1
|
Kim JD, Lee AR, Moon DH, Chung YU, Hong SY, Cho HJ, Kang TH, Jang YH, Sohn MH, Seong BL, Seo SU. Efficacy of genotype-matched vaccine against re-emerging genotype V Japanese encephalitis virus. Emerg Microbes Infect 2024; 13:2343910. [PMID: 38618740 PMCID: PMC11060017 DOI: 10.1080/22221751.2024.2343910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV), is a highly threatening disease with no specific treatment. Fortunately, the development of vaccines has enabled effective defense against JE. However, re-emerging genotype V (GV) JEV poses a challenge as current vaccines are genotype III (GIII)-based and provide suboptimal protection. Given the isolation of GV JEVs from Malaysia, China, and the Republic of Korea, there is a concern about the potential for a broader outbreak. Under the hypothesis that a GV-based vaccine is necessary for effective defense against GV JEV, we developed a pentameric recombinant antigen using cholera toxin B as a scaffold and mucosal adjuvant, which was conjugated with the E protein domain III of GV by genetic fusion. This GV-based vaccine antigen induced a more effective immune response in mice against GV JEV isolates compared to GIII-based antigen and efficiently protected animals from lethal challenges. Furthermore, a bivalent vaccine approach, inoculating simultaneously with GIII- and GV-based antigens, showed protective efficacy against both GIII and GV JEVs. This strategy presents a promising avenue for comprehensive protection in regions facing the threat of diverse JEV genotypes, including both prevalent GIII and GI as well as emerging GV strains.
Collapse
MESH Headings
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/classification
- Animals
- Genotype
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Japanese Encephalitis Vaccines/immunology
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/genetics
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Humans
- Mice, Inbred BALB C
- Female
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Vaccine Efficacy
- Cholera Toxin/genetics
- Cholera Toxin/immunology
Collapse
Affiliation(s)
- Jae-Deog Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ah-Ra Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dah-Hyun Moon
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon, Republic of Korea
| | - Young-Uk Chung
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su-Yeon Hong
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo Je Cho
- Department of Biochemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Tae Hyun Kang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Yo Han Jang
- Department of Vaccine Biotechnology, Andong National University, Andong, Republic of Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Fujimoto A, Kinjo M, Kitamura A. Short Repeat Ribonucleic Acid Reduces Cytotoxicity by Preventing the Aggregation of TDP-43 and Its 25 KDa Carboxy-Terminal Fragment. JACS AU 2024; 4:3896-3909. [PMID: 39483234 PMCID: PMC11522920 DOI: 10.1021/jacsau.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
TAR DNA/RNA-binding protein 43 kDa (TDP-43) proteinopathy is a hallmark of neurodegenerative disorders, such as amyotrophic lateral sclerosis, in which cytoplasmic aggregates containing TDP-43 and its C-terminal fragments, such as TDP-25, are observed in degenerative neuronal cells. However, few reports have focused on small molecules that can reduce their aggregation and cytotoxicity. Here, we show that short RNA repeats of GGGGCC and AAAAUU are aggregation suppressors of TDP-43 and TDP-25. TDP-25 interacts with these RNAs, as well as TDP-43, despite the lack of major RNA-recognition motifs using fluorescence cross-correlation spectroscopy. Expression of these RNAs significantly decreases the number of cells harboring cytoplasmic aggregates of TDP-43 and TDP-25 and ameliorates cell death by TDP-25 and mislocalized TDP-43 without altering the cellular transcriptome of molecular chaperones. Consequently, short RNA repeats of GGGGCC and AAAAUU can maintain proteostasis by preventing the aggregation of TDP-43 and TDP-25.
Collapse
Affiliation(s)
- Ai Fujimoto
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Graduate
School of Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan
| | - Masataka Kinjo
- Laboratory
of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Akira Kitamura
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- PRIME,
Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
3
|
Litberg TJ, Horowitz S. Roles of Nucleic Acids in Protein Folding, Aggregation, and Disease. ACS Chem Biol 2024; 19:809-823. [PMID: 38477936 PMCID: PMC11149768 DOI: 10.1021/acschembio.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The role of nucleic acids in protein folding and aggregation is an area of continued research, with relevance to understanding both basic biological processes and disease. In this review, we provide an overview of the trajectory of research on both nucleic acids as chaperones and their roles in several protein misfolding diseases. We highlight key questions that remain on the biophysical and biochemical specifics of how nucleic acids have large effects on multiple proteins' folding and aggregation behavior and how this pertains to multiple protein misfolding diseases.
Collapse
Affiliation(s)
- Theodore J. Litberg
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
| |
Collapse
|
4
|
Park C, Han B, Choi Y, Jin Y, Kim KP, Choi SI, Seong BL. RNA-dependent proteome solubility maintenance in Escherichia coli lysates analysed by quantitative mass spectrometry: Proteomic characterization in terms of isoelectric point, structural disorder, functional hub, and chaperone network. RNA Biol 2024; 21:1-18. [PMID: 38361426 PMCID: PMC10878026 DOI: 10.1080/15476286.2024.2315383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.
Collapse
Affiliation(s)
- Chan Park
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
| | - Bitnara Han
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, Korea
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Baik L. Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
| |
Collapse
|
5
|
Le NTP, Phan TTP, Truong TTT, Schumann W, Nguyen HD. N-terminal LysSN-His-tag improves the production of intracellular recombinant protein in Bacillus subtilis. Cell Biochem Funct 2023; 41:823-832. [PMID: 37515537 DOI: 10.1002/cbf.3832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023]
Abstract
Choosing fusion tags to enhance the recombinant protein levels in the cytoplasm of Bacillus subtilis has been limited. Our previous study demonstrated that His-tag at the N-terminus could increase the expression levels of the low-expression gene egfp, while significantly reducing the high-expression genes gfp+ and bgaB in the cytoplasm of B. subtilis. In this study, we aimed to prove the potential of a fusion tag, the combination of the N-terminal domain of B. subtilis lysyl tRNA synthetase (LysSN) and His-tag with varying numbers of histidine (6xHis, 8xHis, 10xHis) by investigating their effects on the expression levels of egfp, gfp+ and bgaB in B. subtilis. For the low-expression gene, LysSN-xHis-tag could enhance the fluorescent intensity of EGFP 23.5 times higher than EGFP without a fusion tag, and 1.5 times higher than that fused with only His-tag. For high-expression genes, the expression level of BgaB and GFP+ was 2.9 and 12.5 times higher than that of His-tag, respectively. The number of histidines in LysSN-xHis-tag did not influence the expression levels of the high-expression genes but affected the expression levels of the low-expression gene.
Collapse
Affiliation(s)
- Ngan Thi Phuong Le
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam
| | - Tuom Thi Tinh Truong
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Guzman BB, Son A, Litberg TJ, Huang Z, Dominguez D, Horowitz S. Emerging roles for G-quadruplexes in proteostasis. FEBS J 2023; 290:4614-4625. [PMID: 36017725 PMCID: PMC10071977 DOI: 10.1111/febs.16608] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
How nucleic acids interact with proteins, and how they affect protein folding, aggregation, and misfolding is a still-evolving area of research. Considerable effort is now focusing on a particular structure of RNA and DNA, G-quadruplexes, and their role in protein homeostasis and disease. In this state-of-the-art review, we track recent reports on how G-quadruplexes influence protein aggregation, proteolysis, phase separation, and protein misfolding diseases, and pose currently unanswered questions in the advance of this scientific field.
Collapse
Affiliation(s)
- Bryan B Guzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Theodore J Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Zijue Huang
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| |
Collapse
|
7
|
Ahn J, Yu JE, Kim H, Sung J, Han G, Sohn MH, Seong BL. AB 5-Type Toxin as a Pentameric Scaffold in Recombinant Vaccines against the Japanese Encephalitis Virus. Toxins (Basel) 2023; 15:425. [PMID: 37505694 PMCID: PMC10467048 DOI: 10.3390/toxins15070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Japanese encephalitis virus (JEV) is an enveloped icosahedral capsid virus with a prime neutralizing epitope present in E protein domain III (EDIII). E dimers are rearranged into a five-fold symmetry of icosahedrons. Cholera toxin B (CTB) and heat-labile enterotoxin B (LTB) of AB5-type toxin was used as the structural scaffold for emulating the pentameric axis of EDIII. We produced homo-pentameric EDIII through the genetic fusion of LTB or CTB in E. coli without recourse to additional refolding steps. Harnessing an RNA-mediated chaperone further enhanced the soluble expression and pentameric assembly of the chimeric antigen. The pentameric assembly was validated by size exclusion chromatography (SEC), non-reduced gel analysis, and a GM1 binding assay. CTB/LTB-EDIII chimeric antigen triggered high neutralizing antibodies against the JEV Nakayama strain after immunization in mice. Altogether, our proof-of-principle study creating a JEV-protective antigen via fusion with an AB5-type toxin as both a pentameric scaffold and a built-in adjuvant posits the bacterially produced recombinant chimeric antigen as a cost-effective alternative to conventional inactivated vaccines against JEV.
