1
|
Luo Y, Xu Y, Ahmad F, Feng G, Huang Y. Characterization of Shy1, the Schizosaccharomyces pombe homolog of human SURF1. Sci Rep 2024; 14:21678. [PMID: 39289458 PMCID: PMC11408685 DOI: 10.1038/s41598-024-72681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Cytochrome c oxidase (complex IV) is the terminal enzyme in the mitochondrial respiratory chain. As a rare neurometabolic disorder caused by mutations in the human complex IV assembly factor SURF1, Leigh Syndrome (LS) is associated with complex IV deficiency. In this study, we comprehensively characterized Schizosaccharomyces pombe Shy1, the homolog of human SURF1. Bioinformatics analysis revealed that Shy1 contains a conserved SURF1 domain that links to the biogenesis of complex IV and shares high structural similarity with its homologs in Saccharomyces cerevisiae and humans. Our study showed that Shy1 is required for the expression of mtDNA-encoded genes and physically interacts with structural subunits and assembly factors of complex IV. Interestingly, Rip1, the subunit of ubiquinone-cytochrome c oxidoreductase or cytochrome bc1 complex (complex III), can also co-immunoprecipitate with Shy1, suggesting Shy1 may be involved in the assembly of the mitochondrial respiratory chain supercomplexes. This conclusion is further corroborated by our BN-PAGE analysis. Unlike its homologs, deletion of shy1 does not critically disrupt respiratory chain assembly, indicating the presence of the compensatory mechanism(s) within S. pombe that ensure mitochondrial functionality. Collectively, our investigation elucidates that Shy1 plays a pivotal role in the sustainability of the regular function of mitochondria by participating in the assembly of complex IV in S. pombe.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuanqi Xu
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Fawad Ahmad
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Gang Feng
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
2
|
Yao R, Li R, Wu X, Jin T, Luo Y, Li R, Huang Y. E3 ubiquitin ligase Hul6 modulates iron-dependent metabolism by regulating Php4 stability. J Biol Chem 2024; 300:105670. [PMID: 38272226 PMCID: PMC10882131 DOI: 10.1016/j.jbc.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Schizosaccharomyces pombe Php4 is the regulatory subunit of the CCAAT-binding complexes and plays an important role in the regulation of iron homeostasis and iron-dependent metabolism. Here, we show that Php4 undergoes ubiquitin-dependent degradation in the late logarithmic and stationary phases. The degradation and ubiquitination of Php4 could be attenuated by deletion of hul6, a gene encoding a putative HECT-type E3 ubiquitin ligase. The expression levels of Hul6 and Php4 are oppositely regulated during cell growth. Hul6 interacts with the C-terminal region of Php4. Two lysine residues (K217 and K274) located in the C-terminal region of Php4 are required for its polyubiquitination. Increasing the levels of Php4 by deletion of hul6 or overexpression of php4 decreased expression of Php4 target proteins involved in iron-dependent metabolic pathways such as the tricarboxylic cycle and mitochondrial oxidative phosphorylation, thus causing increased sensitivity to high-iron and reductions in succinate dehydrogenase and mitochondrial complex II activities. Hul6 is located primarily in the mitochondrial outer membrane and most likely targets cytosolic Php4 for ubiquitination and degradation. Taken together, our data suggest that Hul6 regulates iron-dependent metabolism through degradation of Php4 under normal growth conditions. Our results also suggest that Hul6 promotes iron-dependent metabolism to help the cell to adapt to a nutrient-starved growth phase.
Collapse
Affiliation(s)
- Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rongrong Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyu Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ting Jin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rong Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
3
|
Rodríguez-López M, Bordin N, Lees J, Scholes H, Hassan S, Saintain Q, Kamrad S, Orengo C, Bähler J. Broad functional profiling of fission yeast proteins using phenomics and machine learning. eLife 2023; 12:RP88229. [PMID: 37787768 PMCID: PMC10547477 DOI: 10.7554/elife.88229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Many proteins remain poorly characterized even in well-studied organisms, presenting a bottleneck for research. We applied phenomics and machine-learning approaches with Schizosaccharomyces pombe for broad cues on protein functions. We assayed colony-growth phenotypes to measure the fitness of deletion mutants for 3509 non-essential genes in 131 conditions with different nutrients, drugs, and stresses. These analyses exposed phenotypes for 3492 mutants, including 124 mutants of 'priority unstudied' proteins conserved in humans, providing varied functional clues. For example, over 900 proteins were newly implicated in the resistance to oxidative stress. Phenotype-correlation networks suggested roles for poorly characterized proteins through 'guilt by association' with known proteins. For complementary functional insights, we predicted Gene Ontology (GO) terms using machine learning methods exploiting protein-network and protein-homology data (NET-FF). We obtained 56,594 high-scoring GO predictions, of which 22,060 also featured high information content. Our phenotype-correlation data and NET-FF predictions showed a strong concordance with existing PomBase GO annotations and protein networks, with integrated analyses revealing 1675 novel GO predictions for 783 genes, including 47 predictions for 23 priority unstudied proteins. Experimental validation identified new proteins involved in cellular aging, showing that these predictions and phenomics data provide a rich resource to uncover new protein functions.
Collapse
Affiliation(s)
- María Rodríguez-López
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Nicola Bordin
- University College London, Institute of Structural and Molecular BiologyLondonUnited Kingdom
| | - Jon Lees
- University College London, Institute of Structural and Molecular BiologyLondonUnited Kingdom
- University of BristolBristolUnited Kingdom
| | - Harry Scholes
- University College London, Institute of Structural and Molecular BiologyLondonUnited Kingdom
| | - Shaimaa Hassan
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
- Helwan University, Faculty of PharmacyCairoEgypt
| | - Quentin Saintain
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Stephan Kamrad
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Christine Orengo
- University College London, Institute of Structural and Molecular BiologyLondonUnited Kingdom
| | - Jürg Bähler
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| |
Collapse
|
4
|
Mori A, Uehara L, Toyoda Y, Masuda F, Soejima S, Saitoh S, Yanagida M. In fission yeast, 65 non-essential mitochondrial proteins related to respiration and stress become essential in low-glucose conditions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230404. [PMID: 37859837 PMCID: PMC10582590 DOI: 10.1098/rsos.230404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Mitochondria perform critical functions, including respiration, ATP production, small molecule metabolism, and anti-oxidation, and they are involved in a number of human diseases. While the mitochondrial genome contains a small number of protein-coding genes, the vast majority of mitochondrial proteins are encoded by nuclear genes. In fission yeast Schizosaccharomyces pombe, we screened 457 deletion (del) mutants deficient in nuclear-encoded mitochondrial proteins, searching for those that fail to form colonies in culture medium containing low glucose (0.03-0.1%; low-glucose sensitive, lgs), but that proliferate in regular 2-3% glucose medium. Sixty-five (14%) of the 457 deletion mutants displayed the lgs phenotype. Thirty-three of them are defective either in dehydrogenases, subunits of respiratory complexes, the citric acid cycle, or in one of the nine steps of the CoQ10 biosynthetic pathway. The remaining 32 lgs mutants do not seem to be directly related to respiration. Fifteen are implicated in translation, and six encode transporters. The remaining 11 function in anti-oxidation, amino acid synthesis, repair of DNA damage, microtubule cytoskeleton, intracellular mitochondrial distribution or unknown functions. These 32 diverse lgs genes collectively maintain mitochondrial functions under low (1/20-1/60× normal) glucose concentrations. Interestingly, 30 of them have homologues associated with human diseases.
Collapse
Affiliation(s)
- Ayaka Mori
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Lisa Uehara
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Yusuke Toyoda
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Fumie Masuda
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Saeko Soejima
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Shigeaki Saitoh
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Gröger A, Martínez-Albo I, Albà MM, Ayté J, Vega M, Hidalgo E. Comparing Mitochondrial Activity, Oxidative Stress Tolerance, and Longevity of Thirteen Ascomycota Yeast Species. Antioxidants (Basel) 2023; 12:1810. [PMID: 37891889 PMCID: PMC10604656 DOI: 10.3390/antiox12101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is characterized by a number of hallmarks including loss of mitochondrial homeostasis and decay in stress tolerance, among others. Unicellular eukaryotes have been widely used to study chronological aging. As a general trait, calorie restriction and activation of mitochondrial respiration has been proposed to contribute to an elongated lifespan. Most aging-related studies have been conducted with the Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and with deletion collections deriving from these conventional yeast models. We have performed an unbiased characterization of longevity using thirteen fungi species, including S. cerevisiae and S. pombe, covering a wide range of the Ascomycota clade. We have determined their mitochondrial activity by oxygen consumption, complex IV activity, and mitochondrial redox potential, and the results derived from these three methodologies are highly overlapping. We have phenotypically compared the lifespans of the thirteen species and their capacity to tolerate oxidative stress. Longevity and elevated tolerance to hydrogen peroxide are correlated in some but not all yeasts. Mitochondrial activity per se cannot anticipate the length of the lifespan. We have classified the strains in four groups, with members of group 1 (Kluyveromyces lactis, Saccharomyces bayanus and Lodderomyces elongisporus) displaying high mitochondrial activity, elevated resistance to oxidative stress, and elongated lifespan.
Collapse
Affiliation(s)
- Anna Gröger
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain; (A.G.); (I.M.-A.); (J.A.)
| | - Ilune Martínez-Albo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain; (A.G.); (I.M.-A.); (J.A.)
| | - M. Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, 08003 Barcelona, Spain;
- Catalan Institute for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain; (A.G.); (I.M.-A.); (J.A.)
| | - Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain; (A.G.); (I.M.-A.); (J.A.)
