1
|
Sprason C, Tucker T, Clancy D. MtDNA deletions and aging. FRONTIERS IN AGING 2024; 5:1359638. [PMID: 38425363 PMCID: PMC10902006 DOI: 10.3389/fragi.2024.1359638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Aging is the major risk factor in most of the leading causes of mortality worldwide, yet its fundamental causes mostly remain unclear. One of the clear hallmarks of aging is mitochondrial dysfunction. Mitochondria are best known for their roles in cellular energy generation, but they are also critical biosynthetic and signaling organelles. They also undergo multiple changes with organismal age, including increased genetic errors in their independent, circular genome. A key group of studies looking at mice with increased mtDNA mutations showed that premature aging phenotypes correlated with increased deletions but not point mutations. This generated an interest in mitochondrial deletions as a potential fundamental cause of aging. However, subsequent studies in different models have yielded diverse results. This review summarizes the research on mitochondrial deletions in various organisms to understand their possible roles in causing aging while identifying the key complications in quantifying deletions across all models.
Collapse
Affiliation(s)
| | | | - David Clancy
- Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
2
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Shamanskiy V, Mikhailova AA, Tretiakov EO, Ushakova K, Mikhailova AG, Oreshkov S, Knorre DA, Ree N, Overdevest JB, Lukowski SW, Gostimskaya I, Yurov V, Liou CW, Lin TK, Kunz WS, Reymond A, Mazunin I, Bazykin GA, Fellay J, Tanaka M, Khrapko K, Gunbin K, Popadin K. Secondary structure of the human mitochondrial genome affects formation of deletions. BMC Biol 2023; 21:103. [PMID: 37158879 PMCID: PMC10166460 DOI: 10.1186/s12915-023-01606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions. RESULTS By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging. CONCLUSIONS Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.
Collapse
Affiliation(s)
- Victor Shamanskiy
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alina A Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Kristina Ushakova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alina G Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Vavilov Institute of General Genetics RAS, Moscow, Russia
| | - Sergei Oreshkov
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Natalia Ree
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Jonathan B Overdevest
- Department of Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Irina Gostimskaya
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Valerian Yurov
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang-Gung Memorial Hospital and Chang-Gung University, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang-Gung Memorial Hospital and Chang-Gung University, Kaohsiung, Taiwan
| | - Wolfram S Kunz
- Division of Neurochemistry, Department of Experimental Epileptology and Cognition Research, University Bonn, Bonn, Germany
- Department of Epileptology, University Hospital of Bonn, Bonn, Germany
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Georgii A Bazykin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Laboratory of Molecular Evolution, Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia
| | - Jacques Fellay
- Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Masashi Tanaka
- Department for Health and Longevity Research, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-Ku, Tokyo, 162-8636, Japan
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Clinical Laboratory, IMS Miyoshi General Hospital, Fujikubo, Miyoshi-Machi, Iruma, Saitama Prefecture, 974-3354-0041, Japan
| | | | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Castañeda V, Haro-Vinueza A, Salinas I, Caicedo A, Méndez MÁ. The MitoAging Project: Single nucleotide polymorphisms (SNPs) in mitochondrial genes and their association to longevity. Mitochondrion 2022; 66:13-26. [PMID: 35817296 DOI: 10.1016/j.mito.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Mitochondrial dysfunction is a major hallmark of aging. Mitochondrial DNA (mtDNA) mutations (inherited or acquired) may cause a malfunction of the respiratory chain (RC), and thus negatively affect cell metabolism and function. In contrast, certain mtDNA single nucleotide polymorphisms (SNPs) may be beneficial to mitochondrial electron transport chain function and the extension of cellular health as well as lifespan. The goal of the MitoAging project is to detect key physiological characteristics and mechanisms that improve mitochondrial function and use them to develop therapies to increase longevity and a healthy lifespan. We chose to perform a systematic literature review (SLR) as a tool to collect key mtDNA SNPs associated with an increase in lifespan. Then validated our results by comparing them to the MitoMap database. Next, we assessed the effect of relevant SNPs on protein stability. A total of 28 SNPs were found in protein coding regions. These SNPs were reported in Japan, China, Turkey, and India. Among the studied SNPs, the C5178A mutation in the ND2 gene of Complex I of the RC was detected in all the reviewed reports except in Uygur Chinese centenarians. Then, we found that G9055A (ATP6 gene) and A10398G (ND3 gene) polymorphisms have been associated with a protective effect against Parkinson's disease (PD). Additionally, C8414T in ATP8 was significantly associated with longevity in three Japanese reports. Interestingly, using MitoMap we found that G9055A (ATP6 gene) was the only SNP promoting longevity not associated with any pathology. The identification of SNPs associated with an increase in lifespan opens the possibility to better understand individual differences regarding a decrease in illness susceptibility and find strategies that contribute to healthy aging.
Collapse
Affiliation(s)
- Verónica Castañeda
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Alissen Haro-Vinueza
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Ivonne Salinas
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador.
| | - Miguel Ángel Méndez
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Politécnico, Universidad San Francisco de Quito, Quito, Ecuador.
| |
Collapse
|
5
|
WAKU DAISUKE, GAKUHARI TAKASHI, KOGANEBUCHI KAE, YONEDA MINORU, KONDO OSAMU, MASUYAMA TADAYUKI, YAMADA YASUHIRO, OOTA HIROKI. Complete mitochondrial genome sequencing reveals double-buried Jomon individuals excavated from the Ikawazu shell-mound site were not in a mother–child relationship. ANTHROPOL SCI 2022. [DOI: 10.1537/ase.220129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- DAISUKE WAKU
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| | - TAKASHI GAKUHARI
- Center for Cultural Resource Studies, College of Human and Social Sciences, Kanazawa University, Kanazawa
| | - KAE KOGANEBUCHI
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| | - MINORU YONEDA
- The University Museum, The University of Tokyo, Tokyo
| | - OSAMU KONDO
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| | | | - YASUHIRO YAMADA
- Department of Philosophy, History and Cultural Studies, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo
| | - HIROKI OOTA
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| |
Collapse
|
6
|
Mitochondrial DNA and Alzheimer's disease: a first case-control study of the Tunisian population. Mol Biol Rep 2021; 49:1687-1700. [PMID: 34854014 DOI: 10.1007/s11033-021-06978-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder in humans and presents a major health problem throughout the world. The etiology of AD is complex, and many factors are implicated, including mitochondria. Mitochondrial alteration has been proposed as a possible cause of AD. Therefore, several studies have focused on finding an association between inherited mitochondrial DNA variants and AD onset. METHODS In this study, we looked, for the first time, for a potential association between mitochondrial haplogroups or polymorphisms and AD in the Tunisian population. We also evaluated the distribution of the major genetic risk factor for AD, the apolipoprotein E epsilon 4 (APOE ε4), in this population. In total, 159 single-nucleotide polymorphisms (SNPs) of mitochondrial DNA haplogroups were genotyped in 254 individuals (58 patients and 196 controls). An additional genotyping of APOE ε4 was performed. RESULTS No significant association between mitochondrial haplogroups and AD was found. However, two individual SNPs, A5656G (p = 0.03821, OR = 10.46) and A13759G (p = 0.03719, OR = 10.78), showed a significant association with AD. APOE 4 was confirmed as a risk factor for AD (p = 0.000014). CONCLUSION Our findings may confirm the absence of a relation between mitochondrial haplogroups and AD and support the possible involvement of some inherited variants in the pathogenicity of AD.
Collapse
|
7
|
Poljsak B, Kovač V, Levec T, Milisav I. Nature Versus Nurture: What Can be Learned from the Oldest-Old's Claims About Longevity? Rejuvenation Res 2021; 24:262-273. [PMID: 33544039 DOI: 10.1089/rej.2020.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beneficial genetic or environmental factors that influence the length and quality of life can be evaluated while studying supercentenarians. The oldest-old can withstand serious/fatal illnesses more than their peers and/or their aging rate is decreased. Supercentenarians are an interesting group of individuals whose lifestyle is not particularly healthy according to the common guidelines, namely some of them seem to have similar harmful behaviors, but still manage to stay healthier for longer, and while eventually dying from the same degenerative diseases as the general population, they develop symptoms 20-30 years later. As there are not many supercentenarians by definition, it is worthwhile to diligently collect their data to enable future meta-analyses on larger samples; much can be learned from supercentenarians' habits and lifestyle choices about the aging process. Contributions of genetics, lifestyle choices, and epigenetics to their extended life span are discussed here.
