1
|
Wound Repair, Scar Formation, and Cancer: Converging on Activin. Trends Mol Med 2020; 26:1107-1117. [PMID: 32878730 DOI: 10.1016/j.molmed.2020.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Wound repair is a highly regulated process that requires the interaction of various cell types. It has been shown that cancers use the mechanisms of wound healing to promote their own growth. Therefore, it is of importance to identify common regulators of wound repair and tumor formation and to unravel their functions and mechanisms of action. An exciting example is activin, which acts on multiple cell types in wounds and tumors, thereby promoting healing, but also scar formation and tumorigenesis. Here, we summarize current knowledge on the role of activin in these processes and highlight the therapeutic potential of activin or activin antagonists for the treatment of impaired healing or excessive scarring and cancer, respectively.
Collapse
|
2
|
Immunohistochemical analysis of S100-positive epidermal Langerhans cells in dermatofibroma. An Bras Dermatol 2020; 95:627-630. [PMID: 32711930 PMCID: PMC7562995 DOI: 10.1016/j.abd.2020.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/12/2020] [Indexed: 11/23/2022] Open
Abstract
Dermatofibroma is a dermal fibrohistiocytic neoplasm. The Langerhans cells are the immunocompetent cells of the epidermis, and they represent the first defense barrier of the immune system towards the environment. The objective was to immunohistologically compare the densities of S100-positive Langerhans cells in the healthy peritumoral epidermis against those in the epidermis overlying dermatofibroma (20 cases), using antibodies against the S100 molecule (the immunophenotypic hallmark of Langerhans cells). The control group (normal, healthy skin) included ten healthy age and sex-matched individuals who underwent skin biopsies for benign skin lesions. A significantly high density of Langerhans cells was observed both in the epidermis of the healthy skin (6.00 ± 0.29) and the peritumoral epidermis (6.44 ± 0.41) vs. those in the epidermis overlying the tumor (1.44 ± 0.33, p < 0.05). The quantitative deficit of Langerhans cells in the epidermis overlying dermatofibroma may be a possible factor in its development.
Collapse
|
3
|
Li J, Wang J, Wang Z, Xia Y, Zhou M, Zhong A, Sun J. Experimental models for cutaneous hypertrophic scar research. Wound Repair Regen 2019; 28:126-144. [PMID: 31509318 DOI: 10.1111/wrr.12760] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023]
Abstract
Human skin wound repair may result in various outcomes with most of them leading to scar formation. Commonly seen in many cutaneous wound healing cases, hypertrophic scars are considered as phenotypes of abnormal wound repair. To prevent the formation of hypertrophic scars, efforts have been made to understand the mechanism of scarring following wound closure. Numerous in vivo and in vitro models have been created to facilitate investigations into cutaneous scarring and the development of antiscarring treatments. To select the best model for a specific study, background knowledge of the current models of hypertrophic scars is necessary. In this review, we describe in vivo and in vitro models for studying hypertrophic scars, as well as the distinct characteristics of these models. The choice of models for a specific study should be based on the characteristics of the model and the goal of the study. In general, in vivo animal models are often used in phenotypical scar formation analysis, development of antiscarring treatment, and functional analyses of individual genes. In contrast, in vitro models are chosen to pathway identification during scar formation as well as in high-throughput analysis in drug development. Besides helping investigators choose the best scarring model for their research, the goal of this review is to provide knowledge for improving the existing models and development of new models. These will contribute to the progress of scarring studies.
