore, amphi-enterobactin, ubiquitously produced by marine vibrios. Furthermore, three TonB clusters containing four tonB genes were identified, and two of these genes, tonB1b and tonB2, functioned not only for iron transport but also for carbohydrate utilization when cellulose was a sole carbon source. Gene expression analysis revealed that none of the tonB genes and other genes in those clusters were clearly regulated by iron concentration while turnerbactin biosynthesis and uptake genes were up-regulated under iron limiting conditions, highlighting the importance of tonB genes even in iron rich conditions, possibly for utilization of carbohydrates derived from cellulose.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Medicinal Chemistry, the University of Utah
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University
| | | |
Collapse
|
18
|
Li R, Ren P, Zhang D, Cui P, Zhu G, Xian X, Tang J, Lu G. HpaP divergently regulates the expression of hrp genes in Xanthomonas oryzae pathovars oryzae and oryzicola. MOLECULAR PLANT PATHOLOGY 2023; 24:44-58. [PMID: 36260328 PMCID: PMC9742497 DOI: 10.1111/mpp.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The bacterial pathogens Xanthomonas oryzae pathovars oryzae (Xoo) and oryzicola (Xoc) cause leaf blight and leaf streak diseases on rice, respectively. Pathogenesis is largely defined by the virulence genes harboured in the pathogen genome. Recently, we demonstrated that the protein HpaP of the crucifer pathogen Xanthomonas campestris pv. campestris is an enzyme with both ATPase and phosphatase activities, and is involved in regulating the synthesis of virulence factors and the induction of the hypersensitive response (HR). In this study, we investigated the role of HpaP homologues in Xoo and Xoc. We showed that HpaP is required for full virulence of Xoo and Xoc. Deletion of hpaP in Xoo and Xoc led to a reduction in virulence and alteration in the production of virulence factors, including extracellular polysaccharide and cell motility. Comparative transcriptomics and reverse transcription-quantitative PCR assays revealed that in XVM2 medium, a mimic medium of the plant environment, the expression levels of hrp genes (for HR and pathogenicity) were enhanced in the Xoo hpaP deletion mutant compared to the wild type. By contrast, in the same growth conditions, hrp gene expression was decreased in the Xoc hpaP deletion mutant compared to the wild type. However, an opposite expression pattern was observed when the pathogens grew in planta, where the expression of hrp genes was reduced in the Xoo hpaP mutant but increased in the Xoc hpaP mutant. These findings indicate that HpaP plays a divergent role in Xoo and Xoc, which may lead to the different infection strategies employed by these two pathogens.
Collapse
Affiliation(s)
- Rui‐Fang Li
- Plant Protection Research InstituteGuangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningGuangxiChina
| | - Pei‐Dong Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Da‐Pei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Ping Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Gui‐Ning Zhu
- Plant Protection Research InstituteGuangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningGuangxiChina
| | - Xiao‐Yong Xian
- Plant Protection Research InstituteGuangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningGuangxiChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| |
Collapse
|
19
|
Wang Z, Fu C, Tian J, Wang W, Peng D, Dai X, Tian H, Zhou X, Li L, Yin H. Responses of the bacterial community of tobacco phyllosphere to summer climate and wildfire disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1050967. [PMID: 36618666 PMCID: PMC9811124 DOI: 10.3389/fpls.2022.1050967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Both biotic and abiotic factors continually affect the phyllospheric ecology of plants. A better understanding of the drivers of phyllospheric community structure and multitrophic interactions is vital for developing plant protection strategies. In this study, 16S rRNA high-throughput sequencing was applied to study how summer climatic factors and bacterial wildfire disease have affected the composition and assembly of the bacterial community of tobacco (Nicotiana tabacum L.) phyllosphere. Our results indicated that three time series groups (T1, T2 and T3) formed significantly distinct clusters. The neutral community model (NCM) and beta nearest taxon index (betaNTI) demonstrated that the overall bacterial community assembly was predominantly driven by stochastic processes. Variance partitioning analysis (VPA) further showed that the complete set of the morbidity and climatic variables together could explain 35.7% of the variation of bacterial communities. The node numbers of the molecular ecological networks (MENs) showed an overall uptrend from T1 to T3. Besides, Pseudomonas is the keystone taxa in the MENs from T1 to T3. PICRUSt2 predictions revealed significantly more abundant genes of osmoprotectant biosynthesis/transport in T2, and more genes for pathogenicity and metabolizing organic substrate in T3. Together, this study provides insights into spatiotemporal patterns, processes and response mechanisms underlying the phyllospheric bacterial community.
Collapse
Affiliation(s)
- Zhenhua Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Changwu Fu
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Jinyan Tian
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Wei Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Deyuan Peng
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Xi Dai
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Hui Tian
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Xiangping Zhou
- Yongzhou Tobacco Company of Hunan Province, Yongzhou, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
20
|
Selection for Translational Efficiency in Genes Associated with Alphaproteobacterial Gene Transfer Agents. mSystems 2022; 7:e0089222. [PMID: 36374047 PMCID: PMC9765227 DOI: 10.1128/msystems.00892-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gene transfer agents (GTAs) are virus-like elements that are encoded by some bacterial and archaeal genomes. The production of GTAs can be induced by carbon depletion and results in host lysis and the release of virus-like particles that contain mostly random fragments of the host DNA. The remaining members of a GTA-producing population act as GTA recipients by producing proteins needed for GTA-mediated DNA acquisition. Here, we detected a codon usage bias toward codons with more readily available tRNAs in the RcGTA-like GTA genes of alphaproteobacterial genomes. Such bias likely improves the translational efficacy during GTA gene expression. While the strength of codon usage bias fluctuates substantially among individual GTA genes and across taxonomic groups, it is especially pronounced in Sphingomonadales, whose members are known to inhabit nutrient-depleted environments. By screening genomes for gene families with trends in codon usage biases similar to those in GTA genes, we found a gene that likely encodes head completion protein in some GTAs where it appeared missing, and 13 genes previously not implicated in the GTA life cycle. The latter genes are involved in various molecular processes, including the homologous recombination and transport of scarce organic matter. Our findings provide insights into the role of selection for translational efficiency in the evolution of GTA genes and outline genes that are potentially involved in the previously hypothesized integration of GTA-delivered DNA into the host genome. IMPORTANCE Horizontal gene transfer (HGT) is a fundamental process that drives evolution of microorganisms. HGT can result in a rapid dissemination of beneficial genes within and among microbial communities and can be achieved via multiple mechanisms. One peculiar HGT mechanism involves viruses "domesticated" by some bacteria and archaea (their hosts). These so-called gene transfer agents (GTAs) are encoded in hosts' genomes, produced under starvation conditions, and cannot propagate themselves as viruses. We show that GTA genes are under selection to improve the efficiency of their translation when the host activates GTA production. The selection is especially pronounced in bacteria that occupy nutrient-depleted environments. Intriguingly, several genes involved in incorporation of DNA into a genome are under similar selection pressure, suggesting that they may facilitate the integration of GTA-delivered DNA into the host genome. Our findings underscore the potential importance of GTAs as a mechanism of HGT under nutrient-limited conditions, which are widespread in microbial habitats.
Collapse
|
21
|
Pedersen TK, Brown EM, Plichta DR, Johansen J, Twardus SW, Delorey TM, Lau H, Vlamakis H, Moon JJ, Xavier RJ, Graham DB. The CD4 + T cell response to a commensal-derived epitope transitions from a tolerant to an inflammatory state in Crohn's disease. Immunity 2022; 55:1909-1923.e6. [PMID: 36115338 PMCID: PMC9890645 DOI: 10.1016/j.immuni.2022.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/19/2022] [Accepted: 08/24/2022] [Indexed: 02/03/2023]
Abstract
Reciprocal interactions between host T helper cells and gut microbiota enforce local immunological tolerance and modulate extra-intestinal immunity. However, our understanding of antigen-specific tolerance to the microbiome is limited. Here, we developed a systematic approach to predict HLA class-II-specific epitopes using the humanized bacteria-originated T cell antigen (hBOTA) algorithm. We identified a diverse set of microbiome epitopes spanning all major taxa that are compatible with presentation by multiple HLA-II alleles. In particular, we uncovered an immunodominant epitope from the TonB-dependent receptor SusC that was universally recognized and ubiquitous among Bacteroidales. In healthy human subjects, SusC-reactive T cell responses were characterized by IL-10-dominant cytokine profiles, whereas in patients with active Crohn's disease, responses were associated with elevated IL-17A. Our results highlight the potential of targeted antigen discovery within the microbiome to reveal principles of tolerance and functional transitions during inflammation.