Collapse
Affiliation(s)
- Jina Ahn
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
| | - Hanna Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
| | - Jemin Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
| | - Gyoonhee Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03708, Republic of Korea (H.K.)
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul 03721, Republic of Korea
| |
Collapse
|
8
|
Kohler V, Andréasson C. Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci 2023; 10:1155521. [PMID: 37021114 PMCID: PMC10067754 DOI: 10.3389/fmolb.2023.1155521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Bevilacqua PC, Williams AM, Chou HL, Assmann SM. RNA multimerization as an organizing force for liquid-liquid phase separation. RNA (NEW YORK, N.Y.) 2022; 28:16-26. [PMID: 34706977 PMCID: PMC8675289 DOI: 10.1261/rna.078999.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
RNA interactions are exceptionally strong and highly redundant. As such, nearly any two RNAs have the potential to interact with one another over relatively short stretches, especially at high RNA concentrations. This is especially true for pairs of RNAs that do not form strong self-structure. Such phenomena can drive liquid-liquid phase separation, either solely from RNA-RNA interactions in the presence of divalent or organic cations, or in concert with proteins. RNA interactions can drive multimerization of RNA strands via both base-pairing and tertiary interactions. In this article, we explore the tendency of RNA to form stable monomers, dimers, and higher order structures as a function of RNA length and sequence through a focus on the intrinsic thermodynamic, kinetic, and structural properties of RNA. The principles we discuss are independent of any specific type of biomolecular condensate, and thus widely applicable. We also speculate how external conditions experienced by living organisms can influence the formation of nonmembranous compartments, again focusing on the physical and structural properties of RNA. Plants, in particular, are subject to diverse abiotic stresses including extreme temperatures, drought, and salinity. These stresses and the cellular responses to them, including changes in the concentrations of small molecules such as polyamines, salts, and compatible solutes, have the potential to regulate condensate formation by melting or strengthening base-pairing. Reversible condensate formation, perhaps including regulation by circadian rhythms, could impact biological processes in plants, and other organisms.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Allison M Williams
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
11
|
A Conceptual Framework for Integrating Cellular Protein Folding, Misfolding and Aggregation. Life (Basel) 2021; 11:life11070605. [PMID: 34202456 PMCID: PMC8304792 DOI: 10.3390/life11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
How proteins properly fold and maintain solubility at the risk of misfolding and aggregation in the cellular environments still remains largely unknown. Aggregation has been traditionally treated as a consequence of protein folding (or misfolding). Notably, however, aggregation can be generally inhibited by affecting the intermolecular interactions leading to aggregation, independently of protein folding and conformation. We here point out that rigorous distinction between protein folding and aggregation as two independent processes is necessary to reconcile and underlie all observations regarding the combined cellular protein folding and aggregation. So far, the direct attractive interactions (e.g., hydrophobic interactions) between cellular macromolecules including chaperones and interacting polypeptides have been widely believed to mainly stabilize polypeptides against aggregation. However, the intermolecular repulsions by large excluded volume and surface charges of cellular macromolecules can play a key role in stabilizing their physically connected polypeptides against aggregation, irrespective of the connection types and induced conformational changes, underlying the generic intrinsic chaperone activity of cellular macromolecules. Such rigorous distinction and intermolecular repulsive force-driven aggregation inhibition by cellular macromolecules could give new insights into understanding the complex cellular protein landscapes that remain uncharted.
Collapse
|
12
|
Mechanisms of TDP-43 Proteinopathy Onset and Propagation. Int J Mol Sci 2021; 22:ijms22116004. [PMID: 34199367 PMCID: PMC8199531 DOI: 10.3390/ijms22116004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/21/2023] Open
Abstract
TDP-43 is an RNA-binding protein that has been robustly linked to the pathogenesis of a number of neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal dementia. While mutations in the TARDBP gene that codes for the protein have been identified as causing disease in a small subset of patients, TDP-43 proteinopathy is present in the majority of cases regardless of mutation status. This raises key questions regarding the mechanisms by which TDP-43 proteinopathy arises and spreads throughout the central nervous system. Numerous studies have explored the role of a variety of cellular functions on the disease process, and nucleocytoplasmic transport, protein homeostasis, RNA interactions and cellular stress have all risen to the forefront as possible contributors to the initiation of TDP-43 pathogenesis. There is also a small but growing body of evidence suggesting that aggregation-prone TDP-43 can recruit physiological TDP-43, and be transmitted intercellularly, providing a mechanism whereby small-scale proteinopathy spreads from cell to cell, reflecting the spread of clinical symptoms observed in patients. This review will discuss the potential role of the aforementioned cellular functions in TDP-43 pathogenesis, and explore how aberrant pathology may spread, and result in a feed-forward cascade effect, leading to robust TDP-43 proteinopathy and disease.
Collapse
|
13
|
Alberti S, Hyman AA. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol 2021; 22:196-213. [PMID: 33510441 DOI: 10.1038/s41580-020-00326-6] [Citation(s) in RCA: 535] [Impact Index Per Article: 178.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Biomolecular condensates are membraneless intracellular assemblies that often form via liquid-liquid phase separation and have the ability to concentrate biopolymers. Research over the past 10 years has revealed that condensates play fundamental roles in cellular organization and physiology, and our understanding of the molecular principles, components and forces underlying their formation has substantially increased. Condensate assembly is tightly regulated in the intracellular environment, and failure to control condensate properties, formation and dissolution can lead to protein misfolding and aggregation, which are often the cause of ageing-associated diseases. In this Review, we describe the mechanisms and regulation of condensate assembly and dissolution, highlight recent advances in understanding the role of biomolecular condensates in ageing and disease, and discuss how cellular stress, ageing-related loss of homeostasis and a decline in protein quality control may contribute to the formation of aberrant, disease-causing condensates. Our improved understanding of condensate pathology provides a promising path for the treatment of protein aggregation diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Technische Universität Dresden, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Engineering (CMCB), Dresden, Germany.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
14
|
Hwang BJ, Jang Y, Kwon SB, Yu JE, Lim J, Roh YH, Seong BL. RNA-assisted self-assembly of monomeric antigens into virus-like particles as a recombinant vaccine platform. Biomaterials 2021; 269:120650. [PMID: 33465537 DOI: 10.1016/j.biomaterials.2021.120650] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
Representing highly ordered repetitive structures of antigen macromolecular assemblies, virus-like particles (VLPs) serve as a high-priority vaccine platform against emerging viral infections, as alternatives to traditional cell culture-based vaccines. RNAs can function as chaperones (Chaperna) and are extremely effective in promoting protein folding. Beyond their canonical function as translational adaptors, tRNAs may moonlight as chaperones for the kinetic control of macromolecular antigen assembly. Capitalizing on genomic RNA co-assembly in infectious virions, we present the first report of a biomimetic assembly of viral capsids that was assisted by non-viral host RNAs into genome-free, non-infectious empty particles. Here, we demonstrate the assembly of bacterially-produced soluble norovirus VP1 forming VLPs (n = 180) in vitro. A tRNA-interacting domain (tRID) was genetically fused with the VP1 capsid protein, as a tRNA docking tag, in the bacterial host to transduce chaperna function for de novo viral antigen folding. tRID/tRNA removal prompted the in vitro assembly of monomeric antigens into highly ordered repetitive structures that elicited robust protective immune responses after immunization. The chaperna-based assembly of monomeric antigens will impact the development and deployment of VLP vaccines for emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Beom Jeung Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yohan Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jongkwan Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
15
|
Choi SI, Seong BL. A social distancing measure governing the whole proteome. Curr Opin Struct Biol 2020; 66:104-111. [PMID: 33238232 DOI: 10.1016/j.sbi.2020.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
Protein folding in vivo has been largely understood in the context of molecular chaperones preventing aggregation of nascent polypeptides in the crowded cellular environment. Nascent chains utilize the crowded environment in favor of productive folding by direct physical connection with cellular macromolecules. The intermolecular repulsive forces by large excluded volume and surface charges of interacting cellular macromolecules, exerting 'social distancing' measure among folding intermediates, could play an important role in stabilizing their physically connected polypeptides against aggregation regardless of the physical connection types. The generic intrinsic chaperone activity of cellular macromolecules likely provides a robust cellular environment for the productive protein folding and solubility maintenance at the whole proteome level.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
16
|
Kang TH, Seong BL. Solubility, Stability, and Avidity of Recombinant Antibody Fragments Expressed in Microorganisms. Front Microbiol 2020; 11:1927. [PMID: 33101218 PMCID: PMC7546209 DOI: 10.3389/fmicb.2020.01927] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Solubility of recombinant proteins (i.e., the extent of soluble versus insoluble expression in heterogeneous hosts) is the first checkpoint criterion for determining recombinant protein quality. However, even soluble proteins often fail to represent functional activity because of the involvement of non-functional, misfolded, soluble aggregates, which compromise recombinant protein quality. Therefore, screening of solubility and folding competence is crucial for improving the quality of recombinant proteins, especially for therapeutic applications. The issue is often highlighted especially in bacterial recombinant hosts, since bacterial cytoplasm does not provide an optimal environment for the folding of target proteins of mammalian origin. Antibody fragments, such as single-chain variable fragment (scFv), single-chain antibody (scAb), and fragment antigen binding (Fab), have been utilized for numerous applications such as diagnostics, research reagents, or therapeutics. Antibody fragments can be efficiently expressed in microorganisms so that they offer several advantages for diagnostic applications such as low cost and high yield. However, scFv and scAb fragments have generally lower stability to thermal stress than full-length antibodies, necessitating a judicious combination of designer antibodies, and bacterial hosts harnessed with robust chaperone function. In this review, we discuss efforts on not only the production of antibodies or antibody fragments in microorganisms but also scFv stabilization via (i) directed evolution of variants with increased stability using display systems, (ii) stabilization of the interface between variable regions of heavy (VH) and light (VL) chains through the introduction of a non-native covalent bond between the two chains, (iii) rational engineering of VH-VL pair, based on the structure, and (iv) computational approaches. We also review recent advances in stability design, increase in avidity by multimerization, and maintaining the functional competence of chimeric proteins prompted by various types of chaperones.