Collapse
Affiliation(s)
- Jialun Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yun Xia
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Kumar TA, Veeravarmal V, Nirmal RM, Amsaveni R, Nassar MHM, Kesavan G. Expression of Cluster of Differentiation 1a-Positive Langerhans Cells in Oral Lichen Planus. Indian J Dermatol 2019; 64:41-46. [PMID: 30745634 PMCID: PMC6340233 DOI: 10.4103/ijd.ijd_350_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background/Purpose: Lichen planus is a T-cell-mediated mucocutaneous disorder characterized histopathologically by a band of chronic inflammatory cells in the subepithelial zone and degeneration of basal layer. The present study was aimed to evaluate the distribution and quantitative assessment of cluster of differentiation 1a (CD1a)-positive Langerhans cells (LCs) in oral lichen planus (OLP), thus to determine the role of LCs pertaining to the changes occurring in OLP. Materials and Methods: Five cases of normal oral mucosa and 20 cases of OLP were immunostained with CD1a antibody; the positive cells were counted manually in the photomicrographs and statistically analyzed using t-test, Mann–Whitney test, and Wilcoxon signed-rank test. Results: The average percentage of CD1a-positive LCs in normal subjects was 0.9%, and in the OLP cases higher percentage was observed (3.93%). The statistical comparison of these two parameters was significant (P=0.018). The degree of basal cell degeneration and density of subepithelial infiltrate on statistical comparison with the concentration of CD1a-positive LCs showed significant results. Conclusion: LCs play a pivotal role in the recruitment of CD4+ and CD8+ cells to the subepithelial region and basal keratinocytes apoptosis. A small number of study subjects, assessment of only CD1a molecule and LCs in the epidermis only were a few of the drawbacks of the study.
Collapse
Affiliation(s)
- Thankanadar Arul Kumar
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Veeran Veeravarmal
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Ramdas Madhavan Nirmal
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Ramamoorthy Amsaveni
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Mohamed Hanifa Mohamed Nassar
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Ganesan Kesavan
- Department of Oral Pathology, Madha Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Strobl H, Krump C, Borek I. Micro-environmental signals directing human epidermal Langerhans cell differentiation. Semin Cell Dev Biol 2018; 86:36-43. [PMID: 29448069 DOI: 10.1016/j.semcdb.2018.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 01/11/2023]
Abstract
Human Langerhans cells (LC) can be generated ex vivo from hematopoietic precursor cells in response to cytokines and cell-membrane associated ligands. These in vitro differentiation models provided mechanistic insights into the molecular and cellular pathways underlying the development of this unique, epithelia-associated dendritic cell subset. Notably, the human epidermal microenvironment is fully sufficient to induce LC differentiation from hematopoietic progenitors. Hence, dissecting the molecular characteristics of the human epithelial/epidermal LC niche, and testing defined ligands for their capacity to induce LC differentiation, led to a refined molecular model of LC lineage commitment. During epidermal ontogeny, spatially and temporally regulated availability of TGF-β family members cooperate with other keratinocyte-derived signals, such as E-cadherin and Notch ligands, for instructing LC differentiation. In this review, we discuss the signals known to instruct human hematopoietic progenitor cells and myelomonocytic cells to undergo LC lineage commitment. Additionally, the current methods for generation of large numbers of human LC-like cells ex vivo in defined serum-free media are discussed.
Collapse
Affiliation(s)
- Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria.
| | - Corinna Krump
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Izabela Borek
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Nieto C, Bragado R, Municio C, Sierra-Filardi E, Alonso B, Escribese MM, Domínguez-Andrés J, Ardavín C, Castrillo A, Vega MA, Puig-Kröger A, Corbí AL. The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages. Front Immunol 2018; 9:31. [PMID: 29434585 PMCID: PMC5796898 DOI: 10.3389/fimmu.2018.00031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/04/2018] [Indexed: 11/30/2022] Open
Abstract
GM-CSF promotes the functional maturation of lung alveolar macrophages (A-MØ), whose differentiation is dependent on the peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor. In fact, blockade of GM-CSF-initiated signaling or deletion of the PPARγ-encoding gene PPARG leads to functionally defective A-MØ and the onset of pulmonary alveolar proteinosis. In vitro, macrophages generated in the presence of GM-CSF display potent proinflammatory, immunogenic and tumor growth-limiting activities. Since GM-CSF upregulates PPARγ expression, we hypothesized that PPARγ might contribute to the gene signature and functional profile of human GM-CSF-conditioned macrophages. To verify this hypothesis, PPARγ expression and activity was assessed in human monocyte-derived macrophages generated in the presence of GM-CSF [proinflammatory GM-CSF-conditioned human monocyte-derived macrophages (GM-MØ)] or M-CSF (anti-inflammatory M-MØ), as well as in ex vivo isolated human A-MØ. GM-MØ showed higher PPARγ expression than M-MØ, and the expression of PPARγ in GM-MØ was found to largely depend on activin A. Ligand-induced activation of PPARγ also resulted in distinct transcriptional and functional outcomes in GM-MØ and M-MØ. Moreover, and in the absence of exogenous activating ligands, PPARγ knockdown significantly altered the GM-MØ transcriptome, causing a global upregulation of proinflammatory genes and significantly modulating the expression of genes involved in cell proliferation and migration. Similar effects were observed in ex vivo isolated human A-MØ, where PPARγ silencing led to enhanced expression of genes coding for growth factors and chemokines and downregulation of cell surface pathogen receptors. Therefore, PPARγ shapes the transcriptome of GM-CSF-dependent human macrophages (in vitro derived GM-MØ and ex vivo isolated A-MØ) in the absence of exogenous activating ligands, and its expression is primarily regulated by activin A. These results suggest that activin A, through enhancement of PPARγ expression, help macrophages to switch from a proinflammatory to an anti-inflammatory polarization state, thus contributing to limit tissue damage and restore homeostasis.