Collapse
Affiliation(s)
- Borut Poljsak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Levec
- Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Yang FC, Tseng B, Lin CY, Yu YJ, Linacre A, Lee JCI. Population inference based on mitochondrial DNA control region data by the nearest neighbors algorithm. Int J Legal Med 2021; 135:1191-1199. [PMID: 33586030 DOI: 10.1007/s00414-021-02520-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022]
Abstract
Population and geographic assignment are frequently undertaken using DNA sequences on the mitochondrial genome. Assignment to broad continental populations is common, although finer resolution to subpopulations can be less accurate due to shared genetic ancestry at a local level and members of different ancestral subpopulations cohabiting the same geographic area. This study reports on the accuracy of population and subpopulation assignment by using the sequence data obtained from the 3070 mitochondrial genomes and applying the K-nearest neighbors (KNN) algorithm. These data also included training samples used for continental and population assignment comprised of 1105 Europeans (including Austria, France, Germany, Spain, and England and Caucasian countries), 374 Africans (including North and East Africa and non-specific area (Pan-Africa)), and 1591 Asians (including Japan, Philippines, and Taiwan). Subpopulations included in this study were 1153 mitochondrial DNA (mtDNA) control region sequences from 12 subpopulations in Taiwan (including Han, Hakka, Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, Tao, and Pingpu). Additionally, control region sequence data from a further 50 samples, obtained from the Sigma Company, were included after they were amplified and sequenced. These additional 50 samples acted as the "testing samples" to verify the accuracy of the population. In this study, based on genetic distances as genetic metric, we used the KNN algorithm and the K-weighted-nearest neighbors (KWNN) algorithm weighted by genetic distance to classify individuals into continental populations, and subpopulations within the same continent. Accuracy results of ethnic inferences at the level of continental populations and of subpopulations among KNN and KWNN algorithms were obtained. The training sample set achieved an overall accuracy of 99 to 82% for assignment to their continental populations with K values from 1 to 101. Population assignment for subpopulations with K assignments from 1 to 5 reached an accuracy of 77 to 54%. Four out of 12 Taiwanese populations returned an accuracy of assignment of over 60%, Ami (66%), Atayal (67%), Saisiyat (66%), and Tao (80%). For the testing sample set, results of ethnic prediction for continental populations with recommended K values as 5, 10, and 35, based on results of the training sample set, achieved overall an accuracy of 100 to 94%. This study provided an accurate method in population assignment for not only continental populations but also subpopulations, which can be useful in forensic and anthropological studies.
Collapse
Affiliation(s)
- Fu-Chi Yang
- Department of Forensic Medicine, College of Medicine, National Taiwan University, No.1 Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - Bill Tseng
- Department of Forensic Medicine, College of Medicine, National Taiwan University, No.1 Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - Chun-Yen Lin
- Institute of Forensic Medicine, Ministry of Justice, New Taipei City, 23016, Taiwan
| | - Yu-Jen Yu
- Department of Forensic Medicine, College of Medicine, National Taiwan University, No.1 Jen-Ai Road Section 1, Taipei, 10051, Taiwan
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide, 5001, Australia
| | - James Chun-I Lee
- Department of Forensic Medicine, College of Medicine, National Taiwan University, No.1 Jen-Ai Road Section 1, Taipei, 10051, Taiwan.
| |
Collapse
|
9
|
JINAM TIMOTHYA, KAWAI YOSUKE, SAITOU NARUYA. Modern human DNA analyses with special reference to the inner dual-structure model of Yaponesian. ANTHROPOL SCI 2021. [DOI: 10.1537/ase.201217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- TIMOTHY A. JINAM
- Population Genetics Laboratory, National Institute of Genetics, Mishima
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima
| | - YOSUKE KAWAI
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo
| | - NARUYA SAITOU
- Population Genetics Laboratory, National Institute of Genetics, Mishima
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima
- Faculty of Medicine, University of The Ryukyus, Nishihara
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo
| |
Collapse
|
10
|
Mitochondrial DNA haplogroups and risk of attention deficit and hyperactivity disorder in European Americans. Transl Psychiatry 2020; 10:370. [PMID: 33139694 PMCID: PMC7608630 DOI: 10.1038/s41398-020-01064-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Although mitochondrial dysfunction has been implicated in the pathophysiology of attention deficit and hyperactivity disorder ADHD, the role of mitochondrial DNA (mtDNA) has not been extensively investigated. To determine whether mtDNA haplogroups influence risk of ADHD, we performed a case-control study comprising 2076 ADHD cases and 5078 healthy controls, all of whom were European decedents recruited from The Children's Hospital of Philadelphia (CHOP). Associations between eight major European mtDNA Haplogroups and ADHD risk were assessed in three independent European cohorts. Meta-analysis of the three studies indicated that mtDNA haplogroups K (odds ratio = 0.69, P = 2.24 × 10-4, Pcorrected = 1.79 × 10-3) and U (odds ratio = 0.77, P = 8.88 × 10-4, Pcorrected = 7.11 × 10-3) were significantly associated with reduced risk of ADHD. In contrast, haplogroup HHV* (odds ratio = 1.18, P = 2.32 × 10-3, Pcorrected = 0.019) was significantly associated with increased risk of ADHD. Our results provide novel insight into the genetic basis of ADHD, implicating mitochondrial mechanisms in the pathophysiology of this relatively common psychiatric disorder.
Collapse
|
11
|
Sun D, Yao S, Wu F, Deng W, Ma Y, Jin L, Wang J, Wang X. Mitochondrial DNA Haplogroup M7 Confers Disability in a Chinese Aging Population. Front Genet 2020; 11:577795. [PMID: 33193696 PMCID: PMC7645148 DOI: 10.3389/fgene.2020.577795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroups have been associated with functional impairments (i.e., decreased gait speed and grip strength, frailty), which are risk factors of disability. However, the association between mtDNA haplogroups and ADL disability is still unclear. In this study, we conducted an investigation of 25 mtSNPs defining 17 major mtDNA haplogroups for ADL disability in an aging Chinese population. We found that mtDNA haplogroup M7 was associated with an increased risk of disability (OR = 3.18 [95% CI = 1.29-7.83], P = 0.012). The survival rate of the M7 haplogroup group (6.1%) was lower than that of the non-M7 haplogroup group (9.5%) after a 6-year follow-up. In cellular studies, cytoplasmic hybrid (cybrid) cells with the M7 haplogroup showed distinct mitochondrial functions from the M8 haplogroup. Specifically, the respiratory chain complex capacity was significantly lower in M7 haplogroup cybrids than in M8 haplogroup cybrids. Furthermore, an obvious decreased mitochondrial membrane potential and 40% reduced ATP-linked oxygen consumption were found in M7 haplogroup cybrids compared to M8 haplogroup cybrids. Notably, M7 haplogroup cybrids generated more reactive oxygen species (ROS) than M8 haplogroup cybrids. Therefore, the M7 haplogroup may contribute to the risk of disability via altering mitochondrial function to some extent, leading to decreased oxygen consumption, but increased ROS production, which may activate mitochondrial retrograde signaling pathways to impair cellular and tissue function.
Collapse
Affiliation(s)
- Dayan Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Shun Yao
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Fei Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wan Deng
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- Six-sector Industrial Research Institute, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Rovcanin B, Jancic J, Samardzic J, Rovcanin M, Nikolic B, Ivancevic N, Novakovic I, Kostic V. In silico model of mtDNA mutations effect on secondary and 3D structure of mitochondrial rRNA and tRNA in Leber's hereditary optic neuropathy. Exp Eye Res 2020; 201:108277. [PMID: 32991883 DOI: 10.1016/j.exer.2020.108277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 02/03/2023]
Abstract
The Leber's hereditary optic neuropathy (LHON) is a rare disease caused by mitochondrial DNA (mtDNA) mutations. Beside primary mutations, the effect of secondary mtDNA mutations in still unclear. We examined the effect of secondary mtDNA mutations on secondary structure of different mitochondrial RNAs. Whole mitochondrial genome sequence of LHON patients has been obtained from in six non related pedigrees by Sanger sequencing method. The effect of mutations located in mitochondrial RNA genes was examined by creating in silico models of RNA secondary and regional 3D structure, accompanied by sequence conservation analysis. All three primary LHON mutations (m.3460G>A, m.11778G>A and m.14484 T>C) were revealed in study families. Four mutations in MT-RNR1 gene (m.750A>G, m.956delC, m.1438A>G and m.1555A>G) were identified and only an m.1555A>G causes significant changes of secondary structure of mitochondrial 12S ribosomal RNA (rRNA), while it is the only mutation which does not alter its 3D structure. Five mutations (m.1811A>G, m.2706A>G, m.2831G>A, m.3010G>A and m.3197T>C) were discovered in MT-RNR2 gene and all of them induced substantial alterations of mitochondrial 16S rRNA secondary structure. Significant changes of mitochondrial 16S rRNA 3D structure are caused by m.1811A>G, m.2706A>G, m.3010G>A and m.3197T>C. A single insertion variant (m.15986insG) has been found in the MT-TP gene which encodes mitochondrial transfer RNA for Proline (tRNA Pro). This mutation does not cause substantial changes of tRNA for Proline secondary structure, while the 3D geometry remains without major changes. Most of the mutation loci exhibited high level of sequence conservation. Presence of multiple mutations in a single family appears to cause more extensive changes in mitochondrial 12S and 16S rRNA, then their individual influence. The effect of discovered mutations on in silico modelled RNA structure is in a significant correlation with the present knowledge about the potential of these mutation to participate in the pathophysiology of LHON and other human diseases. The presence of certain multiple mitochondrial RNA mutations could be a possible explanation of LHON clinical presentation in some families. All revealed mutations have been evaluated for the first time in terms of in silico structural modelling. The application of bioinformatics tools such as secondary and 3D RNA structure prediction can have a great advantage in better understanding of the molecular standpoint of the LHON pathophysiology and clinical phenotype.
Collapse
Affiliation(s)
- Branislav Rovcanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Janko Samardzic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Rovcanin
- The Obstetrics and Gynecology Clinic Narodni Front, Belgrade, Serbia
| | - Blazo Nikolic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Ivancevic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novakovic
- Institute for Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Nishida Y, Hara M, Fuku N, Taguchi N, Horita M, Shimanoe C, Higaki Y, Tanaka K. The interaction between mitochondrial haplogroups (M7a/D) and physical activity on adiponectin in a Japanese population. Mitochondrion 2020; 53:234-242. [PMID: 32565400 DOI: 10.1016/j.mito.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/09/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022]
Abstract
Mitochondrial haplogroups F, A, and M7a are associated with increased risks of lifestyle diseases, while haplogroups N9 and D are associated with decreased risks of lifestyle diseases or with longevity. The current study determined the existence of interactions between 5 selected haplogroups and physical activity (PA) on total and high-molecular-weight (HMW) adiponectin in 3,994 men and 6,014 women. The interactions between haplogroups (M7a/D) and PA on adiponectin were significant in men (total and HMW: P-interaction = 0.041 and 0.011). The positive association of PA with adiponectin in men carrying haplogroup M7a is attenuated in comparison to men carrying haplogroup D.
