1
|
Radhakrishnan H, Newmyer SL, Javitz HS, Bhatnagar P. Engineered CD4 T cells for in vivo delivery of therapeutic proteins. Proc Natl Acad Sci U S A 2024; 121:e2318687121. [PMID: 39312667 PMCID: PMC11459198 DOI: 10.1073/pnas.2318687121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
The CD4 T cell, when engineered with a chimeric antigen receptor (CAR) containing specific intracellular domains, has been transformed into a zero-order drug-delivery platform. This introduces the capability of prolonged, disease-specific engineered protein biologics production, at the disease site. Experimental findings demonstrate that CD4 T cells offer a solution when modified with a CAR that includes 4-1BB but excludes CD28 intracellular domain. In this configuration, they achieve ~3X transduction efficiency of CD8 T cells, ~2X expansion rates, generating ~5X more biologic, and exhibit minimal cytolytic activity. Cumulatively, this addresses two main hurdles in the translation of cell-based drug delivery: scaling the production of engineered T cell ex vivo and generating sufficient biologics in vivo. When programmed to induce IFNβ upon engaging the target antigen, the CD4 T cells outperforms CD8 T cells, effectively suppressing cancer cell growth in vitro and in vivo. In summary, this platform enables precise targeting of disease sites with engineered protein-based therapeutics while minimizing healthy tissue exposure. Leveraging CD4 T cells' persistence could enhance disease management by reducing drug administration frequency, addressing critical challenges in cell-based therapy.
Collapse
|
2
|
Morita S, O'Dair MK, Groves JT. Discrete protein condensation events govern calcium signal dynamics in T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606035. [PMID: 39211144 PMCID: PMC11360922 DOI: 10.1101/2024.07.31.606035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Calcium level variations, which occur downstream of T cell receptor (TCR) signaling, are an essential aspect of T cell antigen recognition. Although coordinated ion channel activities are known to drive calcium oscillations in other cell types, observations of nonperiodic and heterogeneous calcium patterns in T cells are inconsistent with this mechanism. Here, we track the complete ensemble of individual molecular peptide-major histocompatibility complex (pMHC) binding events to TCR, while simultaneously imaging LAT condensation events and calcium level. Individual LAT condensates induce a rapid and additive calcium response, which quickly attenuates upon condensate dissolution. No evidence of cooperativity between LAT condensates or oscillatory calcium response was detected. These results reveal stochastic LAT protein condensation events as a primary driver of calcium signal dynamics in T cells. One-Sentence Summary Ca 2+ fluctuations in T cells reflect stochastic protein condensation events triggered by single molecular antigen-TCR binding.
Collapse
|
3
|
Woessner NM, Brandl SM, Hartmann S, Schamel WW, Hartl FA, Minguet S. Phospho-mimetic CD3ε variants prevent TCR and CAR signaling. Front Immunol 2024; 15:1392933. [PMID: 38779683 PMCID: PMC11109380 DOI: 10.3389/fimmu.2024.1392933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Antigen binding to the T cell antigen receptor (TCR) leads to the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 complex, and thereby to T cell activation. The CD3ε subunit plays a unique role in TCR activation by recruiting the kinase LCK and the adaptor protein NCK prior to ITAM phosphorylation. Here, we aimed to investigate how phosphorylation of the individual CD3ε ITAM tyrosines impacts the CD3ε signalosome. Methods We mimicked irreversible tyrosine phosphorylation by substituting glutamic acid for the tyrosine residues in the CD3ε ITAM. Results Integrating CD3ε phospho-mimetic variants into the complete TCR-CD3 complex resulted in reduced TCR signal transduction, which was partially compensated by the involvement of the other TCR-CD3 ITAMs. By using novel CD3ε phospho-mimetic Chimeric Antigen Receptor (CAR) variants, we avoided any compensatory effects of other ITAMs in the TCR-CD3 complex. We demonstrated that irreversible CD3ε phosphorylation prevented signal transduction upon CAR engagement. Mechanistically, we demonstrated that glutamic acid substitution at the N-terminal tyrosine residue of the CD3ε ITAM (Y39E) significantly reduces NCK binding to the TCR. In contrast, mutation at the C-terminal tyrosine of the CD3ε ITAM (Y50E) abolished LCK recruitment to the TCR, while increasing NCK binding. Double mutation at the C- and N-terminal tyrosines (Y39/50E) allowed ZAP70 to bind, but reduced the interaction with LCK and NCK. Conclusions The data demonstrate that the dynamic phosphorylation of the CD3ε ITAM tyrosines is essential for CD3ε to orchestrate optimal TCR and CAR signaling and highlights the key role of CD3ε signalosome to tune signal transduction.
Collapse
MESH Headings
- Humans
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- CD3 Complex/metabolism
- HEK293 Cells
- Immunoreceptor Tyrosine-Based Activation Motif
- Jurkat Cells
- Lymphocyte Activation/immunology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Phosphorylation
- Protein Binding
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Signal Transduction/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- ZAP-70 Protein-Tyrosine Kinase/metabolism
- ZAP-70 Protein-Tyrosine Kinase/genetics
Collapse
Affiliation(s)
- Nadine M. Woessner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Simon M. Brandl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Sara Hartmann
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Frederike A. Hartl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, University, Freiburg, Germany
| |
Collapse
|
4
|
Radhakrishnan H, Newmyer SL, Ssemadaali MA, Javitz HS, Bhatnagar P. Primary T-cell-based delivery platform for in vivo synthesis of engineered proteins. Bioeng Transl Med 2024; 9:e10605. [PMID: 38193126 PMCID: PMC10771566 DOI: 10.1002/btm2.10605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 01/10/2024] Open
Abstract
Primary T cell has been transformed into a cell-based delivery platform that synthesizes complex biologics at the disease site with spatiotemporal resolution. This broadly applicable technology can circumvent toxicities due to systemic administration of biologics that necessitates the use of high doses and may diffuse to the healthy tissues. Its clinical translation, however, has been impeded by manufacturing bottlenecks. In this work, a range of process parameters were investigated for increasing the production yield of the primary T cells engineered for delivery function. Compared to the common spinoculation-based method, the transduction yield was enhanced ~2.5-fold by restricting the transduction reaction volume for maximizing the lentivector-to-T-cell contact. Cell density and cytokines used in the expansion process were adjusted to achieve >100-fold expansion of the T-cell-based delivery platform in 14 days, and the function of these cells was validated in vivo using intraperitoneally implanted tumor cells. The primary T-cell-based delivery platform has human applications because it can be scaled and administrated to express a broad range of therapeutic proteins (e.g., cytokines, interferons, enzymes, agonists, and antagonists) at the disease site, obviating the need for systemic delivery of large doses of these proteins.
Collapse
|
5
|
Wither MJ, White WL, Pendyala S, Leanza PJ, Fowler DM, Kueh HY. Antigen perception in T cells by long-term Erk and NFAT signaling dynamics. Proc Natl Acad Sci U S A 2023; 120:e2308366120. [PMID: 38113261 PMCID: PMC10756264 DOI: 10.1073/pnas.2308366120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023] Open
Abstract
Immune system threat detection hinges on T cells' ability to perceive varying peptide-major histocompatibility complex (pMHC) antigens. As the Erk and NFAT pathways link T cell receptor engagement to gene regulation, their signaling dynamics may convey information about pMHC inputs. To test this idea, we developed a dual reporter mouse strain and a quantitative imaging assay that, together, enable simultaneous monitoring of Erk and NFAT dynamics in live T cells over day-long timescales as they respond to varying pMHC inputs. Both pathways initially activate uniformly across various pMHC inputs but diverge only over longer (9+ h) timescales, enabling independent encoding of pMHC affinity and dose. These late signaling dynamics are decoded via multiple temporal and combinatorial mechanisms to generate pMHC-specific transcriptional responses. Our findings underscore the importance of long timescale signaling dynamics in antigen perception and establish a framework for understanding T cell responses under diverse contexts.
Collapse
Affiliation(s)
- Matthew J. Wither
- University of Washington, Department of Bioengineering, Seattle, WA98195
| | - William L. White
- University of Washington, Department of Bioengineering, Seattle, WA98195
| | - Sriram Pendyala
- University of Washington, Department of Genome Sciences, Seattle, WA98195
| | - Paul J. Leanza
- University of Washington, Department of Bioengineering, Seattle, WA98195
| | - Douglas M. Fowler
- University of Washington, Department of Genome Sciences, Seattle, WA98195
| | - Hao Yuan Kueh
- University of Washington, Department of Bioengineering, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98109
| |
Collapse
|
6
|
Wither MJ, White WL, Pendyala S, Leanza PJ, Fowler D, Kueh HY. Antigen perception in T cells by long-term Erk and NFAT signaling dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543260. [PMID: 37333368 PMCID: PMC10274683 DOI: 10.1101/2023.06.01.543260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Immune system threat detection hinges on T cells' ability to perceive varying peptide major-histocompatibility complex (pMHC) antigens. As the Erk and NFAT pathways link T cell receptor engagement to gene regulation, their signaling dynamics may convey information about pMHC inputs. To test this idea, we developed a dual reporter mouse strain and a quantitative imaging assay that, together, enable simultaneous monitoring of Erk and NFAT dynamics in live T cells over day-long timescales as they respond to varying pMHC inputs. Both pathways initially activate uniformly across various pMHC inputs, but diverge only over longer (9+ hrs) timescales, enabling independent encoding of pMHC affinity and dose. These late signaling dynamics are decoded via multiple temporal and combinatorial mechanisms to generate pMHC-specific transcriptional responses. Our findings underscore the importance of long timescale signaling dynamics in antigen perception, and establish a framework for understanding T cell responses under diverse contexts. SIGNIFICANCE STATEMENT To counter diverse pathogens, T cells mount distinct responses to varying peptide-major histocompatibility complex ligands (pMHCs). They perceive the affinity of pMHCs for the T cell receptor (TCR), which reflects its foreignness, as well as pMHC abundance. By tracking signaling responses in single living cells to different pMHCs, we find that T cells can independently perceive pMHC affinity vs dose, and encode this information through the dynamics of Erk and NFAT signaling pathways downstream of the TCR. These dynamics are jointly decoded by gene regulatory mechanisms to produce pMHC-specific activation responses. Our work reveals how T cells can elicit tailored functional responses to diverse threats and how dysregulation of these responses may lead to immune pathologies.