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain; (A.G.); (I.M.-A.); (J.A.)
| |
Collapse
|
6
|
Alam S, Gu Y, Reichert P, Bähler J, Oliferenko S. Optimization of energy production and central carbon metabolism in a non-respiring eukaryote. Curr Biol 2023; 33:2175-2186.e5. [PMID: 37164017 PMCID: PMC7615655 DOI: 10.1016/j.cub.2023.04.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Most eukaryotes respire oxygen, using it to generate biomass and energy. However, a few organisms have lost the capacity to respire. Understanding how they manage biomass and energy production may illuminate the critical points at which respiration feeds into central carbon metabolism and explain possible routes to its optimization. Here, we use two related fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, as a comparative model system. We show that although S. japonicus does not respire oxygen, unlike S. pombe, it is capable of efficient NADH oxidation, amino acid synthesis, and ATP generation. We probe possible optimization strategies through the use of stable isotope tracing metabolomics, mass isotopologue distribution analysis, genetics, and physiological experiments. S. japonicus appears to have optimized cytosolic NADH oxidation via glycerol-3-phosphate synthesis. It runs a fully bifurcated TCA pathway, sustaining amino acid production. Finally, we propose that it has optimized glycolysis to maintain high ATP/ADP ratio, in part by using the pentose phosphate pathway as a glycolytic shunt, reducing allosteric inhibition of glycolysis and supporting biomass generation. By comparing two related organisms with vastly different metabolic strategies, our work highlights the versatility and plasticity of central carbon metabolism in eukaryotes, illuminating critical adaptations supporting the preferential use of glycolysis over oxidative phosphorylation.
Collapse
Affiliation(s)
- Sara Alam
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Ying Gu
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Polina Reichert
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK; School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
7
|
Kato T, Kano M, Yokomori A, Azegami J, El Enshasy HA, Park EY. Involvement of a flavoprotein, acetohydroxyacid synthase, in growth and riboflavin production in riboflavin-overproducing Ashbya gossypii mutant. Microb Cell Fact 2023; 22:105. [PMID: 37217979 PMCID: PMC10201721 DOI: 10.1186/s12934-023-02114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Previously, we isolated a riboflavin-overproducing Ashbya gossypii mutant (MT strain) and discovered some mutations in genes encoding flavoproteins. Here, we analyzed the riboflavin production in the MT strain, in view of flavoproteins, which are localized in the mitochondria. RESULTS In the MT strain, mitochondrial membrane potential was decreased compared with that in the wild type (WT) strain, resulting in increased reactive oxygen species. Additionally, diphenyleneiodonium (DPI), a universal flavoprotein inhibitor, inhibited riboflavin production in the WT and MT strains at 50 µM, indicating that some flavoproteins may be involved in riboflavin production. The specific activities of NADH and succinate dehydrogenases were significantly reduced in the MT strain, but those of glutathione reductase and acetohydroxyacid synthase were increased by 4.9- and 25-fold, respectively. By contrast, the expression of AgGLR1 gene encoding glutathione reductase was increased by 32-fold in the MT strain. However, that of AgILV2 gene encoding the catalytic subunit of acetohydroxyacid synthase was increased by only 2.1-fold. These results suggest that in the MT strain, acetohydroxyacid synthase, which catalyzes the first reaction of branched-chain amino acid biosynthesis, is vital for riboflavin production. The addition of valine, which is a feedback inhibitor of acetohydroxyacid synthase, to a minimal medium inhibited the growth of the MT strain and its riboflavin production. In addition, the addition of branched-chain amino acids enhanced the growth and riboflavin production in the MT strain. CONCLUSION The significance of branched-chain amino acids for riboflavin production in A. gossypii is reported and this study opens a novel approach for the effective production of riboflavin in A. gossypii.
Collapse
Affiliation(s)
- Tatsuya Kato
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan.
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan.
- Department of Applied Life Science, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan.
| | - Mai Kano
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
| | - Ami Yokomori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia
- City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, Egypt
| | - Enoch Y Park
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
- Department of Applied Life Science, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
| |
Collapse
|
8
|
Pérez-Díaz AJ, Vázquez-Marín B, Vicente-Soler J, Prieto-Ruiz F, Soto T, Franco A, Cansado J, Madrid M. cAMP-Protein kinase A and stress-activated MAP kinase signaling mediate transcriptional control of autophagy in fission yeast during glucose limitation or starvation. Autophagy 2023; 19:1311-1331. [PMID: 36107819 PMCID: PMC10012941 DOI: 10.1080/15548627.2022.2125204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy is an essential adaptive physiological response in eukaryotes induced during nutrient starvation, including glucose, the primary immediate carbon and energy source for most cells. Although the molecular mechanisms that induce autophagy during glucose starvation have been extensively explored in the budding yeast Saccharomyces cerevisiae, little is known about how this coping response is regulated in the evolutionary distant fission yeast Schizosaccharomyces pombe. Here, we show that S. pombe autophagy in response to glucose limitation relies on mitochondrial respiration and the electron transport chain (ETC), but, in contrast to S. cerevisiae, the AMP-activated protein kinase (AMPK) and DNA damage response pathway components do not modulate fission yeast autophagic flux under these conditions. In the presence of glucose, the cAMP-protein kinase A (PKA) signaling pathway constitutively represses S. pombe autophagy by downregulating the transcription factor Rst2, which promotes the expression of respiratory genes required for autophagy induction under limited glucose availability. Furthermore, the stress-activated protein kinase (SAPK) signaling pathway, and its central mitogen-activated protein kinase (MAPK) Sty1, positively modulate autophagy upon glucose limitation at the transcriptional level through its downstream effector Atf1 and by direct in vivo phosphorylation of Rst2 at S292. Thus, our data indicate that the signaling pathways that govern autophagy during glucose shortage or starvation have evolved differently in S. pombe and uncover the existence of sophisticated and multifaceted mechanisms that control this self-preservation and survival response.
Collapse
Affiliation(s)
- Armando Jesús Pérez-Díaz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Beatriz Vázquez-Marín
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Jero Vicente-Soler
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Francisco Prieto-Ruiz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - José Cansado
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
9
|
Prieto-Ruiz F, Gómez-Gil E, Martín-García R, Pérez-Díaz AJ, Vicente-Soler J, Franco A, Soto T, Pérez P, Madrid M, Cansado J. Myosin II regulatory light chain phosphorylation and formin availability modulate cytokinesis upon changes in carbohydrate metabolism. eLife 2023; 12:83285. [PMID: 36825780 PMCID: PMC10005788 DOI: 10.7554/elife.83285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/23/2023] [Indexed: 02/25/2023] Open
Abstract
Cytokinesis, the separation of daughter cells at the end of mitosis, relies in animal cells on a contractile actomyosin ring (CAR) composed of actin and class II myosins, whose activity is strongly influenced by regulatory light chain (RLC) phosphorylation. However, in simple eukaryotes such as the fission yeast Schizosaccharomyces pombe, RLC phosphorylation appears dispensable for regulating CAR dynamics. We found that redundant phosphorylation at Ser35 of the S. pombe RLC homolog Rlc1 by the p21-activated kinases Pak1 and Pak2, modulates myosin II Myo2 activity and becomes essential for cytokinesis and cell growth during respiration. Previously, we showed that the stress-activated protein kinase pathway (SAPK) MAPK Sty1 controls fission yeast CAR integrity by downregulating formin For3 levels (Gómez-Gil et al., 2020). Here, we report that the reduced availability of formin For3-nucleated actin filaments for the CAR is the main reason for the required control of myosin II contractile activity by RLC phosphorylation during respiration-induced oxidative stress. Thus, the restoration of For3 levels by antioxidants overrides the control of myosin II function regulated by RLC phosphorylation, allowing cytokinesis and cell proliferation during respiration. Therefore, fine-tuned interplay between myosin II function through Rlc1 phosphorylation and environmentally controlled actin filament availability is critical for a successful cytokinesis in response to a switch to a respiratory carbohydrate metabolism.
Collapse
Affiliation(s)
- Francisco Prieto-Ruiz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - Elisa Gómez-Gil
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
- The Francis Crick InstituteLondonUnited Kingdom
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de SalamancaSalamancaSpain
| | - Armando Jesús Pérez-Díaz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - Jero Vicente-Soler
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - Alejandro Franco
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - Teresa Soto
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de SalamancaSalamancaSpain
| | - Marisa Madrid
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - José Cansado
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| |
Collapse
|
10
|
Vega M, Castillo D, de Cubas L, Wang Y, Huang Y, Hidalgo E, Cabrera M. Antagonistic effects of mitochondrial matrix and intermembrane space proteases on yeast aging. BMC Biol 2022; 20:160. [PMID: 35820914 PMCID: PMC9277893 DOI: 10.1186/s12915-022-01352-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Background In many organisms, aging is characterized by a loss of mitochondrial homeostasis. Multiple factors such as respiratory metabolism, mitochondrial fusion/fission, or mitophagy have been linked to cell longevity, but the exact impact of each one on the aging process is still unclear. Results Using the deletion mutant collection of the fission yeast Schizosaccharomyces pombe, we have developed a genome-wide screening for mutants with altered chronological lifespan. We have identified four mutants associated with proteolysis at the mitochondria that exhibit opposite effects on longevity. The analysis of the respiratory activity of these mutants revealed a positive correlation between increased respiration rate and prolonged lifespan. We also found that the phenotype of the long-lived protease mutants could not be explained by impaired mitochondrial fusion/fission activities, but it was dependent on mitophagy induction. The anti-aging role of mitophagy was supported by the effect of a mutant defective in degradation of mitochondria, which shortened lifespan of the long-lived mutants. Conclusions Our characterization of the mitochondrial protease mutants demonstrates that mitophagy sustains the lifespan extension of long-lived mutants displaying a higher respiration potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01352-w.