Collapse
Affiliation(s)
- Tae Hyun Kang
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul, South Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, South Korea
| |
Collapse
|
17
|
Abstract
As a mental framework for the transition of self-replicating biological forms, the RNA world concept stipulates a dual function of RNAs as genetic substance and catalyst. The chaperoning function is found intrinsic to ribozymes involved in protein synthesis and tRNA maturation, enriching the primordial RNA world with proteins of biological relevance. The ribozyme-resident protein folding activity, even before the advent of protein-based molecular chaperone, must have expedited the transition of the RNA world into the present protein theatre.
Collapse
Affiliation(s)
- Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver , Denver, CO, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver , Denver, CO, USA
| | - Baik L Seong
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University , Seoul, Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, Korea
| |
Collapse
|
18
|
Kim YS, Lim J, Sung J, Cheong Y, Lee EY, Kim J, Oh H, Kim YS, Cho NH, Choi S, Kang SM, Nam JH, Chae W, Seong BL. Built-in RNA-mediated chaperone (chaperna) for antigen folding tailored to immunized hosts. Biotechnol Bioeng 2020; 117:1990-2007. [PMID: 32297972 PMCID: PMC7262357 DOI: 10.1002/bit.27355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/25/2023]
Abstract
High‐quality antibody (Ab) production depends on the availability of immunologically relevant antigens. We present a potentially universal platform for generating soluble antigens from bacterial hosts, tailored to immunized animals for Ab production. A novel RNA‐dependent chaperone, in which the target antigen is genetically fused with an RNA‐interacting domain (RID) docking tag derived from the immunized host, promotes the solubility and robust folding of the target antigen. We selected the N‐terminal tRNA‐binding domain of lysyl‐tRNA synthetase (LysRS) as the RID for fusion with viral proteins and demonstrated the expression of the RID fusion proteins in their soluble and native conformations; immunization predominantly elicited Ab responses to the target antigen, whereas the “self” RID tag remained nonimmunogenic. Differential immunogenicity of the fusion proteins greatly enriched and simplified the screening of hybridoma clones of monoclonal antibodies (mAbs), enabling specific and sensitive serodiagnosis of MERS‐CoV infection. Moreover, mAbs against the consensus influenza hemagglutinin stalk domain enabled a novel assay for trivalent seasonal influenza vaccines. The Fc‐mediated effector function was demonstrated, which could be harnessed for the design of next‐generation “universal” influenza vaccines. The nonimmunogenic built‐in antigen folding module tailored to a repertoire of immunized animal hosts will drive immunochemical diagnostics, therapeutics, and designer vaccines.
Collapse
Affiliation(s)
- Young-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jongkwan Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jemin Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eun-Young Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jihoon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hana Oh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seongil Choi
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Wonil Chae
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Le VD, Phan TTP, Nguyen TM, Brunsveld L, Schumann W, Nguyen HD. Using the IPTG-Inducible Pgrac212 Promoter for Overexpression of Human Rhinovirus 3C Protease Fusions in the Cytoplasm of Bacillus subtilis Cells. Curr Microbiol 2019; 76:1477-1486. [PMID: 31612259 DOI: 10.1007/s00284-019-01783-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023]
Abstract
Expression and secretion of recombinant proteins in the endotoxin-free bacterium, Bacillus subtilis, has been thoroughly studied, but overexpression in the cytoplasm has been limited to only a few proteins. Here, we used the robust IPTG-inducible promoter, Pgrac212, to overexpress human rhinovirus 3C protease (HRV3C) in the cytoplasm of B. subtilis cells. A novel solubility tag, the N-terminal domain of the lysS gene of B. subtilis coding for a lysyl-tRNA synthetase was placed at the N terminus with a cleavage site for the endoprotease HRV3C, followed by His-HRV3C or His-GST-HRV3C. The recombinant protease was purified by using a Ni-NTA column. In this study, the His-HRV3C and His-GST-HRV3C proteases were overexpressed in the cytoplasm of B. subtilis at 11% and 16% of the total cellular proteins, respectively. The specific protease activities were 8065 U/mg for His-HRV3C and 3623 U/mg for His-GST-HRV3C. The purified enzymes were used to cleave two different substrates followed by purification of the two different protein targets, the green fluorescent protein and the beta-galactosidase. In conclusion, the combination of an inducible promoter Pgrac212 and a solubility tag allowed the overexpression of the HRV3C protease in the cytoplasm of B. subtilis. The resulting fusion protein was purified using a nickel column and was active in cleaving target proteins to remove the fusion tags. This study offers an effective method for producing recombinant proteins in the cytoplasm of endotoxin-free bacteria.
Collapse
Affiliation(s)
- Vuong Duong Le
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Str., Binh Thanh Dist., Hochiminh, Vietnam
- Department of Microbiology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Laboratory of Molecular Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Tri Minh Nguyen
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Str., Binh Thanh Dist., Hochiminh, Vietnam
| | - Luc Brunsveld
- Laboratory of Chemical Biology & Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.
- Department of Microbiology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.
| |
Collapse
|
20
|
Chen HJ, Topp SD, Hui HS, Zacco E, Katarya M, McLoughlin C, King A, Smith BN, Troakes C, Pastore A, Shaw CE. RRM adjacent TARDBP mutations disrupt RNA binding and enhance TDP-43 proteinopathy. Brain 2019; 142:3753-3770. [PMID: 31605140 PMCID: PMC6885686 DOI: 10.1093/brain/awz313] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) presents with focal muscle weakness due to motor neuron degeneration that becomes generalized, leading to death from respiratory failure within 3-5 years from symptom onset. Despite the heterogeneity of aetiology, TDP-43 proteinopathy is a common pathological feature that is observed in >95% of ALS and tau-negative frontotemporal dementia (FTD) cases. TDP-43 is a DNA/RNA-binding protein that in ALS and FTD translocates from being predominantly nuclear to form detergent-resistant, hyperphosphorylated aggregates in the cytoplasm of affected neurons and glia. Mutations in TARDBP account for 1-4% of all ALS cases and almost all arise in the low complexity C-terminal domain that does not affect RNA binding and processing. Here we report an ALS/FTD kindred with a novel K181E TDP-43 mutation that is located in close proximity to the RRM1 domain. To offer predictive gene testing to at-risk family members, we undertook a series of functional studies to characterize the properties of the mutation. Spectroscopy studies of the K181E protein revealed no evidence of significant misfolding. Although it is unable to bind to or splice RNA, it forms abundant aggregates in transfected cells. We extended our study to include other ALS-linked mutations adjacent to the RRM domains that also disrupt RNA binding and greatly enhance TDP-43 aggregation, forming detergent-resistant and hyperphosphorylated inclusions. Lastly, we demonstrate that K181E binds to, and sequesters, wild-type TDP-43 within nuclear and cytoplasmic inclusions. Thus, we demonstrate that TDP-43 mutations that disrupt RNA binding greatly enhance aggregation and are likely to be pathogenic as they promote wild-type TDP-43 to mislocalize and aggregate acting in a dominant-negative manner. This study highlights the importance of RNA binding to maintain TDP-43 solubility and the role of TDP-43 aggregation in disease pathogenesis.
Collapse
Affiliation(s)
- Han-Jou Chen
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Simon D Topp
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Ho Sang Hui
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Elsa Zacco
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Malvika Katarya
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Conor McLoughlin
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Andrew King
- MRC London Neurodegenerative Diseases Brain Bank, De Crespigny Park, SE5 8AF, London, UK
| | - Bradley N Smith
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Claire Troakes
- MRC London Neurodegenerative Diseases Brain Bank, De Crespigny Park, SE5 8AF, London, UK
| | - Annalisa Pastore
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Litberg TJ, Docter B, Hughes MP, Bourne J, Horowitz S. DNA Facilitates Oligomerization and Prevents Aggregation via DNA Networks. Biophys J 2019; 118:162-171. [PMID: 31839258 DOI: 10.1016/j.bpj.2019.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Previous studies have shown that nucleic acids can nucleate protein aggregation in disease-related proteins, but in other cases, they can act as molecular chaperones that prevent protein aggregation, even under extreme conditions. In this study, we describe the link between these two behaviors through a combination of electron microscopy and aggregation kinetics. We find that two different proteins become soluble under harsh conditions through oligomerization with DNA. These DNA/protein oligomers form "networks," which increase the speed of oligomerization. The cases of DNA both increasing and preventing protein aggregation are observed to stem from this enhanced oligomerization. This observation raises interesting questions about the role of nucleic acids in aggregate formation in disease states.