Collapse
Affiliation(s)
- Concha Nieto
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rafael Bragado
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Madrid, Spain
| | - Cristina Municio
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Elena Sierra-Filardi
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Bárbara Alonso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María M Escribese
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jorge Domínguez-Andrés
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Ardavín
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Castrillo
- Instituto Investigaciones Biomédicas "Alberto Sols" (IIBM), and Centro Mixto Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (ICSIC-UAM), Madrid, Spain.,Unidad de Biomedicina (Unidad Asociada al CSIC), IIBM-Universidad Las Palmas de Gran Canaria (ULPGC), and Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Miguel A Vega
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Amaya Puig-Kröger
- Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Angel L Corbí
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
7
|
Olguín-Alor R, de la Fuente-Granada M, Bonifaz LC, Antonio-Herrera L, García-Zepeda EA, Soldevila G. A Key Role for Inhibins in Dendritic Cell Maturation and Function. PLoS One 2016; 11:e0167813. [PMID: 27936218 PMCID: PMC5147992 DOI: 10.1371/journal.pone.0167813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023] Open
Abstract
Inhibins are members of the TGFβ superfamily, which regulate many cellular processes including differentiation, proliferation, survival and apoptosis. Although initially described as hormones regulating the hypothalamus-pituitary-gonadal axis, based on their ability to antagonize Activins, our group has recently reported that they play a role in thymocyte differentiation and survival, as well as in thymic stromal cell maturation and nTreg generation. Here, we used Inhibin knock out mice (Inhα-/-) to investigate the role of Inhibins in peripheral dendritic cell maturation and function. We first demonstrated that LPS treated Inhα+/+ bone marrow derived dendritic cells (BMDC) were capable to produce significant levels of Inhibin A. Interestingly, Inhα-/- BMDC showed reduced MHCII and CD86 upregulation and increased PD-L1 expression in response to LPS compared to Inhα+/+, which correlated with reduced ability to induce proliferation of allogeneic T cells. The "semi-mature" phenotype displayed by Inhα-/- mBMDC correlated with increased levels of IL-10 and slightly decreased IL-6 production after LPS stimulation. In addition, Inhα-/- mBMDC showed impaired migration towards CCL19 and CCL21, assessed by in vitro chemotaxis and in vivo competitive homing experiments, despite their normal CCR7 expression. Furthermore, in vivo LPS-induced DC maturation was also diminished in Inhα-/- mice, specially within the LC (CD207+ CD11b+ CD103-) subpopulation. Finally, analysis of delayed type hypersensitivity responses in Inhα-/- mice, showed reduced ear swelling as a result of reduced cellular infiltration in the skin, correlating with impaired homing of CD207+ DCs to the draining lymph nodes. In summary, our data demonstrate for the first time that Inhibins play a key role in peripheral DC maturation and function, regulating the balance between immunity and tolerance.