Collapse
Affiliation(s)
- Thomas K Pedersen
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Disease Systems Immunology, Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eric M Brown
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Damian R Plichta
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joachim Johansen
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Shaina W Twardus
- Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Helena Lau
- Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hera Vlamakis
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Daniel B Graham
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Luneau JS, Baudin M, Quiroz Monnens T, Carrère S, Bouchez O, Jardinaud M, Gris C, François J, Ray J, Torralba B, Arlat M, Lewis JD, Lauber E, Deutschbauer AM, Noël LD, Boulanger A. Genome-wide identification of fitness determinants in the Xanthomonas campestris bacterial pathogen during early stages of plant infection. THE NEW PHYTOLOGIST 2022; 236:235-248. [PMID: 35706385 PMCID: PMC9543026 DOI: 10.1111/nph.18313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 05/31/2023]
Abstract
Plant diseases are an important threat to food production. While major pathogenicity determinants required for disease have been extensively studied, less is known on how pathogens thrive during host colonization, especially at early infection stages. Here, we used randomly barcoded-transposon insertion site sequencing (RB-TnSeq) to perform a genome-wide screen and identify key bacterial fitness determinants of the vascular pathogen Xanthomonas campestris pv campestris (Xcc) during infection of the cauliflower host plant (Brassica oleracea). This high-throughput analysis was conducted in hydathodes, the natural entry site of Xcc, in xylem sap and in synthetic media. Xcc did not face a strong bottleneck during hydathode infection. In total, 181 genes important for fitness were identified in plant-associated environments with functional enrichment in genes involved in metabolism but only few genes previously known to be involved in virulence. The biological relevance of 12 genes was independently confirmed by phenotyping single mutants. Notably, we show that XC_3388, a protein with no known function (DUF1631), plays a key role in the adaptation and virulence of Xcc possibly through c-di-GMP-mediated regulation. This study revealed yet unsuspected social behaviors adopted by Xcc individuals when confined inside hydathodes at early infection stages.
Collapse
Affiliation(s)
- Julien S. Luneau
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Maël Baudin
- Plant Gene Expression Center, USDAAlbanyCA94710USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Thomas Quiroz Monnens
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Olivier Bouchez
- Genotoul Genome & Transcriptome (GeT‐PlaGe), INRAE31320Castanet‐TolosanFrance
| | | | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Jonas François
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Jayashree Ray
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Babil Torralba
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Matthieu Arlat
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Jennifer D. Lewis
- Plant Gene Expression Center, USDAAlbanyCA94710USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Emmanuelle Lauber
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Adam M. Deutschbauer
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Laurent D. Noël
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Alice Boulanger
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| |
Collapse
|
23
|
Li M, Bao Y, Li Y, Akbar S, Wu G, Du J, Wen R, Chen B, Zhang M. Comparative genome analysis unravels pathogenicity of Xanthomonas albilineans causing sugarcane leaf scald disease. BMC Genomics 2022; 23:671. [PMID: 36162999 PMCID: PMC9513982 DOI: 10.1186/s12864-022-08900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Background Xanthomonas is a genus of gram-negative bacterium containing more than 35 species. Among these pathogenic species, Xanthomonas albilineans (Xal) is of global interest, responsible for leaf scald disease in sugarcane. Another notable Xanthomonas species is Xanthomonas sachari (Xsa), a sugarcane-associated agent of chlorotic streak disease. Result The virulence of 24 Xanthomonas strains was evaluated by disease index (DI) and Area Under Disease Progress Curve (AUDPC) in the susceptible inoculated plants (GT 46) and clustered into three groups of five highly potent, seven mild virulent, and twelve weak virulent strains. The highly potent strain (X. albilineans, Xal JG43) and its weak virulent related strain (X. sacchari, Xsa DD13) were sequenced, assembled, and annotated in the circular genomes. The genomic size of JG43 was smaller than that of DD13. Both strains (JG43 and DD13) lacked a Type III secretory system (T3SS) and T6SS. However, JG43 possessed Salmonella pathogenicity island-1 (SPI-1). More pathogen-host interaction (PHI) genes and virulent factors in 17 genomic islands (GIs) were detected in JG43, among which six were related to pathogenicity. Albicidin and a two-component system associated with virulence were also detected in JG43. Furthermore, 23 Xanthomonas strains were sequenced and classified into three categories based on Single Nucleotide Polymorphism (SNP) mutation loci and pathogenicity, using JG43 as a reference genome. Transitions were dominant SNP mutations, while structural variation (SV) is frequent intrachromosomal rearrangement (ITX). Two essential genes (rpfC/rpfG) of the two-component system and another gene related to SNP were mutated to understand their virulence effect. The mutation of rpfG resulted in a decrease in pathogenicity. Conclusion These findings revealed virulence of 24 Xanthomonas strains and variations by 23 Xanthomonas strains. We sequenced, assembled, and annotated the circular genomes of Xal JG43 and Xsa DD13, identifying diversity detected by pathogenic factors and systems. Furthermore, complete genomic sequences and sequenced data will provide a theoretical basis for identifying pathogenic factors responsible for sugarcane leaf scald disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08900-2.
Collapse
Affiliation(s)
- MeiLin Li
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - YiXue Bao
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - YiSha Li
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Sehrish Akbar
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - GuangYue Wu
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - JinXia Du
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Ronghui Wen
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Baoshan Chen
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - MuQing Zhang
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China.
| |
Collapse
|
24
|
Dubrow ZE, Carpenter SCD, Carter ME, Grinage A, Gris C, Lauber E, Butchachas J, Jacobs JM, Smart CD, Tancos MA, Noël LD, Bogdanove AJ. Cruciferous Weed Isolates of Xanthomonas campestris Yield Insight into Pathovar Genomic Relationships and Genetic Determinants of Host and Tissue Specificity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:791-802. [PMID: 35536128 DOI: 10.1094/mpmi-01-22-0024-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pathovars of Xanthomonas campestris cause distinct diseases on different brassicaceous hosts. The genomic relationships among pathovars as well as the genetic determinants of host range and tissue specificity remain poorly understood despite decades of research. Here, leveraging advances in multiplexed long-read technology, we fully sequenced the genomes of a collection of X. campestris strains isolated from cruciferous crops and weeds in New York and California as well as strains from global collections, to investigate pathovar relationships and candidate genes for host- and tissue-specificity. Pathogenicity assays and genomic comparisons across this collection and publicly available X. campestris genomes revealed a correlation between pathovar and genomic relatedness and provide support for X. campestris pv. barbareae, the validity of which had been questioned. Linking strain host range with type III effector repertoires identified AvrAC (also 'XopAC') as a candidate host-range determinant, preventing infection of Matthiola incana, and this was confirmed experimentally. Furthermore, the presence of a copy of the cellobiosidase gene cbsA with coding sequence for a signal peptide was found to correlate with the ability to infect vascular tissues, in agreement with a previous study of diverse Xanthomonas species; however, heterologous expression in strains lacking the gene gave mixed results, indicating that factors in addition to cbsA influence tissue specificity of X. campestris pathovars. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Zoë E Dubrow
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Sara C D Carpenter
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Morgan E Carter
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
- School of Plant Sciences, University of Arizona, Tucson, AZ, U.S.A
| | - Ayress Grinage
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Emmanuelle Lauber
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Jules Butchachas
- Department of Plant Pathology, The Ohio State University, Columbus, OH, U.S.A
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH, U.S.A
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD, U.S.A
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| |
Collapse
|
25
|
Boss BL, Wanees AE, Zaslow SJ, Normile TG, Izquierdo JA. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata. BMC Genomics 2022; 23:508. [PMID: 35831788 PMCID: PMC9281055 DOI: 10.1186/s12864-022-08738-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background The genus Sphingobium within the class Alpha-proteobacteria contains a small number of plant-growth promoting rhizobacteria (PGPR), although it is mostly comprised of organisms that play an important role in biodegradation and bioremediation in sediments and sandy soils. A Sphingobium sp. isolate was obtained from the rhizosphere of the beachgrass Ammophila breviligulata with a variety of plant growth-promoting properties and designated as Sphingobium sp. strain AEW4. Results Analysis of the 16S rRNA gene as well as full genome nucleotide and amino acid identities revealed that this isolate is most similar to Sphingobium xenophagum and Sphingobium hydrophobicum. Comparative genomics analyses indicate that the genome of strain AEW4 contains unique features that explain its relationship with a plant host as a PGPR, including pathways involved in monosaccharide utilization, fermentation pathways, iron sequestration, and resistance to osmotic stress. Many of these unique features are not broadly distributed across the genus. In addition, pathways involved in the metabolism of salicylate and catechol, phenyl acetate degradation, and DNA repair were also identified in this organism but not in most closely related organisms. Conclusion The genome of Sphingobium sp. strain AEW4 contains a number of distinctive features that are crucial to explain its role as a plant-growth promoting rhizobacterium, and comparative genomics analyses support its classification as a relevant Sphingobium strain involved in plant growth promotion of beachgrass and other plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08738-8.