Collapse
Affiliation(s)
- Theodore J Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado
| | - Brianne Docter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Michael P Hughes
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California; Department of Energy, University of California, Los Angeles, Los Angeles, California; Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California
| | - Jennifer Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado.
| |
Collapse
|
22
|
Lee HM, Kwon SB, Son A, Kim DH, Kim KH, Lim J, Kwon YG, Kang JS, Lee BK, Byun YH, Seong BL. Stabilization of Intrinsically Disordered DKK2 Protein by Fusion to RNA-Binding Domain. Int J Mol Sci 2019; 20:ijms20112847. [PMID: 31212691 PMCID: PMC6600415 DOI: 10.3390/ijms20112847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
Intrinsic disorders are a common feature of hub proteins in eukaryotic interactomes controlling the signaling pathways. The intrinsically disordered proteins (IDPs) are prone to misfolding, and maintaining their functional stability remains a major challenge in validating their therapeutic potentials. Considering that IDPs are highly enriched in RNA-binding proteins (RBPs), here we reasoned and confirmed that IDPs could be stabilized by fusion to RBPs. Dickkopf2 (DKK2), Wnt antagonist and a prototype IDP, was fused with lysyl-tRNA synthetase (LysRS), with or without the fragment crystallizable (Fc) domain of an immunoglobulin and expressed predominantly as a soluble form from a bacterial host. The functional competence was confirmed by in vitro Wnt signaling reporter and tube formation in human umbilical vein endothelial cells (HUVECs) and in vivo Matrigel plug assay. The removal of LysRS by site-specific protease cleavage prompted the insoluble aggregation, confirming that the linkage to RBP chaperones the functional competence of IDPs. While addressing to DKK2 as a key modulator for cancer and ischemic vascular diseases, our results suggest the use of RBPs as stabilizers of disordered proteinaceous materials for acquiring and maintaining the structural stability and functional competence, which would impact the druggability of a variety of IDPs from human proteome.
Collapse
Affiliation(s)
- Hye Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Doo Hyun Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Kyun-Hwan Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Jonghyo Lim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jin Sun Kang
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Byung Kyu Lee
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
23
|
Abstract
Cells under stress must adjust their physiology, metabolism, and architecture to adapt to the new conditions. Most importantly, they must down-regulate general gene expression, but at the same time induce synthesis of stress-protective factors, such as molecular chaperones. Here, we investigate how the process of phase separation is used by cells to ensure adaptation to stress. We summarize recent findings and propose that the solubility of important translation factors is specifically affected by changes in physical-chemical parameters such temperature or pH and modulated by intrinsically disordered prion-like domains. These stress-triggered changes in protein solubility induce phase separation into condensates that regulate the activity of the translation factors and promote cellular fitness. Prion-like domains play important roles in this process as environmentally regulated stress sensors and modifier sequences that determine protein solubility and phase behavior. We propose that protein phase separation is an evolutionary conserved feature of proteins that cells harness to regulate adaptive stress responses and ensure survival in extreme environmental conditions.
Collapse
Affiliation(s)
- Titus M Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
24
|
Park ES, Byun YH, Park S, Jang YH, Han WR, Won J, Cho KC, Kim DH, Lee AR, Shin GC, Park YK, Kang HS, Sim H, Ha YN, Jae B, Son A, Kim P, Yu J, Lee HM, Kwon SB, Kim KP, Lee SH, Park YM, Seong BL, Kim KH. Co-degradation of interferon signaling factor DDX3 by PB1-F2 as a basis for high virulence of 1918 pandemic influenza. EMBO J 2019; 38:embj.201899475. [PMID: 30979777 DOI: 10.15252/embj.201899475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
The multifunctional influenza virus protein PB1-F2 plays several roles in deregulation of host innate immune responses and is a known immunopathology enhancer of the 1918 influenza pandemic. Here, we show that the 1918 PB1-F2 protein not only interferes with the mitochondria-dependent pathway of type I interferon (IFN) signaling, but also acquired a novel IFN antagonist function by targeting the DEAD-box helicase DDX3, a key downstream mediator in antiviral interferon signaling, toward proteasome-dependent degradation. Interactome analysis revealed that 1918 PB1-F2, but not PR8 PB1-F2, binds to DDX3 and causes its co-degradation. Consistent with intrinsic protein instability as basis for this gain-of-function, internal structural disorder is associated with the unique cytotoxic sequences of the 1918 PB1-F2 protein. Infusing mice with recombinant DDX3 protein completely rescued them from lethal infection with the 1918 PB1-F2-producing virus. Alongside NS1 protein, 1918 PB1-F2 therefore constitutes a potent IFN antagonist causative for the severe pathogenicity of the 1918 influenza strain. Our identification of molecular determinants of pathogenesis should be useful for the future design of new antiviral strategies against influenza pandemics.
Collapse
Affiliation(s)
- Eun-Sook Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, Korea
| | - Soree Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, Korea
| | - Woo-Ry Han
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Juhee Won
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Kyung Cho Cho
- Department of Applied Chemistry, Kyung Hee University, Yongin, Korea
| | - Doo Hyun Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Ah Ram Lee
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Gu-Choul Shin
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Yong Kwang Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Hong Seok Kang
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Heewoo Sim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Yea Na Ha
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Byeongjune Jae
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Ahyun Son
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, Korea
| | - Jieun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hye-Min Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sun-Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, Korea
| | - Seung-Hyun Lee
- Department of Microbiology, School of Medicine, Konkuk University, Seoul, Korea
| | - Yeong-Min Park
- Laboratory of Dendritic Cell Differentiation and Regulation, Department of Immunology, School of Medicine, Konkuk University, Seoul, Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea .,Vaccine Translational Research Center, Yonsei University, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea .,KU Open Innovation Center, Konkuk University, Seoul, Korea.,Research Institute of Medical Science, Konkuk University, Seoul, Korea
| |
Collapse
|
25
|
Chae W, Kim P, Hwang BJ, Seong BL. Universal monoclonal antibody-based influenza hemagglutinin quantitative enzyme-linked immunosorbent assay. Vaccine 2019; 37:1457-1466. [DOI: 10.1016/j.vaccine.2019.01.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/19/2023]
|
26
|
Conversion of a soluble protein into a potent chaperone in vivo. Sci Rep 2019; 9:2735. [PMID: 30804538 PMCID: PMC6389997 DOI: 10.1038/s41598-019-39158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/18/2019] [Indexed: 01/31/2023] Open
Abstract
Molecular chaperones play an important role in cellular protein-folding assistance and aggregation inhibition. As a different but complementary model, we previously proposed that, in general, soluble cellular macromolecules with large excluded volume and surface charges exhibit intrinsic chaperone activity to prevent aggregation of their connected polypeptides irrespective of the connection type, thereby contributing to efficient protein folding. As a proof of concept, we here demonstrated that a model recombinant protein with a specific sequence-binding domain robustly exerted chaperone activity toward various proteins harbouring a short recognition tag of 7 residues in Escherichia coli. The chaperone activity of this protein was comparable to that of representative E. coli chaperones in vivo. Furthermore, in vitro refolding experiments confirmed the in vivo results. Our findings reveal that a soluble protein exhibits the intrinsic chaperone activity to prevent off-pathway aggregation of its interacting proteins, leading to more productive folding while allowing them to fold according to their intrinsic folding pathways. This study gives new insights into the plausible chaperoning role of soluble cellular macromolecules in terms of aggregation inhibition and indirect folding assistance.
Collapse
|
27
|
Kwon SB, Yu JE, Kim J, Oh H, Park C, Lee J, Seong BL. Quality Screening of Incorrectly Folded Soluble Aggregates from Functional Recombinant Proteins. Int J Mol Sci 2019; 20:ijms20040907. [PMID: 30791505 PMCID: PMC6413200 DOI: 10.3390/ijms20040907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/01/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
Solubility is the prime criterion for determining the quality of recombinant proteins, yet it often fails to represent functional activity due to the involvement of non-functional, misfolded, soluble aggregates, which compromise the quality of recombinant proteins. However, guidelines for the quality assessment of soluble proteins have neither been proposed nor rigorously validated experimentally. Using the aggregation-prone enhanced green-fluorescent protein (EGFP) folding reporter system, we evaluated the folding status of recombinant proteins by employing the commonly used sonication and mild lysis of recombinant host cells. We showed that the differential screening of solubility and folding competence is crucial for improving the quality of recombinant proteins without sacrificing their yield. These results highlight the importance of screening out incorrectly folded soluble aggregates at the initial purification step to ensure the functional quality of recombinant proteins.