Collapse
Affiliation(s)
- Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | | | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Margarita Cabrera
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain. .,Department of Biology, Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
11
|
Ohtsuka H, Shimasaki T, Aiba H. Response to sulfur in Schizosaccharomyces pombe. FEMS Yeast Res 2021; 21:6324000. [PMID: 34279603 PMCID: PMC8310684 DOI: 10.1093/femsyr/foab041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Sulfur is an essential component of various biologically important molecules, including methionine, cysteine and glutathione, and it is also involved in coping with oxidative and heavy metal stress. Studies using model organisms, including budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), have contributed not only to understanding various cellular processes but also to understanding the utilization and response mechanisms of each nutrient, including sulfur. Although fission yeast can use sulfate as a sulfur source, its sulfur metabolism pathway is slightly different from that of budding yeast because it does not have a trans-sulfuration pathway. In recent years, it has been found that sulfur starvation causes various cellular responses in S. pombe, including sporulation, cell cycle arrest at G2, chronological lifespan extension, autophagy induction and reduced translation. This MiniReview identifies two sulfate transporters in S. pombe, Sul1 (encoded by SPBC3H7.02) and Sul2 (encoded by SPAC869.05c), and summarizes the metabolic pathways of sulfur assimilation and cellular response to sulfur starvation. Understanding these responses, including metabolism and adaptation, will contribute to a better understanding of the various stress and nutrient starvation responses and chronological lifespan regulation caused by sulfur starvation.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Legon L, Rallis C. Genome-wide screens in yeast models towards understanding chronological lifespan regulation. Brief Funct Genomics 2021; 21:4-12. [PMID: 33728458 PMCID: PMC8834652 DOI: 10.1093/bfgp/elab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular models such as yeasts are a driving force in biogerontology studies. Their simpler genome, short lifespans and vast genetic and genomics resources make them ideal to characterise pro-ageing and anti-ageing genes and signalling pathways. Over the last three decades, yeasts have contributed to the understanding of fundamental aspects of lifespan regulation including the roles of nutrient response, global protein translation rates and quality, DNA damage, oxidative stress, mitochondrial function and dysfunction as well as autophagy. In this short review, we focus on approaches used for competitive and non-competitive cell-based screens using the budding yeast Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe, for deciphering the molecular mechanisms underlying chronological ageing. Automation accompanied with appropriate computational tools allowed manipulation of hundreds of thousands of colonies, generation, processing and analysis of genome-wide lifespan data. Together with barcoding and modern mutagenesis technologies, these approaches have allowed to take decisive steps towards a global, comprehensive view of cellular ageing.
Collapse
Affiliation(s)
- Luc Legon
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
13
|
Jiang G, Liu Q, Kato T, Miao H, Gao X, Liu K, Chen S, Sakamoto N, Kuno T, Fang Y. Role of mitochondrial complex III/IV in the activation of transcription factor Rst2 in Schizosaccharomyces pombe. Mol Microbiol 2021; 115:1323-1338. [PMID: 33400299 DOI: 10.1111/mmi.14678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 11/30/2022]
Abstract
Mitochondria play essential roles in eukaryotic cells for glucose metabolism to produce ATP. In Schizosaccharomyces pombe, transcription factor Rst2 can be activated upon glucose deprivation. However, the link between Rst2 and mitochondrial function remains elusive. Here, we monitored Rst2 transcriptional activity in living cells using a Renilla luciferase reporter system, and found that inhibition of mitochondrial complex III/IV caused cells to produce reactive oxygen species (ROS) and nitric oxide (NO), which in turn activated Rst2. Furthermore, Rst2-GFP was observed to translocate from cytoplasm to nucleus upon mitochondrial complex III/IV inhibitors treatment, and deletion of genes associated with complex III/IV resulted in delayed process of Rst2-GFP nuclear exportation under glucose-rich condition. In particular, we found that Rst2 was phosphorylated following the treatment of complex III/IV inhibitors or SNAP. Altogether, our findings suggest that mitochondrial complex III/IV participates in the activation of Rst2 through ROS and NO generation in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Toshiaki Kato
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hao Miao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiang Gao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Kun Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China.,Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Carmona M, de Cubas L, Bautista E, Moral-Blanch M, Medraño-Fernández I, Sitia R, Boronat S, Ayté J, Hidalgo E. Monitoring cytosolic H 2O 2 fluctuations arising from altered plasma membrane gradients or from mitochondrial activity. Nat Commun 2019; 10:4526. [PMID: 31586057 PMCID: PMC6778086 DOI: 10.1038/s41467-019-12475-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Genetically encoded probes monitoring H2O2 fluctuations in living organisms are key to decipher redox signaling events. Here we use a new probe, roGFP2-Tpx1.C169S, to monitor pre-toxic fluctuations of peroxides in fission yeast, where the concentrations linked to signaling or to toxicity have been established. This probe is able to detect nanomolar fluctuations of intracellular H2O2 caused by extracellular peroxides; expression of human aquaporin 8 channels H2O2 entry into fission yeast decreasing membrane gradients. The probe also detects H2O2 bursts from mitochondria after addition of electron transport chain inhibitors, the extent of probe oxidation being proportional to the mitochondrial activity. The oxidation of this probe is an indicator of steady-state levels of H2O2 in different genetic backgrounds. Metabolic reprogramming during growth in low-glucose media causes probe reduction due to the activation of antioxidant cascades. We demonstrate how peroxiredoxin-based probes can be used to monitor physiological H2O2 fluctuations. Reliable methods of measuring intracellular H2O2 fluctuations are necessary to advance redox biology. Here the authors design a H2O2 sensor based on the fission yeast peroxiredoxin Tpx1 to sense nanomolar fluctuations of intracellular H2O2 in response to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Eric Bautista
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Marta Moral-Blanch
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Iria Medraño-Fernández
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Roberto Sitia
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
15
|
Luo Y, Su R, Wang Y, Xie W, Liu Z, Huang Y. Schizosaccharomyces pombe Mti2 and Mti3 act in conjunction during mitochondrial translation initiation. FEBS J 2019; 286:4542-4553. [PMID: 31350787 DOI: 10.1111/febs.15021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023]
Abstract
Mitochondrial DNA encodes key subunits of the oxidative phosphorylation complexes essential for ATP production. Translation initiation in mitochondria requires two general factors, mtIF2 and mtIF3, whose counterparts in bacteria are essential for protein synthesis. In this study, we report the characterization of the fission yeast Schizosaccharomyces pombe mtIF2 (Mti2) and mtIF3 (Mti3). Deletion of mti2 impairs cell growth on the respiratory medium. The growth defect of the mti2 deletion mutant can be suppressed by expressing IFM1, the Saccharomyces cerevisiae homolog of Mti2, demonstrating functional conservation between the two proteins. Deletion of mti2 also impairs mitochondrial protein synthesis. Unlike mti2, deletion of mti3 does not affect cell growth on respiratory media and mitochondrial translation. However, deletion of mti3 exacerbates the growth defect of the Δmti2 mutant, suggesting that the two proteins have distinct, but partially overlapping functions during the process of mitochondrial translation initiation in S. pombe. Both Mti2 and Mti3 are associated with the small subunit of the mitochondrial ribosome (mitoribosome). Disruption of mti2, but not mti3, causes dissociation of the mitoribosome and also abolishes Mti3 binding to the small subunit of the mitoribosome. Our results suggest that Mti2 and Mti3 bind in a sequential manner to the small subunit of the mitoribosome and that Mti3 facilitates the function of Mti2 in mitochondrial translation initiation. Our findings also support the view that the importance of the mitochondrial translation initiation factors varies among the organisms.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Ruyue Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Wanqiu Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Zecheng Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
16
|
Agus HH, Sarp C, Cemiloglu M. Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in Schizosaccharomyces pombe. Toxicol Res (Camb) 2018; 7:848-858. [PMID: 30310662 PMCID: PMC6116180 DOI: 10.1039/c8tx00100f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/25/2018] [Indexed: 12/27/2022] Open
Abstract
Terpinolene is one of the most abundant monoterpenes used as a food supplement or odorant in cosmetics and the pharmaceutical industry. In this study, we aimed to assess apoptotic, oxidative and cytotoxic effects of terpinolene. We used the fission yeast (Schizosaccharomyces pombe) as a promising uni-cellular model organism in molecular toxicology and cell death research, due to its resemblance to mammalian cells at the molecular level. After terpinolene exposure (200-800 mg L-1), the IC50 and LC50 were calculated as 349.17 mg L-1 and 593.87 mg L-1. Cells, stained with acridine orange/ethidium bromide and DAPI, showed apoptotic nuclear morphology, chromatin condensation and fragmentation. 2,7-Dichlorodihydrofluorescein diacetate (DCFDA) fluorescence gradually increased (1.5-2-fold increase) in correlation with increasing concentrations of terpinolene (200-800 mg L-1). Mitochondrial impairment at higher concentrations of terpinolene (400-800 mg L-1) was shown by Rhodamine 123 staining. Real-time PCR experiments showed significant increases (1.5-3-fold) in SOD1 and GPx1 levels (p < 0.05) as well as 2-2.5-fold increases (p < 0.05) in pro-apoptotic factors, Pca1 and Sprad9. The potential effects of terpinolene on programmed cell death and the underlying mechanisms were clarified in unicellular model fungi, Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Hizlan H Agus
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey . ; Tel: +90 212 444 50 01
| | - Cemaynur Sarp
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey . ; Tel: +90 212 444 50 01
| | - Meryem Cemiloglu
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey . ; Tel: +90 212 444 50 01
| |
Collapse
|
17
|
SM S, HN S, NA E, AS H. Curative role of pantothenic acid in brain damage of gamma irradiated rats. Indian J Clin Biochem 2018; 33:314-321. [PMID: 30072831 PMCID: PMC6052731 DOI: 10.1007/s12291-017-0683-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022]
Abstract
Radiation induced brain damage is associated with impairment of mitochondrial functions, variations in the level of neurotransmitters, and oxidative stress. Mitochondrial function is closely linked to the level of neurotransmitters since the precursors are supplied by the Kreb's cycle intermediates. The objective of this study was to evaluate the influence of pantothenic acid, an essential component in the synthesis of Coenzyme A (CoA), on the activity of the Krebs cycle enzymes, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH), and succinate dehydrogenase (SDH); the level of aspartic, glutamic and GABA; the activity of transaminases, and oxidative stress, in the cerebrum of γ-irradiated rats. Pantothenic acid (26 mg/Kg) was orally administered to the rats, 2 h after irradiation and during the following 5 days. Animals were sacrificed the 7th day post-irradiation. The exposure of male albino rats to γ-rays (5 Gy) has triggered oxidative stress notified by a significant elevation in the level of malondialdehyde (MDA), an end product of lipid peroxidation, associated to a significant decrease in the content of phospholipids, and the antioxidant compound glutathione (GSH). The activity of IDH, α-KGDH, and SDH, has significantly decreased, while the level of aspartic, glutamic and GABA has significantly increased. In parallel to these changes, the activity of alanine and aspartate transaminase has significantly increased, compared to their values in the control rats. Pantothenic acid treatment, has significantly attenuated oxidative stress; enhanced the activity of IDH, α-KGDH, and SDH; minimized the increase in the level of amino acids and the activity of transaminases, compared to their values in the cerebrum of irradiated rats. In conclusion, pantothenic acid could improve the level of neurotransmitters amino acids, which depends on the enzymatic activities of Krebs cycle and linked to oxidative stress.