Collapse
Affiliation(s)
- Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan.
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Hiraka-Gakuendai 1-1, Inzai-Shi, Chiba 270-1695, Japan
| | - Naoto Taguchi
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Mikako Horita
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Chisato Shimanoe
- Clinical Research Center, Saga University Hospital, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Yasuki Higaki
- Laboratory of Exercise Physiology, Faculty of Sports and Health Science, Fukuoka University, Nanakuma 8-19-1, Jonan-Ku, Fukuoka 814-0180, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| |
Collapse
|
14
|
Bonner J, Fisher R, Wilch E, Schutte D, Schutte B. Mitochondrial haplogroups and lifespan in a population isolate. Mitochondrion 2020; 51:62-67. [PMID: 31887371 PMCID: PMC10010630 DOI: 10.1016/j.mito.2019.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 01/16/2023]
Abstract
Physiochemical differences between mitochondrial DNA (mtDNA) haplogroups that favor oxidative phosphorylation efficiency during periods of caloric limitation can lead to lifespan lengthening when food calories are less abundant. For example, prior work demonstrated that older female haplogroup H carriers had modestly lengthened lifespans beyond 60 years during the Great Depression, a time of caloric limitation in North America. The objective of the current study is to replicate the prior findings in an independent cohort that includes both sexes and younger ages. By determining and cross-referencing the mtDNA genotypes of a culturally homogeneous population isolate to the lifespans of their ancestors, we found that between 1930 and 1939, haplogroup H compared to haplogroup U carriers had a modestly lengthened lifespan (3 years) past 60 years (hazard ratio 2.35; CI95 1.41-3.90; p-value: 0.0029). The lifespan-lengthening association was apparent in both sexes but only after the age of 60. Our results provide further support for the role of mitochondrial genetics in lengthening human lifespan.
Collapse
Affiliation(s)
- Joseph Bonner
- City of Hope National Medical Center, Center for Precision Medicine, 1500 E. Duarte Road, Duarte, CA 91010-3000, United States; Michigan State University, College of Human Medicine, United States; Wayne State University, College of Nursing, United States; Michigan State University, College of Natural Science, United States.
| | - Rachel Fisher
- City of Hope National Medical Center, Center for Precision Medicine, 1500 E. Duarte Road, Duarte, CA 91010-3000, United States; Michigan State University, College of Human Medicine, United States; Wayne State University, College of Nursing, United States; Michigan State University, College of Natural Science, United States
| | - Ellen Wilch
- City of Hope National Medical Center, Center for Precision Medicine, 1500 E. Duarte Road, Duarte, CA 91010-3000, United States; Michigan State University, College of Human Medicine, United States; Wayne State University, College of Nursing, United States; Michigan State University, College of Natural Science, United States
| | - Debra Schutte
- City of Hope National Medical Center, Center for Precision Medicine, 1500 E. Duarte Road, Duarte, CA 91010-3000, United States; Michigan State University, College of Human Medicine, United States; Wayne State University, College of Nursing, United States; Michigan State University, College of Natural Science, United States
| | - Brian Schutte
- City of Hope National Medical Center, Center for Precision Medicine, 1500 E. Duarte Road, Duarte, CA 91010-3000, United States; Michigan State University, College of Human Medicine, United States; Wayne State University, College of Nursing, United States; Michigan State University, College of Natural Science, United States
| |
Collapse
|
15
|
Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos Trans R Soc Lond B Biol Sci 2019; 375:20190187. [PMID: 31787046 DOI: 10.1098/rstb.2019.0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The animal mitochondrial genome, although small, can have a big impact on health and disease. Non-pathogenic sequence variation among mitochondrial DNA (mtDNA) haplotypes influences traits including fertility, healthspan and lifespan, whereas pathogenic mutations are linked to incurable mitochondrial diseases and other complex conditions like ageing, diabetes, cancer and neurodegeneration. However, we know very little about how mtDNA genetic variation contributes to phenotypic differences. Infrequent recombination, the multicopy nature and nucleic acid-impenetrable membranes present significant challenges that hamper our ability to precisely map mtDNA variants responsible for traits, and to genetically modify mtDNA so that we can isolate specific mutants and characterize their biochemical and physiological consequences. Here, we summarize the past struggles and efforts in developing systems to map and edit mtDNA. We also assess the future of performing forward and reverse genetic studies on animal mitochondrial genomes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Hansong Ma
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
16
|
Mitochondrial Genome (mtDNA) Mutations that Generate Reactive Oxygen Species. Antioxidants (Basel) 2019; 8:antiox8090392. [PMID: 31514455 PMCID: PMC6769445 DOI: 10.3390/antiox8090392] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondria are critical for the energetic demands of virtually every cellular process within nucleated eukaryotic cells. They harbour multiple copies of their own genome (mtDNA), as well as the protein-synthesing systems required for the translation of vital subunits of the oxidative phosphorylation machinery used to generate adenosine triphosphate (ATP). Molecular lesions to the mtDNA cause severe metabolic diseases and have been proposed to contribute to the progressive nature of common age-related diseases such as cancer, cardiomyopathy, diabetes, and neurodegenerative disorders. As a consequence of playing a central role in cellular energy metabolism, mitochondria produce reactive oxygen species (ROS) as a by-product of respiration. Here we review the evidence that mutations in the mtDNA exacerbate ROS production, contributing to disease.
Collapse
|
17
|
Chocron ES, Munkácsy E, Pickering AM. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:285-297. [PMID: 30419337 PMCID: PMC6310633 DOI: 10.1016/j.bbadis.2018.09.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6 kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.
Collapse
Affiliation(s)
- E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
18
|
Hwang IW, Kwon BN, Kim HJ, Han SH, Lee NR, Lim MH, Kwon HJ, Jin HJ. Assessment of associations between mitochondrial DNA haplogroups and attention deficit and hyperactivity disorder in Korean children. Mitochondrion 2018; 47:174-178. [PMID: 30423452 DOI: 10.1016/j.mito.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/21/2018] [Accepted: 11/02/2018] [Indexed: 01/05/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a multifactorial disorder with multiple environmental and biological etiologies, including genetic factors. Until now, several genetic variants have been reported to be significantly associated with ADHD. Recently, the relationship between mitochondrial DNA (mtDNA) haplogroups and psychiatric disorders such as schizophrenia has also been reported. However, currently there are no reports pertaining to the genetic association between mtDNA haplogroups and ADHD. Therefore, we performed an mtDNA haplogroup analysis of a total of 472 Korean children (150 Children with ADHD and 322 controls). The 20 East Asian specific mtDNA haplogroups were determined using the SNaPshot assay. We also sequenced the displacement loop (D-loop) region, position 15,971-613. Our results showed that haplogroup B4 was significantly associated with ADHD (OR, 1.90; 95% CI, 1.055-3.429; p = 0.031). A marginally significant association was found in subjects with ADHD and haplogroup B5 (OR, 0.26; 95% CI, 0.059-1.139; p = 0.041). When stratified based on gender, an association was also observed between haplogroup B5 and boys diagnosed with ADHD (OR, 0.17; 95% CI, 0.022-1.340; p = 0.048). Compared with boys, girls with ADHD carried an excess of the haplogroup D4b (OR, 4.83; 95% CI, 1.352-17.272; p = 0.014). Stratified analysis of subtypes also showed significant results (combined: haplogroup B4, p = 0.007; inattentive: haplogroup F, p = 0.022). Our results showed a possible role of mtDNA haplogroups in the genetic etiology of ADHD and ADHD symptoms in Korean children.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Bit Na Kwon
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Hyung Jun Kim
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Seung Hun Han
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Noo Ri Lee
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Myung Ho Lim
- Department of Psychology and Psychotherapy, College of Health Sciences, Dankook University, Cheonan, South Korea
| | - Ho Jang Kwon
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, South Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea.
| |
Collapse
|
19
|
Watts ME, Pocock R, Claudianos C. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease. Front Mol Neurosci 2018; 11:216. [PMID: 29988368 PMCID: PMC6023993 DOI: 10.3389/fnmol.2018.00216] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Dynamic metabolic changes occurring in neurons are critically important in directing brain plasticity and cognitive function. In other tissue types, disruptions to metabolism and the resultant changes in cellular oxidative state, such as increased reactive oxygen species (ROS) or induction of hypoxia, are associated with cellular stress. In the brain however, where drastic metabolic shifts occur to support physiological processes, subsequent changes to cellular oxidative state and induction of transcriptional sensors of oxidative stress likely play a significant role in regulating physiological neuronal function. Understanding the role of metabolism and metabolically-regulated genes in neuronal function will be critical in elucidating how cognitive functions are disrupted in pathological conditions where neuronal metabolism is affected. Here, we discuss known mechanisms regulating neuronal metabolism as well as the role of hypoxia and oxidative stress during normal and disrupted neuronal function. We also summarize recent studies implicating a role for metabolism in regulating neuronal plasticity as an emerging neuroscience paradigm.