Collapse
Affiliation(s)
- Brianna L Boss
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | - Abanoub E Wanees
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | - Shari J Zaslow
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | - Tyler G Normile
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | | |
Collapse
|
26
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A, Kumar S. Multifarious Responses of Forest Soil Microbial Community Toward Climate Change. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02051-3. [PMID: 35657425 DOI: 10.1007/s00248-022-02051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Adhishree Nagda
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tushar Mehta
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, School of Biological Science, Central University of Punjab, Bhatinda, Punjab, 151401, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
27
|
An Extracytoplasmic Function Sigma Factor Required for Full Virulence in Xanthomonas citri pv. citri. J Bacteriol 2022; 204:e0062421. [PMID: 35446118 DOI: 10.1128/jb.00624-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Xanthomonas includes more than 30 phytopathogenic species that infect a wide range of plants and cause severe diseases that greatly impact crop productivity. These bacteria are highly adapted to the soil and plant environment, being found in decaying material, as epiphytes, and colonizing the plant mesophyll. Signal transduction mechanisms involved in the responses of Xanthomonas to environmental changes are still poorly characterized. Xanthomonad genomes typically encode several representatives of the extracytoplasmic function σ (σECF) factors, whose physiological roles remain elusive. In this work, we functionally characterized the Xanthomonas citri pv. citri EcfL, a σECF factor homologous to members of the iron-responsive FecI-like group. We show that EcfL is not required or induced during iron starvation, despite presenting the common features of other FecI-like σECF factors. EcfL positively regulates one operon composed of three genes that encode a TonB-dependent receptor involved in cell surface signaling, an acid phosphatase, and a lectin-domain containing protein. Furthermore, we demonstrate that EcfL is required for full virulence in citrus, and its regulon is induced inside the plant mesophyll and in response to acid stress. Together, our study suggests a role for EcfL in the adaptation of X. citri to the plant environment, in this way contributing to its ability to cause citrus canker disease. IMPORTANCE The Xanthomonas genus comprises a large number of phytopathogenic species that infect a wide variety of economically important plants worldwide. Bacterial adaptation to the plant and soil environment relies on their repertoire of signal transduction pathways, including alternative sigma factors of the extracytoplasmic function family (σECF). Here, we describe a new σECF factor found in several Xanthomonas species, demonstrating its role in Xanthomonas citri virulence to citrus plants. We show that EcfL regulates a single operon containing three genes, which are also conserved in other Xanthomonas species. This study further expands our knowledge on the functions of the widespread family of σECF factors in phytopathogenic bacteria.
Collapse
|
28
|
Morinière L, Mirabel L, Gueguen E, Bertolla F. A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians. mSystems 2022; 7:e0129021. [PMID: 35311560 PMCID: PMC9040725 DOI: 10.1128/msystems.01290-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The successful infection of a host plant by a phytopathogenic bacterium depends on a finely tuned molecular cross talk between the two partners. Thanks to transposon insertion sequencing techniques (Tn-seq), whole genomes can now be assessed to determine which genes are important for the fitness of several plant-associated bacteria in planta. Despite its agricultural relevance, the dynamic molecular interaction established between the foliar hemibiotrophic phytopathogen Xanthomonas hortorum pv. vitians and its host, lettuce (Lactuca sativa), remains completely unknown. To decipher the genes and functions mobilized by the pathogen throughout the infection process, we conducted a Tn-seq experiment in lettuce leaves to mimic the selective pressure occurring during natural infection. This genome-wide screening identified 170 genes whose disruption caused serious fitness defects in lettuce. A thorough examination of these genes using comparative genomics and gene set enrichment analyses highlighted that several functions and pathways were highly critical for the pathogen's survival. Numerous genes involved in amino acid, nucleic acid, and exopolysaccharide biosynthesis were critical. The xps type II secretion system operon, a few TonB-dependent transporters involved in carbohydrate or siderophore scavenging, and multiple genes of the carbohydrate catabolism pathways were also critical, emphasizing the importance of nutrition systems in a nutrient-limited environment. Finally, several genes implied in camouflage from the plant immune system and resistance to immunity-induced oxidative stress were strongly involved in host colonization. As a whole, these results highlight some of the central metabolic pathways and cellular functions critical for Xanthomonas host adaptation and pathogenesis. IMPORTANCE Xanthomonas hortorum was recently the subject of renewed interest, as several studies highlighted that its members were responsible for diseases in a wide range of plant species, including crops of agricultural relevance (e.g., tomato and carrot). Among X. hortorum variants, X. hortorum pv. vitians is a reemerging foliar hemibiotrophic phytopathogen responsible for severe outbreaks of bacterial leaf spot of lettuce all around the world. Despite recent findings, sustainable and practical means of disease control remain to be developed. Understanding the host-pathogen interaction from a molecular perspective is crucial to support these efforts. The genes and functions mobilized by X. hortorum pv. vitians during its interaction with lettuce had never been investigated. Our study sheds light on these processes by screening the whole pathogen genome for genes critical for its fitness during the infection process, using transposon insertion sequencing and comparative genomics.
Collapse
Affiliation(s)
- Lucas Morinière
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Laurène Mirabel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Erwan Gueguen
- Université Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Franck Bertolla
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
29
|
Wang Z, Tauzin AS, Laville E, Potocki-Veronese G. Identification of Glycoside Transporters From the Human Gut Microbiome. Front Microbiol 2022; 13:816462. [PMID: 35401468 PMCID: PMC8990778 DOI: 10.3389/fmicb.2022.816462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Transport is a crucial step in the metabolism of glycosides by bacteria, which is itself key for microbiota function and equilibrium. However, most transport proteins are function-unknown or only predicted, limiting our understanding of how bacteria utilize glycosides. Here, we present an activity-based screening method to identify functional glycoside transporters from microbiomes. The method is based on the co-expression in Escherichia coli of genes encoding transporters and carbohydrate-active enzymes (CAZymes) from metagenomic polysaccharide utilization loci (PULs) cloned in fosmids. To establish the proof of concept of the methodology, we used two different metagenomic libraries derived from human gut microbiota to select 18 E. coli clones whose metagenomic sequence contained at least one putative glycoside transporter and one functional CAZyme, identified by screening for various glycoside-hydrolase activities. Growth tests were performed on plant-derived glycosides, which are the target substrates of the CAZymes identified in each PUL. This led to the identification of 10 clones that are able to utilize oligosaccharides as sole carbon sources, thanks to the production of transporters from the PTS, ABC, MFS, and SusCD families. Six of the 10 hit clones contain only one transporter, providing direct experimental evidence that these transporters are functional. In the six cases where two transporters are present in the sequence of a clone, the transporters’ function can be predicted from the flanking CAZymes or from similarity with transporters characterized previously, which facilitates further functional characterization. The results expand the understanding of how glycosides are selectively metabolized by bacteria and offers a new approach to screening for glycoside-transporter specificity toward oligosaccharides with defined structures.