Collapse
Affiliation(s)
- Shedid SM
- Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, 3 Ahmed El-Zomor, Al Manteqah Ath Thamenah, Nasr City, Cairo Governorate 11787 Egypt
| | - Saada HN
- Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, 3 Ahmed El-Zomor, Al Manteqah Ath Thamenah, Nasr City, Cairo Governorate 11787 Egypt
| | - Eltahawy NA
- Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, 3 Ahmed El-Zomor, Al Manteqah Ath Thamenah, Nasr City, Cairo Governorate 11787 Egypt
| | - Hammad AS
- Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, 3 Ahmed El-Zomor, Al Manteqah Ath Thamenah, Nasr City, Cairo Governorate 11787 Egypt
| |
Collapse
|
18
|
Asp1 Bifunctional Activity Modulates Spindle Function via Controlling Cellular Inositol Pyrophosphate Levels in Schizosaccharomyces pombe. Mol Cell Biol 2018; 38:MCB.00047-18. [PMID: 29440310 DOI: 10.1128/mcb.00047-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/20/2022] Open
Abstract
The generation of two daughter cells with the same genetic information requires error-free chromosome segregation during mitosis. Chromosome transmission fidelity is dependent on spindle structure/function, which requires Asp1 in the fission yeast Schizosaccharomyces pombe Asp1 belongs to the diphosphoinositol pentakisphosphate kinase (PPIP5K)/Vip1 family which generates high-energy inositol pyrophosphate (IPP) molecules. Here, we show that Asp1 is a bifunctional enzyme in vivo: Asp1 kinase generates specific IPPs which are the substrates of the Asp1 pyrophosphatase. Intracellular levels of these IPPs directly correlate with microtubule stability: pyrophosphatase loss-of-function mutants raised Asp1-made IPP levels 2-fold, thus increasing microtubule stability, while overexpression of the pyrophosphatase decreased microtubule stability. Absence of Asp1-generated IPPs resulted in an aberrant, increased spindle association of the S. pombe kinesin-5 family member Cut7, which led to spindle collapse. Thus, chromosome transmission is controlled via intracellular IPP levels. Intriguingly, identification of the mitochondrion-associated Met10 protein as the first pyrophosphatase inhibitor revealed that IPPs also regulate mitochondrial distribution.
Collapse
|
19
|
Liu J, Li Y, Chen J, Wang Y, Zou M, Su R, Huang Y. The fission yeast Schizosaccharomyces pombe Mtf2 is required for mitochondrial cox1 gene expression. MICROBIOLOGY-SGM 2018; 164:400-409. [PMID: 29458562 DOI: 10.1099/mic.0.000602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial gene expression is essential for adenosine triphosphate synthesis via oxidative phosphorylation, which is the universal energy currency of cells. Here, we report the identification and characterization of a homologue of Saccharomyces cerevisiae Mtf2 (also called Nam1) in Schizosaccharomyces pombe. The Δmtf2 mutant with the intron-containing mitochondrial DNA (mtDNA) exhibited impaired growth on a rich medium containing the non-fermentable carbon source glycerol, suggesting that mtf2 is involved in mitochondrial function. mtf2 deletion in a mitochondrial intron-containing background resulted in a barely detectable level of the cox1 mRNA and a reduction in the level of the cob1 mRNA, and severely impaired cox1 translation. In contrast, mtf2 deletion in a mitochondrial intron-less background did not affect the levels of cox1 and cob1 mRNAs. However, Cox1 synthesis could not be restored to the control level in the Δmtf2 mutant with intron-less mtDNA. Our results suggest that unlike its counterpart in S. cerevisiae which plays a general role in synthesis of mtDNA-encoded proteins, S. pombe Mtf2 primarily functions in cox1 translation and the effect of mtf2 deletion on splicing of introns in mtDNA is likely due to a deficiency in the synthesis of intron-encoded maturases.
Collapse
Affiliation(s)
- Jinyu Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yan Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Jie Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Mengting Zou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ruyue Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| |
Collapse
|
20
|
Hagihara K, Kinoshita K, Ishida K, Hojo S, Kameoka Y, Satoh R, Takasaki T, Sugiura R. A genome-wide screen for FTY720-sensitive mutants reveals genes required for ROS homeostasis. MICROBIAL CELL 2017; 4:390-401. [PMID: 29234668 PMCID: PMC5722642 DOI: 10.15698/mic2017.12.601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fingolimod hydrochloride (FTY720), a sphingosine-1-phosphate (S1P) analogue, is an approved immune modulator for the treatment of multiple sclerosis (MS). Notably, in addition to its well-known mode of action as an S1P modulator, accumulating evidence suggests that FTY720 induces apoptosis in various cancer cells via reactive oxygen species (ROS) generation. Although the involvement of multiple signaling molecules, such as JNK (Jun N-terminal kinase), Akt (alpha serine/threonine-protein kinase) and Sphk has been reported, the exact mechanisms how FTY720 induces cell growth inhibition and the functional relationship between FTY720 and these signaling pathways remain elusive. Our previous reports using the fission yeast Schizosaccharomyces pombe as a model system to elucidate FTY720-mediated signaling pathways revealed that FTY720 induces an increase in intracellular Ca2+ concentrations and ROS generation, which resulted in the activation of the transcriptional responses downstream of Ca2+/calcineurin signaling and stress-activated MAPK signaling, respectively. Here, we performed a genome-wide screening for genes whose deletion induces FTY720-sensitive growth in S. pombe and identified 49 genes. These gene products are related to the biological processes involved in metabolic processes, transport, transcription, translation, chromatin organization, cytoskeleton organization and intracellular signal transduction. Notably, most of the FTY720-sensitive deletion cells exhibited NAC-remedial FTY720 sensitivities and dysregulated ROS homeostasis. Our results revealed a novel gene network involving ROS homeostasis and the possible mechanisms of the FTY720 toxicity.
Collapse
Affiliation(s)
- Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Kanako Kinoshita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Kouki Ishida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Shihomi Hojo
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Yoshinori Kameoka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| |
Collapse
|
21
|
Wang Y, Yan J, Zhang Q, Ma X, Zhang J, Su M, Wang X, Huang Y. The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator. Nucleic Acids Res 2017; 45:3323-3340. [PMID: 28334955 PMCID: PMC5389468 DOI: 10.1093/nar/gkx127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/14/2017] [Indexed: 01/15/2023] Open
Abstract
The pentatricopeptide repeat (PPR) proteins characterized by tandem repeats of a degenerate 35-amino-acid motif function in all aspects of organellar RNA metabolism, many of which are essential for organellar gene expression. In this study, we report the characterization of a fission yeast Schizosaccharomyces pombe PPR protein, Ppr10 and a novel Ppr10-associated protein, designated Mpa1. The ppr10 deletion mutant exhibits growth defects in respiratory media, and is dramatically impaired for viability during the late-stationary phase. Deletion of ppr10 affects the accumulation of specific mitochondrial mRNAs. Furthermore, deletion of ppr10 severely impairs mitochondrial protein synthesis, suggesting that Ppr10 plays a general role in mitochondrial protein synthesis. Ppr10 interacts with Mpa1 in vivo and in vitro and the two proteins colocalize in the mitochondrial matrix. The ppr10 and mpa1 deletion mutants exhibit very similar phenotypes. One of Mpa1's functions is to maintain the normal protein level of Ppr10 protein by protecting it from degradation by the mitochondrial matrix protease Lon1. Our findings suggest that Ppr10 functions as a general mitochondrial translational activator, likely through interaction with mitochondrial mRNAs and mitochondrial translation initiation factor Mti2, and that Ppr10 requires Mpa1 association for stability and function.
Collapse
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jianhua Yan
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingzhen Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xuting Ma
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Juan Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Minghui Su
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xiaojun Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
22
|
Liu N, Wu J, Zhang L, Gao Z, Sun Y, Yu M, Zhao Y, Dong S, Lu F, Zhang W. Hydrogen Sulphide modulating mitochondrial morphology to promote mitophagy in endothelial cells under high-glucose and high-palmitate. J Cell Mol Med 2017; 21:3190-3203. [PMID: 28608965 PMCID: PMC5706497 DOI: 10.1111/jcmm.13223] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/03/2017] [Indexed: 01/10/2023] Open
Abstract
Endothelial cell dysfunction is one of the main reasons for type II diabetes vascular complications. Hydrogen sulphide (H2S) has antioxidative effect, but its regulation on mitochondrial dynamics and mitophagy in aortic endothelial cells under hyperglycaemia and hyperlipidaemia is unclear. Rat aortic endothelial cells (RAECs) were treated with 40 mM glucose and 200 μM palmitate to imitate endothelium under hyperglycaemia and hyperlipidaemia, and 100 μM NaHS was used as an exogenous H2S donor. Firstly, we demonstrated that high glucose and palmitate decreased H2S production and CSE expression in RAECs. Then, the antioxidative effect of H2S was proved in RAECs under high glucose and palmitate to reduce mitochondrial ROS level. We also showed that exogenous H2S inhibited mitochondrial apoptosis in RAECs under high glucose and palmitate. Using Mito Tracker and transmission electron microscopy assay, we revealed that exogenous H2S decreased mitochondrial fragments and significantly reduced the expression of p‐Drp‐1/Drp‐1 and Fis1 compared to high‐glucose and high‐palmitate group, whereas it increased mitophagy by transmission electron microscopy assay. We demonstrated that exogenous H2S facilitated Parkin recruited by PINK1 by immunoprecipitation and immunostaining assays and then ubiquitylated mitofusin 2 (Mfn2), which illuminated the mechanism of exogenous H2S on mitophagy. Parkin siRNA suppressed the expression of Mfn2, Nix and LC3B, which revealed that it eliminated mitophagy. In summary, exogenous H2S could protect RAECs against apoptosis under high glucose and palmitate by suppressing oxidative stress, decreasing mitochondrial fragments and promoting mitophagy. Based on these results, we proposed a new mechanism of H2S on protecting endothelium, which might provide a new strategy for type II diabetes vascular complication.