Collapse
Affiliation(s)
- Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jihoon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Hana Oh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Chan Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jinhee Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
28
|
Hitachi K, Nakatani M, Takasaki A, Ouchi Y, Uezumi A, Ageta H, Inagaki H, Kurahashi H, Tsuchida K. Myogenin promoter-associated lncRNA Myoparr is essential for myogenic differentiation. EMBO Rep 2019; 20:embr.201847468. [PMID: 30622218 DOI: 10.15252/embr.201847468] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Promoter-associated long non-coding RNAs (lncRNAs) regulate the expression of adjacent genes; however, precise roles of these lncRNAs in skeletal muscle remain largely unknown. Here, we characterize a promoter-associated lncRNA, Myoparr, in myogenic differentiation and muscle disorders. Myoparr is expressed from the promoter region of the mouse and human myogenin gene, one of the key myogenic transcription factors. We show that Myoparr is essential both for the specification of myoblasts by activating neighboring myogenin expression and for myoblast cell cycle withdrawal by activating myogenic microRNA expression. Mechanistically, Myoparr interacts with Ddx17, a transcriptional coactivator of MyoD, and regulates the association between Ddx17 and the histone acetyltransferase PCAF Myoparr also promotes skeletal muscle atrophy caused by denervation, and knockdown of Myoparr rescues muscle wasting in mice. Our findings demonstrate that Myoparr is a novel key regulator of muscle development and suggest that Myoparr is a potential therapeutic target for neurogenic atrophy in humans.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Akihiko Takasaki
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Seki, Japan
| | - Yuya Ouchi
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake, Japan
| | - Akiyoshi Uezumi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Hiroshi Ageta
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Hidehito Inagaki
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake, Japan
| | - Hiroki Kurahashi
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| |
Collapse
|
29
|
Lee J, Son A, Kim P, Kwon SB, Yu JE, Han G, Seong BL. RNA‐dependent chaperone (chaperna) as an engineered pro‐region for the folding of recombinant microbial transglutaminase. Biotechnol Bioeng 2019; 116:490-502. [DOI: 10.1002/bit.26879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jinhee Lee
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Ahyun Son
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
- Present affiliation: Department of Chemistry and BiochemistryKnoebel Institute for Healthy AgingUniversity of DenverDenver Colorado
| | - Paul Kim
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Soon Bin Kwon
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Ji Eun Yu
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Gyoonhee Han
- Department of Integrated OMICS for Biomedical Science, College of Life science and BiotechnologyYonsei UniversitySeoul Korea
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| | - Baik L. Seong
- Department of BiotechnologyCollege of Life science and BiotechnologyYonsei UniversitySeoul Korea
| |
Collapse
|
30
|
Lee K, Ko HL, Lee EY, Park HJ, Kim YS, Kim YS, Cho NH, Park MS, Lee SM, Kim J, Kim H, Seong BL, Nam JH. Development of a diagnostic system for detection of specific antibodies and antigens against Middle East respiratory syndrome coronavirus. Microbiol Immunol 2018; 62:574-584. [PMID: 30117617 PMCID: PMC7168444 DOI: 10.1111/1348-0421.12643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/22/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a single-stranded RNA virus that causes severe respiratory disease in humans with a high fatality rate. Binding of the receptor binding domain (RBD) of the spike (S) glycoprotein to dipeptidyl peptidase 4 is the critical step in MERS-CoV infection of a host cell. No vaccines or clinically applicable treatments are currently available for MERS-CoV. Therefore, rapid diagnosis is important for improving patient outcomes through prompt treatment and protection against viral outbreaks. In this study, the aim was to establish two ELISA systems for detecting antigens and antibodies against MERS-CoV. Using a recombinant full-length S protein, an indirect ELISA was developed and found to detect MERS-CoV-specific antibodies in animal sera and sera of patient with MERS. Moreover, MAbs were induced with the recombinant S protein and RBD and used for sandwich ELISA to detect the MERS-CoV S protein. Neither ELISA system exhibited significant intra-assay or inter-assay variation, indicating good reproducibility. Moreover, the inter-day precision and sensitivity were adequate for use as a diagnostic kit. Thus, these ELISAs can be used clinically to diagnose MERS-CoV.
Collapse
Affiliation(s)
- Kunse Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Korea.,Bio Research and Development, SK Chemicals, Seongnam, Gyeonggi-do 13493, Korea
| | - Hae Li Ko
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Korea
| | - Eun-Young Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Korea
| | - Hyo-Jung Park
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Korea
| | - Young Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, Institute for Viral Diseases, Korea University, Seoul 02841, Korea
| | - Sang-Myeong Lee
- Department of, Biotechnology, Chonbuk National University, Iksan 570-752, Korea
| | - Jihye Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Hun Kim
- Bio Research and Development, SK Chemicals, Seongnam, Gyeonggi-do 13493, Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
31
|
Kwon SB, Yu JE, Park C, Lee J, Seong BL. Nucleic Acid-Dependent Structural Transition of the Intrinsically Disordered N-Terminal Appended Domain of Human Lysyl-tRNA Synthetase. Int J Mol Sci 2018; 19:ijms19103016. [PMID: 30282926 PMCID: PMC6213541 DOI: 10.3390/ijms19103016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic lysyl-tRNA synthetases (LysRS) have an N-terminal appended tRNA-interaction domain (RID) that is absent in their prokaryotic counterparts. This domain is intrinsically disordered and lacks stable structures. The disorder-to-order transition is induced by tRNA binding and has implications on folding and subsequent assembly into multi-tRNA synthetase complexes. Here, we expressed and purified RID from human LysRS (hRID) in Escherichia coli and performed a detailed mutagenesis of the appended domain. hRID was co-purified with nucleic acids during Ni-affinity purification, and cumulative mutations on critical amino acid residues abolished RNA binding. Furthermore, we identified a structural ensemble between disordered and helical structures in non-RNA-binding mutants and an equilibrium shift for wild-type into the helical conformation upon RNA binding. Since mutations that disrupted RNA binding led to an increase in non-functional soluble aggregates, a stabilized RNA-mediated structural transition of the N-terminal appended domain may have implications on the functional organization of human LysRS and multi-tRNA synthetase complexes in vivo.
Collapse
Affiliation(s)
- Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Chan Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jiseop Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
32
|
Multiple Functions of Cellular FLIP Are Essential for Replication of Hepatitis B Virus. J Virol 2018; 92:JVI.00339-18. [PMID: 29875248 DOI: 10.1128/jvi.00339-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a leading cause of liver diseases; however, the host factors which facilitate the replication and persistence of HBV are largely unidentified. Cellular FLICE inhibitory protein (c-FLIP) is a typical antiapoptotic protein. In many cases of liver diseases, the expression level of c-FLIP is altered, which affects the fate of hepatocytes. We previously found that c-FLIP and its cleaved form interact with HBV X protein (HBx), which is essential for HBV replication, and regulate diverse cellular signals. In this study, we investigated the role of endogenous c-FLIP in HBV replication and its underlying mechanisms. The knockdown of endogenous c-FLIP revealed that this protein regulates HBV replication through two different mechanisms. (i) c-FLIP interacts with HBx and protects it from ubiquitin-dependent degradation. The N-terminal DED1 domain of c-FLIP is required for HBx stabilization. (ii) c-FLIP regulates the expression or stability of hepatocyte nuclear factors (HNFs), which have critical roles in HBV transcription and maintenance of hepatocytes. c-FLIP regulates the stability of HNFs through physical interactions. We verified our findings in three HBV infection systems: HepG2-NTCP cells, differentiated HepaRG cells, and primary human hepatocytes. In conclusion, our results identify c-FLIP as an essential factor in HBV replication. c-FLIP regulates viral replication through its multiple effects on viral and host proteins that have critical roles in HBV replication.IMPORTANCE Although the chronic hepatitis B virus (HBV) infection still poses a major health concern, the host factors which are required for the replication of HBV are largely uncharacterized. Our studies identify cellular FLICE inhibitory protein (c-FLIP) as an essential factor in HBV replication. We found the dual roles of c-FLIP in regulation of HBV replication: c-FLIP interacts with HBx and enhances its stability and regulates the expression or stability of hepatocyte nuclear factors which are essential for transcription of HBV genome. Our findings may provide a new target for intervention in persistent HBV infection.