Collapse
Affiliation(s)
- Zhi Wang
- TBI, CNRS, INRA, INSAT, Université de Toulouse, Toulouse, France
| | | | | | | |
Collapse
|
30
|
β-Lactam Resistance in Azospirillum baldaniorum Sp245 Is Mediated by Lytic Transglycosylase and β-Lactamase and Regulated by a Cascade of RpoE7→RpoH3 Sigma Factors. J Bacteriol 2022; 204:e0001022. [PMID: 35352964 DOI: 10.1128/jb.00010-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacterial resistance to β-lactam antibiotics is often mediated by β-lactamases and lytic transglycosylases. Azospirillum baldaniorum Sp245 is a plant-growth-promoting rhizobacterium that shows high levels of resistance to ampicillin. Investigating the molecular basis of ampicillin resistance and its regulation in A. baldaniorum Sp245, we found that a gene encoding lytic transglycosylase (Ltg1) is organized divergently from a gene encoding an extracytoplasmic function (ECF) σ factor (RpoE7) in its genome. Inactivation of rpoE7 in A. baldaniorum Sp245 led to increased ability to form cell-cell aggregates and produce exopolysaccharides and biofilm, suggesting that rpoE7 might contribute to antibiotic resistance. Inactivation of ltg1 in A. baldaniorum Sp245, however, adversely affected its growth, indicating a requirement of Ltg1 for optimal growth. The expression of rpoE7, as well that of as ltg1, was positively regulated by RpoE7, and overexpression of RpoE7 conferred ampicillin sensitivity to both the rpoE7::km mutant and its parent. In addition, RpoE7 negatively regulated the expression of a gene encoding a β-lactamase (bla1). Out of the 5 paralogs of RpoH encoded in the genome of A. baldaniorum Sp245, RpoH3 played major roles in conferring ampicillin sensitivity and in the downregulation of bla1. The expression of rpoH3 was positively regulated by RpoE7. Collectively, these observations reveal a novel regulatory cascade of RpoE7-RpoH3 σ factors that negatively regulates ampicillin resistance in A. baldaniorum Sp245 by controlling the expression of a β-lactamase and a lytic transglycosylase. In the absence of a cognate anti-sigma factor, addressing how the activity of RpoE7 is regulated by β-lactams will unravel new mechanisms of regulation of β-lactam resistance in bacteria. IMPORTANCE Antimicrobial resistance is a global health problem that requires a better understanding of the mechanisms that bacteria use to resist antibiotics. Bacteria inhabiting the plant rhizosphere are a potential source of antibiotic resistance, but their mechanisms controlling antibiotic resistance are poorly understood. A. baldaniorum Sp245 is a rhizobacterium that is known for its characteristic resistance to ampicillin. Here, we show that an AmpC-type β-lactamase and a lytic transglycosylase mediate resistance to ampicillin in A. baldaniorum Sp245. While the gene encoding lytic transglycosylase is positively regulated by an ECF σ-factor (RpoE7), a cascade of RpoE7 and RpoH3 σ factors negatively regulates the expression of β-lactamase. This is the first evidence showing involvement of a regulatory cascade of σ factors in the regulation of ampicillin resistance in a rhizobacterium.
Collapse
|
31
|
Phenotypic and Molecular-Phylogenetic Analyses Reveal Distinct Features of Crown Gall-Associated Xanthomonas Strains. Microbiol Spectr 2022; 10:e0057721. [PMID: 35107322 PMCID: PMC8809331 DOI: 10.1128/spectrum.00577-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In summer 2019, widespread occurrence of crown gall disease caused by Agrobacterium spp. was observed on commercially grown ornamental plants in southern Iran. Beside agrobacteria, pale yellow-pigmented Gram-negative strains resembling the members of Xanthomonas were also associated with crown gall tissues on weeping fig (Ficus benjamina) and Amaranthus sp. plants. The purpose of the present study was to characterize the crown gall-associated Xanthomonas strains using plant inoculation assays, molecular-phylogenetic analyses, and comparative genomics approaches. Pathogenicity tests showed that the Xanthomonas strains did not induce disease symptoms on their host of isolation. However, the strains induced hypersensitive reaction on tobacco, geranium, melon, squash, and tomato leaves via leaf infiltration. Multilocus sequence analysis suggested that the strains belong to clade IA of Xanthomonas, phylogenetically close to Xanthomonas translucens, X. theicola, and X. hyacinthi. Average nucleotide identity and digital DNA-DNA hybridization values between the whole-genome sequences of the strains isolated in this study and reference Xanthomonas strains are far below the accepted thresholds for the definition of prokaryotic species, signifying that these strains could be defined as two new species within clade IA of Xanthomonas. Comparative genomics showed that the strains isolated from crown gall tissues are genetically distinct from X. translucens, as almost all the type III secretion system genes and type III effectors are lacking in the former group. The data obtained in this study provide novel insight into the breadth of genetic diversity of crown gall-associated bacteria and pave the way for research on gall-associated Xanthomonas-plant interactions. IMPORTANCE Tumorigenic agrobacteria—members of the bacterial family Rhizobiaceae—cause crown gall and hairy root diseases on a broad range of plant species. These bacteria are responsible for economic losses in nurseries of important fruit trees and ornamental plants. The microclimate of crown gall and their accompanying microorganisms has rarely been studied for the microbial diversity and population dynamics of gall-associated bacteria. Here, we employed a series of biochemical tests, pathogenicity assays, and molecular-phylogenetic analyses, supplemented with comparative genomics, to elucidate the biological features, taxonomic position, and genomic repertories of five crown gall-associated Xanthomonas strains isolated from weeping fig and Amaranthus sp. plants in Iran. The strains investigated in this study induced hypersensitive reactions (HR) on geranium, melon, squash, tobacco, and tomato leaves, while they were nonpathogenic on their host of isolation. Phylogenetic analyses and whole-genome-sequence-based average nucleotide identity (ANI)/digital DNA-DNA hybridization (dDDH) calculations suggested that the Xanthomonas strains isolated from crown gall tissues belong to two taxonomically unique clades closely related to the clade IA species of the genus, i.e., X. translucens, X. hyacinthi, and X. theicola.
Collapse
|
32
|
Luneau JS, Cerutti A, Roux B, Carrère S, Jardinaud M, Gaillac A, Gris C, Lauber E, Berthomé R, Arlat M, Boulanger A, Noël LD. Xanthomonas transcriptome inside cauliflower hydathodes reveals bacterial virulence strategies and physiological adaptations at early infection stages. MOLECULAR PLANT PATHOLOGY 2022; 23:159-174. [PMID: 34837293 PMCID: PMC8743013 DOI: 10.1111/mpp.13117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/01/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted vascular pathogen causing black rot disease on cultivated and wild Brassicaceae. Xcc enters the plant tissues preferentially via hydathodes, which are organs localized at leaf margins. To decipher both physiological and virulence strategies deployed by Xcc during early stages of infection, the transcriptomic profile of Xcc was analysed 3 days after entry into cauliflower hydathodes. Despite the absence of visible plant tissue alterations and despite a biotrophic lifestyle, 18% of Xcc genes were differentially expressed, including a striking repression of chemotaxis and motility functions. The Xcc full repertoire of virulence factors had not yet been activated but the expression of the HrpG regulon composed of 95 genes, including genes coding for the type III secretion machinery important for suppression of plant immunity, was induced. The expression of genes involved in metabolic adaptations such as catabolism of plant compounds, transport functions, sulphur and phosphate metabolism was upregulated while limited stress responses were observed 3 days postinfection. We confirmed experimentally that high-affinity phosphate transport is needed for bacterial fitness inside hydathodes. This analysis provides information about the nutritional and stress status of bacteria during the early biotrophic infection stages and helps to decipher the adaptive strategy of Xcc to the hydathode environment.
Collapse
Affiliation(s)
- Julien S. Luneau
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Aude Cerutti
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Brice Roux
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
- Present address:
Brice Roux, HalioDx, Luminy Biotech EntreprisesMarseille Cedex 9France
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | | | - Antoine Gaillac
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Emmanuelle Lauber
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Richard Berthomé
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Matthieu Arlat
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Alice Boulanger
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Laurent D. Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| |
Collapse
|
33
|
Hernández-Álvarez C, García-Oliva F, Cruz-Ortega R, Romero MF, Barajas HR, Piñero D, Alcaraz LD. Squash root microbiome transplants and metagenomic inspection for in situ arid adaptations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150136. [PMID: 34818799 DOI: 10.1016/j.scitotenv.2021.150136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/10/2023]
Abstract
Arid zones contain a diverse set of microbes capable of survival under dry conditions, some of which can form relationships with plants under drought stress conditions to improve plant health. We studied squash (Cucurbita pepo L.) root microbiome under historically arid and humid sites, both in situ and performing a common garden experiment. Plants were grown in soils from sites with different drought levels, using in situ collected soils as the microbial source. We described and analyzed bacterial diversity by 16S rRNA gene sequencing (N = 48) from the soil, rhizosphere, and endosphere. Proteobacteria were the most abundant phylum present in humid and arid samples, while Actinobacteriota abundance was higher in arid ones. The β-diversity analyses showed split microbiomes between arid and humid microbiomes, and aridity and soil pH levels could explain it. These differences between humid and arid microbiomes were maintained in the common garden experiment, showing that it is possible to transplant in situ diversity to the greenhouse. We detected a total of 1009 bacterial genera; 199 exclusively associated with roots under arid conditions. By 16S and shotgun metagenomics, we identified dry-associated taxa such as Cellvibrio, Ensifer adhaerens, and Streptomyces flavovariabilis. With shotgun metagenomic sequencing of rhizospheres (N = 6), we identified 2969 protein families in the squash core metagenome and found an increased number of exclusively protein families from arid (924) than humid samples (158). We found arid conditions enriched genes involved in protein degradation and folding, oxidative stress, compatible solute synthesis, and ion pumps associated with osmotic regulation. Plant phenotyping allowed us to correlate bacterial communities with plant growth. Our study revealed that it is possible to evaluate microbiome diversity ex-situ and identify critical species and genes involved in plant-microbe interactions in historically arid locations.