Collapse
|
7
|
Sarma U, Ripka L, Anyaegbunam UA, Legewie S. Modeling Cellular Signaling Variability Based on Single-Cell Data: The TGFβ-SMAD Signaling Pathway. Methods Mol Biol 2023; 2634:215-251. [PMID: 37074581 DOI: 10.1007/978-1-0716-3008-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Nongenetic heterogeneity is key to cellular decisions, as even genetically identical cells respond in very different ways to the same external stimulus, e.g., during cell differentiation or therapeutic treatment of disease. Strong heterogeneity is typically already observed at the level of signaling pathways that are the first sensors of external inputs and transmit information to the nucleus where decisions are made. Since heterogeneity arises from random fluctuations of cellular components, mathematical models are required to fully describe the phenomenon and to understand the dynamics of heterogeneous cell populations. Here, we review the experimental and theoretical literature on cellular signaling heterogeneity, with special focus on the TGFβ/SMAD signaling pathway.
Collapse
Affiliation(s)
- Uddipan Sarma
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Lorenz Ripka
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Uchenna Alex Anyaegbunam
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Mainz, Germany.
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Research Center for Systems Biology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
8
|
McAffee DB, O'Dair MK, Lin JJ, Low-Nam ST, Wilhelm KB, Kim S, Morita S, Groves JT. Discrete LAT condensates encode antigen information from single pMHC:TCR binding events. Nat Commun 2022; 13:7446. [PMID: 36460640 PMCID: PMC9718779 DOI: 10.1038/s41467-022-35093-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
LAT assembly into a two-dimensional protein condensate is a prominent feature of antigen discrimination by T cells. Here, we use single-molecule imaging techniques to resolve the spatial position and temporal duration of each pMHC:TCR molecular binding event while simultaneously monitoring LAT condensation at the membrane. An individual binding event is sufficient to trigger a LAT condensate, which is self-limiting, and neither its size nor lifetime is correlated with the duration of the originating pMHC:TCR binding event. Only the probability of the LAT condensate forming is related to the pMHC:TCR binding dwell time. LAT condenses abruptly, but after an extended delay from the originating binding event. A LAT mutation that facilitates phosphorylation at the PLC-γ1 recruitment site shortens the delay time to LAT condensation and alters T cell antigen specificity. These results identify a function for the LAT protein condensation phase transition in setting antigen discrimination thresholds in T cells.
Collapse
Affiliation(s)
- Darren B McAffee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark K O'Dair
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jenny J Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sungi Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shumpei Morita
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
9
|
Zhu L, Zhou X, Gu M, Kim J, Li Y, Ko CJ, Xie X, Gao T, Cheng X, Sun SC. Dapl1 controls NFATc2 activation to regulate CD8 + T cell exhaustion and responses in chronic infection and cancer. Nat Cell Biol 2022; 24:1165-1176. [PMID: 35773432 DOI: 10.1038/s41556-022-00942-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
CD8+ T cells are central mediators of immune responses against infections and cancer. Here we identified Dapl1 as a crucial regulator of CD8+ T cell responses to cancer and infections. Dapl1 deficiency promotes the expansion of tumour-infiltrating effector memory-like CD8+ T cells and prevents their functional exhaustion, coupled with increased antitumour immunity and improved efficacy of adoptive T cell therapy. Dapl1 controls activation of NFATc2, a transcription factor required for the effector function of CD8+ T cells. Although NFATc2 mediates induction of the immune checkpoint receptor Tim3, competent NFATc2 activation prevents functional exhaustion of CD8+ T cells. Interestingly, exhausted CD8+ T cells display attenuated NFATc2 activation due to Tim3-mediated feedback inhibition; Dapl1 deletion rescues NFATc2 activation and thereby prevents dysfunction of exhausted CD8+ T cells in chronic infection and cancer. These findings establish Dapl1 as a crucial regulator of CD8+ T cell immunity and a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Flagship Labs 91, Inc., Cambridge, MA, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiseong Kim
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Bristol Myers Squibb, Seattle, WA, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,AbbVie, South San Francisco, CA, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Memorial Hermann-Texas Medical Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Elliot TAE, Jennings EK, Lecky DAJ, Thawait N, Flores-Langarica A, Copland A, Maslowski KM, Wraith DC, Bending D. Antigen and checkpoint receptor engagement recalibrates T cell receptor signal strength. Immunity 2021; 54:2481-2496.e6. [PMID: 34534438 PMCID: PMC8585507 DOI: 10.1016/j.immuni.2021.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/21/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022]
Abstract
How T cell receptor (TCR) signal strength modulates T cell function and to what extent this is modified by immune checkpoint blockade (ICB) are key questions in immunology. Using Nr4a3-Tocky mice, we characterized early quantitative and qualitative changes that occur in CD4+ T cells in relation to TCR signaling strength. We captured how dose- and time-dependent programming of distinct co-inhibitory receptors rapidly recalibrates T cell activation thresholds and visualized the immediate effects of ICB on T cell re-activation. Our findings reveal that anti-PD1 immunotherapy leads to an increased TCR signal strength. We defined a strong TCR signal metric of five genes upregulated by anti-PD1 in T cells (TCR.strong), which was superior to a canonical T cell activation gene signature in stratifying melanoma patient outcomes to anti-PD1 therapy. Our study therefore reveals how analysis of TCR signal strength-and its manipulation-can provide powerful metrics for monitoring outcomes to immunotherapy.
Collapse
Affiliation(s)
- Thomas A E Elliot
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Emma K Jennings
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David A J Lecky
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Natasha Thawait
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Adriana Flores-Langarica
- Infrastructure and Facilities, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alastair Copland
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kendle M Maslowski
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
11
|
Hierarchy of signaling thresholds downstream of the T cell receptor and the Tec kinase ITK. Proc Natl Acad Sci U S A 2021; 118:2025825118. [PMID: 34452995 DOI: 10.1073/pnas.2025825118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The strength of peptide:MHC interactions with the T cell receptor (TCR) is correlated with the time to first cell division, the relative scale of the effector cell response, and the graded expression of activation-associated proteins like IRF4. To regulate T cell activation programming, the TCR and the TCR proximal interleukin-2-inducible T cell kinase (ITK) simultaneously trigger many biochemically separate signaling cascades. T cells lacking ITK exhibit selective impairments in effector T cell responses after activation, but under the strongest signaling conditions, ITK activity is dispensable. To gain insight into whether TCR signal strength and ITK activity tune observed graded gene expression through the unequal activation of distinct signaling pathways, we examined Erk1/2 phosphorylation or nuclear factor of activated T cells (NFAT) and nuclear factor (NF)-κB translocation in naïve OT-I CD8+ cell nuclei. We observed the consistent digital activation of NFAT1 and Erk1/2, but NF-κB displayed dynamic, graded activation in response to variation in TCR signal strength, tunable by treatment with an ITK inhibitor. Inhibitor-treated cells showed the dampened induction of AP-1 factors Fos and Fosb, NF-κB response gene transcripts, and survival factor Il2 transcripts. ATAC sequencing analysis also revealed that genomic regions most sensitive to ITK inhibition were enriched for NF-κB and AP-1 motifs. Specific inhibition of NF-κB during peptide stimulation tuned the expression of early gene products like c-Fos. Together, these data indicate a key role for ITK in orchestrating the optimal activation of separate TCR downstream pathways, specifically aiding NF-κB activation. More broadly, we revealed a mechanism by which variations in TCR signal strength can produce patterns of graded gene expression in activated T cells.
Collapse
|
12
|
Éliás S, Schmidt A, Gomez-Cabrero D, Tegnér J. Gene Regulatory Network of Human GM-CSF-Secreting T Helper Cells. J Immunol Res 2021; 2021:8880585. [PMID: 34285924 PMCID: PMC8275380 DOI: 10.1155/2021/8880585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
GM-CSF produced by autoreactive CD4-positive T helper cells is involved in the pathogenesis of autoimmune diseases, such as multiple sclerosis. However, the molecular regulators that establish and maintain the features of GM-CSF-positive CD4 T cells are unknown. In order to identify these regulators, we isolated human GM-CSF-producing CD4 T cells from human peripheral blood by using a cytokine capture assay. We compared these cells to the corresponding GM-CSF-negative fraction, and furthermore, we studied naïve CD4 T cells, memory CD4 T cells, and bulk CD4 T cells from the same individuals as additional control cell populations. As a result, we provide a rich resource of integrated chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) data from these primary human CD4 T cell subsets and we show that the identified signatures are associated with human autoimmune diseases, especially multiple sclerosis. By combining information about mRNA expression, DNA accessibility, and predicted transcription factor binding, we reconstructed directed gene regulatory networks connecting transcription factors to their targets, which comprise putative key regulators of human GM-CSF-positive CD4 T cells as well as memory CD4 T cells. Our results suggest potential therapeutic targets to be investigated in the future in human autoimmune disease.