Collapse
Affiliation(s)
- Michelle E Watts
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia.,Centre for Mental Health Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
20
|
Hu C, He X, Li X, Sun L, Zheng C, Liang Q, Lv Z, Huang Z, Qi K, Yuan H, Zhu X, Yang Y, Zhou Q, Yang Z. Comparative Study for the Association of Mitochondrial Haplogroup F+ and Metabolic Syndrome between Longevity and Control Population in Guangxi Zhuang Autonomous Region, China. J Nutr Health Aging 2018; 22:302-307. [PMID: 29380859 DOI: 10.1007/s12603-017-0915-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Our previous study suggested that mitochondrial haplogroup F (mtDNA F) was a longevity-associated biomarker, but the effect of mitochondrial haplogroup F on longevity individuals with metabolic syndrome (MetS) was not clear. Thus we explored the association between mtDNA F and MetS among longevity and control population in Guangxi Zhuang Autonomous Region, China. METHOD A total of 793 individuals consisting of 307 long-lived participants and 486 local healthy controls were involved in this study. Genotypes of mtDNA F were amplified by polymerase chain reaction and Sanger sequenced. MetS was defined according to the revised National Cholesterol Education Program's Adult Treatment Panel III (NCEP ATPIII ) criteria. RESULTS The prevalence of MetS in longevity group (28.0%) was higher than that (18.5%) in control group (P=0.002). Through the case-control stratify analysis, the prevalence of MetS in mtDNA F+ longevity individuals (29.8%) was 4.6 fold higher than that (5.3%) in local control group (P<0.001). However, after further longevity-only analysis, no association between MetS and mtDNA F+ in longevity group was observed (P=0.167). Following same analysis of two variables in control group, we found that the prevalence of MetS in mtDNA F- (95.8%) was higher than that in mtDNA F+ (5.3%); conversely, the prevalence of non-metabolic syndrome (NMetS) in mtDNA F+ (94.7%) was markedly higher than that in mtDNA F- (4.2%) (P<0.001). CONCLUSION We demonstrated that mtDNA F+ , as a molecuar biomarker, might not only confer beneficial effect to resistance against MetS but also function as a positive factor for long-life span among the population in Guangxi Zhuang Autonomous Region, China.
Collapse
Affiliation(s)
- C Hu
- Ze Yang, Ph.D. The MOH key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology. No.1 DaHua Road, Dong Dan, Beijing 100730, P.R.China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Roman ÁC, Carvajal-Gonzalez JM, Merino JM, Mulero-Navarro S, Fernández-Salguero PM. The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther 2017; 185:50-63. [PMID: 29258844 DOI: 10.1016/j.pharmthera.2017.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is well-known for its major contributions to the cellular responses against environmental toxins and carcinogens. Notably, AhR has also emerged as a key transcription factor controlling many physiological processes including cell proliferation and apoptosis, differentiation, adhesion and migration, pluripotency and stemness. These novel functions have broadened our understanding of the signalling pathways and molecular intermediates interacting with AhR under both homeostatic and pathological conditions. Recent discoveries link AhR with the function of essential organs such as liver, skin and gonads, and with complex organismal structures including the immune and cardiovascular systems. The identification of potential endogenous ligands able to regulate AhR activity, opens the possibility of designing ad hoc molecules with pharmacological and/or therapeutic value to treat human diseases in which AhR may have a causal role. Integration of experimental data from in vitro and in vivo studies with "omic" analyses of human patients affected with cancer, immune diseases, inflammation or neurological disorders will likely contribute to validate the clinical relevance of AhR and the possible benefits of modulating its activity by pharmacologically-driven strategies. In this review, we will highlight signalling pathways involved in human diseases that could be targetable by AhR modulators and discuss the feasibility of using such molecules in therapy. The pros and cons of AhR-aimed approaches will be also mentioned.
Collapse
Affiliation(s)
- Ángel C Roman
- Champalimaud Neuroscience Programme, Champalimoud Center for the Unknown, Lisbon, Portugal
| | - José M Carvajal-Gonzalez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|
22
|
Bijective codon transformations show genetic code symmetries centered on cytosine's coding properties. Theory Biosci 2017; 137:17-31. [PMID: 29147851 DOI: 10.1007/s12064-017-0258-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Homology of some RNAs with template DNA requires systematic exchanges between nucleotides. Such exchanges produce 'swinger' RNA along 23 bijective transformations (nine symmetric, X ↔ Y; and 14 asymmetric, X → Y → Z → X, for example A ↔ C and A → C → G → A, respectively). Here, analyses compare amino acids coded by swinger-transformed codons to those coded by untransformed codons, defining coding invariance after transformations. Swinger transformations cluster according to coding invariance in four groups characterized by transformations into cytosine (C = C, T → C, A → C, and G → C). C's central mutational coding role shows that swinger transformations constrained genetic code genesis. Coding invariance post-transformations correlate positively/negatively with mitochondrial swinger transcription/lepidosaurian body temperature. Presumably, low/high temperatures stabilize/revert rare swinger polymerization modes, producing long swinger sequences/point mutations, respectively. Coding invariance after swinger transformations might compensate effects of swinger polymerizations in species with low body temperatures. Hypothetically, swinger transcription increased coding potential of RNA self-replicating protolife systems under heating/cooling cycles.
Collapse
|
23
|
Seligmann H, Warthi G. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes. Comput Struct Biotechnol J 2017; 15:412-424. [PMID: 28924459 PMCID: PMC5591391 DOI: 10.1016/j.csbj.2017.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 12/14/2022] Open
Abstract
A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').
Collapse
Affiliation(s)
- Hervé Seligmann
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
- Dept. Ecol Evol Behav, Alexander Silberman Inst Life Sci, The Hebrew University of Jerusalem, IL-91904 Jerusalem, Israel
| | - Ganesh Warthi
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is responsible for more morbidity and mortality worldwide than any other ailment. Strategies for reducing CVD prevalence must involve identification of individuals at high risk for these diseases, and the prevention of its initial development. Such preventive efforts are currently limited by an incomplete understanding of the genetic determinants of CVD risk. In this review, evidence for the involvement of inherited mitochondrial mutations in development of CVD is examined. RECENT FINDINGS Several forms of CVD have been documented in the presence of pathogenic mitochondrial DNA (mtDNA) mutations, both in isolation and as part of larger syndromes. Other 'natural' mtDNA polymorphisms not overtly tied to any pathology have also been associated with alterations in mitochondrial function and individual risk for CVD, but until very recently these studies have been merely correlative. Fortunately, novel animal models are now allowing investigators to define a causal relationship between inherited 'natural' mtDNA polymorphisms, and cardiovascular function and pathology. SUMMARY Cardiovascular involvement is highly prevalent among patients with pathogenic mtDNA mutations. The relationship between CVD susceptibility and 'natural' mtDNA polymorphisms requires further investigation, but will be aided in the near future by several novel experimental models.
Collapse
Affiliation(s)
- Alexander W. Bray
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham
| | - Scott W. Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham
| |
Collapse
|
25
|
He YH, Lu X, Tian JY, Yan DJ, Li YC, Lin R, Perry B, Chen XQ, Yu Q, Cai WW, Kong QP. Mitochondrial DNA plays an equal role in influencing female and male longevity in centenarians. Exp Gerontol 2016; 83:94-6. [DOI: 10.1016/j.exger.2016.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/22/2016] [Accepted: 07/18/2016] [Indexed: 11/30/2022]
|
26
|
Kuo HM, Weng SW, Chang AYW, Huang HT, Lin HY, Chuang JH, Lin TK, Liou CW, Tai MH, Lin CY, Wang PW. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup. Free Radic Biol Med 2016; 96:116-29. [PMID: 27107769 DOI: 10.1016/j.freeradbiomed.2016.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 01/22/2023]
Abstract
The advantage of using a cytoplasmic hybrid (cybrid) model to study the genetic effects of mitochondria is that the cells have the same nuclear genomic background. We previously demonstrated the independent role of mitochondria in the pathogenesis of insulin resistance (IR) and pro-inflammation in type 2 diabetes. In this study, we compared mitochondrial dynamics and related physiological functions between cybrid cells harboring diabetes-susceptible (B4) and diabetes-protective (D4) mitochondrial haplogroups, especially the responses before and after insulin stimulation. Cybrid B4 showed a more fragmented mitochondrial network, impaired mitochondrial biogenesis and bioenergetics, increased apoptosis and ineffective mitophagy and a low expression of fusion-related molecules. Upon insulin stimulation, increases in network formation, mitochondrial DNA (mtDNA) content, and ATP production were observed only in cybrid D4. Insulin promoted a pro-fusion dynamic status in both cybrids, but the trend was greater in cybrid D4. In cybrid B4, the imbalance of mitochondrial dynamics and impaired biogenesis and bioenergetics, and increased apoptosis were significantly improved in response to antioxidant treatment. We concluded that diabetes-susceptible mtDNA variants are themselves resistant to insulin.