Collapse
Affiliation(s)
- Cristóbal Hernández-Álvarez
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Mexico
| | - Rocío Cruz-Ortega
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico
| | - Miguel F Romero
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico
| | - Hugo R Barajas
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico
| | - Luis D Alcaraz
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
34
|
Riemer E, Pullagurla NJ, Yadav R, Rana P, Jessen HJ, Kamleitner M, Schaaf G, Laha D. Regulation of plant biotic interactions and abiotic stress responses by inositol polyphosphates. FRONTIERS IN PLANT SCIENCE 2022; 13:944515. [PMID: 36035672 PMCID: PMC9403785 DOI: 10.3389/fpls.2022.944515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/20/2022] [Indexed: 05/14/2023]
Abstract
Inositol pyrophosphates (PP-InsPs), derivatives of inositol hexakisphosphate (phytic acid, InsP6) or lower inositol polyphosphates, are energy-rich signaling molecules that have critical regulatory functions in eukaryotes. In plants, the biosynthesis and the cellular targets of these messengers are not fully understood. This is because, in part, plants do not possess canonical InsP6 kinases and are able to synthesize PP-InsP isomers that appear to be absent in yeast or mammalian cells. This review will shed light on recent discoveries in the biosynthesis of these enigmatic messengers and on how they regulate important physiological processes in response to abiotic and biotic stresses in plants.
Collapse
Affiliation(s)
- Esther Riemer
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- *Correspondence: Esther Riemer,
| | | | - Ranjana Yadav
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Priyanshi Rana
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Henning J. Jessen
- Department of Chemistry and Pharmacy & CIBSS – The Center of Biological Signaling Studies, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Marília Kamleitner
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Gabriel Schaaf
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
- Debabrata Laha,
| |
Collapse
|
35
|
de Oliveira BFR, Lopes IR, Canellas ALB, Muricy G, Jackson SA, Dobson ADW, Laport MS. Genomic and in silico protein structural analyses provide insights into marine polysaccharide-degrading enzymes in the sponge-derived Pseudoalteromonas sp. PA2MD11. Int J Biol Macromol 2021; 191:973-995. [PMID: 34555402 DOI: 10.1016/j.ijbiomac.2021.09.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Active heterotrophic metabolism is a critical metabolic role performed by sponge-associated microorganisms, but little is known about their capacity to metabolize marine polysaccharides (MPs). Here, we investigated the genome of the sponge-derived Pseudoalteromonas sp. strain PA2MD11 focusing on its macroalgal carbohydrate-degrading potential. Carbohydrate-active enzymes (CAZymes) for the depolymerization of agar and alginate were found in PA2MD11's genome, including glycoside hydrolases (GHs) and polysaccharide lyases (PLs) belonging to families GH16, GH50 and GH117, and PL6 and PL17, respectively. A gene potentially encoding a sulfatase was also identified, which may play a role in the strain's ability to consume carrageenans. The complete metabolism of agar and alginate by PA2MD11 could also be predicted and was consistent with the results obtained in physiological assays. The polysaccharide utilization locus (PUL) potentially involved in the metabolism of agarose contained mobile genetic elements from other marine Gammaproteobacteria and its unusual larger size might be due to gene duplication events. Homology modelling and structural protein analyses of the agarases, alginate lyases and sulfatase depicted clear conservation of catalytic machinery and protein folding together with suitable industrially-relevant features. Pseudoalteromonas sp. PA2MD11 is therefore a source of potential MP-degrading biocatalysts for biorefinery applications and in the preparation of pharmacologically-active oligosaccharides.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil; School of Microbiology, University College Cork, T12 Y960 Cork, Ireland
| | - Isabelle Rodrigues Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil
| | - Anna Luiza Bauer Canellas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil
| | - Guilherme Muricy
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n°, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Stephen Anthony Jackson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland; Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland; Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Fujita M, Yano S, Shibata K, Kondo M, Hishiyama S, Kamimura N, Masai E. Functional roles of multiple Ton complex genes in a Sphingobium degrader of lignin-derived aromatic compounds. Sci Rep 2021; 11:22444. [PMID: 34789769 PMCID: PMC8599685 DOI: 10.1038/s41598-021-01756-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
TonB-dependent transporters (TBDTs) mediate outer membrane transport of nutrients using the energy derived from proton motive force transmitted from the TonB–ExbB–ExbD complex localized in the inner membrane. Recently, we discovered ddvT encoding a TBDT responsible for the uptake of a 5,5-type lignin-derived dimer in Sphingobium sp. strain SYK-6. Furthermore, overexpression of ddvT in an SYK-6-derivative strain enhanced its uptake capacity, improving the rate of platform chemical production. Thus, understanding the uptake system of lignin-derived aromatics is fundamental for microbial conversion-based lignin valorization. Here we examined whether multiple tonB-, exbB-, and exbD-like genes in SYK-6 contribute to the outer membrane transport of lignin-derived aromatics. The disruption of tonB2–6 and exbB3 did not reduce the capacity of SYK-6 to convert or grow on lignin-derived aromatics. In contrast, the introduction of the tonB1–exbB1–exbD1–exbD2 operon genes into SYK-6, which could not be disrupted, promoted the conversion of β-O-4-, β-5-, β-1-, β-β-, and 5,5-type dimers and monomers, such as ferulate, vanillate, syringate, and protocatechuate. These results suggest that TonB-dependent uptake involving the tonB1 operon genes is responsible for the outer membrane transport of the above aromatics. Additionally, exbB2/tolQ and exbD3/tolR were suggested to constitute the Tol-Pal system that maintains the outer membrane integrity.
Collapse
Affiliation(s)
- Masaya Fujita
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.,Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Shodai Yano
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Koki Shibata
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Mizuki Kondo
- Center for Integrated Technology Support, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shojiro Hishiyama
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
37
|
Hu M, Li C, Xue Y, Hu A, Chen S, Chen Y, Lu G, Zhou X, Zhou J. Isolation, Characterization, and Genomic Investigation of a Phytopathogenic Strain of Stenotrophomonas maltophilia. PHYTOPATHOLOGY 2021; 111:2088-2099. [PMID: 33759550 DOI: 10.1094/phyto-11-20-0501-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stenotrophomonas maltophilia is ubiquitous in diverse environmental habitats. It merits significant concern because of its increasing incidence of nosocomial and community-acquired infection in immunocompromised patients and multiple drug resistance. It is rarely reported as a phytopathogen except in causing white stripe disease of rice in India and postharvest fruit rot of Lanzhou lily. For this study, Dickeya zeae and S. maltophilia strains were simultaneously isolated from soft rot leaves of Clivia miniata in Guangzhou, China, and were both demonstrated to be pathogenic to the host. Compared with the D. zeae strains, S. maltophilia strains propagated faster for greater growth in lysogeny broth medium and produced no cellulases or polygalacturonases, but did produce more proteases and fewer extracellular polysaccharides. Furthermore, S. maltophilia strains swam and swarmed dramatically less on semisolid media, but formed a great many more biofilms. Both D. zeae and S. maltophilia strains isolated from clivia caused rot symptoms on other monocot hosts, but not on dicots. Similar to previously reported S. maltophilia strains isolated from other sources, the strain JZL8 survived under many antibiotic stresses. The complete genome sequence of S. maltophilia strain JZL8 consists of a chromosome of 4,635,432 bp without a plasmid. Pan-genome analysis of JZL8 and 180 other S. maltophilia strains identified 50 genes that are unique to JZL8, seven of which implicate JZL8 as the potential pathogen contributor in plants. JZL8 also contains three copies of Type I Secretion System machinery; this is likely responsible for its greater production of proteases. Findings from this study extend our knowledge on the host range of S. maltophilia and provide insight into the phenotypic and genetic features underlying the plant pathogenicity of JZL8.