Collapse
Affiliation(s)
- Roxana Olguín-Alor
- Departamento de Inmunología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico city, Mexico
| | - Marisol de la Fuente-Granada
- Departamento de Inmunología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico city, Mexico
| | - Laura C. Bonifaz
- Unidad de Investigación Médica en Inmunoquímica. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Laura Antonio-Herrera
- Unidad de Investigación Médica en Inmunoquímica. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Eduardo A. García-Zepeda
- Departamento de Inmunología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico city, Mexico
| | - Gloria Soldevila
- Departamento de Inmunología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico city, Mexico
- * E-mail:
| |
Collapse
|
8
|
The Expression of Human Cytomegalovirus MicroRNA MiR-UL148D during Latent Infection in Primary Myeloid Cells Inhibits Activin A-triggered Secretion of IL-6. Sci Rep 2016; 6:31205. [PMID: 27491954 PMCID: PMC4974560 DOI: 10.1038/srep31205] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/06/2016] [Indexed: 12/28/2022] Open
Abstract
The successful establishment and maintenance of human cytomegalovirus (HCMV) latency is dependent on the expression of a subset of viral genes. Whilst the exact spectrum and functions of these genes are far from clear, inroads have been made for protein-coding genes. In contrast, little is known about the expression of non-coding RNAs. Here we show that HCMV encoded miRNAs are expressed de novo during latent infection of primary myeloid cells. Furthermore, we demonstrate that miR-UL148D, one of the most highly expressed viral miRNAs during latent infection, directly targets the cellular receptor ACVR1B of the activin signalling axis. Consistent with this, we observed upregulation of ACVR1B expression during latent infection with a miR-UL148D deletion virus (ΔmiR-UL148D). Importantly, we observed that monocytes latently infected with ΔmiR-UL148D are more responsive to activin A stimulation, as demonstrated by their increased secretion of IL-6. Collectively, our data indicates miR-UL148D inhibits ACVR1B expression in latently infected cells to limit proinflammatory cytokine secretion, perhaps as an immune evasion strategy or to postpone cytokine-induced reactivation until conditions are more favourable. This is the first demonstration of an HCMV miRNA function during latency in primary myeloid cells, implicating that small RNA species may contribute significantly to latent infection.
Collapse
|
9
|
Shurin MR, Ma Y, Keskinov AA, Zhao R, Lokshin A, Agassandian M, Shurin GV. BAFF and APRIL from Activin A-Treated Dendritic Cells Upregulate the Antitumor Efficacy of Dendritic Cells In Vivo. Cancer Res 2016; 76:4959-69. [PMID: 27364554 DOI: 10.1158/0008-5472.can-15-2668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
The members of the TGFβ superfamily play a key role in regulating developmental and homeostasis programs by controlling differentiation, proliferation, polarization, and survival of different cell types. Although the role of TGFβ1 in inflammation and immunity is well evident, the contribution of other TGFβ family cytokines in the modulation of the antitumor immune response remains less documented. Here we show that activin A triggers SMAD2 and ERK1/2 pathways in dendritic cells (DC) expressing type I and II activin receptors, and upregulates production of the TNFα family cytokines BAFF (TALL-1, TNFSF13B) and APRIL (TALL-2, TNFSF13A), which is blocked by SMAD2 and ERK1/2 inhibitors, respectively. BAFF and APRIL derived from activin A-treated DCs upregulate proliferation and survival of T cells expressing the corresponding receptors, BAFF-R and TACI. In vivo, activin A-stimulated DCs demonstrate a significantly increased ability to induce tumor-specific CTLs and inhibit the growth of melanoma and lung carcinoma, which relies on DC-derived BAFF and APRIL, as knockdown of the BAFF and APRIL gene expression in activin A-treated DCs blocks augmentation of their antitumor potential. Although systemic administration of activin A, BAFF, or APRIL for the therapeutic purposes is not likely due to the pluripotent effects on malignant and nonmalignant cells, our data open a novel opportunity for improving the efficacy of DC vaccines. In fact, a significant augmentation of the antitumor activity of DC pretreated with activin A and the proven role of DC-derived BAFF and APRIL in the induction of antitumor immunity in vivo support this direction. Cancer Res; 76(17); 4959-69. ©2016 AACR.