Collapse
Affiliation(s)
- Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jichao Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Linxue Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Zhaopeng Gao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yu Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Miao Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China.,Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin, China
| |
Collapse
|
23
|
Singh A, Xu YJ. Heme deficiency sensitizes yeast cells to oxidative stress induced by hydroxyurea. J Biol Chem 2017; 292:9088-9103. [PMID: 28377506 PMCID: PMC5454094 DOI: 10.1074/jbc.m117.781211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
Hydroxyurea (HU) has a long history of clinical and scientific use as an antiviral, antibacterial, and antitumor agent. It inhibits ribonucleotide reductase and reversibly arrests cells in S phase. However, high concentrations or prolonged treatment with low doses of HU can cause cell lethality. Although the cytotoxicity of HU may significantly contribute to its therapeutic effects, the underlying mechanisms remain poorly understood. We have previously shown that HU can induce cytokinesis arrest in the erg11-1 mutant of fission yeast, which has a partial defect in the biosynthesis of fungal membrane sterol ergosterol. Here, we report the identification of a new mutant in heme biosynthesis, hem13-1, that is hypersensitive to HU. We found that the HU hypersensitivity of the hem13-1 mutant is caused by oxidative stress and not by replication stress or a defect in cellular response to replication stress. The mutation is hypomorphic and causes heme deficiency, which likely sensitizes the cells to the HU-induced oxidative stress. Because the heme biosynthesis pathway is highly conserved in eukaryotes, this finding, as we show in our separate report, may help to expand the therapeutic spectrum of HU to additional pathological conditions.
Collapse
Affiliation(s)
- Amanpreet Singh
- From the Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435 and
- the Wadsworth Center, New York State Department of Health, Albany, New York 12208
| | - Yong-Jie Xu
- From the Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435 and
| |
Collapse
|
24
|
Su Y, Yang Y, Huang Y. Loss of ppr3, ppr4, ppr6, or ppr10 perturbs iron homeostasis and leads to apoptotic cell death in Schizosaccharomyces pombe. FEBS J 2017; 284:324-337. [PMID: 27886462 DOI: 10.1111/febs.13978] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/19/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins characterized by tandem arrays of a degenerate 35-amino-acid repeat belong to a large family of RNA-binding proteins that are involved in post-transcriptional control of organelle gene expression. PPR proteins are ubiquitous in eukaryotes, and particularly prevalent in higher plants. Schizosaccharomyces pombe has 10 PPR proteins. Among them, ppr3, ppr4, ppr6, and ppr10 participate in mitochondrial post-transcriptional processes and are required for mitochondrial electron transport chain (ETC) function. In the present work, we showed that deletion of ppr3, ppr4, ppr6, or ppr10 led to apoptotic cell death, as revealed by DAPI and Annexin V-FITC staining. These mutants also exhibited elevated levels of reactive oxygen species (ROS). RNA sequencing (RNA-seq) and quantitative RT-PCR analyses revealed that deletion of ppr10 affected critical biological processes. In particular, a core set of genes involved in iron uptake and/or iron homeostasis was elevated in the Δppr10 mutant, suggesting an elevated level of intracellular iron in the mutant. Consistent with this notion, Δppr3, Δppr4, Δppr6, and Δppr10 mutants exhibited increased sensitivity to iron. Furthermore, the iron chelator, bathophenanthroline disulfonic acid, but not the calcium chelator EGTA, nearly restored the viabilities of Δppr3, Δppr4, Δppr6, and Δppr10 mutants, and reduced ROS levels in the mutants. These results show for the first time that deletion of a ppr gene leads to perturbation of iron homeostasis. Our results also suggest that disrupted iron homeostasis in Δppr3, Δppr4, Δppr6, and Δppr10 mutants may lead to an increase in the level of ROS and induction of apoptotic cell death in S. pombe. DATABASE The RNA-seq data have been deposited in the National Center for Biotechnology Information (NCBI) BioProject database (accession number SRP091623) and Gene Expression Omnibus (GEO) database (accession number GSE90144).
Collapse
Affiliation(s)
- Yang Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| | - Yanmei Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
25
|
Hsu YY, Chou JY. Environmental Factors Can Influence Mitochondrial Inheritance in the Saccharomyces Yeast Hybrids. PLoS One 2017; 12:e0169953. [PMID: 28081193 PMCID: PMC5231273 DOI: 10.1371/journal.pone.0169953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023] Open
Abstract
Mitochondria play a critical role in the generation of metabolic energy and are crucial for eukaryotic cell survival and proliferation. In most sexual eukaryotes, mitochondrial DNA (mtDNA) is inherited from only one parent in non-Mendelian inheritance in contrast to the inheritance of nuclear DNA. The model organism Saccharomyces cerevisiae is commonly used to study mitochondrial biology. It has two mating types: MATa and MATα. Previous studies have suggested that the mtDNA inheritance patterns in hybrid diploid cells depend on the genetic background of parental strains. However, the underlying mechanisms remain unclear. To elucidate the mechanisms, we examined the effects of environmental factors on the mtDNA inheritance patterns in hybrids obtained by crossing S. cerevisiae with its close relative S. paradoxus. The results demonstrated that environmental factors can influence mtDNA transmission in hybrid diploids, and that the inheritance patterns are strain dependent. The fitness competition assay results showed that the fitness differences can explain the mtDNA inheritance patterns under specific conditions. However, in this study, we found that fitness differences cannot fully be explained by mitochondrial activity in hybrids under stress conditions.
Collapse
Affiliation(s)
- Yu-Yi Hsu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan, R.O.C.
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan, R.O.C.
- * E-mail:
| |
Collapse
|
26
|
Malecki M, Bitton DA, Rodríguez-López M, Rallis C, Calavia NG, Smith GC, Bähler J. Functional and regulatory profiling of energy metabolism in fission yeast. Genome Biol 2016; 17:240. [PMID: 27887640 PMCID: PMC5124322 DOI: 10.1186/s13059-016-1101-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The control of energy metabolism is fundamental for cell growth and function and anomalies in it are implicated in complex diseases and ageing. Metabolism in yeast cells can be manipulated by supplying different carbon sources: yeast grown on glucose rapidly proliferates by fermentation, analogous to tumour cells growing by aerobic glycolysis, whereas on non-fermentable carbon sources metabolism shifts towards respiration. RESULTS We screened deletion libraries of fission yeast to identify over 200 genes required for respiratory growth. Growth media and auxotrophic mutants strongly influenced respiratory metabolism. Most genes uncovered in the mutant screens have not been implicated in respiration in budding yeast. We applied gene-expression profiling approaches to compare steady-state fermentative and respiratory growth and to analyse the dynamic adaptation to respiratory growth. The transcript levels of most genes functioning in energy metabolism pathways are coherently tuned, reflecting anticipated differences in metabolic flows between fermenting and respiring cells. We show that acetyl-CoA synthase, rather than citrate lyase, is essential for acetyl-CoA synthesis in fission yeast. We also investigated the transcriptional response to mitochondrial damage by genetic or chemical perturbations, defining a retrograde response that involves the concerted regulation of distinct groups of nuclear genes that may avert harm from mitochondrial malfunction. CONCLUSIONS This study provides a rich framework of the genetic and regulatory basis of energy metabolism in fission yeast and beyond, and it pinpoints weaknesses of commonly used auxotroph mutants for investigating metabolism. As a model for cellular energy regulation, fission yeast provides an attractive and complementary system to budding yeast.
Collapse
Affiliation(s)
- Michal Malecki
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Danny A Bitton
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK
| | - Maria Rodríguez-López
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK
| | - Charalampos Rallis
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK.,Present address: School of Health, Sport and Biosciences, University of East London, London, E15 4LZ, UK
| | - Noelia Garcia Calavia
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK
| | - Graeme C Smith
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
27
|
Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:3317-3333. [PMID: 27558664 PMCID: PMC5068951 DOI: 10.1534/g3.116.033829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.
Collapse
|
28
|
A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism. Cell Rep 2016; 16:1891-902. [PMID: 27477275 DOI: 10.1016/j.celrep.2016.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/19/2016] [Accepted: 07/03/2016] [Indexed: 01/20/2023] Open
Abstract
The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer.
Collapse
|
29
|
Pluskal T, Sajiki K, Becker J, Takeda K, Yanagida M. Diverse fission yeast genes required for responding to oxidative and metal stress: Comparative analysis of glutathione-related and other defense gene deletions. Genes Cells 2016; 21:530-42. [PMID: 27005325 DOI: 10.1111/gtc.12359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/22/2016] [Indexed: 12/25/2022]
Abstract
Living organisms have evolved multiple sophisticated mechanisms to deal with reactive oxygen species. We constructed a collection of twelve single-gene deletion strains of the fission yeast Schizosaccharomyces pombe designed for the study of oxidative and heavy metal stress responses. This collection contains deletions of biosynthetic enzymes of glutathione (Δgcs1 and Δgsa1), phytochelatin (Δpcs2), ubiquinone (Δabc1) and ergothioneine (Δegt1), as well as catalase (Δctt1), thioredoxins (Δtrx1 and Δtrx2), Cu/Zn- and Mn- superoxide dismutases (SODs; Δsod1 and Δsod2), sulfiredoxin (Δsrx1) and sulfide-quinone oxidoreductase (Δhmt2). First, we employed metabolomic analysis to examine the mutants of the glutathione biosynthetic pathway. We found that ophthalmic acid was produced by the same enzymes as glutathione in S. pombe. The identical genetic background of the strains allowed us to assess the severity of the individual gene knockouts by treating the deletion strains with oxidative agents. Among other results, we found that glutathione deletion strains were not particularly sensitive to peroxide or superoxide, but highly sensitive to cadmium stress. Our results show the astonishing diversity in cellular adaptation mechanisms to various types of oxidative and metal stress and provide a useful tool for further research into stress responses.