Collapse
Affiliation(s)
- Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Chuhao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yang Xue
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Anqun Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yufan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Guangtao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
38
|
The Same against Many: AtCML8, a Ca 2+ Sensor Acting as a Positive Regulator of Defense Responses against Several Plant Pathogens. Int J Mol Sci 2021; 22:ijms221910469. [PMID: 34638807 PMCID: PMC8508799 DOI: 10.3390/ijms221910469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Calcium signals are crucial for the activation and coordination of signaling cascades leading to the establishment of plant defense mechanisms. Here, we studied the contribution of CML8, an Arabidopsis calmodulin-like protein in response to Ralstonia solanacearum and to pathogens with different lifestyles, such as Xanthomonas campestris pv. campestris and Phytophtora capsici. We used pathogenic infection assays, gene expression, RNA-seq approaches, and comparative analysis of public data on CML8 knockdown and overexpressing Arabidopsis lines to demonstrate that CML8 contributes to defense mechanisms against pathogenic bacteria and oomycetes. CML8 gene expression is finely regulated at the root level and manipulated during infection with Ralstonia, and CML8 overexpression confers better plant tolerance. To understand the processes controlled by CML8, genes differentially expressed at the root level in the first hours of infection have been identified. Overexpression of CML8 also confers better tolerance against Xanthomonas and Phytophtora, and most of the genes differentially expressed in response to Ralstonia are differentially expressed in these different pathosystems. Collectively, CML8 acts as a positive regulator against Ralstonia solanaceraum and against other vascular or root pathogens, suggesting that CML8 is a multifunctional protein that regulates common downstream processes involved in the defense response of plants to several pathogens.
Collapse
|
39
|
Role of a fasciclin domain protein in photooxidative stress and flocculation in Azospirillum brasilense Sp7. Res Microbiol 2021; 172:103875. [PMID: 34461275 DOI: 10.1016/j.resmic.2021.103875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
Fasciclin domain proteins (FDP) are found in all domains of life, but their biological role and regulation are not clearly understood. While studying the proteome of a mutant (Car1) of Azospirillum brasilense Sp7 with a Tn5 insertion in the gene encoding an anti-sigma factor (ChrR1), we found that FDP was maximally expressed. To study the biological role of this FDP, we inactivated fdp in A. brasilense Sp7 and in its Car1 mutant, which rendered them sensitive to methylene blue (MB) and toluidine blue (TB) in the presence of light. The transcription of fdp was also strongly upregulated by an ECF sigma factor (RpoE1) and photooxidative stress. The fdp null mutants of A. brasilense Sp7 and its Car1 mutant produced relatively fewer carotenoids and showed reduced flocculation. The reduced ability of fdp null mutants to flocculate was partly due to their reduced ability to produce carotenoids as inhibition of carotenoid synthesis by diphenylamine reduced their flocculation ability by 15-20%. Hence, FDP plays an important role in protecting A. brasilense Sp7 against photo-oxidative stress by supporting carotenoid accumulation and cell aggregation.
Collapse
|
40
|
Zhang F, Hu Z, Wu Z, Lu J, Shi Y, Xu J, Wang X, Wang J, Zhang F, Wang M, Shi X, Cui Y, Vera Cruz C, Zhuo D, Hu D, Li M, Wang W, Zhao X, Zheng T, Fu B, Ali J, Zhou Y, Li Z. Reciprocal adaptation of rice and Xanthomonas oryzae pv. oryzae: cross-species 2D GWAS reveals the underlying genetics. THE PLANT CELL 2021; 33:2538-2561. [PMID: 34467412 PMCID: PMC8408478 DOI: 10.1093/plcell/koab146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
A 1D/2D genome-wide association study strategy was adopted to investigate the genetic systems underlying the reciprocal adaptation of rice (Oryza sativa) and its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo) using the whole-genome sequencing and large-scale phenotyping data of 701 rice accessions and 23 diverse Xoo strains. Forty-seven Xoo virulence-related genes and 318 rice quantitative resistance genes (QR-genes) mainly located in 41 genomic regions, and genome-wide interactions between the detected virulence-related genes and QR genes were identified, including well-known resistance genes/virulence genes plus many previously uncharacterized ones. The relationship between rice and Xoo was characterized by strong differentiation among Xoo races corresponding to the subspecific differentiation of rice, by strong shifts toward increased resistance/virulence of rice/Xoo populations and by rich genetic diversity at the detected rice QR-genes and Xoo virulence genes, and by genome-wide interactions between many rice QR-genes and Xoo virulence genes in a multiple-to-multiple manner, presumably resulting either from direct protein-protein interactions or from genetic epistasis. The observed complex genetic interaction system between rice and Xoo likely exists in other crop-pathogen systems that would maintain high levels of diversity at their QR-loci/virulence-loci, resulting in dynamic coevolutionary consequences during their reciprocal adaptation.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Zhiqiang Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Zhichao Wu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Jialing Lu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063009, China
| | - Jinpeng Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063009, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Mingming Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Xiaorong Shi
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Yanru Cui
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Casiana Vera Cruz
- International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines
| | - Dalong Zhuo
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Dandan Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Jauhar Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines
| | - Yongli Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
41
|
Schätzle H, Arévalo S, Flores E, Schleiff E. A TonB-Like Protein, SjdR, Is Involved in the Structural Definition of the Intercellular Septa in the Heterocyst-Forming Cyanobacterium Anabaena. mBio 2021; 12:e0048321. [PMID: 34101487 PMCID: PMC8262864 DOI: 10.1128/mbio.00483-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms with a Gram-negative envelope structure. Certain filamentous species such as Anabaena sp. strain PCC 7120 can fix dinitrogen upon depletion of combined nitrogen. Because the nitrogen-fixing enzyme, nitrogenase, is oxygen sensitive, photosynthesis and nitrogen fixation are spatially separated in Anabaena. Nitrogen fixation takes place in specialized cells called heterocysts, which differentiate from vegetative cells. During heterocyst differentiation, a microoxic environment is created by dismantling photosystem II and restructuring the cell wall. Moreover, solute exchange between the different cell types is regulated to limit oxygen influx into the heterocyst. The septal zone containing nanopores for solute exchange is constricted between heterocysts and vegetative cells, and cyanophycin plugs are located at the heterocyst poles. We identified a protein previously annotated as TonB1 that is largely conserved among cyanobacteria. A mutant of the encoding gene formed heterocysts but was impaired in diazotrophic growth. Mutant heterocysts appeared elongated and exhibited abnormal morphological features, including a reduced cyanophycin plug, an enhanced septum size, and a restricted nanopore zone in the septum. In spite of this, the intercellular transfer velocity of the fluorescent marker calcein was increased in the mutant compared to the wild type. Thus, the protein is required for proper formation of septal structures, expanding our emerging understanding of Anabaena peptidoglycan plasticity and intercellular solute exchange, and is therefore renamed SjdR (septal junction disk regulator). Notably, calcium supplementation compensated for the impaired diazotrophic growth and alterations in septal peptidoglycan in the sjdR mutant, emphasizing the importance of calcium for cell wall structure. IMPORTANCE Multicellularity in bacteria confers an improved adaptive capacity to environmental conditions and stresses. This includes an enhanced capability of resource utilization through a distribution of biochemical processes between constituent cells. This specialization results in a mutual dependency of different cell types, as is the case for nitrogen-fixing heterocysts and photosynthetically active vegetative cells in Anabaena. In this cyanobacterium, intercellular solute exchange is facilitated through nanopores in the peptidoglycan between adjacent cells. To ensure functionality of the specialized cells, septal size as well as the position, size, and frequency of nanopores in the septum need to be tightly established. The novel septal junction disk regulator SjdR characterized here is conserved in the cyanobacterial phylum. It influences septal size and septal nanopore distribution. Consequently, its absence severely affects the intercellular communication and the strains' growth capacity under nitrogen depletion. Thus, SjdR is involved in septal structure remodeling in cyanobacteria.