Collapse
Affiliation(s)
- Hsiao-Mei Kuo
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Department of Neuroscience, Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Alice Y W Chang
- Institute of Physiology and Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Hung-Tu Huang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Yu Lin
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jiin-Haur Chuang
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ming-Hong Tai
- Department of Biological Sciences, Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ching-Yi Lin
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Pei-Wen Wang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
27
|
Li Y, Li X, Wang Z, Feng Z, Li L, Ke X. Subhaplogroup D4b1 enhances the risk of cervical cancer initiation: A case-control study in southern China. J Obstet Gynaecol Res 2016; 42:325-30. [PMID: 26818773 DOI: 10.1111/jog.12879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
Abstract
AIM To investigate whether mitochondrial DNA (mtDNA) background (haplogroup) is associated with cervical cancer in patients in southern China. METHODS A case-control study of 150 patients with cervical cancer and 217 geographically matched controls was conducted in Wenzhou, a southern Chinese city in the Zhejiang province. DNA from peripheral blood was extracted and sequenced. Sequences were aligned to the mtDNA revised Cambridge Reference Sequence (GenBank number NC_012920) to determine mtDNA single nucleotide polymorphisms (SNPs) and haplogroups. RESULTS We found that both M and N haplogroups and their diagnostic SNPs (A10398G and C10400T) are not associated with the risk of cervical cancer. However, individuals with haplogroup D4b1/D4b1*, an M subhaplogroup, exhibited an increased risk of cervical cancer (odds ratio [OR] = 1.034; 95% confidence interval [CI] 1.004, 1.066; P = 0.011/OR =1.027; 95% CI 1.001, 1.055; P = 0.027). Individuals with SNPs C10181T/A10136G (OR =1.034; 95% CI 1.004, 1.066; P = 0.011/OR =1.027; 95% CI 1.001, 1.055; P = 0.027) were more susceptible to cervical cancer than individuals without. Furthermore, we determined that mtDNA background is not associated with the progression of cervical cancer. CONCLUSIONS Our results indicate that mtDNA haplogroups play a role in cervical cancer initiation.
Collapse
Affiliation(s)
- Yuanyan Li
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Ximei Li
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhihui Wang
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Zejiao Feng
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Lijiao Li
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Xiaohui Ke
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
28
|
Fuku N, Pareja‐Galeano H, Zempo H, Alis R, Arai Y, Lucia A, Hirose N. The mitochondrial-derived peptide MOTS-c: a player in exceptional longevity? Aging Cell 2015; 14:921-3. [PMID: 26289118 PMCID: PMC4693465 DOI: 10.1111/acel.12389] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial‐derived peptides (MDP) are encoded by functional short open reading frames in the mitochondrial DNA (mtDNA). These include humanin, and the recently discovered mitochondrial open reading frame of the 12S rRNA‐c (MOTS‐c). Although more research is needed, we suggest that the m.1382A>C polymorphism located in the MOTS‐c encoding mtDNA, which is specific for the Northeast Asian population, may be among the putative biological mechanisms explaining the high longevity of Japanese people.
Collapse
Affiliation(s)
- Noriyuki Fuku
- Graduate School of Health and Sports Science Juntendo University Chiba Japan
| | - Helios Pareja‐Galeano
- European University of Madrid Madrid Spain
- Research Institute of Hospital 12 de Octubre (‘i+12’) Madrid Spain
| | - Hirofumi Zempo
- Graduate School of Health and Sports Science Juntendo University Chiba Japan
| | - Rafael Alis
- Research Institute ‘Dr. Viña Giner’, Molecular and Mitochondrial Medicine Catholic University of Valencia San Vicente Mártir Valencia Spain
- School of Medicine Catholic University of Valencia San Vicente Mártir Valencia Spain
| | - Yasumichi Arai
- Center for Supercentenarian Study Keio University School of Medicine Tokyo Japan
| | - Alejandro Lucia
- European University of Madrid Madrid Spain
- Research Institute of Hospital 12 de Octubre (‘i+12’) Madrid Spain
| | - Nobuyoshi Hirose
- Center for Supercentenarian Study Keio University School of Medicine Tokyo Japan
| |
Collapse
|
29
|
Wang Z, Choi S, Lee J, Huang YT, Chen F, Zhao Y, Lin X, Neuberg D, Kim J, Christiani DC. Mitochondrial Variations in Non-Small Cell Lung Cancer (NSCLC) Survival. Cancer Inform 2015; 14:1-9. [PMID: 25657573 PMCID: PMC4310616 DOI: 10.4137/cin.s13976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/10/2022] Open
Abstract
Mutations in the mtDNA genome have long been suspected to play an important role in cancer. Although most cancer cells harbor mtDNA mutations, the question of whether such mutations are associated with clinical prognosis of lung cancer remains unclear. We resequenced the entire mitochondrial genomes of tumor tissue from a population of 250 Korean patients with non-small cell lung cancer (NSCLC). Our analysis revealed that the haplogroup (D/D4) was associated with worse overall survival (OS) of early-stage NSCLC [adjusted hazard ratio (AHR), 1.95; 95% CI, 1.14–3.33; Ptrend = 0.03]. By comparing the mtDNA variations between NSCLC tissues and matched blood samples, we found that haplogroups M/N and/or D/D4 were hotspots for somatic mutations, suggesting a more complicated mechanism of mtDNA somatic mutations other than the commonly accepted mechanism of sequential accumulation of mtDNA mutations.
Collapse
Affiliation(s)
- Zhaoxi Wang
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Sojung Choi
- Department of Thoracic Surgery, Samsung Medical Center, Seoul, Korea
| | - Jinseon Lee
- Department of Thoracic Surgery, Samsung Medical Center, Seoul, Korea
| | | | - Feng Chen
- Nanjing Medical University, School of Public Health, Nanjing, China
| | - Yang Zhao
- Nanjing Medical University, School of Public Health, Nanjing, China
| | - Xihong Lin
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Donna Neuberg
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Jhingook Kim
- Department of Thoracic Surgery, Samsung Medical Center, Seoul, Korea
| | | |
Collapse
|
30
|
Shokolenko IN, Wilson GL, Alexeyev MF. Aging: A mitochondrial DNA perspective, critical analysis and an update. World J Exp Med 2014; 4:46-57. [PMID: 25414817 PMCID: PMC4237642 DOI: 10.5493/wjem.v4.i4.46] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/15/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial theory of aging, a mainstream theory of aging which once included accumulation of mitochondrial DNA (mtDNA) damage by reactive oxygen species (ROS) as its cornerstone, has been increasingly losing ground and is undergoing extensive revision due to its inability to explain a growing body of emerging data. Concurrently, the notion of the central role for mtDNA in the aging process is being met with increased skepticism. Our progress in understanding the processes of mtDNA maintenance, repair, damage, and degradation in response to damage has largely refuted the view of mtDNA as being particularly susceptible to ROS-mediated mutagenesis due to its lack of “protective” histones and reduced complement of available DNA repair pathways. Recent research on mitochondrial ROS production has led to the appreciation that mitochondria, even in vitro, produce much less ROS than previously thought, automatically leading to a decreased expectation of physiologically achievable levels of mtDNA damage. New evidence suggests that both experimentally induced oxidative stress and radiation therapy result in very low levels of mtDNA mutagenesis. Recent advances provide evidence against the existence of the “vicious” cycle of mtDNA damage and ROS production. Meta-studies reveal no longevity benefit of increased antioxidant defenses. Simultaneously, exciting new observations from both comparative biology and experimental systems indicate that increased ROS production and oxidative damage to cellular macromolecules, including mtDNA, can be associated with extended longevity. A novel paradigm suggests that increased ROS production in aging may be the result of adaptive signaling rather than a detrimental byproduct of normal respiration that drives aging. Here, we review issues pertaining to the role of mtDNA in aging.
Collapse
|
31
|
Yang D, Wang Q, Shi Y, Fan Y, Zheng HX, Song G, Feng Q, Zheng H, He Y. Mitochondrial DNA haplogroup D4b is a protective factor for ischemic stroke in Chinese Han population. Mol Genet Genomics 2014; 289:1241-6. [PMID: 25092472 DOI: 10.1007/s00438-014-0884-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/28/2014] [Indexed: 01/01/2023]
Abstract
Mitochondrial DNA (mtDNA) haplogroups affect the assembly and stability of the mitochondrial respiratory chain, which is potentially related to susceptibility to ischemic stroke (IS). However, the role of mtDNA in IS has not been comprehensively studied. The purpose of this study was to explore whether mtDNA polymorphisms and haplogroups are involved in the etiology of IS in the Chinese Han population. We recruited 200 patients with IS and 200 matched controls and genotyped them for 18 mtDNA single nucleotide polymorphisms defining the major Eastern Asian haplogroups by SNaPshot minisequencing. We also sequenced the hypervariable segment I (HVS-I), position 16051-16400. The prevalence of haplogroup D4b was significantly lower in IS patients than in healthy controls (0 and 8 %, respectively, corrected P = 2 × 10(-5), odds ratio = 0.028, 95 % confidence interval = 0.002-0.468).The positive association between haplogroup D4b and IS may be related to the protective effect of haplogroup D4b against oxidative damage, which decreases the risk of IS. Our study provides the first evidence that haplogroup D4b is a potential genetic protective factor for IS in the Chinese Han population.
Collapse
Affiliation(s)
- Dongzhi Yang
- School of life sciences of Zhengzhou University, Zhengzhou, 450052, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Payne BAI, Gardner K, Chinnery PF. Mitochondrial DNA mutations in ageing and disease: implications for HIV? Antivir Ther 2014; 20:109-20. [PMID: 25032944 DOI: 10.3851/imp2824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations cause neurological and multisystem disease. Somatic (acquired) mtDNA mutations are also associated with degenerative diseases and with normal human ageing. It is well established that certain nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drugs cause inhibition of the mtDNA polymerase, pol γ, leading to a reduction in mtDNA content (depletion). Given this effect of NRTI therapy on mtDNA replication, it is plausible that NRTI treatment may also lead to increased mtDNA mutations. Here we review recent evidence for an effect of HIV infection or NRTI therapy on mtDNA mutations, as well as discussing the methodological challenges in addressing this question. Finally, we discuss the possible implications for HIV-infected persons, with particular reference to ageing.