Collapse
Affiliation(s)
- Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yang Ma
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anton A Keskinov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ruijing Zhao
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Anna Lokshin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marianna Agassandian
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Pierobon D, Raggi F, Cambieri I, Pelassa S, Occhipinti S, Cappello P, Novelli F, Musso T, Eva A, Castagnoli C, Varesio L, Giovarelli M, Bosco MC. Regulation of Langerhans cell functions in a hypoxic environment. J Mol Med (Berl) 2016; 94:943-55. [PMID: 26960761 DOI: 10.1007/s00109-016-1400-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/31/2016] [Accepted: 02/16/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED Langerhans cells (LCs) are a specialized dendritic cell subset that resides in the epidermis and mucosal epithelia and is critical for the orchestration of skin immunity. Recent evidence suggest that LCs are involved in aberrant wound healing and in the development of hypertrophic scars and chronic wounds, which are characterized by a hypoxic environment. Understanding LCs biology under hypoxia may, thus, lead to the identification of novel pathogenetic mechanisms of wound repair disorders and open new therapeutic opportunities to improve wound healing. In this study, we characterize a previously unrecognized role for hypoxia in significantly affecting the phenotype and functional properties of human monocyte-derived LCs, impairing their ability to stimulate naive T cell responses, and identify the triggering receptor expressed on myeloid (TREM)-1, a member of the Ig immunoregulatory receptor family, as a new hypoxia-inducible gene in LCs and an activator of their proinflammatory and Th1-polarizing functions in a hypoxic environment. Furthermore, we provide the first evidence of TREM-1 expression in vivo in LCs infiltrating hypoxic areas of active hypertrophic scars and decubitous ulcers, pointing to a potential pathogenic role of this molecule in wound repair disorders. KEY MESSAGES Hypoxia modulates surface molecule expression and cytokine profile in Langerhans cells. Hypoxia impairs human Langerhans cell stimulatory activity on naive T cells. Hypoxia selectively induces TREM-1 expression in human Langerhans cells. TREM-1 engagement stimulates Langerhans cell inflammatory and Th1-polarizing activity. TREM-1 is expressed in vivo in Langerhans cells infiltrating hypoxic skin lesions.
Collapse
Affiliation(s)
- Daniele Pierobon
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Federica Raggi
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy
| | - Irene Cambieri
- Department of Reconstructive Plastic Surgery, Burns Centre and Skin Bank, Trauma Center, Torino, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy
| | - Sergio Occhipinti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Tiziana Musso
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy
| | - Carlotta Castagnoli
- Department of Reconstructive Plastic Surgery, Burns Centre and Skin Bank, Trauma Center, Torino, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy.
- Laboratorio di Biologia Molecolare, Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova Quarto, Italy.
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy.
- Laboratorio di Biologia Molecolare, Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova Quarto, Italy.
| |
Collapse
|
11
|
Sharkey DJ, Schjenken JE, Mottershead DG, Robertson SA. Seminal fluid factors regulate activin A and follistatin synthesis in female cervical epithelial cells. Mol Cell Endocrinol 2015; 417:178-90. [PMID: 26415587 DOI: 10.1016/j.mce.2015.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Seminal fluid induces pro-inflammatory cytokines and elicits an inflammation-like response in the cervix. Here, Affymetrix microarray and qPCR was utilised to identify activin A (INHBA) and its inhibitor follistatin (FST) amongst the cytokines induced by seminal plasma in Ect1 ectocervical epithelial cells, and a similar response was confirmed in primary ectocervical epithelial cells. TGFB is abundant in seminal plasma and all three TGFB isoforms induced INHBA in Ect1 and primary cells, and neutralisation of TGFB in seminal plasma suppressed the INHBA response. Bacterial lipopolysaccharide in seminal plasma also elicited INHBA, but potently suppressed FST production. There was moderate reciprocal inhibition between FST and INHBA, and cross-attenuating effects were seen. These data identify TGFB and potentially LPS as factors mediating seminal plasma-induced INHBA synthesis in cervical cells. INHBA and FST induced by seminal fluid in cervical tissues may thus contribute to regulation of the post-coital response in women.