Collapse
Affiliation(s)
- Hannah Schätzle
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- FIERCE, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- FIERCE, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Wang X, Wei Z, Wu H, Li Y, Han F, Yu W. Characterization of a Hyaluronic Acid Utilization Locus and Identification of Two Hyaluronate Lyases in a Marine Bacterium Vibrio alginolyticus LWW-9. Front Microbiol 2021; 12:696096. [PMID: 34177877 PMCID: PMC8222515 DOI: 10.3389/fmicb.2021.696096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Hyaluronic acid (HA) is a negatively charged and linear polysaccharide existing in the tissues and body fluids of all vertebrates. Some pathogenic bacteria target hyaluronic acid for adhesion and/or infection to host cells. Vibrio alginolyticus is an opportunistic pathogen related to infections of humans and marine animals, and the hyaluronic acid-degrading potential of Vibrio spp. has been well-demonstrated. However, little is known about how Vibrio spp. utilize hyaluronic acid. In this study, a marine bacterium V. alginolyticus LWW-9 capable of degrading hyaluronic acid has been isolated. Genetic and bioinformatic analysis showed that V. alginolyticus LWW-9 harbors a gene cluster involved in the degradation, transport, and metabolism of hyaluronic acid. Two novel PL8 family hyaluronate lyases, VaHly8A and VaHly8B, are the key enzymes for the degradation of hyaluronic acid. VaHly8A and VaHly8B have distinct biochemical properties, reflecting the adaptation of the strain to the changing parameters of the aquatic habitats and hosts. Based on genomic and functional analysis, we propose a model for the complete degradation of hyaluronic acid by V. alginolyticus LWW-9. Overall, our study expands our knowledge of the HA utilization paradigm within the Proteobacteria, and the two novel hyaluronate lyases are excellent candidates for industrial applications.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ziwei Wei
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Wu
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yujiao Li
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Han
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wengong Yu
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
43
|
Assis RAB, Varani AM, Sagawa CHD, Patané JSL, Setubal JC, Uceda-Campos G, da Silva AM, Zaini PA, Almeida NF, Moreira LM, Dandekar AM. A comparative genomic analysis of Xanthomonas arboricola pv. juglandis strains reveal hallmarks of mobile genetic elements in the adaptation and accelerated evolution of virulence. Genomics 2021; 113:2513-2525. [PMID: 34089784 DOI: 10.1016/j.ygeno.2021.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/01/2021] [Accepted: 06/01/2021] [Indexed: 01/25/2023]
Abstract
Xanthomonas arboricola pv. juglandis (Xaj) is the most significant aboveground walnut bacterial pathogen. Disease management uses copper-based pesticides which induce pathogen resistance. We examined the genetic repertoire associated with adaptation and virulence evolution in Xaj. Comparative genomics of 32 Xaj strains reveal the possible acquisition and propagation of virulence factors via insertion sequences (IS). Fine-scale annotation revealed a Tn3 transposon (TnXaj417) encoding copper resistance genes acquired by horizontal gene transfer and associated with adaptation and tolerance to metal-based pesticides commonly used to manage pathogens in orchard ecosystems. Phylogenomic analysis reveals IS involvement in acquisition and diversification of type III effector proteins ranging from two to eight in non-pathogenic strains, 16 to 20 in pathogenic strains, besides six other putative effectors with a reduced identity degree found mostly among pathogenic strains. Yersiniabactin, xopK, xopAI, and antibiotic resistance genes are also located near ISs or inside genomic islands and structures resembling composite transposons.
Collapse
Affiliation(s)
- Renata A B Assis
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Department of Plant Sciences, University of California, Davis, CA, USA
| | - Alessandro M Varani
- Faculty of Agricultural and Veterinary Sciences of Jaboticabal (FCAV), Universidade Estadual Paulista (UNESP), Department of Technology, Jaboticabal, SP, Brazil
| | - Cintia H D Sagawa
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - José S L Patané
- Cell Cycle Laboratory, Butantan Institute, Sao Paulo, SP, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Guillermo Uceda-Campos
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline Maria da Silva
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Nalvo F Almeida
- School of Computing, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, MS, Brazil
| | - Leandro Marcio Moreira
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Department of Biological Science, Institute of Exact and Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
44
|
A Novel Auxiliary Agarolytic Pathway Expands Metabolic Versatility in the Agar-Degrading Marine Bacterium Colwellia echini A3 T. Appl Environ Microbiol 2021; 87:e0023021. [PMID: 33811026 DOI: 10.1128/aem.00230-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine microorganisms encode a complex repertoire of carbohydrate-active enzymes (CAZymes) for the catabolism of algal cell wall polysaccharides. While the core enzyme cascade for degrading agar is conserved across agarolytic marine bacteria, gain of novel metabolic functions can lead to the evolutionary expansion of the gene repertoire. Here, we describe how two less-abundant GH96 α-agarases harbored in the agar-specific polysaccharide utilization locus (PUL) of Colwellia echini strain A3T facilitate the versatility of the agarolytic pathway. The cellular and molecular functions of the α-agarases examined by genomic, transcriptomic, and biochemical analyses revealed that α-agarases of C. echini A3T create a novel auxiliary pathway. α-Agarases convert even-numbered neoagarooligosaccharides to odd-numbered agaro- and neoagarooligosaccharides, providing an alternative route for the depolymerization process in the agarolytic pathway. Comparative genomic analysis of agarolytic bacteria implied that the agarolytic gene repertoire in marine bacteria has been diversified during evolution, while the essential core agarolytic gene set has been conserved. The expansion of the agarolytic gene repertoire and novel hydrolytic functions, including the elucidated molecular functionality of α-agarase, promote metabolic versatility by channeling agar metabolism through different routes. IMPORTANCE Colwellia echini A3T is an example of how the gain of gene(s) can lead to the evolutionary expansion of agar-specific polysaccharide utilization loci (PUL). C. echini A3T encodes two α-agarases in addition to the core β-agarolytic enzymes in its agarolytic PUL. Among the agar-degrading CAZymes identified so far, only a few α-agarases have been biochemically characterized. The molecular and biological functions of two α-agarases revealed that their unique hydrolytic pattern leads to the emergence of auxiliary agarolytic pathways. Through the combination of transcriptomic, genomic, and biochemical evidence, we elucidate the complete α-agarolytic pathway in C. echini A3T. The addition of α-agarases to the agarolytic enzyme repertoire might allow marine agarolytic bacteria to increase competitive abilities through metabolic versatility.
Collapse
|
45
|
Comparative proteomic profiling of newly acquired, virulent and attenuated Neoparamoeba perurans proteins associated with amoebic gill disease. Sci Rep 2021; 11:6830. [PMID: 33767232 PMCID: PMC7994405 DOI: 10.1038/s41598-021-85988-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
The causative agent of amoebic gill disease, Neoparamoeba perurans is reported to lose virulence during prolonged in vitro maintenance. In this study, the impact of prolonged culture on N. perurans virulence and its proteome was investigated. Two isolates, attenuated and virulent, had their virulence assessed in an experimental trial using Atlantic salmon smolts and their bacterial community composition was evaluated by 16S rRNA Illumina MiSeq sequencing. Soluble proteins were isolated from three isolates: a newly acquired, virulent and attenuated N. perurans culture. Proteins were analysed using two-dimensional electrophoresis coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). The challenge trial using naïve smolts confirmed a loss in virulence in the attenuated N. perurans culture. A greater diversity of bacterial communities was found in the microbiome of the virulent isolate in contrast to a reduction in microbial community richness in the attenuated microbiome. A collated proteome database of N. perurans, Amoebozoa and four bacterial genera resulted in 24 proteins differentially expressed between the three cultures. The present LC-MS/MS results indicate protein synthesis, oxidative stress and immunomodulation are upregulated in a newly acquired N. perurans culture and future studies may exploit these protein identifications for therapeutic purposes in infected farmed fish.