Collapse
Affiliation(s)
- Szabolcs Éliás
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
| | - Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London SE1 9RT, UK
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
- Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| |
Collapse
|
13
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
14
|
Abu-Shah E, Trendel N, Kruger P, Nguyen J, Pettmann J, Kutuzov M, Dushek O. Human CD8 + T Cells Exhibit a Shared Antigen Threshold for Different Effector Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:1503-1512. [PMID: 32817332 PMCID: PMC7477745 DOI: 10.4049/jimmunol.2000525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
CD8+ T cells produce TNF-α, IL-2, and IFN-γ with similar Ag thresholds. Costimulation decreases Ag thresholds similarly for different cytokines. A common rate-limiting switch downstream of the TCR can explain these findings.
T cells recognizing cognate pMHC Ags become activated to elicit a myriad of cellular responses, such as target cell killing and the secretion of different cytokines, that collectively contribute to adaptive immunity. These effector responses have been hypothesized to exhibit different Ag dose and affinity thresholds, suggesting that pathogen-specific information may be encoded within the nature of the Ag. In this study, using systematic experiments in a reductionist system, in which primary human CD8+ T cell blasts are stimulated by recombinant peptides presented on MHC Ag alone, we show that different inflammatory cytokines have comparable Ag dose thresholds across a 25,000-fold variation in affinity. Although costimulation by CD28, CD2, and CD27 increased cytokine production in this system, the Ag threshold remained comparable across different cytokines. When using primary human memory CD8+ T cells responding to autologous APCs, equivalent thresholds were also observed for different cytokines and killing. These findings imply a simple phenotypic model of TCR signaling in which multiple T cell responses share a common rate-limiting threshold and a conceptually simple model of CD8+ T cell Ag recognition, in which Ag dose and affinity do not provide any additional response-specific information.
Collapse
Affiliation(s)
- Enas Abu-Shah
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Nicola Trendel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Philipp Kruger
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - John Nguyen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Johannes Pettmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Mikhail Kutuzov
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| |
Collapse
|
15
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Bitar M, Boldt A, Freitag MT, Gruhn B, Köhl U, Sack U. Evaluating STAT5 Phosphorylation as a Mean to Assess T Cell Proliferation. Front Immunol 2019; 10:722. [PMID: 31024554 PMCID: PMC6460883 DOI: 10.3389/fimmu.2019.00722] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 01/26/2023] Open
Abstract
Here we present a simple and sensitive flow cytometric-based assay to assess T cell proliferation. Given the critical role STAT5A phosphorylation in T cell proliferation, we decided to evaluate phosphorylation of STAT5A as an indicator of T cell proliferation. We determined pSTAT5A in T cell treated with either CD3/CD28 or PHA. After stimulation, T cells from adult healthy donors displayed a strong long-lasting phosphorylation of STAT5A, reaching a peak value after 24 h. The median fluorescence intensity (MFI) of pSTAT5A increased from 112 ± 17 to 512 ± 278 (CD3/CD28) (24 h) and to 413 ± 123 (PHA) (24 h), the IL-2 receptor-α (CD25) expression was greatly enhanced and after 72 h T cell proliferation amounted to 52.3 ± 10.3% (CD3/CD28) and to 48.4 ± 9.7% (PHA). Treatment with specific JAK3 and STAT5 inhibitors resulted in a complete blockage of phosphorylation of STAT5A, CD25 expression, and suppression of T cell proliferation. Compared with currently available methods, STAT5A phosphorylation is well-suited to predict T cell proliferation. Moreover, the method presented here is not very time consuming (several hours) and delivers functional information from which conclusions about T cell proliferation can be drawn.
Collapse
Affiliation(s)
- Michael Bitar
- Medical Faculty, Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Andreas Boldt
- Medical Faculty, Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Marie-Theres Freitag
- Medical Faculty, Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Ulrike Köhl
- Medical Faculty, Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Hannover Medical School, Institute of Cellular Therapeutics, Hannover, Germany.,Fraunhofer Institute for Immunology and Cell Therapy (IZI), Leipzig, Germany
| | - Ulrich Sack
- Medical Faculty, Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
17
|
Lin JJY, Low-Nam ST, Alfieri KN, McAffee DB, Fay NC, Groves JT. Mapping the stochastic sequence of individual ligand-receptor binding events to cellular activation: T cells act on the rare events. Sci Signal 2019; 12:12/564/eaat8715. [PMID: 30647147 DOI: 10.1126/scisignal.aat8715] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cell receptor (TCR) binding to agonist peptide major histocompatibility complex (pMHC) triggers signaling events that initiate T cell responses. This system is remarkably sensitive, requiring only a few binding events to successfully activate a cellular response. On average, activating pMHC ligands exhibit mean dwell times of at least a few seconds when bound to the TCR. However, a T cell accumulates pMHC-TCR interactions as a stochastic series of discrete, single-molecule binding events whose individual dwell times are broadly distributed. With activation occurring in response to only a handful of such binding events, individual cells are unlikely to experience the average binding time. Here, we mapped the ensemble of pMHC-TCR binding events in space and time while simultaneously monitoring cellular activation. Our findings revealed that T cell activation hinges on rare, long-dwell time binding events that are an order of magnitude longer than the average agonist pMHC-TCR dwell time. Furthermore, we observed that short pMHC-TCR binding events that were spatially correlated and temporally sequential led to cellular activation. These observations indicate that T cell antigen discrimination likely occurs by sensing the tail end of the pMHC-TCR binding dwell time distribution rather than its average properties.
Collapse
Affiliation(s)
- Jenny J Y Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katherine N Alfieri
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Darren B McAffee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicole C Fay
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Gallagher MP, Conley JM, Berg LJ. Peptide Antigen Concentration Modulates Digital NFAT1 Activation in Primary Mouse Naive CD8 + T Cells as Measured by Flow Cytometry of Isolated Cell Nuclei. Immunohorizons 2018; 2:208-215. [PMID: 30221251 PMCID: PMC6135534 DOI: 10.4049/immunohorizons.1800032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Circulating naive T cells exist in a quiescent state. After TCR contact with the cognate peptide presented by APCs in secondary lymphoid structures, T cells undergo a period of rapid transcriptional changes that set the stage for fate-determining effector or memory programming. We describe a novel method to analyze TCR signaling pathway activation in nuclei isolated from primary mouse naive T cells after stimulation with natural peptide Ags. We prelabeled cells with cell tracking dye to easily distinguish CD8+ T cell nuclei from APC nuclei by conventional flow cytometry. Using this approach, we observed clear digital activation of NFAT1 transcription factor in OT-I T cells stimulated with OVA peptide presented by bulk splenocytes. OVA concentration had discrete control over the fraction of the cells that translocated NFAT1, indicating that a distinct threshold amount of TCR signaling is required to switch on NFAT1 in naive T cells. This behavior was cell contact dependent and qualitatively more exact than the NFAT1 response in ionomycin-stimulated naive T cells. These data contribute to our understanding of the digital behavior of TCR signaling components documented in other studies and indicate how T cells might discriminate log-fold changes in Ag availability during an actual infection. Overall, these results highlight the potential of this coculture nuclei isolation protocol to address stimulation-dependent translocation of proteins in primary lymphocytes.
Collapse
Affiliation(s)
- Michael P Gallagher
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - James M Conley
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
19
|
Abstract
Being concerned by the understanding of the mechanism underlying chronic degenerative diseases , we presented in the previous chapter the medical systems biology conceptual framework that we present for that purpose in this volume. More specifically, we argued there the clear advantages offered by a state-space perspective when applied to the systems-level description of the biomolecular machinery that regulates complex degenerative diseases. We also discussed the importance of the dynamical interplay between the risk factors and the network of interdependencies that characterizes the biochemical, cellular, and tissue-level biomolecular reactions that underlie the physiological processes in health and disease. As we pointed out in the previous chapter, the understanding of this interplay (articulated around cellular phenotypic plasticity properties, regulated by specific kinds of gene regulatory networks) is necessary if prevention is chosen as the human-health improvement strategy (potentially involving the modulation of the patient's lifestyle). In this chapter we provide the medical systems biology mathematical and computational modeling tools required for this task.