Collapse
|
33
|
Kim YS, Son A, Kim J, Kwon SB, Kim MH, Kim P, Kim J, Byun YH, Sung J, Lee J, Yu JE, Park C, Kim YS, Cho NH, Chang J, Seong BL. Chaperna-Mediated Assembly of Ferritin-Based Middle East Respiratory Syndrome-Coronavirus Nanoparticles. Front Immunol 2018; 9:1093. [PMID: 29868035 PMCID: PMC5966535 DOI: 10.3389/fimmu.2018.01093] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
The folding of monomeric antigens and their subsequent assembly into higher ordered structures are crucial for robust and effective production of nanoparticle (NP) vaccines in a timely and reproducible manner. Despite significant advances in in silico design and structure-based assembly, most engineered NPs are refractory to soluble expression and fail to assemble as designed, presenting major challenges in the manufacturing process. The failure is due to a lack of understanding of the kinetic pathways and enabling technical platforms to ensure successful folding of the monomer antigens into regular assemblages. Capitalizing on a novel function of RNA as a molecular chaperone (chaperna: chaperone + RNA), we provide a robust protein-folding vehicle that may be implemented to NP assembly in bacterial hosts. The receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) was fused with the RNA-interaction domain (RID) and bacterioferritin, and expressed in Escherichia coli in a soluble form. Site-specific proteolytic removal of the RID prompted the assemblage of monomers into NPs, which was confirmed by electron microscopy and dynamic light scattering. The mutations that affected the RNA binding to RBD significantly increased the soluble aggregation into amorphous structures, reducing the overall yield of NPs of a defined size. This underscored the RNA-antigen interactions during NP assembly. The sera after mouse immunization effectively interfered with the binding of MERS-CoV RBD to the cellular receptor hDPP4. The results suggest that RNA-binding controls the overall kinetic network of the antigen folding pathway in favor of enhanced assemblage of NPs into highly regular and immunologically relevant conformations. The concentration of the ion Fe2+, salt, and fusion linker also contributed to the assembly in vitro, and the stability of the NPs. The kinetic "pace-keeping" role of chaperna in the super molecular assembly of antigen monomers holds promise for the development and delivery of NPs and virus-like particles as recombinant vaccines and for serological detection of viral infections.
Collapse
Affiliation(s)
- Young-Seok Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jihoon Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Myung Hee Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jieun Kim
- Life Science and Biotechnology, Underwood International College, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jemin Sung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Chan Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
34
|
Yang SW, Jang YH, Kwon SB, Lee YJ, Chae W, Byun YH, Kim P, Park C, Lee YJ, Kim CK, Kim YS, Choi SI, Seong BL. Harnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation. FASEB J 2018; 32:2658-2675. [PMID: 29295864 PMCID: PMC5901386 DOI: 10.1096/fj.201700747rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/18/2017] [Indexed: 01/29/2023]
Abstract
A novel protein-folding function of RNA has been recognized, which can outperform previously known molecular chaperone proteins. The RNA as a molecular chaperone (chaperna) activity is intrinsic to some ribozymes and is operational during viral infections. Our purpose was to test whether influenza hemagglutinin (HA) can be assembled in a soluble, trimeric, and immunologically activating conformation by means of an RNA molecular chaperone (chaperna) activity. An RNA-interacting domain (RID) from the host being immunized was selected as a docking tag for RNA binding, which served as a transducer for the chaperna function for de novo folding and trimeric assembly of RID-HA1. Mutations that affect tRNA binding greatly increased the soluble aggregation defective in trimer assembly, suggesting that RNA interaction critically controls the kinetic network in the folding/assembly pathway. Immunization of mice resulted in strong hemagglutination inhibition and high titers of a neutralizing antibody, providing sterile protection against a lethal challenge and confirming the immunologically relevant HA conformation. The results may be translated into a rapid response to a new influenza pandemic. The harnessing of the novel chaperna described herein with immunologically tailored antigen-folding functions should serve as a robust prophylactic and diagnostic tool for viral infections.-Yang, S. W., Jang, Y. H., Kwon, S. B., Lee, Y. J., Chae, W., Byun, Y. H., Kim, P., Park, C., Lee, Y. J., Kim, C. K., Kim, Y. S., Choi, S. I., Seong, B. L. Harnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunization
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Chaperones/chemistry
- Molecular Chaperones/genetics
- Molecular Chaperones/immunology
- Molecular Chaperones/metabolism
- Mutation
- Protein Folding
- Protein Multimerization
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/immunology
- RNA, Transfer/metabolism
- Rabbits
Collapse
Affiliation(s)
- Seung Won Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yoon Jae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Wonil Chae
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Chan Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Jae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Choon Kang Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
35
|
Recombinant adenylate kinase 3 from liver fluke Clonorchis sinensis for histochemical analysis and serodiagnosis of clonorchiasis. Parasitology 2018; 145:1531-1539. [PMID: 29580315 DOI: 10.1017/s0031182018000434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the lack of an effective prophylactic intervention and diagnosis, human liver fluke Clonorchis sinensis continues to afflict a large human population, causing a chronic inflammatory bile duct disease. With an aim to identify target antigens for sensitive serodiagnosis, adenylate kinase 3 of C. sinensis (CsAK3) was successfully expressed in soluble form in Escherichia coli by fusion to an RNA-interacting domain derived from human Lys-tRNA synthetase and purified by Ni2+-affinity chromatography. Anti-CsAK3 serum was raised by immunization of mice, and Western blotting confirmed that CsAK3 was expressed in adult-stage C. sinensis. Histochemical analysis showed that CsAK3 was localized to the subtegumental tissue of C. sinensis and was excreted into the bile duct of the host. When tested against sera from various parasite-infected patients by enzyme-linked immunosorbent assay, the recombinant CsAK3 elicited a specific response to C. sinensis-infected sera. The results suggest that CsAK3, either alone or in combination with other antigens, could be used for improving the clinical diagnosis of clonorchiasis.
Collapse
|
36
|
Lee YJ, Yu JE, Kim P, Lee JY, Cheong YC, Lee YJ, Chang J, Seong BL. Eliciting unnatural immune responses by activating cryptic epitopes in viral antigens. FASEB J 2018; 32:4658-4669. [PMID: 29570395 PMCID: PMC6103170 DOI: 10.1096/fj.201701024rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antigenic variation in viral surface antigens is a strategy for escaping the host's adaptive immunity, whereas regions with pivotal functions for infection are less subject to antigenic variability. We hypothesized that genetically invariable and immunologically dormant regions of a viral surface antigen could be exposed to the host immune system and activated by rendering them susceptible to antigen-processing machinery in professional antigen-presenting cells (APCs). Considering the frequent antigen drift and shift in influenza viruses, we identified and used structural modeling to evaluate the conserved regions on the influenza hemagglutinin (HA) surface as potential epitopes. Mutant viruses containing the cleavage motifs of cathepsin S within HA were generated. Immunization of mice showed that the mutant, but not the wild-type virus, elicited specific antibodies against the cryptic epitope. Those antibodies were purified, and specific binding to HA was confirmed. These results suggest that an unnatural immune response can be elicited through the processing of target antigens in APCs, followed by presentation via the major histocompatibility complex, if not subjected to regulatory pathways. By harnessing the antigen-processing machinery, our study shows a proof-of-principle for designer vaccines with increased efficacy and safety by either activating cryptic, or inactivating naturally occurring, epitopes of viral antigens.-Lee, Y. J., Yu, J. E., Kim, P., Lee, J.-Y., Cheong, Y. C., Lee, Y. J., Chang, J., Seong, B. L. Eliciting unnatural immune responses by activating cryptic epitopes in viral antigens.
Collapse
Affiliation(s)
- Young Jae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong-Yoon Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yu Cheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yoon Jae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea.,Vaccine Translational Research Center (VTRC), Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center (VTRC), Yonsei University, Seoul, South Korea
| |
Collapse
|
37
|
Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice. Acta Biomater 2018; 66:325-334. [PMID: 29203426 DOI: 10.1016/j.actbio.2017.11.045] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus comprises a multiple metabolic disorder that affects millions of people worldwide and consequentially poses challenges for clinical treatment. Among the various complications, diabetic ulcer constitutes the most prevalent associated disorder and leads to delayed wound healing. To enhance wound healing capacity, we developed structurally stabilized epidermal growth factor (ST-EGF) and basic fibroblast growth factor (ST-bFGF) to overcome limitations of commercially available EGF (CA-EGF) and bFGF (CA-bFGF), such as short half-life and loss of activity after loading onto a matrix. Neither ST-EGF nor ST-bFGF was toxic, and both were more stable at higher temperatures than CA-EGF and CA-bFGF. We loaded ST-EGF and ST-bFGF onto a hyaluronate-collagen dressing (HCD) matrix, a biocompatible carrier, and tested the effectiveness of this system in promoting wound healing in a mouse model of diabetes. Wounds treated with HCD matrix loaded with 0.3 μg/cm2 ST-EGF or 1 μg/cm2 ST-bFGF showed a more rapid rate of tissue repair as compared to the control in type I and II diabetes models. Our results indicate that an HDC matrix loaded with 0.3 μg/cm2 ST-EGF or 1 μg/cm2 ST-bFGF can promote wound healing in diabetic ulcers and are suitable for use in wound dressings owing to their stability for long periods at room temperature. STATEMENT OF SIGNIFICANCE Various types of dressing materials loaded with growth factors, such as VEGF, EGF, and bFGF, are widely used to effect wound repair. However, such growth factor-loaded materials have several limitations for use as therapeutic agents in healing-impaired diabetic wounds. To overcome these limitations, we have developed new materials containing structurally stabilized EGF (ST-EGF) and bFGF (ST-bFGF). To confirm the wound healing capacity of newly developed materials (ST-EGF and ST-bFGF-loaded hyaluronate-collagen dressing [HCD] matrix), we applied these matrices in type I and type II diabetic wounds. Notably, these matrices were able to accelerate wound healing including re-epithelialization, neovascularization, and collagen deposition. Consequentially, these ST-EGF and ST-bFGF-loaded HCD matrix may be used as future therapeutic agents in patients with diabetic foot ulcers.