Collapse
Affiliation(s)
- Brendan A I Payne
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
| | | | | |
Collapse
|
33
|
Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology 2014; 15:417-38. [PMID: 25015781 DOI: 10.1007/s10522-014-9515-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022]
Abstract
We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.
Collapse
|
34
|
Mitochondrial DNA polymorphisms associated with longevity in the Turkish population. Mitochondrion 2014; 17:7-13. [DOI: 10.1016/j.mito.2014.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
|
35
|
Loo JH, Trejaut JA, Yen JC, Chen ZS, Ng WM, Huang CY, Hsu KN, Hung KH, Hsiao Y, Wei YH, Lin M. Mitochondrial DNA association study of type 2 diabetes with or without ischemic stroke in Taiwan. BMC Res Notes 2014; 7:223. [PMID: 24713204 PMCID: PMC4108081 DOI: 10.1186/1756-0500-7-223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/01/2014] [Indexed: 11/10/2022] Open
Abstract
Background The importance of mitochondrial DNA (mtDNA) polymorphism in the prediction of type 2 diabetes (T2D) in men and women is not well understood. We questioned whether mtDNA polymorphism, mitochondrial functions, age and gender influenced the occurrence of T2D with or without ischemic stroke (IS). Methods We first designed a matched case–control study of 373 T2D patients and 327 healthy unrelated individuals without history of IS. MtDNA haplogroups were determined on all participants using sequencing of the control region and relevant SNPs from the coding region. Mitochondria functional tests, systemic biochemical measurements and complete genomic mtDNA sequencing were further determined on 239 participants (73 healthy controls, 33 T2D with IS, 70 T2D only and 63 IS patients without T2D). Results MtDNA haplogroups B4a1a, and E2b1 showed significant association with T2D (P <0.05), and haplogroup D4 indicated resistance (P <0.05). Mitochondrial and systemic functional tests showed significantly less variance within groups bearing the same mtDNA haplotypes. There was a pronounced male excess among all T2D patients and prevalence of IS was seen only in the older population. Finally, nucleotide variant np 15746, a determinant of haplogroup G3 seen in Japanese and of B4a1a prevalent in Taiwanese was associated with T2D in both populations. Conclusions Men appeared more susceptible to T2D than women. Although the significant association of B4a1a and E2b1 with T2D ceased when corrected for multiple testings, these haplogroups are seen only among Taiwan Aborigines, Southeast Asian and the Pacific Ocean islanders where T2D is predominant. The data further suggested that physiological and biochemical measurements were influenced by the mtDNA genetic profile of the individual. More understanding of the function of the mitochondrion in the development of T2D might indicate ways of influencing the early course of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Marie Lin
- Mackay Memorial Hospital, No, 45, Mínshēng Rd, Danshui District, New Taipei City, Taiwan.
| |
Collapse
|
36
|
Rochon PA, Gruneir A, Wu W, Gill SS, Bronskill SE, Seitz DP, Bell CM, Fischer HD, Stephenson AL, Wang X, Gershon AS, Anderson GM. Demographic Characteristics and Healthcare Use of Centenarians: A Population-Based Cohort Study. J Am Geriatr Soc 2014; 62:86-93. [DOI: 10.1111/jgs.12613] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paula A. Rochon
- Women's College Research Institute; Women's College Hospital; Toronto Ontario Canada
- Department of Medicine; University of Toronto; Toronto Ontario Canada
- Institute of Health Policy, Management and Evaluation; University of Toronto; Toronto Ontario Canada
- Institute for Clinical Evaluative Sciences; Toronto Ontario Canada
| | - Andrea Gruneir
- Women's College Research Institute; Women's College Hospital; Toronto Ontario Canada
- Institute of Health Policy, Management and Evaluation; University of Toronto; Toronto Ontario Canada
- Institute for Clinical Evaluative Sciences; Toronto Ontario Canada
| | - Wei Wu
- Women's College Research Institute; Women's College Hospital; Toronto Ontario Canada
| | - Sudeep S. Gill
- Institute for Clinical Evaluative Sciences; Toronto Ontario Canada
- St. Mary's of the Lake Hospital; Kingston Ontario Canada
- Department of Medicine; Queen's University; Kingston Ontario Canada
| | - Susan E. Bronskill
- Institute of Health Policy, Management and Evaluation; University of Toronto; Toronto Ontario Canada
- Institute for Clinical Evaluative Sciences; Toronto Ontario Canada
| | - Dallas P. Seitz
- Department of Psychiatry; Queen's University; Kingston Ontario Canada
| | - Chaim M. Bell
- Department of Medicine; University of Toronto; Toronto Ontario Canada
- Institute of Health Policy, Management and Evaluation; University of Toronto; Toronto Ontario Canada
- Institute for Clinical Evaluative Sciences; Toronto Ontario Canada
- Mount Sinai Hospital; Toronto Ontario Canada
| | - Hadas D. Fischer
- Institute for Clinical Evaluative Sciences; Toronto Ontario Canada
| | - Anne L. Stephenson
- Department of Medicine; University of Toronto; Toronto Ontario Canada
- Keenan Research Centre; Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Ontario Canada
| | - Xuesong Wang
- Institute for Clinical Evaluative Sciences; Toronto Ontario Canada
| | - Andrea S. Gershon
- Department of Medicine; University of Toronto; Toronto Ontario Canada
- Institute of Health Policy, Management and Evaluation; University of Toronto; Toronto Ontario Canada
- Institute for Clinical Evaluative Sciences; Toronto Ontario Canada
- Sunnybrook Health Sciences Centre; Toronto Ontario Canada
| | - Geoffrey M. Anderson
- Women's College Research Institute; Women's College Hospital; Toronto Ontario Canada
- Institute of Health Policy, Management and Evaluation; University of Toronto; Toronto Ontario Canada
- Institute for Clinical Evaluative Sciences; Toronto Ontario Canada
| |
Collapse
|
37
|
Mikami E, Fuku N, Kong QP, Takahashi H, Ohiwa N, Murakami H, Miyachi M, Higuchi M, Tanaka M, Pitsiladis YP, Kawahara T. Comprehensive analysis of common and rare mitochondrial DNA variants in elite Japanese athletes: a case–control study. J Hum Genet 2013; 58:780-7. [DOI: 10.1038/jhg.2013.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/26/2022]
|
38
|
Dato S, Crocco P, D'Aquila P, de Rango F, Bellizzi D, Rose G, Passarino G. Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity. Int J Mol Sci 2013; 14:16443-72. [PMID: 23965963 PMCID: PMC3759920 DOI: 10.3390/ijms140816443] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition) and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Heart Science, University of Calabria, Ponte Pietro Bucci cubo 4c, Rende 87036, CS, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Santiago C, Garatachea N, Yvert T, Rodríguez-Romo G, Santos-Lozano A, Fiuza-Luces C, Lucia A. Mitochondriogenesis genes and extreme longevity. Rejuvenation Res 2013. [PMID: 23186209 DOI: 10.1089/rej.2012.1382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genes of the proliferator-activated receptor delta (PPARD)-peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A, also termed PGC1-α)-nuclear respiratory factor (NRF)-mitochondrial transcription Factor A (TFAM) mitochondriogenesis pathway can influence health/disease phenotypes, yet their association with extreme longevity is not known. We studied the association of five common polymorphisms in genes of this pathway (rs2267668, rs8192678, rs6949152, rs12594956, rs1937) and extreme longevity using a case (107 centenarians)-control (284 young adults) design. We found no between-group differences in allele/genotype frequencies, except for CC genotype in rs1937 (p=0.003), with no representation in controls (0%), versus 2.8% in centenarians (2 men, 1 woman). In summary, the studied genetic variants of the PPARD-PPARGC1A-NRF-TFAM pathway were not associated with extreme longevity, yet a marginal association could exist for rs1937.
Collapse
|
40
|
Benigni A, Orisio S, Noris M, Iatropoulos P, Castaldi D, Kamide K, Rakugi H, Arai Y, Todeschini M, Ogliari G, Imai E, Gondo Y, Hirose N, Mari D, Remuzzi G. Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity. AGE (DORDRECHT, NETHERLANDS) 2013; 35:993-1005. [PMID: 22569962 PMCID: PMC3636412 DOI: 10.1007/s11357-012-9408-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Longevity phenotype in humans results from the influence of environmental and genetic factors. Few gene polymorphisms have been identified so far with a modest effect on lifespan leaving room for the search of other players in the longevity game. It has been recently demonstrated that targeted disruption of the mouse homolog of the human angiotensin II type 1 receptor (AT1R) gene (AGTR1) translates into marked prolongation of animal lifespan (Benigni et al., J Clin Invest 119(3):524-530, 2009). Based on the above study in mice, here we sought to search for AGTR1 variations associated to reduced AT1 receptor protein levels and to prolonged lifespan in humans. AGTR1 was sequenced in 173 Italian centenarians and 376 younger controls. A novel non-synonymous mutation was detected in a centenarian. Two polymorphisms in AGTR1 promoter, rs422858 and rs275653, in complete linkage disequilibrium, were significantly associated with the ability to attain extreme old age. We then replicated the study of rs275653 in a large independent cohort of Japanese origin (598 centenarians and semi-supercentenarians, 422 younger controls) and indeed confirmed its association with exceptional old age. In combined analyses, rs275653 was associated to extreme longevity either at recessive model (P = 0.007, odds ratio (OR) 3.57) or at genotype level (P = 0.015). Significance was maintained after correcting for confounding factors. Fluorescence activated cell sorting analysis revealed that subjects homozygous for the minor allele of rs275653 had less AT1R-positive peripheral blood polymorphonuclear cells. Moreover, rs275653 was associated to lower blood pressure in centenarians. These findings highlight the role of AGTR1 as a possible candidate among longevity-enabling genes.