Collapse
Affiliation(s)
- Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Joanne Becker
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Kojiro Takeda
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| |
Collapse
|
30
|
Benito-Pescador D, Santander D, Arranz M, Díaz-Mínguez JM, Eslava AP, van Kan JAL, Benito EP. Bcmimp1, a Botrytis cinerea Gene Transiently Expressed in planta, Encodes a Mitochondrial Protein. Front Microbiol 2016; 7:213. [PMID: 26952144 PMCID: PMC4767927 DOI: 10.3389/fmicb.2016.00213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/09/2016] [Indexed: 11/19/2022] Open
Abstract
Botrytis cinerea is a widespread necrotrophic fungus which infects more than 200 plant species. In an attempt to characterize the physiological status of the fungus in planta and to identify genetic factors contributing to its ability to infect the host cells, a differential gene expression analysis during the interaction B. cinerea-tomato was carried out. Gene Bcmimp1 codes for a mRNA detected by differential display in the course of this analysis. During the interaction with the host, it shows a transient expression pattern with maximal expression levels during the colonization and maceration of the infected tissues. Bioinformatic analysis suggested that BCMIMP1 is an integral membrane protein located in the mitochondrial inner membrane. Co-localization experiments with a BCMIMP1-GFP fusion protein confirmed that the protein is targeted to the mitochondria. ΔBcmimp1 mutants do not show obvious phenotypic differences during saprophytic growth and their infection ability was unaltered as compared to the wild-type. Interestingly, the mutants produced increased levels of reactive oxygen species, likely as a consequence of disturbed mitochondrial function. Although Bcmimp1 expression is enhanced in planta it cannot be considered a pathogenicity factor.
Collapse
Affiliation(s)
- David Benito-Pescador
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Daniela Santander
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de SalamancaSalamanca, Spain; Facultad de Ciencias Agropecuarias y Ambientale, Universidad Técnica del NorteIbarra, Ecuador
| | - M Arranz
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - José M Díaz-Mínguez
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Arturo P Eslava
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands
| | - Ernesto P Benito
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
31
|
Abstract
Next-generation sequencing approaches have considerably advanced our understanding of genome function and regulation. However, the knowledge of gene function and complex cellular processes remains a challenge and bottleneck in biological research. Phenomics is a rapidly emerging area, which seeks to rigorously characterize all phenotypes associated with genes or gene variants. Such high-throughput phenotyping under different conditions can be a potent approach toward gene function. The fission yeast Schizosaccharomyces pombe (S. pombe) is a proven eukaryotic model organism that is increasingly used for genomewide screens and phenomic assays. In this review, we highlight current large-scale, cell-based approaches used with S. pombe, including computational colony-growth measurements, genetic interaction screens, parallel profiling using barcodes, microscopy-based cell profiling, metabolomic methods and transposon mutagenesis. These diverse methods are starting to offer rich insights into the relationship between genotypes and phenotypes.
Collapse
Affiliation(s)
- Charalampos Rallis
- a Research Department of Genetics , Evolution and Environment and UCL Institute of Healthy Ageing, University College London , London , UK
| | - Jürg Bähler
- a Research Department of Genetics , Evolution and Environment and UCL Institute of Healthy Ageing, University College London , London , UK
| |
Collapse
|
32
|
Abstract
tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.
Collapse
Affiliation(s)
- Michael P Guy
- a Department of Biochemistry and Biophysics; Center for RNA Biology ; University of Rochester School of Medicine ; Rochester , NY USA
| | | |
Collapse
|
33
|
Guy MP, Phizicky EM. Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes. RNA (NEW YORK, N.Y.) 2015; 21:61-74. [PMID: 25404562 PMCID: PMC4274638 DOI: 10.1261/rna.047639.114] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Post-transcriptional tRNA modifications are critical for efficient and accurate translation, and have multiple different roles. Lack of modifications often leads to different biological consequences in different organisms, and in humans is frequently associated with neurological disorders. We investigate here the conservation of a unique circuitry for anticodon loop modification required for healthy growth in the yeast Saccharomyces cerevisiae. S. cerevisiae Trm7 interacts separately with Trm732 and Trm734 to 2'-O-methylate three substrate tRNAs at anticodon loop residues C₃₂ and N₃₄, and these modifications are required for efficient wybutosine formation at m(1)G₃₇ of tRNA(Phe). Moreover, trm7Δ and trm732Δ trm734Δ mutants grow poorly due to lack of functional tRNA(Phe). It is unknown if this circuitry is conserved and important for tRNA(Phe) modification in other eukaryotes, but a likely human TRM7 ortholog is implicated in nonsyndromic X-linked intellectual disability. We find that the distantly related yeast Schizosaccharomyces pombe has retained this circuitry for anticodon loop modification, that S. pombe trm7Δ and trm734Δ mutants have more severe phenotypes than the S. cerevisiae mutants, and that tRNA(Phe) is the major biological target. Furthermore, we provide evidence that Trm7 and Trm732 function is widely conserved throughout eukaryotes, since human FTSJ1 and THADA, respectively, complement growth defects of S. cerevisiae trm7Δ and trm732Δ trm734Δ mutants by modifying C₃₂ of tRNA(Phe), each working with the corresponding S. cerevisiae partner protein. These results suggest widespread importance of 2'-O-methylation of the tRNA anticodon loop, implicate tRNA(Phe) as the crucial substrate, and suggest that this modification circuitry is important for human neuronal development.
Collapse
Affiliation(s)
- Michael P Guy
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
34
|
Taurine Depletion Decreases GRP78 Expression and Downregulates Perk-Dependent Activation of the Unfolded Protein Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:571-9. [PMID: 25833528 DOI: 10.1007/978-3-319-15126-7_46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Erekat N, Al-Khatib A, Al-Jarrah M. Heat shock protein 90 is a potential therapeutic target for ameliorating skeletal muscle abnormalities in Parkinson's disease. Neural Regen Res 2014; 9:616-21. [PMID: 25206864 PMCID: PMC4146229 DOI: 10.4103/1673-5374.130105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2014] [Indexed: 11/25/2022] Open
Abstract
Previous studies have confirmed that heat shock protein 90 overexpression can lead to dopaminergic neuronal death. This study was designed to further investigate what effects are produced by heat shock protein 90 after endurance exercise training. Immunohistochemistry results showed that exercise training significantly inhibited heat shock protein 90 overexpression in the soleus and gastrocnemius in Parkinson's disease rats, which is a potential therapeutic target for ameliorating skeletal muscle abnormalities in Parkinson's disease.
Collapse
Affiliation(s)
- Nour Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Ahed Al-Khatib
- Department of Pathology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammed Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan (Current address: Fatima College of Health Sciences (FCHS). Abu Dhabi, UAE)
| |
Collapse
|
36
|
Majtan T, Pey AL, Fernández R, Fernández JA, Martínez-Cruz LA, Kraus JP. Domain organization, catalysis and regulation of eukaryotic cystathionine beta-synthases. PLoS One 2014; 9:e105290. [PMID: 25122507 PMCID: PMC4133348 DOI: 10.1371/journal.pone.0105290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023] Open
Abstract
Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme’s catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme’s catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Angel L. Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
37
|
Lakhani R, Vogel KR, Till A, Liu J, Burnett SF, Gibson KM, Subramani S. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition. EMBO Mol Med 2014; 6:551-66. [PMID: 24578415 PMCID: PMC3992080 DOI: 10.1002/emmm.201303356] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In addition to key roles in embryonic neurogenesis and myelinogenesis, γ-aminobutyric acid (GABA) serves as the primary inhibitory mammalian neurotransmitter. In yeast, we have identified a new role for GABA that augments activity of the pivotal kinase, Tor1. GABA inhibits the selective autophagy pathways, mitophagy and pexophagy, through Sch9, the homolog of the mammalian kinase, S6K1, leading to oxidative stress, all of which can be mitigated by the Tor1 inhibitor, rapamycin. To confirm these processes in mammals, we examined the succinic semialdehyde dehydrogenase (SSADH)-deficient mouse model that accumulates supraphysiological GABA in the central nervous system and other tissues. Mutant mice displayed increased mitochondrial numbers in the brain and liver, expected with a defect in mitophagy, and morphologically abnormal mitochondria. Administration of rapamycin to these mice reduced mTOR activity, reduced the elevated mitochondrial numbers, and normalized aberrant antioxidant levels. These results confirm a novel role for GABA in cell signaling and highlight potential pathomechanisms and treatments in various human pathologies, including SSADH deficiency, as well as other diseases characterized by elevated levels of GABA.
Collapse
Affiliation(s)
- Ronak Lakhani
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Lin SJ, Austriaco N. Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Res 2013; 14:119-35. [PMID: 24205865 DOI: 10.1111/1567-1364.12113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 12/22/2022] Open
Abstract
How do cells age and die? For the past 20 years, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to uncover the genes that regulate lifespan and cell death. More recently, investigators have begun to interrogate the other yeasts, the fission yeast, Schizosaccharomyces pombe, and the human fungal pathogen, Candida albicans, to determine if similar longevity and cell death pathways exist in these organisms. After summarizing the longevity and cell death phenotypes in S. cerevisiae, this mini-review surveys the progress made in the study of both aging and programed cell death (PCD) in the yeast models, with a focus on the biology of S. pombe and C. albicans. Particular emphasis is placed on the similarities and differences between the two types of aging, replicative aging, and chronological aging, and between the three types of cell death, intrinsic apoptosis, autophagic cell death, and regulated necrosis, found in these yeasts. The development of the additional microbial models for aging and PCD in the other yeasts may help further elucidate the mechanisms of longevity and cell death regulation in eukaryotes.
Collapse
Affiliation(s)
- Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | | |
Collapse
|
39
|
Marada A, Allu PK, Murari A, PullaReddy B, Tammineni P, Thiriveedi VR, Danduprolu J, Sepuri NBV. Mge1, a nucleotide exchange factor of Hsp70, acts as an oxidative sensor to regulate mitochondrial Hsp70 function. Mol Biol Cell 2013; 24:692-703. [PMID: 23345595 PMCID: PMC3596242 DOI: 10.1091/mbc.e12-10-0719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yeast Mge1, the cochaperone of mitochondrial heat shock protein 70 (mHsp70), is essential for exchanging ATP for ADP on mHsp70 and thus for recycling of mHsp70 for mitochondrial protein import and folding. Mge1 acts as an oxidative sensor to regulate mHsp70 function. Despite the growing evidence of the role of oxidative stress in disease, its molecular mechanism of action remains poorly understood. The yeast Saccharomyces cerevisiae provides a valuable model system in which to elucidate the effects of oxidative stress on mitochondria in higher eukaryotes. Dimeric yeast Mge1, the cochaperone of heat shock protein 70 (Hsp70), is essential for exchanging ATP for ADP on Hsp70 and thus for recycling of Hsp70 for mitochondrial protein import and folding. Here we show an oxidative stress–dependent decrease in Mge1 dimer formation accompanied by a concomitant decrease in Mge1–Hsp70 complex formation in vitro. The Mge1-M155L substitution mutant stabilizes both Mge1 dimer and Mge1–Hsp70 complex formation. Most important, the Mge1-M155L mutant rescues the slow-growth phenomenon associated with the wild-type Mge1 strain in the presence of H2O2 in vivo, stimulation of the ATPase activity of Hsp70, and the protein import defect during oxidative stress in vitro. Furthermore, cross-linking studies reveal that Mge1–Hsp70 complex formation in mitochondria isolated from wild-type Mge1 cells is more susceptible to reactive oxygen species compared with mitochondria from Mge1-M155L cells. This novel oxidative sensor capability of yeast Mge1 might represent an evolutionarily conserved function, given that human recombinant dimeric Mge1 is also sensitive to H2O2.