Collapse
|
20
|
Ochab-Marcinek A, Jędrak J, Tabaka M. Hill kinetics as a noise filter: the role of transcription factor autoregulation in gene cascades. Phys Chem Chem Phys 2018; 19:22580-22591. [PMID: 28809965 DOI: 10.1039/c7cp00743d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An intuition based on deterministic models of chemical kinetics is that population heterogeneity of transcription factor levels in cells is transmitted unchanged downstream to the target genes. We use a stochastic model of a two-gene cascade with a self-regulating upstream gene to show that, counter to the intuition, there is no simple mapping (bimodal to bimodal, unimodal to unimodal) between the shapes of the distributions of transcription factor numbers and target protein numbers in cells. Due to the presence of the two regulations, the system contains two nonlinear transfer functions, defined by the Hill kinetics of transcription factor binding. The transfer function of the regulator can "interfere" with the transfer function of the target, converting the bimodal input into a unimodal output or vice versa. We show that this effect can be predicted by a geometric construction. As an example application of the method, we present a case study of a system of several downstream genes of different sensitivities, controlled by a common transcription factor which also regulates its own transcription. We show that a single regulator can induce qualitatively different patterns (binary or graded) of responses to a signal in different downstream genes, depending on whether the sensitivity regions of the transfer functions of the upstream and downstream genes overlap or not. Alternatively, the same model can be interpreted as describing a single downstream gene that has different sensitivities in different cell lines due to mutations. Our model shows, therefore, a possible kinetic mechanism by which different genes can interpret the same biological signal in a different manner.
Collapse
Affiliation(s)
- Anna Ochab-Marcinek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Jakub Jędrak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Marcin Tabaka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
21
|
Uzhachenko R, Shanker A, Dupont G. Computational properties of mitochondria in T cell activation and fate. Open Biol 2017; 6:rsob.160192. [PMID: 27852805 PMCID: PMC5133440 DOI: 10.1098/rsob.160192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023] Open
Abstract
In this article, we review how mitochondrial Ca2+ transport (mitochondrial Ca2+ uptake and Na+/Ca2+ exchange) is involved in T cell biology, including activation and differentiation through shaping cellular Ca2+ signals. Based on recent observations, we propose that the Ca2+ crosstalk between mitochondria, endoplasmic reticulum and cytoplasm may form a proportional–integral–derivative (PID) controller. This PID mechanism (which is well known in engineering) could be responsible for computing cellular decisions. In addition, we point out the importance of analogue and digital signal processing in T cell life and implication of mitochondrial Ca2+ transport in this process.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA .,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, and the Center for Immunobiology, Vanderbilt University, Nashville, TN, USA
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, CP231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
22
|
Abstract
Cytotoxic T lymphocytes are effector CD8+ T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1−/− cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1−/− CD8+ T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1−/−, but not Nfatc2−/− CD8+ T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions. NFAT nuclear translocation has been shown to be required for CD8+ T cell cytokine production in response to viral infection. Here the authors show NFATc1 controls the cytotoxicity and metabolic switching of activated CD8+ T cells required for optimal response to bacteria and tumor cells.
Collapse
|
23
|
Chichelnitskiy E, Himmelseher B, Bachmann M, Pfeilschifter J, Mühl H. Hypothermia Promotes Interleukin-22 Expression and Fine-Tunes Its Biological Activity. Front Immunol 2017; 8:742. [PMID: 28706520 PMCID: PMC5489602 DOI: 10.3389/fimmu.2017.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
Disturbed homeostasis as a result of tissue stress can provoke leukocyte responses enabling recovery. Since mild hypothermia displays specific clinically relevant tissue-protective properties and interleukin (IL)-22 promotes healing at host/environment interfaces, effects of lowered ambient temperature on IL-22 were studied. We demonstrate that a 5-h exposure of endotoxemic mice to 4°C reduces body temperature by 5.0° and enhances splenic and colonic il22 gene expression. In contrast, tumor necrosis factor-α and IL-17A were not increased. In vivo data on IL-22 were corroborated using murine splenocytes and human peripheral blood mononuclear cells (PBMC) cultured upon 33°C and polyclonal T cell activation. Upregulation by mild hypothermia of largely T-cell-derived IL-22 in PBMC required monocytes and associated with enhanced nuclear T-cell nuclear factor of activated T cells (NFAT)-c2. Notably, NFAT antagonism by cyclosporin A or FK506 impaired IL-22 upregulation at normothermia and entirely prevented its enhanced expression upon hypothermic culture conditions. Data suggest that intact NFAT signaling is required for efficient IL-22 induction upon normothermic and hypothermic conditions. Hypothermia furthermore boosted early signal transducer and activator of transcription 3 activation by IL-22 and shaped downstream gene expression in epithelial-like cells. Altogether, data indicate that hypothermia supports and fine-tunes IL-22 production/action, which may contribute to regulatory properties of low ambient temperature.
Collapse
Affiliation(s)
- Evgeny Chichelnitskiy
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Britta Himmelseher
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
24
|
Fuhrmann F, Lischke T, Gross F, Scheel T, Bauer L, Kalim KW, Radbruch A, Herzel H, Hutloff A, Baumgrass R. Adequate immune response ensured by binary IL-2 and graded CD25 expression in a murine transfer model. eLife 2016; 5. [PMID: 28035902 PMCID: PMC5201416 DOI: 10.7554/elife.20616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
The IL-2/IL-2Ralpha (CD25) axis is of central importance for the interplay of effector and regulatory T cells. Nevertheless, the question how different antigen loads are translated into appropriate IL-2 production to ensure adequate responses against pathogens remains largely unexplored. Here we find that at single cell level, IL-2 is binary (digital) and CD25 is graded expressed whereas at population level both parameters show graded expression correlating with the antigen amount. Combining in vivo data with a mathematical model we demonstrate that only this binary IL-2 expression ensures a wide linear antigen response range for Teff and Treg cells under real spatiotemporal conditions. Furthermore, at low antigen concentrations binary IL-2 expression safeguards by its spatial distribution selective STAT5 activation only of closely adjacent Treg cells regardless of their antigen specificity. These data show that the mode of IL-2 secretion is critical to tailor the adaptive immune response to the antigen amount. DOI:http://dx.doi.org/10.7554/eLife.20616.001
Collapse
Affiliation(s)
- Franziska Fuhrmann
- Robert Koch Institute, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Timo Lischke
- German Rheumatism Research Center Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Fridolin Gross
- Institute for Theoretical Biology, Charité University Medicine, Berlin, Germany
| | - Tobias Scheel
- German Rheumatism Research Center Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Laura Bauer
- Robert Koch Institute, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Khalid Wasim Kalim
- German Rheumatism Research Center Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), A Leibniz Institute, Berlin, Germany.,Charité University Medicine, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité University Medicine, Berlin, Germany
| | - Andreas Hutloff
- Robert Koch Institute, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Ria Baumgrass
- German Rheumatism Research Center Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| |
Collapse
|
25
|
Chen LC, Nicholson YT, Rosborough BR, Thomson AW, Raimondi G. A Novel mTORC1-Dependent, Akt-Independent Pathway Differentiates the Gut Tropism of Regulatory and Conventional CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1137-47. [PMID: 27402696 DOI: 10.4049/jimmunol.1600696] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/08/2016] [Indexed: 12/26/2022]
Abstract
The vitamin A metabolite all-trans retinoic acid (ATRA) induces a gut-homing phenotype in activated CD4(+) conventional T cells (Tconv) by upregulating the integrin α4β7 and the chemokine receptor CCR9. We report that, in contrast to mouse Tconv, only ∼50% of regulatory T cells (Treg) upregulate CCR9 when stimulated by physiological levels of ATRA, even though Tconv and Treg express similar levels of the retinoic acid receptor (RAR). The resulting bimodal CCR9 expression is not associated with differences in the extent of their proliferation, level of Foxp3 expression, or affiliation with naturally occurring Treg or induced Treg in the circulating Treg pool. Furthermore, we find that exposure of Treg to the mechanistic target of rapamycin (mTOR) inhibitor rapamycin suppresses upregulation of both CCR9 and α4β7, an effect that is not evident with Tconv. This suggests that in Treg, ATRA-induced upregulation of CCR9 and α4β7 is dependent on activation of a mTOR signaling pathway. The involvement of mTOR is independent of Akt activity, because specific inhibition of Akt, pyruvate dehydrogenase kinase-1, or its downstream target glycogen synthase kinase-3 did not prevent CCR9 expression. Additionally, Rictor (mTOR complex [mTORC]2)-deficient Treg showed unaltered ability to express CCR9, whereas Raptor (mTORC1)-deficient Treg were unable to upregulate CCR9, suggesting the selective participation of mTORC1. These findings reveal a novel difference between ATRA signaling and chemokine receptor induction in Treg versus Tconv and provide a framework via which the migratory behavior of Treg versus Tconv might be regulated differentially for therapeutic purposes.