Collapse
Affiliation(s)
- Ariela Benigni
- />Department of Molecular Medicine, Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy
| | - Silvia Orisio
- />Department of Molecular Medicine, Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy
| | - Marina Noris
- />Transplant Research Center, “Chiara Cucchi De Alessandri & Gilberto Crespi”, Mario Negri Institute for Pharmacological Research, 24020 Ranica, Italy
| | - Paraskevas Iatropoulos
- />Clinical Research Center for Rare Diseases “Aldo e Cele Daccò”, Mario Negri Institute for Pharmacological Research, 24020 Ranica, Italy
| | - Davide Castaldi
- />Ph.D. School of Informatics, DISCo, University of Milan—Bicocca, 20126 Milan, Italy
| | - Kei Kamide
- />Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | - Hiromi Rakugi
- />Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | - Yasumichi Arai
- />Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Marta Todeschini
- />Transplant Research Center, “Chiara Cucchi De Alessandri & Gilberto Crespi”, Mario Negri Institute for Pharmacological Research, 24020 Ranica, Italy
| | - Giulia Ogliari
- />Department of Medical Sciences, Geriatric Unit, IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, 20122 Milan, Italy
| | - Enyu Imai
- />Department of Nephrology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Yasuyuki Gondo
- />Department of Clinical Thanatology and Geriatric Behavioral Science, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | - Nobuyoshi Hirose
- />Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Daniela Mari
- />Department of Medical Sciences, Geriatric Unit, IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, 20122 Milan, Italy
| | - Giuseppe Remuzzi
- />Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy
- />Unit of Nephrology and Dialysis, Azienda Ospedaliera Ospedali Riuniti di Bergamo, 24128 Bergamo, Italy
| |
Collapse
|
41
|
Tilleul J, Richard F, Puche N, Zerbib J, Leveziel N, Sahel JA, Cohen SY, Korobelnik JF, Feingold J, Munnich A, Kaplan J, Rozet JM, Souied EH. Genetic association study of mitochondrial polymorphisms in neovascular age-related macular degeneration. Mol Vis 2013; 19:1132-40. [PMID: 23734082 PMCID: PMC3669531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) is a multifactorial disease involving genetic and environmental factors. Most of the genetic factors identified so far involve the nuclear genome. Recently, two studies in North America and Australia reported an association between advanced AMD and the mitochondrial T2 haplogroup. Our purpose was to assess this association in a large French population. METHODS This case control study included 1,224 patients with neovascular AMD and 559 controls with normal fundus. Mitochondrial DNA polymorphisms at and around nucleotides 4917, 11,812, and 14,233 were determined using PCR amplification and direct sequencing of mitochondrial DNA. RESULTS No association was found between the mitochondrial T2 haplogroup and neovascular AMD in the French population: 94/1,152 patients with neovascular AMD had the T2 haplogroup (8.2%) versus 34/482 controls (7.1%; odds ratio=0.9 [0.5-1.5], p=0.66). CONCLUSIONS An association between AMD and the T2 haplogroup, previously described in North American and Australian populations, was not confirmed in a large French population.
Collapse
Affiliation(s)
- Julien Tilleul
- Department of Ophthalmology, Hôpital Intercommunal de Creteil, University of Paris Est Creteil, France,Department of Genetics, INSERM U781, Hôpital Necker Enfants Malades, University of Paris Descartes, Paris, France
| | - Florence Richard
- University Lille Nord of France, INSERM, UMR744, Institut Pasteur of Lille, Lille, France
| | - Nathalie Puche
- Department of Ophthalmology, Hôpital Intercommunal de Creteil, University of Paris Est Creteil, France
| | - Jennyfer Zerbib
- Department of Ophthalmology, Hôpital Intercommunal de Creteil, University of Paris Est Creteil, France
| | - Nicolas Leveziel
- Department of Ophthalmology, Hôpital Intercommunal de Creteil, University of Paris Est Creteil, France
| | - Jose Alain Sahel
- Department of Ophthalmology, Institut de la Vision, Inserm, Pierre et Marie Curie University, Paris, France
| | | | - Jean-Francois Korobelnik
- Ophthalmology, Hôpital Pellegrin CHU de Bordeaux, Université Bordeaux 2, INSERM U897, Bordeaux, France
| | - Josue Feingold
- Department of Genetics, INSERM U781, Hôpital Necker Enfants Malades, University of Paris Descartes, Paris, France
| | - Arnold Munnich
- Department of Genetics, INSERM U781, Hôpital Necker Enfants Malades, University of Paris Descartes, Paris, France
| | - Josseline Kaplan
- Department of Genetics, INSERM U781, Hôpital Necker Enfants Malades, University of Paris Descartes, Paris, France
| | - Jean-Michel Rozet
- Department of Genetics, INSERM U781, Hôpital Necker Enfants Malades, University of Paris Descartes, Paris, France
| | - Eric H. Souied
- Department of Ophthalmology, Hôpital Intercommunal de Creteil, University of Paris Est Creteil, France
| |
Collapse
|
42
|
The creation of cybrids harboring mitochondrial haplogroups in the Taiwanese population of ethnic Chinese background: an extensive in vitro tool for the study of mitochondrial genomic variations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:824275. [PMID: 23304256 PMCID: PMC3523582 DOI: 10.1155/2012/824275] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/15/2012] [Accepted: 10/17/2012] [Indexed: 12/15/2022]
Abstract
Mitochondrial DNA (mtDNA) haplogroups may contribute to the development of aging-related diseases. A reliable in vitro cellular system for investigating the physiologic significance of mtDNA haplogroups is essential. This study aims to construct and characterize a series of cybrid cell lines harboring variant mtDNA haplogroups collected from healthy Taiwanese volunteers. Cybrid cells harboring different mtDNA haplogroups like B4a, B4b, B4c, B4d, B5, R, F1a, F2, D4e, D4a, D5b, D5a, E, M8, C, and N9a were prepared. Luminex 1000 and full-length mtDNA sequencing were used to confirm that mtDNA haplogroups of transmitochondrial cybrids were identical to their original donors. Cybrid B4b had a significantly lower oxygen consumption rate and higher mitochondrial membrane potential compared to F1a, B5, D5a, D4a, and N9a but had more susceptibility to H2O2-induced oxidative stress than cybrid F1a, D4a, and N9a. Cybrid N9a had better oxygen consumption and H2O2-challenged viability compared to B4b, F1a, B5, D5a, and D4a. A series of cybrid cells harboring the main haplogroups of the Taiwanese population with ethnic Chinese background has been developed in vitro. With this mtDNA haplogroup population, the underlying mechanisms of aging-related diseases may be better understood, and therapeutic interventions can be accelerated.
Collapse
|
43
|
Japanese Alzheimer's disease and other complex disorders diagnosis based on mitochondrial SNP haplogroups. Int J Alzheimers Dis 2012; 2012:245038. [PMID: 22848858 PMCID: PMC3405642 DOI: 10.1155/2012/245038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/14/2012] [Accepted: 03/30/2012] [Indexed: 11/18/2022] Open
Abstract
This paper first explains how the relations between Japanese Alzheimer's disease (AD) patients and their mitochondrial SNP frequencies at individual mtDNA positions examined using the radial basis function (RBF) network and a method based on RBF network predictions and that Japanese AD patients are associated with the haplogroups G2a and N9b1. It then describes a method for the initial diagnosis of Alzheimer's disease that is based on the mtSNP haplogroups of the AD patients. The method examines the relations between someone's mtDNA mutations and the mtSNPs of AD patients. As the mtSNP haplogroups thus obtained indicate which nucleotides of mtDNA loci are changed in the Alzheimer's patients, a person's probability of becoming an AD patient can be predicted by comparing those mtDNA mutations with that person's mtDNA mutations. The proposed method can also be used to diagnose diseases such as Parkinson's disease and type 2 diabetes and to identify people likely to become centenarians.
Collapse
|
44
|
Derenko M, Malyarchuk B, Denisova G, Perkova M, Rogalla U, Grzybowski T, Khusnutdinova E, Dambueva I, Zakharov I. Complete mitochondrial DNA analysis of eastern Eurasian haplogroups rarely found in populations of northern Asia and eastern Europe. PLoS One 2012; 7:e32179. [PMID: 22363811 PMCID: PMC3283723 DOI: 10.1371/journal.pone.0032179] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/22/2012] [Indexed: 12/21/2022] Open
Abstract
With the aim of uncovering all of the most basal variation in the northern Asian mitochondrial DNA (mtDNA) haplogroups, we have analyzed mtDNA control region and coding region sequence variation in 98 Altaian Kazakhs from southern Siberia and 149 Barghuts from Inner Mongolia, China. Both populations exhibit the prevalence of eastern Eurasian lineages accounting for 91.9% in Barghuts and 60.2% in Altaian Kazakhs. The strong affinity of Altaian Kazakhs and populations of northern and central Asia has been revealed, reflecting both influences of central Asian inhabitants and essential genetic interaction with the Altai region indigenous populations. Statistical analyses data demonstrate a close positioning of all Mongolic-speaking populations (Mongolians, Buryats, Khamnigans, Kalmyks as well as Barghuts studied here) and Turkic-speaking Sojots, thus suggesting their origin from a common maternal ancestral gene pool. In order to achieve a thorough coverage of DNA lineages revealed in the northern Asian matrilineal gene pool, we have completely sequenced the mtDNA of 55 samples representing haplogroups R11b, B4, B5, F2, M9, M10, M11, M13, N9a and R9c1, which were pinpointed from a massive collection (over 5000 individuals) of northern and eastern Asian, as well as European control region mtDNA sequences. Applying the newly updated mtDNA tree to the previously reported northern Asian and eastern Asian mtDNA data sets has resolved the status of the poorly classified mtDNA types and allowed us to obtain the coalescence age estimates of the nodes of interest using different calibrated rates. Our findings confirm our previous conclusion that northern Asian maternal gene pool consists of predominantly post-LGM components of eastern Asian ancestry, though some genetic lineages may have a pre-LGM/LGM origin.