Collapse
|
38
|
Kim JM, Choi HS, Seong BL. The folding competence of HIV-1 Tat mediated by interaction with TAR RNA. RNA Biol 2017; 14:926-937. [PMID: 28418268 DOI: 10.1080/15476286.2017.1311455] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The trans-activator Tat protein of HIV-1 belongs to the large family of intrinsically disordered proteins (IDPs), and is known to recruit various host proteins for the transactivation of viral RNA synthesis. Tat protein interacts with the transactivator response RNA (TAR RNA), exhibiting RNA chaperone activities for structural rearrangement of interacting RNAs. Here, considering that Tat-TAR RNA interaction is mutually cooperative, we examined the potential role of TAR RNA as Chaperna - RNA that provides chaperone function to proteins - for the folding of HIV-1 Tat. Using EGFP fusion as an indirect indicator for folding status, we monitored Tat-EGFP folding in HeLa cells via time-lapse fluorescence microscopy. The live cell imaging showed that the rate and the extent of folding of Tat-EGFP were stimulated by TAR RNA. The purified Tat-EGFP was denatured and the fluorescence was monitored in vitro under renaturation condition. The fluorescence was significantly increased by TAR RNA, and the mutations in TAR RNA that affected the interaction with Tat protein failed to promote Tat refolding. The results suggest that TAR RNA stabilizes Tat as unfolded, but prevents it from misfolding, and maintaining its folding competence for interaction with multiple host factors toward its transactivation. The Chaperna function of virally encoded RNA in establishing proteome link at the viral-host interface provides new insights to as yet largely unexplored RNA mediated protein folding in normal and dysregulated cellular metabolism.
Collapse
Affiliation(s)
- Jung Min Kim
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , South Korea.,b Vaccine Translational Research Center , Yonsei University , Seoul , South Korea
| | - Hee Sun Choi
- c Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Baik Lin Seong
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , South Korea.,b Vaccine Translational Research Center , Yonsei University , Seoul , South Korea
| |
Collapse
|
39
|
Jeong H, Seong BL. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J Microbiol 2017; 55:220-230. [PMID: 28243941 PMCID: PMC7090582 DOI: 10.1007/s12275-017-7058-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023]
Abstract
Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.
Collapse
Affiliation(s)
- Hotcherl Jeong
- Department of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Baik Lin Seong
- Department of Biotechnology & Vaccine Translational Research Center, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
40
|
Abstract
Recently, we found that RNA is a remarkably powerful chaperone that can bind to unfolded proteins and transfer them to Hsp70 for refolding. Combined with past studies on RNA-chaperone interactions, we propose a model for how chaperone RNA activity may contribute to the cellular response to stress.
Collapse
Affiliation(s)
- Scott Horowitz
- a University of Michigan, Department of Molecular, Cellular, and Developmental Biology , Ann Arbor , MI , USA.,b Howard Hughes Medical Institute , Chevy Chase , MD , USA
| | - James C A Bardwell
- a University of Michigan, Department of Molecular, Cellular, and Developmental Biology , Ann Arbor , MI , USA.,b Howard Hughes Medical Institute , Chevy Chase , MD , USA
| |
Collapse
|
41
|
Patel KA, Sethi R, Dhara AR, Roy I. Challenges with osmolytes as inhibitors of protein aggregation: Can nucleic acid aptamers provide an answer? Int J Biol Macromol 2016; 100:75-88. [PMID: 27156694 DOI: 10.1016/j.ijbiomac.2016.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023]
Abstract
Protein aggregation follows some common motifs. Whether in the formation of inclusion bodies in heterologous overexpression systems or inclusions in protein conformational diseases, or aggregation during storage or transport of protein formulations, aggregates form cross beta-sheet structures and stain with amyloidophilic dyes like Thioflavin T and Congo Red, irrespective of the concerned protein. Traditionally, osmolytes are used to stabilize proteins against stress conditions. They are employed right from protein expression, through production and purification, to formulation and administration. As osmolytes interact with the solvent, the differential effect of the stress condition on the solvent mostly determines the effect of the osmolyte on protein stability. Nucleic acid aptamers, on the other hand, are highly specific for their targets. When selected against monomeric, natively folded proteins, they bind to them with very high affinity. This binding inhibits the unfolding of the protein and/or monomer-monomer interaction which are the initial common steps of protein aggregation. Thus, by changing the approach to a protein-centric model, aptamers are able to function as universal stabilizers of proteins. The review discusses cases where osmolytes were unable to provide stabilization to proteins against different stress conditions, a gap which the aptamers seem to be able to fill.
Collapse
Affiliation(s)
- Kinjal A Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ratnika Sethi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Anita R Dhara
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
42
|
Chakraborty B, Bhakta S, Sengupta J. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs. PLoS One 2016; 11:e0153928. [PMID: 27099964 PMCID: PMC4839638 DOI: 10.1371/journal.pone.0153928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/06/2016] [Indexed: 12/29/2022] Open
Abstract
In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process.
Collapse
Affiliation(s)
- Biprashekhar Chakraborty
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sayan Bhakta
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Jayati Sengupta
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- * E-mail:
| |
Collapse
|
43
|
Docter BE, Horowitz S, Gray MJ, Jakob U, Bardwell JCA. Do nucleic acids moonlight as molecular chaperones? Nucleic Acids Res 2016; 44:4835-45. [PMID: 27105849 PMCID: PMC4889950 DOI: 10.1093/nar/gkw291] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023] Open
Abstract
Organisms use molecular chaperones to combat the unfolding and aggregation of proteins. While protein chaperones have been widely studied, here we demonstrate that DNA and RNA exhibit potent chaperone activity in vitro Nucleic acids suppress the aggregation of classic chaperone substrates up to 300-fold more effectively than the protein chaperone GroEL. Additionally, RNA cooperates with the DnaK chaperone system to refold purified luciferase. Our findings reveal a possible new role for nucleic acids within the cell: that nucleic acids directly participate in maintaining proteostasis by preventing protein aggregation.
Collapse
Affiliation(s)
- Brianne E Docter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott Horowitz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael J Gray
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James C A Bardwell
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Son A, Choi SI, Han G, Seong BL. M1 RNA is important for the in-cell solubility of its cognate C5 protein: Implications for RNA-mediated protein folding. RNA Biol 2015; 12:1198-208. [PMID: 26517763 DOI: 10.1080/15476286.2015.1096487] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
It is one of the fundamental questions in biology how proteins efficiently fold into their native conformations despite off-pathway events such as misfolding and aggregation in living cells. Although molecular chaperones have been known to assist the de novo folding of certain types of proteins, the role of a binding partner (or a ligand) in the folding and in-cell solubility of its interacting protein still remains poorly defined. RNase P is responsible for the maturation of tRNAs as adaptor molecules of amino acids in ribosomal protein synthesis. The RNase P from Escherichia coli, composed of M1 RNA and C5 protein, is a prototypical ribozyme in which the RNA subunit contains the catalytic activity. Using E. coli RNase P, we demonstrate that M1 RNA plays a pivotal role in the in-cell solubility of C5 protein both in vitro and in vivo. Mutations in either the C5 protein or M1 RNA that affect their interactions significantly abolished the folding of C5 protein. Moreover, we find that M1 RNA provides quality insurance of interacting C5 protein, either by promoting the degradation of C5 mutants in the presence of functional proteolytic machinery, or by abolishing their solubility if the machinery is non-functional. Our results describe a crucial role of M1 RNA in the folding, in-cell solubility, and, consequently, the proteostasis of the client C5 protein, giving new insight into the biological role of RNAs as chaperones and mediators that ensure the quality of interacting proteins.