Collapse
Affiliation(s)
- Leo C Chen
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Yawah T Nicholson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Brian R Rosborough
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Giorgio Raimondi
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| |
Collapse
|
26
|
Allison KA, Sajti E, Collier JG, Gosselin D, Troutman TD, Stone EL, Hedrick SM, Glass CK. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. eLife 2016; 5. [PMID: 27376549 PMCID: PMC4931909 DOI: 10.7554/elife.10134] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 05/20/2016] [Indexed: 12/18/2022] Open
Abstract
Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function. DOI:http://dx.doi.org/10.7554/eLife.10134.001 T helper cells recognize and respond to bacteria, viruses and other invading microbes and thus play a central role in the adaptive immune system. These cells have a receptor on their surface that binds to fragments of proteins – known as oligopeptides – from the microbes that have been digested and presented on the surfaces of other immune cells. Once active, T helper cells multiply, grow and release signals that regulate genes in other cells to promote immune responses. Previous studies suggest that a T helper cell’s response is binary – that is, either on or off. However, this does not explain how the strength of the T cell response to infection can vary. Allison et al. used a technique called high-throughput sequencing to examine the activity of genes in T helper cells from mice that had been genetically engineered to only produce one type of T cell receptor. For the experiments, the T cells were exposed to various concentrations of different peptides known to bind either well or poorly to the receptor. Allison et al. found that, once activated, the response of an individual T cell was not binary, but instead was related to the strength of the signal it received through its receptor. Further experiments showed that although a subset of the genes activated in T helper cells do respond in a binary fashion, the activities of many other genes involved in immune responses and cell metabolism were related to the strength of the signal from the receptor. This “analog” gene activation depends on the level of activity of the MAP kinase signaling pathway. Together, Allison et al.’s findings help us to understand how T cells are able to fine-tune immune responses to invading microbes. The next challenge will be to investigate the mechanisms underlying binary and analog gene activity in T cells. DOI:http://dx.doi.org/10.7554/eLife.10134.002
Collapse
Affiliation(s)
- Karmel A Allison
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Bioinformatics and Systems Biology Program, University of California, San Diego, United States
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, United States.,Rady Children's Hospital, San Diego, United States
| | - Jana G Collier
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - David Gosselin
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - Ty Dale Troutman
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - Erica L Stone
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, United States.,Translational Tumor Immunology Program, Wistar Institute Cancer Center, Philadelphia, United States
| | - Stephen M Hedrick
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Molecular Biology Section, Division of Biological Science, University of California, San Diego, United States
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Department of Medicine, University of California, San Diego, United States
| |
Collapse
|
27
|
Liu X, Berry CT, Ruthel G, Madara JJ, MacGillivray K, Gray CM, Madge LA, McCorkell KA, Beiting DP, Hershberg U, May MJ, Freedman BD. T Cell Receptor-induced Nuclear Factor κB (NF-κB) Signaling and Transcriptional Activation Are Regulated by STIM1- and Orai1-mediated Calcium Entry. J Biol Chem 2016; 291:8440-52. [PMID: 26826124 DOI: 10.1074/jbc.m115.713008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 12/18/2022] Open
Abstract
T cell activation following antigen binding to the T cell receptor (TCR) involves the mobilization of intracellular Ca(2+) to activate the key transcription factors nuclear factor of activated T lymphocytes (NFAT) and NF-κB. The mechanism of NFAT activation by Ca(2+) has been determined. However, the role of Ca(2+) in controlling NF-κB signaling is poorly understood, and the source of Ca(2+) required for NF-κB activation is unknown. We demonstrate that TCR- but not TNF-induced NF-κB signaling upstream of IκB kinase activation absolutely requires the influx of extracellular Ca(2+) via STIM1-dependent Ca(2+) release-activated Ca(2+)/Orai channels. We further show that Ca(2+) influx controls phosphorylation of the NF-κB protein p65 on Ser-536 and that this posttranslational modification controls its nuclear localization and transcriptional activation. Notably, our data reveal that this role for Ca(2+) is entirely separate from its upstream control of IκBα degradation, thereby identifying a novel Ca(2+)-dependent distal step in TCR-induced NF-κB activation. Finally, we demonstrate that this control of distal signaling occurs via Ca(2+)-dependent PKCα-mediated phosphorylation of p65. Thus, we establish the source of Ca(2+) required for TCR-induced NF-κB activation and define a new distal Ca(2+)-dependent checkpoint in TCR-induced NF-κB signaling that has broad implications for the control of immune cell development and T cell functional specificity.
Collapse
Affiliation(s)
| | - Corbett T Berry
- From the Departments of Pathobiology and the School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | | | | | | | - Carolyn M Gray
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Lisa A Madge
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Kelly A McCorkell
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | | | - Uri Hershberg
- the School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Michael J May
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | | |
Collapse
|
28
|
Smith KA. Commentary: The Interleukin-2 T Cell System: A New Cell Growth Model. Front Immunol 2015; 6:414. [PMID: 26322046 PMCID: PMC4530306 DOI: 10.3389/fimmu.2015.00414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kendall Arthur Smith
- Division of Immunology, Department of Medicine, Weill Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
29
|
Thurley K, Gerecht D, Friedmann E, Höfer T. Three-Dimensional Gradients of Cytokine Signaling between T Cells. PLoS Comput Biol 2015; 11:e1004206. [PMID: 25923703 PMCID: PMC4414419 DOI: 10.1371/journal.pcbi.1004206] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/17/2015] [Indexed: 11/20/2022] Open
Abstract
Immune responses are regulated by diffusible mediators, the cytokines, which act at sub-nanomolar concentrations. The spatial range of cytokine communication is a crucial, yet poorly understood, functional property. Both containment of cytokine action in narrow junctions between immune cells (immunological synapses) and global signaling throughout entire lymph nodes have been proposed, but the conditions under which they might occur are not clear. Here we analyze spatially three-dimensional reaction-diffusion models for the dynamics of cytokine signaling at two successive scales: in immunological synapses and in dense multicellular environments. For realistic parameter values, we observe local spatial gradients, with the cytokine concentration around secreting cells decaying sharply across only a few cell diameters. Focusing on the well-characterized T-cell cytokine interleukin-2, we show how cytokine secretion and competitive uptake determine this signaling range. Uptake is shaped locally by the geometry of the immunological synapse. However, even for narrow synapses, which favor intrasynaptic cytokine consumption, escape fluxes into the extrasynaptic space are expected to be substantial (≥20% of secretion). Hence paracrine signaling will generally extend beyond the synapse but can be limited to cellular microenvironments through uptake by target cells or strong competitors, such as regulatory T cells. By contrast, long-range cytokine signaling requires a high density of cytokine producers or weak consumption (e.g., by sparsely distributed target cells). Thus in a physiological setting, cytokine gradients between cells, and not bulk-phase concentrations, are crucial for cell-to-cell communication, emphasizing the need for spatially resolved data on cytokine signaling. The adaptive immune system fights pathogens through the activation of immune cell clones that specifically recognize a particular pathogen. Tight contacts, so-called immunological synapses, of immune cells with cells that present ‘digested’ pathogen molecules are pivotal for ensuring specificity. The discovery that immune responses are regulated by small diffusible proteins – the cytokines – has been surprising because cytokine diffusion to ‘bystander’ cells might compromise specificity. It has therefore been argued that cytokines are trapped in immunological synapses, whereas other authors have found that cytokines act on a larger scale through entire lymph nodes. Measurements of cytokine concentrations with fine spatial resolution have not been achieved. Here, we study the spatio-temporal dynamics of cytokines through mathematical analysis and three-dimensional numerical simulation and identify key parameters that control signaling range. We predict that even tight immunological synapses leak a substantial portion of the secreted cytokines. Nevertheless, rapid cellular uptake will render cytokine signals short-range and thus incidental activation of bystander cells can be limited. Long-range signals will only occur with multiple secreting cells or/and slow consumption by sparse target cells. Thus our study identifies key determinants of the spatial range of cytokine communication in realistic multicellular geometries.
Collapse
Affiliation(s)
- Kevin Thurley
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
- Institute for Theoretical Biology, Charité-Universitätsmedizin, Berlin, Germany
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (KT); (DG); (EF); (TH)
| | - Daniel Gerecht
- Institute for Applied Mathematics, University of Heidelberg, Heidelberg, Germany
- * E-mail: (KT); (DG); (EF); (TH)
| | - Elfriede Friedmann
- Institute for Applied Mathematics, University of Heidelberg, Heidelberg, Germany
- * E-mail: (KT); (DG); (EF); (TH)
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
- Bioquant Center, University of Heidelberg, Heidelberg, Germany
- * E-mail: (KT); (DG); (EF); (TH)
| |
Collapse
|
30
|
Zimmermann J, Radbruch A, Chang HD. A Ca(2+) concentration of 1.5 mM, as present in IMDM but not in RPMI, is critical for maximal response of Th cells to PMA/ionomycin. Eur J Immunol 2015; 45:1270-3. [PMID: 25545753 PMCID: PMC4407954 DOI: 10.1002/eji.201445247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/21/2014] [Accepted: 12/22/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Jakob Zimmermann
- Cell Biology Group, Deutsches Rheumaforschungszentrum, Berlin, Germany, a Leibniz Institute
| | | | | |
Collapse
|
31
|
Hart Y, Reich-Zeliger S, Antebi YE, Zaretsky I, Mayo AE, Alon U, Friedman N. Paradoxical signaling by a secreted molecule leads to homeostasis of cell levels. Cell 2015; 158:1022-1032. [PMID: 25171404 DOI: 10.1016/j.cell.2014.07.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 03/10/2014] [Accepted: 07/10/2014] [Indexed: 11/26/2022]
Abstract
A widespread feature of extracellular signaling in cell circuits is paradoxical pleiotropy: the same secreted signaling molecule can induce opposite effects in the responding cells. For example, the cytokine IL-2 can promote proliferation and death of T cells. The role of such paradoxical signaling remains unclear. To address this, we studied CD4(+) T cell expansion in culture. We found that cells with a 30-fold difference in initial concentrations reached a homeostatic concentration nearly independent of initial cell levels. Below an initial threshold, cell density decayed to extinction (OFF-state). We show that these dynamics relate to the paradoxical effect of IL-2, which increases the proliferation rate cooperatively and the death rate linearly. Mathematical modeling explained the observed cell and cytokine dynamics and predicted conditions that shifted cell fate from homeostasis to the OFF-state. We suggest that paradoxical signaling provides cell circuits with specific dynamical features that are robust to environmental perturbations.