Collapse
|
46
|
Monge EC, Gardner JG. Efficient chito-oligosaccharide utilization requires two TonB-dependent transporters and one hexosaminidase in Cellvibrio japonicus. Mol Microbiol 2021; 116:366-380. [PMID: 33735458 DOI: 10.1111/mmi.14717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Abstract
Chitin utilization by microbes plays a significant role in biosphere carbon and nitrogen cycling, and studying the microbial approaches used to degrade chitin will facilitate our understanding of bacterial strategies to degrade a broad range of recalcitrant polysaccharides. The early stages of chitin depolymerization by the bacterium Cellvibrio japonicus have been characterized and are dependent on one chitin-specific lytic polysaccharide monooxygenase and nonredundant glycoside hydrolases from the family GH18 to generate chito-oligosaccharides for entry into metabolism. Here, we describe the mechanisms for the latter stages of chitin utilization by C. japonicus with an emphasis on the fate of chito-oligosaccharides. Our systems biology approach combined transcriptomics and bacterial genetics using ecologically relevant substrates to determine the essential mechanisms for chito-oligosaccharide transport and catabolism in C. japonicus. Using RNAseq analysis we found a coordinated expression of genes that encode polysaccharide-degrading enzymes. Mutational analysis determined that the hex20B gene product, predicted to encode a hexosaminidase, was required for efficient utilization of chito-oligosaccharides. Furthermore, two gene loci (CJA_0353 and CJA_1157), which encode putative TonB-dependent transporters, were also essential for chito-oligosaccharides utilization. This study further develops our model of C. japonicus chitin metabolism and may be predictive for other environmentally or industrially important bacteria.
Collapse
Affiliation(s)
- Estela C Monge
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
47
|
Pollet RM, Martin LM, Koropatkin NM. TonB-dependent transporters in the Bacteroidetes: Unique domain structures and potential functions. Mol Microbiol 2021; 115:490-501. [PMID: 33448497 DOI: 10.1111/mmi.14683] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022]
Abstract
The human gut microbiota endows the host with a wealth of metabolic functions central to health, one of which is the degradation and fermentation of complex carbohydrates. The Bacteroidetes are one of the dominant bacterial phyla of this community and possess an expanded capacity for glycan utilization. This is mediated via the coordinated expression of discrete polysaccharide utilization loci (PUL) that invariantly encode a TonB-dependent transporter (SusC) that works with a glycan-capturing lipoprotein (SusD). More broadly within Gram-negative bacteria, TonB-dependent transporters (TBDTs) are deployed for the uptake of not only sugars, but also more often for essential nutrients such as iron and vitamins. Here, we provide a comprehensive look at the repertoire of TBDTs found in the model gut symbiont Bacteroides thetaiotaomicron and the range of predicted functional domains associated with these transporters and SusD proteins for the uptake of both glycans and other nutrients. This atlas of the B. thetaiotaomicron TBDTs reveals that there are at least three distinct subtypes of these transporters encoded within its genome that are presumably regulated in different ways to tune nutrient uptake.
Collapse
Affiliation(s)
| | - Lauryn M Martin
- Department of Biology, Alcorn State University, Alcorn, MS, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Ausland C, Zheng J, Yi H, Yang B, Li T, Feng X, Zheng B, Yin Y. dbCAN-PUL: a database of experimentally characterized CAZyme gene clusters and their substrates. Nucleic Acids Res 2021; 49:D523-D528. [PMID: 32941621 PMCID: PMC7778981 DOI: 10.1093/nar/gkaa742] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
PULs (polysaccharide utilization loci) are discrete gene clusters of CAZymes (Carbohydrate Active EnZymes) and other genes that work together to digest and utilize carbohydrate substrates. While PULs have been extensively characterized in Bacteroidetes, there exist PULs from other bacterial phyla, as well as archaea and metagenomes, that remain to be catalogued in a database for efficient retrieval. We have developed an online database dbCAN-PUL (http://bcb.unl.edu/dbCAN_PUL/) to display experimentally verified CAZyme-containing PULs from literature with pertinent metadata, sequences, and annotation. Compared to other online CAZyme and PUL resources, dbCAN-PUL has the following new features: (i) Batch download of PUL data by target substrate, species/genome, genus, or experimental characterization method; (ii) Annotation for each PUL that displays associated metadata such as substrate(s), experimental characterization method(s) and protein sequence information, (iii) Links to external annotation pages for CAZymes (CAZy), transporters (UniProt) and other genes, (iv) Display of homologous gene clusters in GenBank sequences via integrated MultiGeneBlast tool and (v) An integrated BLASTX service available for users to query their sequences against PUL proteins in dbCAN-PUL. With these features, dbCAN-PUL will be an important repository for CAZyme and PUL research, complementing our other web servers and databases (dbCAN2, dbCAN-seq).
Collapse
Affiliation(s)
- Catherine Ausland
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Haidong Yi
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bowen Yang
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Tang Li
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Xuehuan Feng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Bo Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
49
|
Competitive Exclusion and Metabolic Dependency among Microorganisms Structure the Cellulose Economy of an Agricultural Soil. mBio 2021; 12:mBio.03099-20. [PMID: 33402535 PMCID: PMC8545098 DOI: 10.1128/mbio.03099-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms that degrade cellulose utilize extracellular reactions that yield free by-products which can promote interactions with noncellulolytic organisms. We hypothesized that these interactions determine the ecological and physiological traits governing the fate of cellulosic carbon (C) in soil. We performed comparative genomics with genome bins from a shotgun metagenomic-stable isotope probing experiment to characterize the attributes of cellulolytic and noncellulolytic taxa accessing 13C from cellulose. We hypothesized that cellulolytic taxa would exhibit competitive traits that limit access, while noncellulolytic taxa would display greater metabolic dependency, such as signatures of adaptive gene loss. We tested our hypotheses by evaluating genomic traits indicative of competitive exclusion or metabolic dependency, such as antibiotic production, growth rate, surface attachment, biomass degrading potential, and auxotrophy. The most 13C-enriched taxa were cellulolytic Cellvibrio (Gammaproteobacteria) and Chaetomium (Ascomycota), which exhibited a strategy of self-sufficiency (prototrophy), rapid growth, and competitive exclusion via antibiotic production. Auxotrophy was more prevalent in cellulolytic Actinobacteria than in cellulolytic Proteobacteria, demonstrating differences in dependency among cellulose degraders. Noncellulolytic taxa that accessed 13C from cellulose (Planctomycetales, Verrucomicrobia, and Vampirovibrionales) were also more dependent, as indicated by patterns of auxotrophy and 13C labeling (i.e., partial labeling or labeling at later stages). Major 13C-labeled cellulolytic microbes (e.g., Sorangium, Actinomycetales, Rhizobiales, and Caulobacteraceae) possessed adaptations for surface colonization (e.g., gliding motility, hyphae, attachment structures) signifying the importance of surface ecology in decomposing particulate organic matter. Our results demonstrated that access to cellulosic C was accompanied by ecological trade-offs characterized by differing degrees of metabolic dependency and competitive exclusion.
Collapse
|
50
|
Nguyen BAT, Hsieh JL, Lo SC, Wang SY, Hung CH, Huang E, Hung SH, Chin WC, Huang CC. Biodegradation of dioxins by Burkholderia cenocepacia strain 869T2: Role of 2-haloacid dehalogenase. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123347. [PMID: 33113713 DOI: 10.1016/j.jhazmat.2020.123347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Dioxin compounds are persistent carcinogenic byproducts of anthropogenic activities such as waste combustion and other industrial activities. The ubiquitous distribution of dioxins is global concerns these days. Among of recent techniques, bioremediation, an eco-friendly and cost-effective technology, uses bacteria or fungi to detoxify in dioxins; however, not many bacteria can degrade the most toxic dioxin congener 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD). In this study, the endophytic bacterium Burkholderia cenocapacia 869T2 was capable of TCDD degradation by nearly 95 % after one-week of an aerobic incubation. Through transcriptomic analysis of the strain 869T2 at 6 -h and 12 -h TCDD exposure, a number of catabolic genes involved in dioxin metabolism were detected with high gene expressions in the presence of TCDD. The transcriptome data also indicated that B. cenocepacia strain 869T2 metabolized the dioxin compounds from an early phase (at 6 h) of the incubation, and the initial outline for a general dioxin degradation pathway were proposed. One of the catabolic genes, l-2-haloacid dehalogenase (2-HAD) was cloned to investigate its contribution in dioxin dehalogenation. By detecting the increasing concentration of chloride ions released from TCDD, our results indicated that the dehalogenase played a crucial role in dehalogenation of dioxin in the aerobic condition.
Collapse
Affiliation(s)
- Bao-Anh Thi Nguyen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ju-Liang Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Sui-Yuan Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Chun-Hsiung Hung
- Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Eugene Huang
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Shih-Hsun Hung
- Department of Horticulture, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Wei-Chih Chin
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China; Department of Biological Sciences and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China.
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| |
Collapse
|