Collapse
Affiliation(s)
- Ahyun Son
- a Department of Integrated OMICS for Biomedical Science ; College of World Class University; Yonsei University ; Seoul , Korea.,b Vaccine Translational Research Center; Yonsei University ; Seoul , Korea
| | - Seong Il Choi
- c Department of Biotechnology ; College of Bioscience and Biotechnology; Yonsei University ; Seoul , Korea
| | - Gyoonhee Han
- a Department of Integrated OMICS for Biomedical Science ; College of World Class University; Yonsei University ; Seoul , Korea.,c Department of Biotechnology ; College of Bioscience and Biotechnology; Yonsei University ; Seoul , Korea
| | - Baik L Seong
- b Vaccine Translational Research Center; Yonsei University ; Seoul , Korea.,c Department of Biotechnology ; College of Bioscience and Biotechnology; Yonsei University ; Seoul , Korea
| |
Collapse
|
45
|
Mitra M, Johnson EL, Coller HA. Alternative polyadenylation can regulate post-translational membrane localization. TRENDS IN CELL & MOLECULAR BIOLOGY 2015; 10:37-47. [PMID: 26937127 PMCID: PMC4771188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
For many genomic loci, there are more than one potential cleavage and polyadenylation site, resulting in the generation of multiple distinct transcripts. When the proximal polyadenylation site is present within the coding region of the transcript, alternative polyadenylation can result in proteins with distinct amino acid sequences and potentially distinct functions. In most cases, the different possible polyadenylation sites are all present within the 3' untranslated regions (UTRs), and the amino acid sequence of the encoded proteins are not affected by polyadenylation site selection. In individual instances, the selection of the proximal versus distal polyadenylation site in the 3'UTR can dramatically affect transcript stability and translatability. In some instances, UTR alternative polyadenylation generates RNA isoforms that have distinct subcellular localization patterns, and that can regulate the location of the encoded protein in an RNA-guided manner. In a recent paper, the laboratory of Christine Mayr demonstrated that alternative polyadenylation of the transmembrane protein CD47 results in transcripts with the same localization pattern, but the encoded protein localizes to the endoplasmic reticulum when it is encoded by the transcript generated by using the proximal polyadenylation site in 3'UTR, and the identical protein localizes to the plasma membrane when the transcript is encoded by the distal polyadenylation site, also in the 3' UTR. Unlike previous studies, the mechanism of localization does not rely on differential trafficking of the mRNA and is instead, based on RNA-mediated recruitment of proteins to the cytoplasmic side of CD47 that support its plasma membrane localization. Other transmembrane proteins were discovered to be regulated similarly. The results demonstrate that the choice of polyadenylation site can affect protein localization and function, even when the sequence of the protein is unaffected. Further, the transcript encoding a protein can serve as a scaffold to recruit additional proteins that affect the protein's fate.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, UCLA, and Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA 90095
| | - Elizabeth L. Johnson
- Department of Microbiology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Hilary A. Coller
- Department of Molecular, Cell and Developmental Biology, UCLA, and Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA 90095
| |
Collapse
|
46
|
Cho HH, Alderman E, Kreder N, Caro RG, Leong K, Miller MF, Hill WAG, Pandey P. Competitive, immunometric assay for fusion protein quantification: protein production prioritization. Anal Biochem 2014; 446:1-8. [PMID: 24121012 DOI: 10.1016/j.ab.2013.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
Effective drug discovery demands the availability of microgram to gram quantities of high-quality protein encoded by novel transcripts. Protein expression vectors designed for large-scale protein production often include one or more specific tags to such transcripts, to simplify the purification of the targeted protein. Optimization of the complex expression and purification process requires the evaluation of multiple expression candidate clones to identify a production-suitable construct in terms of quality and final protein yield. Efficiency of the entire expression screening process is typically assessed by direct visualization of the banding patterns from whole-cell lysates on SDS-PAGE gels, by direct staining and/or immunoblotting, using antibodies against the tag or the protein of interest. These techniques, generally run under denaturing conditions, have proven to be only marginally predictive of the purification yield and authentic folding for native proteins. Small-scale, multiparallel affinity purification followed by SDS-PAGE analysis is more predictive for expression screening; however, this approach is labor intensive and time consuming. Here we describe the development of an alternative expression efficiency assessment technique, designed to evaluate the accessibility of affinity tags expressed with the desired fusion proteins, using acoustic membrane microparticle assay technology on the ViBE protein analysis workstation.
Collapse
Affiliation(s)
- Hyun-Hee Cho
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, USA
| | - Edward Alderman
- Bioscale, Inc., Lexington, MA 02421,USA; Immunologic Consulting, LLC, Framingham, MA 01702, USA.
| | - Natasha Kreder
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, USA
| | - Roxana Garcia Caro
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, USA; Bioscale, Inc., Lexington, MA 02421,USA
| | | | | | - W Adam G Hill
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, USA
| | - Pramod Pandey
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
Jang YH, Cho SH, Son A, Lee YH, Lee J, Lee KH, Seong BL. High-yield soluble expression of recombinant influenza virus antigens from Escherichia coli and their potential uses in diagnosis. J Virol Methods 2014; 196:56-64. [DOI: 10.1016/j.jviromet.2013.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
|
48
|
RNP2 of RNA recognition motif 1 plays a central role in the aberrant modification of TDP-43. PLoS One 2013; 8:e66966. [PMID: 23840565 PMCID: PMC3695991 DOI: 10.1371/journal.pone.0066966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/15/2013] [Indexed: 12/12/2022] Open
Abstract
Phosphorylated and truncated TAR DNA-binding protein-43 (TDP-43) is a major component of ubiquitinated cytoplasmic inclusions in neuronal and glial cells of two TDP-43 proteinopathies, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Modifications of TDP-43 are thus considered to play an important role in the pathogenesis of TDP-43 proteinopathies. However, both the initial cause of these abnormal modifications and the TDP-43 region responsible for its aggregation remain uncertain. Here we report that the 32 kDa C-terminal fragment of TDP-43, which lacks the RNP2 motif of RNA binding motif 1 (RRM1), formed aggregates in cultured cells, and that similar phenotypes were obtained when the RNP2 motif was either deleted from or mutated in full-length TDP-43. These aggregations were ubiquitinated, phosphorylated and truncated, and sequestered the 25 kDa C-terminal TDP-43 fragment seen in the neurons of TDP-43 proteinopathy patients. In addition, incubation with RNase decreased the solubility of TDP-43 in cell lysates. These findings suggest that the RNP2 motif of RRM1 plays a substantial role in pathological TDP-43 modifications and that it is possible that disruption of RNA binding may underlie the process of TDP-43 aggregation.
Collapse
|
49
|
Huang YC, Lin KF, He RY, Tu PH, Koubek J, Hsu YC, Huang JJT. Inhibition of TDP-43 aggregation by nucleic acid binding. PLoS One 2013; 8:e64002. [PMID: 23737961 PMCID: PMC3667863 DOI: 10.1371/journal.pone.0064002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022] Open
Abstract
The aggregation of TAR DNA-binding protein (TDP-43) has been shown as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) since 2006. While evidence has suggested that mutation or truncation in TDP-43 influences its aggregation process, nevertheless, the correlation between the TDP-43 aggregation propensity and its binding substrates has not been fully established in TDP-43 proteinopathy. To address this question, we have established a platform based on the in vitro protein expression system to evaluate the solubility change of TDP-43 in response to factors such as nucleotide binding and temperature. Our results suggest that the solubility of TDP-43 is largely influenced by its cognate single-strand DNA (ssDNA) or RNA (ssRNA) rather than hnRNP, which is known to associate with TDP-43 C-terminus. The direct interaction between the refolded TDP-43, purified from E.coli, and ssDNA were further characterized by Circular Dichroism (CD) as well as turbidity and filter binding assay. In addition, ssDNA or ssRNA failed to prevent the aggregation of the F147L/F149L double mutant or truncated TDP-43 (TDP208-414). Consistently, these two mutants form aggregates, in contrast with the wild-type TDP-43, when expressed in Neuro2a cells. Our results demonstrate an intimate relationship between the solubility of TDP-43 and its DNA or RNA binding affinity, which may shed light on the role of TDP-43 in ALS and FTLD.
Collapse
Affiliation(s)
- Yi-Chen Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ku-Feng Lin
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ruei-Yu He
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Pang-Hsien Tu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan
| | - Jiri Koubek
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Yin-Chih Hsu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Joseph Jen-Tse Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
50
|
Jain NK, Jetani HC, Roy I. Nucleic acid aptamers as stabilizers of proteins: the stability of tetanus toxoid. Pharm Res 2013; 30:1871-82. [PMID: 23568526 DOI: 10.1007/s11095-013-1030-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/12/2013] [Indexed: 01/07/2023]
Abstract
PURPOSE Exposure of tetanus toxoid to moisture leads to its aggregation and reduction of potency. The aim of this work was to use SELEX (systematic evolution of ligands by exponential enrichment) protocol and select aptamers which recognize tetanus toxoid (Mr ~150 kDa) with high affinity. METHODS Colyophilized preparations of tetanus toxoid and specific aptamers were encapsulated in PLGA microspheres and sustained release of the antigen was observed up to 55 days using different techniques. RESULTS The total protein released was between 40-55% (24-45% residual antigenicity) in the presence of the aptamers as compared to 25% (11% residual antigenicity) for the antigen alone. We show that instead of inhibiting absorption of moisture, the aptamers blocked the protein unfolding upon absorption of moisture, inhibiting the initiation of aggregation. When exposed to accelerated storage conditions, some of the RNA sequences were able to inhibit moisture-induced aggregation in vitro and retain antigenicity of tetanus toxoid. CONCLUSIONS Nucleic acid aptamers represent a novel class of protein stabilizers which stabilize the protein by interacting directly with it. This mechanism is unlike that of small molecules which alter the medium properties and hence depend on the stress condition a protein is exposed to.
Collapse
Affiliation(s)
- Nishant Kumar Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research-NIPER, Sector 67, SAS, Nagar, Punjab 160062, India
| | | | | |
Collapse
|