Collapse
Affiliation(s)
- Yuval Hart
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Yaron E Antebi
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irina Zaretsky
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avraham E Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
32
|
Köck J, Kreher S, Lehmann K, Riedel R, Bardua M, Lischke T, Jargosch M, Haftmann C, Bendfeldt H, Hatam F, Mashreghi MF, Baumgrass R, Radbruch A, Chang HD. Nuclear factor of activated T cells regulates the expression of interleukin-4 in Th2 cells in an all-or-none fashion. J Biol Chem 2014; 289:26752-26761. [PMID: 25037220 PMCID: PMC4175318 DOI: 10.1074/jbc.m114.587865] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Th2 memory lymphocytes have imprinted their Il4 genes epigenetically for expression in dependence of T cell receptor restimulation. However, in a given restimulation, not all Th cells with a memory for IL-4 expression express IL-4. Here, we show that in reactivated Th2 cells, the transcription factors NFATc2, NF-kB p65, c-Maf, p300, Brg1, STAT6, and GATA-3 assemble at the Il4 promoter in Th2 cells expressing IL-4 but not in Th2 cells not expressing it. NFATc2 is critical for assembly of this transcription factor complex. Because NFATc2 translocation into the nucleus occurs in an all-or-none fashion, dependent on complete dephosphorylation by calcineurin, NFATc2 controls the frequencies of cells reexpressing Il4, translates analog differences in T cell receptor stimulation into a digital decision for Il4 reexpression, and instructs all reexpressing cells to express the same amount of IL-4. This analog-to-digital conversion may be critical for the immune system to respond to low concentrations of antigens.
Collapse
Affiliation(s)
- Juliana Köck
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Stephan Kreher
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Katrin Lehmann
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - René Riedel
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Markus Bardua
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Timo Lischke
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Manja Jargosch
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Claudia Haftmann
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanna Bendfeldt
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Farahnaz Hatam
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Ria Baumgrass
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
33
|
Tkach KE, Barik D, Voisinne G, Malandro N, Hathorn MM, Cotari JW, Vogel R, Merghoub T, Wolchok J, Krichevsky O, Altan-Bonnet G. T cells translate individual, quantal activation into collective, analog cytokine responses via time-integrated feedbacks. eLife 2014; 3:e01944. [PMID: 24719192 PMCID: PMC3980879 DOI: 10.7554/elife.01944] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Variability within isogenic T cell populations yields heterogeneous ‘local’ signaling responses to shared antigenic stimuli, but responding clones may communicate ‘global’ antigen load through paracrine messengers, such as cytokines. Such coordination of individual cell responses within multicellular populations is critical for accurate collective reactions to shared environmental cues. However, cytokine production may saturate as a function of antigen input, or be dominated by the precursor frequency of antigen-specific T cells. Surprisingly, we found that T cells scale their collective output of IL-2 to total antigen input over a large dynamic range, independently of population size. Through experimental quantitation and computational modeling, we demonstrate that this scaling is enforced by an inhibitory cross-talk between antigen and IL-2 signaling, and a nonlinear acceleration of IL-2 secretion per cell. Our study reveals how time-integration of these regulatory loops within individual cell signaling generates scaled collective responses and can be leveraged for immune monitoring. DOI:http://dx.doi.org/10.7554/eLife.01944.001 The cells of the immune system face the challenge of removing viruses and other pathogens without endangering healthy tissues. Cells called T cells plays a variety of roles in the immune response: some T cells directly destroy infected cells, some recruit other cells called phagocytes to the site of infection, and some release small proteins called cytokines. These cytokines help cells to communicate with other cells and, therefore, to tailor the overall immune responses to deal with a particular pathogen. It is known that mammals are capable of adjusting the T cell response to match the overall severity of an infection. However, it is not clear how individual T cells coordinate their seemingly binary response—they are either activated when they recognize a pathogen, or they are not activated—into a response at the collective cell level that can be varied continuously over a wide range of values. Here, Tkach et al. show that T cell populations match their production of the cytokine interleukin 2 (IL-2) to the abundance of antigens—molecules released by the pathogen—over an unexpectedly large range of concentrations. Through a combination of experimental and computational analyses, Tkach et al. identified two novel IL-2 feedback loops that help to generate the correct quantity of cytokine, irrespective of the total number of T cells. Furthermore, this model can be used to estimate antigen quantities within diseased tissues. The work of Tkach et al. illustrates the potential of feedback integration in cell signalling and gene regulation as a mechanism to allow cellular populations to respond to environmental stimuli in a graded, collective fashion. DOI:http://dx.doi.org/10.7554/eLife.01944.002
Collapse
Affiliation(s)
- Karen E Tkach
- Program in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
A recent study published in Immunity shows that foreign antigens elicit all-or-nothing T cell responses and that a single antigen is enough to trigger this digital cytokine secretion.
Collapse
Affiliation(s)
- Felix Wertek
- 1] National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China [2] University of Heidelberg, Institute of Pharmacy and Molecular Biotechnology, 69120 Heidelberg, Germany
| | - Chenqi Xu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
35
|
Stimulus-induced modulation of transcriptional bursting in a single mammalian gene. Proc Natl Acad Sci U S A 2013; 110:20563-8. [PMID: 24297917 DOI: 10.1073/pnas.1312310110] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian genes are often transcribed discontinuously as short bursts of RNA synthesis followed by longer silent periods. However, how these "on" and "off" transitions, together with the burst sizes, are modulated in single cells to increase gene expression upon stimulation is poorly characterized. By combining single-cell time-lapse luminescence imaging with stochastic modeling of the time traces, we quantified the transcriptional responses of the endogenous connective tissue growth factor gene to different physiological stimuli: serum and TGF-β1. Both stimuli caused a rapid and acute increase in burst sizes. Whereas TGF-β1 showed prolonged transcriptional activation mediated by an increase of transcription rate, serum stimulation resulted in a large and temporally tight first transcriptional burst, followed by a refractory period in the range of hours. Our study thus reveals how different physiological stimuli can trigger kinetically distinct transcriptional responses of the same gene.
Collapse
|
36
|
Stable T-bet(+)GATA-3(+) Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and limit immunopathologic inflammation. PLoS Biol 2013; 11:e1001633. [PMID: 23976880 PMCID: PMC3747991 DOI: 10.1371/journal.pbio.1001633] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/05/2013] [Indexed: 12/24/2022] Open
Abstract
The stable lineage commitment of naïve T helper cells to a hybrid Th1/2 phenotype reveals the cell-intrinsic reconciliation of two opposing T cell differentiation programs and provides a self-limiting mechanism to dampen immunopathology. Differentiated T helper (Th) cell lineages are thought to emerge from alternative cell fate decisions. However, recent studies indicated that differentiated Th cells can adopt mixed phenotypes during secondary immunological challenges. Here we show that natural primary immune responses against parasites generate bifunctional Th1 and Th2 hybrid cells that co-express the lineage-specifying transcription factors T-bet and GATA-3 and co-produce Th1 and Th2 cytokines. The integration of Th1-promoting interferon (IFN)-γ and interleukin (IL)-12 signals together with Th2-favoring IL-4 signals commits naive Th cells directly and homogeneously to the hybrid Th1/2 phenotype. Specifically, IFN-γ signals are essential for T-bet+GATA-3+ cells to develop in vitro and in vivo by breaking the dominance of IL-4 over IL-12 signals. The hybrid Th1/2 phenotype is stably maintained in memory cells in vivo for months. It resists reprogramming into classic Th1 or Th2 cells by Th1- or Th2-promoting stimuli, which rather induce quantitative modulations of the combined Th1 and Th2 programs without abolishing either. The hybrid phenotype is associated with intermediate manifestations of both Th1 and Th2 cell properties. Consistently, hybrid Th1/2 cells support inflammatory type-1 and type-2 immune responses but cause less immunopathology than Th1 and Th2 cells, respectively. Thus, we propose the self-limitation of effector T cells based on the stable cell-intrinsic balance of two opposing differentiation programs as a novel concept of how the immune system can prevent excessive inflammation. T helper (Th) cells, a subgroup of white blood cells important in the immune system, can differentiate into diverse lineages, for example Th1 and Th2, whose effector mechanisms target different types of pathogens but cause problems if not properly regulated. Lineage commitment is driven by cytokine signals that control the expression of distinct lineage-specifying “master regulator” transcription factor molecules. Lineage commitment is thought to reflect alternative cell-fate decisions because the initiated differentiation programs have self-amplifying and mutually repressive features. Here we show that the Th1 and Th2 differentiation programs are more compatible with each other than previously thought. Individual naive T cells can simultaneously integrate Th1- and Th2-polarizing signals and develop into hybrid Th1/2 cells that stably co-express both the Th1 master regulator T-bet and the Th2 master regulator GATA-3. We find that hybrid Th1/2 cells arise naturally during parasite infections and that the two opposing differentiation programs can stably co-exist in resting memory Th1/2 cells for periods of months. Th1- or Th2-polarizing stimuli induced quantitative modulations in the hybrid state but did not extinguish either program. The cell-intrinsic antagonism gives the hybrid Th1/2 cells properties that are quantitatively intermediate between those of Th1 and Th2 cells. Thus, in typical Th1 and Th2 immune responses, hybrid Th1/2 cells cause less immunopathology than their classic Th1 or Th2 counterparts, demonstrating a cell-intrinsic self-limiting mechanism that can prevent excessive inflammation.