Collapse
Affiliation(s)
- Adinarayana Marada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Menzies KJ, Singh K, Saleem A, Hood DA. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J Biol Chem 2013; 288:6968-79. [PMID: 23329826 DOI: 10.1074/jbc.m112.431155] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise.
Collapse
Affiliation(s)
- Keir J Menzies
- School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
41
|
Ansenberger-Fricano K, Ganini DDS, Mao M, Chatterjee S, Dallas S, Mason RP, Stadler K, Santos JH, Bonini MG. The peroxidase activity of mitochondrial superoxide dismutase. Free Radic Biol Med 2013; 54:116-24. [PMID: 22982047 PMCID: PMC4155036 DOI: 10.1016/j.freeradbiomed.2012.08.573] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 12/28/2022]
Abstract
Manganese superoxide dismutase (MnSOD) is an integral mitochondrial protein known as a first-line antioxidant defense against superoxide radical anions produced as by-products of the electron transport chain. Recent studies have shaped the idea that by regulating the mitochondrial redox status and H(2)O(2) outflow, MnSOD acts as a fundamental regulator of cellular proliferation, metabolism, and apoptosis, thereby assuming roles that extend far beyond its proposed antioxidant functions. Accordingly, allelic variations of MnSOD that have been shown to augment levels of MnSOD in mitochondria result in a 10-fold increase in prostate cancer risk. In addition, epidemiologic studies indicate that reduced glutathione peroxidase activity along with increases in H(2)O(2) further increase cancer risk in the face of MnSOD overexpression. These facts led us to hypothesize that, like its Cu,ZnSOD counterpart, MnSOD may work as a peroxidase, utilizing H(2)O(2) to promote mitochondrial damage, a known cancer risk factor. Here we report that MnSOD indeed possesses peroxidase activity that manifests in mitochondria when the enzyme is overexpressed.
Collapse
Affiliation(s)
- Kristine Ansenberger-Fricano
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
| | - Douglas da Silva Ganini
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Mao Mao
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
| | - Saurabh Chatterjee
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Shannon Dallas
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Ronald P. Mason
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Janine H. Santos
- Department of Pharmacology and Physiology, New Jersey Medical School of the UMDNJ, Newark, NJ, 07103, USA
| | - Marcelo G. Bonini
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| |
Collapse
|
42
|
Accumulation of linear mitochondrial DNA fragments in the nucleus shortens the chronological life span of yeast. Eur J Cell Biol 2012; 91:782-8. [DOI: 10.1016/j.ejcb.2012.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 11/20/2022] Open
|
43
|
Burton RS, Barreto FS. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities? Mol Ecol 2012; 21:4942-57. [PMID: 22994153 DOI: 10.1111/mec.12006] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 01/07/2023]
Abstract
Evolution in allopatric populations can lead to incompatibilities that result in reduced hybrid fitness and ultimately reproductive isolation upon secondary contact. The Dobzhansky-Muller (DM) model nicely accounts for the evolution of such incompatibilities. Although DM incompatibilities were originally conceived as resulting of interactions between nuclear genes, recent studies have documented cases where incompatibilities have arisen between nuclear and mitochondrial genomes (mtDNA). Although mtDNA comprises only a tiny component (typically <<0.01%) of an organism's genetic material, several features of mtDNA may lead to a disproportionate contribution to the evolution of hybrid incompatibilities: (i) essentially all functions of mtDNA require interaction with nuclear gene products. All mtDNA-encoded proteins are components of the oxidative phosphorylation (OXPHOS) system and all mtDNA-encoded RNAs are part of the mitochondrial protein synthetic machinery; both processes require interaction with nuclear-encoded proteins for function. (ii) Transcription and replication of mtDNA also involve mitonuclear interactions as nuclear-encoded proteins must bind to regulatory motifs in the mtDNA to initiate these processes. (iii) Although features of mtDNA vary amongst taxa, metazoan mtDNA is typically characterized by high nucleotide substitution rates, lack of recombination and reduced effective population sizes that collectively lead to increased chance fixation of mildly deleterious mutations. Combined, these features create an evolutionary dynamic where rapid mtDNA evolution favours compensatory nuclear gene evolution, ultimately leading to co-adaptation of mitochondrial and nuclear genomes. When previously isolated lineages hybridize in nature or in the lab, intergenomic co-adaptation is disrupted and hybrid breakdown is observed; the role of intergenomic co-adaptation in hybrid breakdown and speciation will generally be most pronounced when rates of mtDNA evolution are high or when restricted gene flow results in significant population differentiation.
Collapse
Affiliation(s)
- Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
44
|
Kim JY, Kwon ES, Roe JH. A homeobox protein Phx1 regulates long-term survival and meiotic sporulation in Schizosaccharomyces pombe. BMC Microbiol 2012; 12:86. [PMID: 22646093 PMCID: PMC3438059 DOI: 10.1186/1471-2180-12-86] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the fission yeast Schizosaccharomyces pombe, the phx1+ (pombe homeobox) gene was initially isolated as a multi-copy suppressor of lysine auxotrophy caused by depletion of copper/zinc-containing superoxide dismutase (CuZn-SOD). Overproduction of Phx1 increased the synthesis of homocitrate synthase, the first enzyme in lysine biosynthetic pathway, which is labile to oxidative stress. Phx1 has a well conserved DNA-binding domain called homeodomain at the N-terminal region and is predicted to be a transcription factor in S. pombe. However, its role has not been revealed in further detail. Here we examined its expression pattern and the phenotype of its null mutant to get clues on its function. RESULTS Fluorescence from the Phx1-GFP expressed from a chromosomal fusion gene demonstrated that it is localized primarily in the nucleus, and is distinctly visible during the stationary phase. When we replaced the N-terminal homeobox domain of Phx1 with the DNA binding domain of Pap1, a well-characterized transcription factor, the chimeric protein caused the elevation of transcripts from Pap1-dependent genes such as ctt1+ and trr1+, suggesting that Phx1 possesses transcriptional activating activity when bound to DNA. The amount of phx1+ transcripts sharply increased as cells entered the stationary phase and was maintained at high level throughout the stationary phase. Nutrient shift down to low nitrogen or carbon sources caused phx1+ induction during the exponential phase, suggesting that cells need Phx1 for maintenance function during nutrient starvation. The Δphx1 null mutant showed decreased viability in long-term culture, whereas overproduction of Phx1 increased viability. Decrease in long-term survival was also observed for Δphx1 under N- or C-starved conditions. In addition, Δphx1 mutant was more sensitive to various oxidants and heat shock. When we examined sporulation of the Δphx1/Δphx1 diploid strain, significant decrease in the formation of meiotic spores was observed. CONCLUSIONS Phx1 is a transcriptional regulator whose synthesis is elevated during stationary phase and by nutrient starvation in S. pombe. It supports long-term survival and stress tolerance against oxidation and heat, and plays a key role in the formation of meiotic spores.
Collapse
Affiliation(s)
- Ji-Yoon Kim
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul, South Korea
| | | | | |
Collapse
|
45
|
Hayashi H, Nakagami H, Takeichi M, Shimamura M, Koibuchi N, Oiki E, Sato N, Koriyama H, Mori M, Gerardo Araujo R, Maeda A, Morishita R, Tamai K, Kaneda Y. HIG1, a novel regulator of mitochondrial γ-secretase, maintains normal mitochondrial function. FASEB J 2012; 26:2306-17. [PMID: 22355194 DOI: 10.1096/fj.11-196063] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The γ-secretase complex (which contains presenilins, nicastrin, anterior pharynx defective-1, and presenilin enhancer-2) cleaves type I transmembrane proteins, including Notch and amyloid precursor protein. Dysregulated γ-secretase activity has been implicated in the pathogenesis of Alzheimer's disease, stroke, atherosclerosis, and cancer. Tight regulation of γ-secretase activity is required for normal physiology. Here, we isolated HIG1 (hypoxia inducible gene 1, domain member 1A) from a functional screen of γ-secretase inhibitory genes. HIG1 was highly expressed in the brain. Interestingly, HIG1 was localized to the mitochondria and was directly bound to γ-secretase components on the mitochondrial membrane in SK-N-SH neuroblastoma cells. Overexpresssion of HIG1 attenuated hypoxia-induced γ-secretase activation on the mitochondrial membrane and the accumulation of intracellular amyloid β. This accumulation was accompanied by hypoxia-induced mitochondrial dysfunction. The latter half domain of HIG1 was required for binding to the γ-secretase complex and suppression of γ-secretase activity. Moreover, depletion of HIG1 increased γ-secretase activation and enhanced hypoxia-induced mitochondrial dysfunction. In summary, HIG1 is a novel modulator of the mitochondrial γ-secretase complex, and may play a role in the maintenance of normal mitochondrial function.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Division of Gene Therapy Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Di Y, Holmes EJ, Butt A, Dawson K, Mironov A, Kotiadis VN, Gourlay CW, Jones N, Wilkinson CRM. H₂O₂ stress-specific regulation of S. pombe MAPK Sty1 by mitochondrial protein phosphatase Ptc4. EMBO J 2012; 31:563-75. [PMID: 22139357 PMCID: PMC3273383 DOI: 10.1038/emboj.2011.438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 10/31/2011] [Indexed: 01/27/2023] Open
Abstract
In fission yeast, the stress-activated MAP kinase, Sty1, is activated via phosphorylation upon exposure to stress and orchestrates an appropriate response. Its activity is attenuated by either serine/threonine PP2C or tyrosine phosphatases. Here, we found that the PP2C phosphatase, Ptc4, plays an important role in inactivating Sty1 specifically upon oxidative stress. Sty1 activity remains high in a ptc4 deletion mutant upon H(2)O(2) but not under other types of stress. Surprisingly, Ptc4 localizes to the mitochondria and is targeted there by an N-terminal mitochondrial targeting sequence (MTS), which is cleaved upon import. A fraction of Sty1 also localizes to the mitochondria suggesting that Ptc4 attenuates the activity of a mitochondrial pool of this MAPK. Cleavage of the Ptc4 MTS is greatly reduced specifically upon H(2)O(2), resulting in the full-length form of the phosphatase; this displays a stronger interaction with Sty1, thus suggesting a novel mechanism by which the negative regulation of MAPK signalling is controlled and providing an explanation for the oxidative stress-specific nature of the regulation of Sty1 by Ptc4.