Collapse
Affiliation(s)
- Miroslava Derenko
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pinós T, Nogales-Gadea G, Ruiz JR, Rodríguez-Romo G, Santiago-Dorrego C, Fiuza-Luces C, Gómez-Gallego F, Cano-Nieto A, Garatachea N, Morán M, Angel Martín M, Arenas J, Andreu AL, Lucia A. Are mitochondrial haplogroups associated with extreme longevity? A study on a Spanish cohort. AGE (DORDRECHT, NETHERLANDS) 2012; 34:227-33. [PMID: 21274636 PMCID: PMC3260354 DOI: 10.1007/s11357-011-9209-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/11/2011] [Indexed: 05/15/2023]
Abstract
Mitochondrial haplogroups could influence individual susceptibility to mitochondrial DNA (mtDNA) damage, and human longevity, as indicated by previous studies with Caucasian (European) or Asian cohorts. Here, we compared the frequency of mtDNA haplogroups in a group of Spanish (Caucasian) centenarians (n = 65, aged 100-108 years, 58 women, most from the central part of Spain) and a group of healthy young adults (n = 138, 62 women, aged 20-40 years) of the same ethnic origin. We did not find significant differences between centenarians and the control group (P > 0.2). Only two centenarians (both women) had the haplogroup J, which hampered comparison with the control group (n = 15, five women). Our data confirm that the potential effects of mitochondrial haplogroups on human longevity might be population/geographic specific, with important differences between studies (notably, with regard to the previously reported potential benefit brought about by the haplogroup J) arising from the different living environment and ethnic background of the study cohorts.
Collapse
Affiliation(s)
- Tomàs Pinós
- Departament de Patología Mitocondrial i Neuromuscular, Institut de Recerca Hospital Universitari Vall d’Hebron, Barcelona, Spain
- CIBERER, Valencia, Spain
| | - Gisela Nogales-Gadea
- Departament de Patología Mitocondrial i Neuromuscular, Institut de Recerca Hospital Universitari Vall d’Hebron, Barcelona, Spain
- CIBERER, Valencia, Spain
| | - Jonatan R. Ruiz
- Unit for Preventive Nutrition, Department of Biosciences and Nutrition at NOVUM, Karolinska Institutet, Stockholm, Sweden
- Department of Physical Activity and Sport, School of Physical Activity and Sport Sciences, University of Granada, Granada, Spain
| | | | | | | | | | | | - Nuria Garatachea
- Faculty of Health and Sport Science, University of Zaragoza, Huesca, Spain
| | - María Morán
- Laboratorio de enfermedades mitocondriales y neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- CIBERER, Valencia, Spain
| | - Miguel Angel Martín
- Laboratorio de enfermedades mitocondriales y neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- CIBERER, Valencia, Spain
| | - Joaquín Arenas
- Laboratorio de enfermedades mitocondriales y neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- CIBERER, Valencia, Spain
| | - Antoni L. Andreu
- Departament de Patología Mitocondrial i Neuromuscular, Institut de Recerca Hospital Universitari Vall d’Hebron, Barcelona, Spain
- CIBERER, Valencia, Spain
| | | |
Collapse
|
46
|
Li H, Liu D, Lu J, Bai Y. Physiology and pathophysiology of mitochondrial DNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:39-51. [PMID: 22399417 DOI: 10.1007/978-94-007-2869-1_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are the only organelles in animal cells which possess their own genomes. Mitochondrial DNA (mtDNA) alterations have been associated with various human conditions. Yet, their role in pathogenesis remains largely unclear. This review focuses on several major features of mtDNA: (1) mtDNA haplogroup, (2) mtDNA common deletion, (3) mtDNA mutations in the control region or D-loop, (4) mtDNA copy number alterations, (5) mtDNA mutations in translational machinery, (6) mtDNA mutations in protein coding genes (7) mtDNA heteroplasmy. We will also discuss their implications in various human diseases.
Collapse
Affiliation(s)
- Hongzhi Li
- Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | | | |
Collapse
|
47
|
Luo Y, Gao W, Li S, Huang X, Chen Y, Liu F, Huang Q, Gao Y. Mitochondrial haplogroup D4 confers resistance and haplogroup B is a genetic risk factor for high-altitude pulmonary edema among Han Chinese. GENETICS AND MOLECULAR RESEARCH 2012; 11:3658-67. [DOI: 10.4238/2012.october.9.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Adachi N, Shinoda KI, Umetsu K, Kitano T, Matsumura H, Fujiyama R, Sawada J, Tanaka M. Mitochondrial DNA analysis of Hokkaido Jomon skeletons: remnants of archaic maternal lineages at the southwestern edge of former Beringia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:346-60. [PMID: 21953438 DOI: 10.1002/ajpa.21561] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/26/2011] [Indexed: 11/11/2022]
Abstract
To clarify the colonizing process of East/Northeast Asia as well as the peopling of the Americas, identifying the genetic characteristics of Paleolithic Siberians is indispensable. However, no genetic information on the Paleolithic Siberians has hitherto been reported. In the present study, we analyzed ancient DNA recovered from Jomon skeletons excavated from the northernmost island of Japan, Hokkaido, which was connected with southern Siberia in the Paleolithic period. Both the control and coding regions of their mitochondrial DNA (mtDNA) were analyzed in detail, and we confidently assigned 54 mtDNAs to relevant haplogroups. Haplogroups N9b, D4h2, G1b, and M7a were observed in these individuals, with N9b being the predominant one. The fact that all these haplogroups, except M7a, were observed with relatively high frequencies in the southeastern Siberians, but were absent in southeastern Asian populations, implies that most of the Hokkaido Jomon people were direct descendants of Paleolithic Siberians. The coalescence time of N9b (ca. 22,000 years) was before or during the last glacial maximum, implying that the initial trigger for the Jomon migration in Hokkaido was increased glaciations during this period. Interestingly, Hokkaido Jomons lack specific haplogroups that are prevailing in present-day native Siberians, implying that diffusion of these haplogroups in Siberia might have been after the beginning of the Jomon era, about 15,000 years before present.
Collapse
Affiliation(s)
- Noboru Adachi
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Association of mtDNA haplogroup F with healthy longevity in the female Chuang population, China. Exp Gerontol 2011; 46:987-93. [PMID: 21945877 DOI: 10.1016/j.exger.2011.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 07/26/2011] [Accepted: 09/07/2011] [Indexed: 11/20/2022]
Abstract
Human longevity is a complex heritable genetic trait. Based on substantial evidence from model organisms, it is clear that mitochondria play a pivotal role in aging and lifespan. However, the effects that mitochondrial genome variations have upon longevity and longevity-related phenotypes in Chuang people in China have yet to be established. By genotyping 15 variants for 10 haplogroups in 738 Chuang subjects, including 367 long-lived individuals and 371 controls, we found that haplogroup F was significantly associated with longevity in females of Zhuang population of China (p=0.003, OR: 2.01, 95%CI: 1.263-3.197). Additionally, haplogroup F was related to higher HDL levels (p<0.05) in long-lived individuals. Further analysis suggests that the non-synonymous variant m.13928G>C in haplogroup F was also associated with longevity in female Zhuang Chinese which might account for the beneficial effect of F.
Collapse
|
50
|
Peng MS, Zhang YP. Inferring the population expansions in peopling of Japan. PLoS One 2011; 6:e21509. [PMID: 21747908 PMCID: PMC3126835 DOI: 10.1371/journal.pone.0021509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 06/02/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Extensive studies in different fields have been performed to reconstruct the prehistory of populations in the Japanese archipelago. Estimates the ancestral population dynamics based on Japanese molecular sequences can extend our understanding about the colonization of Japan and the ethnogenesis of modern Japanese. METHODOLOGY/PRINCIPAL FINDINGS We applied Bayesian skyline plot (BSP) with a dataset based on 952 Japanese mitochondrial DNA (mtDNA) genomes to depict the female effective population size (N(ef)) through time for the total Japanese and each of the major mtDNA haplogroups in Japanese. Our results revealed a rapid N(ef) growth since ∼5 thousand years ago had left ∼72% Japanese mtDNA lineages with a salient signature. The BSP for the major mtDNA haplogroups indicated some different demographic history. CONCLUSIONS/SIGNIFICANCE The results suggested that the rapid population expansion acted as a major force in shaping current maternal pool of Japanese. It supported a model for population dynamics in Japan in which the prehistoric population growth initiated in the Middle Jomon Period experienced a smooth and swift transition from Jomon to Yayoi, and then continued through the Yayoi Period. The confounding demographic backgrounds of different mtDNA haplogroups could also have some implications for some related studies in future.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, People's Republic of China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, Yunnan, People's Republic of China
- * E-mail:
| |
Collapse
|