Collapse
|
37
|
Wang TH, Jian CH, Hsieh YK, Wang FN, Wang CF. Spatial distributions of inorganic elements in honeybees (Apis mellifera L.) and possible relationships to dietary habits and surrounding environmental pollutants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5009-5015. [PMID: 23646931 DOI: 10.1021/jf400695w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was adopted to determine the distribution of inorganic elements, including Ca, Cu, Fe, Mg, Mn, S, P, Pb, and Zn, in honeybees (Apis melifera L.). Two features are particularly noteworthy. First, it was found there is a significant amount of Fe located at the fringe of the abdomen in worker bees; ultrasonic imaging, scanning electron microscopy, and magnetic resonance imaging revealed that it arose from magnetic Fe-bearing nanoparticles (NPs) having an average diameter of approximately 40 nm. Interestingly, only worker bees contained these magnetic Fe-bearing NPs; no similar features appeared in larvae, pupae, wasps, or drones. Second, a detectable amount of Pb accumulated particularly in the alimentary canals of worker bees. Again, no detectable amounts of Pb in larvae, pupae, drones, or wasps, yet a level of 0.24 ± 0.05 mg/kg of Pb in pollen; therefore, the diet appears to be the primary pathway for environmental pollutants entering the honeybees' food chain.
Collapse
Affiliation(s)
- Tsing-Hai Wang
- Biomedical Engineering and Environment Sciences, National Tsing Hua University, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Abstract
Asthma has a high prevalence worldwide, and contributes significantly to the socioeconomic burden. According to a classical paradigm, asthma symptoms are attributable to an allergic, Th2-driven airway inflammation that causes airway hyperresponsiveness and results in reversible airway obstruction. Diagnosis and therapy are based mainly on these pathophysiologic concepts. However, these have increasingly been challenged by findings of recent studies, and the frequently observed failure in controlling asthma symptoms. Important recent findings are the protective "farm effect" in children, the possible prenatal mechanisms of this protection, the recognition of many different asthma phenotypes in children and adults, and the partly disappointing clinical effects of new targeted therapeutic approaches. Systems biology approaches may lead to a more comprehensive view of asthma pathophysiology and a higher success rate of new therapies. Systems biology integrates clinical and experimental data by means of bioinformatics and mathematical modeling. In general, the "-omics" approach, and the "mathematical modeling" approach can be described. Recently, several consortia have been attempting to bring together clinical and molecular data from large asthma cohorts, using novel experimental setups, biostatistics, bioinformatics, and mathematical modeling. This "systems medicine" approach to asthma will help address the different asthma phenotypes with adequate therapy and possibly preventive strategies.
Collapse
|
39
|
Paul S, Schaefer BC. A new look at T cell receptor signaling to nuclear factor-κB. Trends Immunol 2013; 34:269-81. [PMID: 23474202 DOI: 10.1016/j.it.2013.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 12/20/2022]
Abstract
Antigen stimulation of T cell receptor (TCR) signaling to nuclear factor (NF)-κB is required for T cell proliferation and differentiation of effector cells. The TCR-to-NF-κB pathway is generally viewed as a linear sequence of events in which TCR engagement triggers a cytoplasmic cascade of protein-protein interactions and post-translational modifications, ultimately culminating in the nuclear translocation of NF-κB. However, recent findings suggest a more complex picture in which distinct signalosomes, previously unrecognized proteins, and newly identified regulatory mechanisms play key roles in signal transmission. In this review, we evaluate recent data and suggest areas of future emphasis in the study of this important pathway.
Collapse
Affiliation(s)
- Suman Paul
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | | |
Collapse
|
40
|
Schroeter MF, Ratsch BA, Lehmann J, Baumgrass R, Hamann A, Syrbe U. Differential regulation and impact of fucosyltransferase VII and core 2 β1,6-N-acetyl-glycosaminyltransferase for generation of E-selectin and P-selectin ligands in murine CD4+ T cells. Immunology 2013; 137:294-304. [PMID: 23039181 DOI: 10.1111/imm.12011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/10/2012] [Accepted: 08/20/2012] [Indexed: 01/13/2023] Open
Abstract
Ligands for E-selectin and P-selectin (E-lig and P-lig) are induced on CD4+ T cells upon differentiation into effector T cells. Glycosyltransferases, especially α 1,3-fucosyltransferase VII (FucT-VII) and core 2 β1,6-N-acetyl-glycosaminyltransferase I (C2GlcNAcT-I), are critical for their synthesis. We here analysed the signals that control the expression of E-lig, P-lig and mRNA coding for FucT-VII and C2GlcNAcT-I. In line with previous reports, we found that P-lig expression correlates with the regulation of C2GlcNAcT-I, whereas E-lig expression can occur at low levels of C2GlcNAcT-I mRNA but requires high FucT-VII mRNA expression. Interestingly, the two enzymes are regulated by different signals. Activation-induced C2GlcNAcT-I up-regulation under permissive (T helper type 1) conditions was strongly reduced by cyclosporin A (CsA), suggesting the involvement of T-cell receptor-dependent, calcineurin/NFAT-dependent signals in combination with interleukin-12 (IL-12) -mediated signals in the regulation of C2GlcNAcT-I. In contrast, expression of FucT-VII mRNA was not significantly inhibited by CsA. Interleukin-4 inhibited the expression of FucT-VII but IL-2 and IL-7 were found to support induction of FucT-VII and E-lig. E-selectin, P-selectin and their ligands initially appeared to have rather overlapping functions. These findings however, unravel striking differences in the regulation of E-lig and P-lig expression, dictated by the dominance of FucT-VII and C2GlcNAcT-I, respectively, and their dependency on signals from either promiscuous or homeostatic cytokines (FucT-VII) or a strong T-cell receptor signal in combination with inflammatory cytokines in case of C2GlcNAcT-I.
Collapse
Affiliation(s)
- Micha F Schroeter
- Experimentelle Rheumatologie, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Marangoni F, Murooka TT, Manzo T, Kim EY, Carrizosa E, Elpek NM, Mempel TR. The transcription factor NFAT exhibits signal memory during serial T cell interactions with antigen-presenting cells. Immunity 2013; 38:237-49. [PMID: 23313588 DOI: 10.1016/j.immuni.2012.09.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 09/27/2012] [Indexed: 01/12/2023]
Abstract
Interactions with antigen-presenting cells (APCs) interrupt T cell migration through tissues and trigger signaling pathways that converge on the activation of transcriptional regulators, including nuclear factor of activated T cells (NFAT), which control T cell function and differentiation. Both stable and unstable modes of cognate T cell-APC interactions have been observed in vivo, but the functional significance of unstable, serial contacts has remained unclear. Here we used multiphoton intravital microscopy in lymph nodes and tumors to show that while NFAT nuclear import was fast (t(1/2 max)∼1 min), nuclear export was slow (t(1/2)∼20 min) in T cells. During delayed export, nuclear NFAT constituted a short-term imprint of transient TCR signals and remained transcriptionally active for the T cell tolerance gene Egr2, but not for the effector gene Ifng, which required continuous TCR triggering for expression. This provides a potential mechanistic basis for the observation that a predominance of unstable APC interactions correlates with the induction of T cell tolerance.
Collapse
Affiliation(s)
- Francesco Marangoni
- The Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Yamanaka YJ, Szeto GL, Gierahn TM, Forcier TL, Benedict KF, Brefo MSN, Lauffenburger DA, Irvine DJ, Love JC. Cellular barcodes for efficiently profiling single-cell secretory responses by microengraving. Anal Chem 2012. [PMID: 23205933 DOI: 10.1021/ac302264q] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a method that uses fluorescent cellular barcodes to increase the number of unique samples that can be analyzed simultaneously by microengraving, a nanowell array-based technique for quantifying the secretory responses of thousands of single cells in parallel. Using n different fluorescent dyes to generate 2(n) unique cellular barcodes, we achieved a 2(n)-fold reduction in the number of arrays and quantity of reagents required per sample. The utility of this approach was demonstrated in three applications of interest in clinical and experimental immunology. Using barcoded human peripheral blood mononuclear cells and T cells, we constructed dose-response curves, profiled the secretory behavior of cells treated with mechanistically distinct stimuli, and tracked the secretory behaviors of different lineages of CD4(+) T helper cells. In addition to increasing the number of samples analyzed by generating secretory profiles of single cells from multiple populations in a time- and reagent-efficient manner, we expect that cellular barcoding in combination with microengraving will facilitate unique experimental opportunities for quantitatively analyzing interactions among heterogeneous cells isolated in small groups (~2-5 cells).