Collapse
Affiliation(s)
- Yujun Di
- Cell Regulation Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Emily J Holmes
- Cell Regulation Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Amna Butt
- Cell Regulation Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Keren Dawson
- Cell Regulation Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Aleksandr Mironov
- EM Core Facility, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | - Nic Jones
- Cell Regulation Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Caroline R M Wilkinson
- Cell Regulation Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| |
Collapse
|
47
|
Borklu Yucel E, Ulgen KO. A network-based approach on elucidating the multi-faceted nature of chronological aging in S. cerevisiae. PLoS One 2011; 6:e29284. [PMID: 22216232 PMCID: PMC3244448 DOI: 10.1371/journal.pone.0029284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/23/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cellular mechanisms leading to aging and therefore increasing susceptibility to age-related diseases are a central topic of research since aging is the ultimate, yet not understood mechanism of the fate of a cell. Studies with model organisms have been conducted to ellucidate these mechanisms, and chronological aging of yeast has been extensively used as a model for oxidative stress and aging of postmitotic tissues in higher eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS The chronological aging network of yeast was reconstructed by integrating protein-protein interaction data with gene ontology terms. The reconstructed network was then statistically "tuned" based on the betweenness centrality values of the nodes to compensate for the computer automated method. Both the originally reconstructed and tuned networks were subjected to topological and modular analyses. Finally, an ultimate "heart" network was obtained via pooling the step specific key proteins, which resulted from the decomposition of the linear paths depicting several signaling routes in the tuned network. CONCLUSIONS/SIGNIFICANCE The reconstructed networks are of scale-free and hierarchical nature, following a power law model with γ = 1.49. The results of modular and topological analyses verified that the tuning method was successful. The significantly enriched gene ontology terms of the modular analysis confirmed also that the multifactorial nature of chronological aging was captured by the tuned network. The interplay between various signaling pathways such as TOR, Akt/PKB and cAMP/Protein kinase A was summarized in the "heart" network originated from linear path analysis. The deletion of four genes, TCB3, SNA3, PST2 and YGR130C, was found to increase the chronological life span of yeast. The reconstructed networks can also give insight about the effect of other cellular machineries on chronological aging by targeting different signaling pathways in the linear path analysis, along with unraveling of novel proteins playing part in these pathways.
Collapse
Affiliation(s)
- Esra Borklu Yucel
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.
| | | |
Collapse
|
48
|
Jia X, He W, Murchie AIH, Chen D. The global transcriptional response of fission yeast to hydrogen sulfide. PLoS One 2011; 6:e28275. [PMID: 22164259 PMCID: PMC3229568 DOI: 10.1371/journal.pone.0028275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/04/2011] [Indexed: 11/23/2022] Open
Abstract
Background Hydrogen sulfide (H2S) is a newly identified member of the small family of gasotransmitters that are endogenous gaseous signaling molecules that have a fundamental role in human biology and disease. Although it is a relatively recent discovery and the mechanism of H2S activity is not completely understood, it is known to be involved in a number of cellular processes; H2S can affect ion channels, transcription factors and protein kinases in mammals. Methodology/Principal Findings In this paper, we have used fission yeast as a model organism to study the global gene expression profile in response to H2S by microarray. We initially measured the genome-wide transcriptional response of fission yeast to H2S. Through the functional classification of genes whose expression profile changed in response to H2S, we found that H2S mainly influences genes that encode putative or known stress proteins, membrane transporters, cell cycle/meiotic proteins, transcription factors and respiration protein in the mitochondrion. Our analysis showed that there was a significant overlap between the genes affected by H2S and the stress response. We identified that the target genes of the MAPK pathway respond to H2S; we also identified that a number of transporters respond to H2S, these include sugar/carbohydrate transporters, ion transporters, and amino acid transporters. We found many mitochondrial genes to be down regulated upon H2S treatment and that H2S can reduce mitochondrial oxygen consumption. Conclusion/Significance This study identifies potential molecular targets of the signaling molecule H2S in fission yeast and provides clues about the identity of homologues human proteins and will further the understanding of the cellular role of H2S in human diseases.
Collapse
Affiliation(s)
- Xu Jia
- Institute of Biomedical Science, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Pudong, Shanghai, China
| | - Weizhi He
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Alastair I. H. Murchie
- Institute of Biomedical Science, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Pudong, Shanghai, China
- * E-mail: (DC); (AIHM)
| | - Dongrong Chen
- Institute of Biomedical Science, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Pudong, Shanghai, China
- * E-mail: (DC); (AIHM)
| |
Collapse
|
49
|
White spot syndrome virus induces metabolic changes resembling the warburg effect in shrimp hemocytes in the early stage of infection. J Virol 2011; 85:12919-28. [PMID: 21976644 DOI: 10.1128/jvi.05385-11] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Warburg effect is an abnormal glycolysis response that is associated with cancer cells. Here we present evidence that metabolic changes resembling the Warburg effect are induced by a nonmammalian virus. When shrimp were infected with white spot syndrome virus (WSSV), changes were induced in several metabolic pathways related to the mitochondria. At the viral genome replication stage (12 h postinfection [hpi]), glucose consumption and plasma lactate concentration were both increased in WSSV-infected shrimp, and the key enzyme of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PDH), showed increased activity. We also found that at 12 hpi there was no alteration in the ADP/ATP ratio and that oxidative stress was lower than that in uninfected controls. All of these results are characteristic of the Warburg effect as it is present in mammals. There was also a significant decrease in triglyceride concentration starting at 12 hpi. At the late stage of the infection cycle (24 hpi), hemocytes of WSSV-infected shrimp showed several changes associated with cell death. These included the induction of mitochondrial membrane permeabilization (MMP), increased oxidative stress, decreased glucose consumption, and disrupted energy production. A previous study showed that WSSV infection led to upregulation of the voltage-dependent anion channel (VDAC), which is known to be involved in both the Warburg effect and MMP. Here we show that double-stranded RNA (dsRNA) silencing of the VDAC reduces WSSV-induced mortality and virion copy number. For these results, we hypothesize a model depicting the metabolic changes in host cells at the early and late stages of WSSV infection.
Collapse
|
50
|
Seoane M, Mosquera-Miguel A, Gonzalez T, Fraga M, Salas A, Costoya JA. The mitochondrial genome is a "genetic sanctuary" during the oncogenic process. PLoS One 2011; 6:e23327. [PMID: 21858071 PMCID: PMC3157371 DOI: 10.1371/journal.pone.0023327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022] Open
Abstract
Since Otto Warburg linked mitochondrial physiology and oncogenesis in the 1930s, a number of studies have focused on the analysis of the genetic basis for the presence of aerobic glycolysis in cancer cells. However, little or no evidence exists today to indicate that mtDNA mutations are directly responsible for the initiation of tumor onset. Based on a model of gliomagenesis in the mouse, we aimed to explore whether or not mtDNA mutations are associated with the initiation of tumor formation, maintenance and aggressiveness. We reproduced the different molecular events that lead from tumor initiation to progression in the mouse glioma. In human gliomas, most of the genetic alterations that have been previously identified result in the aberrant activation of different signaling pathways and deregulation of the cell cycle. Our data indicates that mitochondrial dysfunction is associated with reactive oxygen species (ROS) generation, leading to increased nuclear DNA (nDNA) mutagenesis, but maintaining the integrity of the mitochondrial genome. In addition, mutational stability has been observed in entire mtDNA of human gliomas; this is in full agreement with the results obtained in the cancer mouse model. We use this model as a paradigm of oncogenic transformation due to the fact that mutations commonly found in gliomas appear to be the most common molecular alterations leading to tumor development in most types of human cancer. Our results indicate that the mtDNA genome is kept by the cell as a "genetic sanctuary" during tumor development in the mouse and humans. This is compatible with the hypothesis that the mtDNA molecule plays an essential role in the control of the cellular adaptive survival response to tumor-induced oxidative stress. The integrity of mtDNA seems to be a necessary element for responding to the increased ROS production associated with the oncogenic process.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Chromosomal Instability
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Genome, Mitochondrial/genetics
- Glioma/genetics
- Glioma/metabolism
- Glioma/pathology
- Humans
- Mice
- Mice, 129 Strain
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred NOD
- Mice, Knockout
- Molecular Sequence Data
- Mutation
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Reactive Oxygen Species/metabolism
- Sequence Analysis, DNA
- Species Specificity
Collapse
Affiliation(s)
- Marcos Seoane
- Molecular Oncology Laboratory MOL, Facultade de Medicina, Departamento de Fisioloxia, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ana Mosquera-Miguel
- Unidade de Xenetica, Instituto de Medicina Legal, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Teresa Gonzalez
- Fundacion Galega de Medicina Xenomica, Servicio Galego de Saude, Santiago de Compostela, Galicia, Spain
| | - Maximo Fraga
- Departamento de Anatomia Patoloxica e Ciencias Forenses, Universidade de Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Unidade de Xenetica, Instituto de Medicina Legal, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- Departamento de Anatomia Patoloxica e Ciencias Forenses, Universidade de Santiago de Compostela, Galicia, Spain
| | - Jose A. Costoya
- Molecular Oncology Laboratory MOL, Facultade de Medicina, Departamento de Fisioloxia, Universidade de Santiago de Compostela, Galicia, Spain
| |
Collapse
|