Collapse
Affiliation(s)
- Yvonne J Yamanaka
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Frischbutter S, Schultheis K, Pätzel M, Radbruch A, Baumgrass R. Evaluation of calcineurin/NFAT inhibitor selectivity in primary human Th cells using bar-coding and phospho-flow cytometry. Cytometry A 2012; 81:1005-11. [DOI: 10.1002/cyto.a.22204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 01/01/2023]
|
44
|
Höfer T, Krichevsky O, Altan-Bonnet G. Competition for IL-2 between Regulatory and Effector T Cells to Chisel Immune Responses. Front Immunol 2012; 3:268. [PMID: 22973270 PMCID: PMC3433682 DOI: 10.3389/fimmu.2012.00268] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/05/2012] [Indexed: 01/24/2023] Open
Abstract
In this review we discuss how the competition for cytokines between different cells of the immune system can shape the system wide immune response. We focus on interleukin-2 (IL-2) secretion by activated effector T cells (T(eff)) and on the competition for IL-2 consumption between T(eff) and regulatory T cells (T(reg)). We discuss the evidence for the mechanism in which the depletion of IL-2 by T(reg) cells would be sufficient to suppress an autoimmune response, yet not strong enough to prevent an immune response. We present quantitative estimations and summarize our modeling effort to show that the tug-of-war between T(reg) and T(eff) cells for IL-2 molecules can be won by T(reg) cells in the case of weak activation of T(eff) leading to the suppression of the immune response. Or, for strongly activated T(eff) cells, it can be won by T(eff) cells bringing about the activation of the whole adaptive immune system. Finally, we discuss some recent applications attempting to achieve clinical effects through the modulation of IL-2 consumption by T(reg) compartment.
Collapse
Affiliation(s)
- Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center Heidelberg, Germany
| | | | | |
Collapse
|
45
|
Bendfeldt H, Benary M, Scheel T, Steinbrink K, Radbruch A, Herzel H, Baumgrass R. IL-2 Expression in Activated Human Memory FOXP3(+) Cells Critically Depends on the Cellular Levels of FOXP3 as Well as of Four Transcription Factors of T Cell Activation. Front Immunol 2012; 3:264. [PMID: 22969764 PMCID: PMC3428033 DOI: 10.3389/fimmu.2012.00264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022] Open
Abstract
The human CD4+FOXP3+ T cell population is heterogeneous and consists of various subpopulations which remain poorly defined. Anergy and suppression are two main functional characteristics of FOXP3+Treg cells. We used the anergic behavior of FOXP3+Treg cells for a better discrimination and characterization of such subpopulations. We compared IL-2-expressing with IL-2-non-expressing cells within the memory FOXP3+ T cell population. In contrast to IL-2-non-expressing FOXP3+ cells, IL-2-expressing FOXP3+ cells exhibit intermediate characteristics of Treg and Th cells concerning the Treg cell markers CD25, GITR, and Helios. Besides lower levels of FOXP3, they also have higher levels of the transcription factors NFATc2, c-Fos, NF-κBp65, and c-Jun. An approach combining flow cytometric measurements with statistical interpretation for quantitative transcription factor analysis suggests that the physiological expression levels not only of FOXP3 but also of NFATc2, c-Jun, c-Fos, and NF-κBp65 are limiting for the decision whether IL-2 is expressed or not in activated peripheral human memory FOXP3+ cells. These findings demonstrate that concomitant high levels of NFATc2, c-Jun, c-Fos, and NF-κBp65 lead in addition to potential IL-2 expression in those FOXP3+ cells with low levels of FOXP3. We hypothesize that not only the level of FOXP3 expression but also the amounts of the four transcription factors studied represent determining factors for the anergic phenotype of FOXP3+ Treg cells.
Collapse
Affiliation(s)
- Hanna Bendfeldt
- German Rheumatism Research Centre Berlin, a Leibniz Institute Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Bendfeldt H, Benary M, Scheel T, Frischbutter S, Abajyan A, Radbruch A, Herzel H, Baumgrass R. Stable IL-2 decision making by endogenous c-Fos amounts in peripheral memory T-helper cells. J Biol Chem 2012; 287:18386-97. [PMID: 22474330 DOI: 10.1074/jbc.m112.358853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytokine IL-2 performs opposite functions supporting efficient immune responses and playing a key role in peripheral tolerance. Therefore, precise fine-tuning of IL-2 expression is crucial for adjusting the immune response. Combining transcription factor analysis at the single cell and the single nucleus level using flow cytometry with statistical analysis, we showed that physiological differences in the expression levels of c-Fos and NFATc2, but not of c-Jun and NF-κBp65, are limiting for the decision whether IL-2 is expressed in a strongly activated human memory T-helper (Th) cell. Variation in the expression of c-Fos leads to substantial diversity of IL-2 expression in ∼40% of the memory Th cells. The remaining cells exhibit an equally high c-Fos expression level, thereby ensuring robustness in IL-2 response within the population. These findings reveal how memory Th cells benefit from regulated variation in transcription factor expression to achieve a certain stability and variability of cytokine expression in a controlled manner.
Collapse
Affiliation(s)
- Hanna Bendfeldt
- Deutsches Rheuma-Forschungszentrum Berlin, A. Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol 2012; 3:51. [PMID: 22566933 PMCID: PMC3341960 DOI: 10.3389/fimmu.2012.00051] [Citation(s) in RCA: 491] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/01/2012] [Indexed: 12/22/2022] Open
Abstract
CD4(+)CD25(high)Foxp3(+) regulatory T cells (Tregs) can suppress other immune cells and, thus, are critical mediators of peripheral self-tolerance. On the one hand, Tregs avert autoimmune disease and allergies. On the other hand, Tregs can prevent immune reactions against tumors and pathogens. Despite the importance of Tregs, the molecular mechanisms of suppression remain incompletely understood and controversial. Proliferation and cytokine production of CD4(+)CD25(-) conventional T cells (Tcons) can be inhibited directly by Tregs. In addition, Tregs can indirectly suppress Tcon activation via inhibition of the stimulatory capacity of antigen presenting cells. Direct suppression of Tcons by Tregs can involve immunosuppressive soluble factors or cell contact. Different mechanisms of suppression have been described, so far with no consensus on one universal mechanism. Controversies might be explained by the fact that different mechanisms may operate depending on the site of the immune reaction, on the type and activation state of the suppressed target cell as well as on the Treg activation status. Further, inhibition of T cell effector function can occur independently of suppression of proliferation. In this review, we summarize the described molecular mechanisms of suppression with a particular focus on suppression of Tcons and rapid suppression of T cell receptor-induced calcium (Ca(2+)), NFAT, and NF-κB signaling in Tcons by Tregs.
Collapse
Affiliation(s)
- Angelika Schmidt
- Division of Immunogenetics, Tumorimmunology Program, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | | | | |
Collapse
|
48
|
The AC8 IgG3 monoclonal anti-cholesterol antibody modulates uptake and presentation of antigens for T cell activation. Immunol Lett 2012; 143:106-15. [DOI: 10.1016/j.imlet.2012.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 01/07/2023]
|
49
|
Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A 2011; 109:1607-12. [PMID: 22160692 DOI: 10.1073/pnas.1117194109] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The release of cytokines by T cells defines a significant part of their functional activity in vivo, and their ability to produce multiple cytokines has been associated with beneficial immune responses. To date, time-integrated end-point measurements have obscured whether these polyfunctional states arise from the simultaneous or successive release of cytokines. Here, we used serial, time-dependent, single-cell analysis of primary human T cells to resolve the temporal dynamics of cytokine secretion from individual cells after activation ex vivo. We show that multifunctional, Th1-skewed cytokine responses (IFN-γ, IL-2, TNFα) are initiated asynchronously, but the ensuing dynamic trajectories of these responses evolve programmatically in a sequential manner. That is, cells predominantly release one of these cytokines at a time rather than maintain active secretion of multiple cytokines simultaneously. Furthermore, these dynamic trajectories are strongly associated with the various states of cell differentiation suggesting that transient programmatic activities of many individual T cells contribute to sustained, population-level responses. The trajectories of responses by single cells may also provide unique, time-dependent signatures for immune monitoring that are less compromised by the timing and duration of integrated measures.
Collapse
|
50
|
Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli. Mol Syst Biol 2011; 7:529. [PMID: 21915116 PMCID: PMC3202801 DOI: 10.1038/msb.2011.62] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/17/2011] [Indexed: 12/13/2022] Open
Abstract
Genome-wide simultaneous measurements of pre-mRNA and mRNA expression reveal unexpected time-dependent transcript production and degradation profiles in response to external stimulus, as well as a striking lack of concordance between mRNA abundance and transcript production profiles. By analyzing the signals from intronic probes of exon arrays, we performed, for the first time, genome-wide measurement of pre-mRNA expression dynamics. We discovered a striking lack of correspondence between mRNA and pre-mRNA temporal expression profiles following stimulus, demonstrating that measurement of mRNA dynamics does not suffice to infer transcript production profiles. By combining simultaneous measurement of pre-mRNA and mRNA profiles with a simple new quantitative theoretical description of transcription, we are able to infer complex time dependence of both transcript production and mRNA degradation. The production profiles of many transcripts reveal an operational strategy we termed Production Overshoot, which is used to accelerate mRNA response. The biological relevance of our findings was substantiated by observing similar results when studying the response of three different mammalian cell types to different stimuli.
Transcriptional responses to extracellular stimuli involve tuning the rates of transcript production and degradation. Here, we show that the time-dependent profiles of these rates can be inferred from simultaneous measurements of precursor mRNA (pre-mRNA) and mature mRNA profiles. Transcriptome-wide measurements demonstrate that genes with similar mRNA profiles often exhibit marked differences in the amplitude and onset of their production rate. The latter is characterized by a large dynamic range, with a group of genes exhibiting an unexpectedly strong transient production overshoot, thereby accelerating their induction and, when combined with time-dependent degradation, shaping transient responses with precise timing and amplitude.
Collapse
|