Collapse
Affiliation(s)
- David J Sharkey
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - David G Mottershead
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
12
|
The TGF-β superfamily in dendritic cell biology. Cytokine Growth Factor Rev 2015; 26:647-57. [PMID: 26115564 DOI: 10.1016/j.cytogfr.2015.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
Abstract
The TGF-β superfamily consists of a large group of pleiotropic cytokines that are involved in the regulation of many developmental, physiological and pathological processes. Dendritic cells are antigen-presenting cells that play a key role in innate and adaptive immune responses. Dendritic cells have a complex relationship with the TGF-β cytokine superfamily being both source and targets for many of these cytokines. Some TGF-β family members are expressed by dendritic cells and modulate immune responses, for instance through the induction of T cell polarization. Others play a crucial role in the development and function of the different dendritic cell subsets. This review summarizes the current knowledge on the role of TGF-β family cytokines in dendritic cell biology, focusing on TGF-β as well as on other, less characterized, members of these important immune mediators.
Collapse
|
13
|
Inhibins tune the thymocyte selection process by regulating thymic stromal cell differentiation. J Immunol Res 2015; 2015:837859. [PMID: 25973437 PMCID: PMC4418002 DOI: 10.1155/2015/837859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/01/2023] Open
Abstract
Inhibins and Activins are members of the TGF-β superfamily that regulate the differentiation of several cell types. These ligands were initially identified as hormones that regulate the hypothalamus-pituitary-gonadal axis; however, increasing evidence has demonstrated that they are key regulators in the immune system. We have previously demonstrated that Inhibins are the main Activin ligands expressed in the murine thymus and that they regulate thymocyte differentiation, promoting the DN3-DN4 transition and the selection of SP thymocytes. As Inhibins are mainly produced by thymic stromal cells, which also express Activin receptors and Smad proteins, we hypothesized that Inhibins might play a role in stromal cell differentiation and function. Here, we demonstrate that, in the absence of Inhibins, thymic conventional dendritic cells display reduced levels of MHC Class II (MHCII) and CD86. In addition, the ratio between cTECs and mTECs was affected, indicating that mTEC differentiation was favoured and cTEC diminished in the absence of Inhibins. These changes appeared to impact thymocyte selection leading to a decreased selection of CD4SP thymocytes and increased generation of natural regulatory T cells. These findings demonstrate that Inhibins tune the T cell selection process by regulating both thymocyte and stromal cell differentiation.
Collapse
|
14
|
Abstract
In this issue of Blood, Martinez-Cingolani et al identified that human thymic stromal lymphopoietin (TSLP), previously shown to be induced during skin inflammation, stimulates myeloid-related BDCA-11 peripheral blood dendritic cells (DCs) to rapidly gain phenotypic characteristics of human epidermal Langerhans cells (LCs).
Collapse
|
15
|
Mimiola E, Marini O, Perbellini O, Micheletti A, Vermi W, Lonardi S, Costantini C, Meneghelli E, Andreini A, Bonetto C, Vassanelli A, Cantini M, Zoratti E, Massi D, Zamo' A, Leso A, Quaresmini G, Benedetti F, Pizzolo G, Cassatella MA, Tecchio C. Rapid reconstitution of functionally active 6-sulfoLacNAc(+) dendritic cells (slanDCs) of donor origin following allogeneic haematopoietic stem cell transplant. Clin Exp Immunol 2014; 178:129-41. [PMID: 24853271 DOI: 10.1111/cei.12387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2014] [Indexed: 01/12/2023] Open
Abstract
The role of dendritic cells (DCs) and macrophages in allogeneic haematopoietic stem cell transplant (HSCT) is critical in determining the extent of graft-versus-host response. The goal of this study was to analyse slanDCs, a subset of human proinflammatory DCs, in haematopoietic stem cell (HSC) sources, as well as to evaluate their 1-year kinetics of reconstitution, origin and functional capacities in peripheral blood (PB) and bone marrow (BM) of patients who have undergone HSCT, and their presence in graft-versus-host disease (GVHD) tissue specimens. slanDCs were also compared to myeloid (m)DCs, plasmacytoid (p)DCs and monocytes in HSC sources and in patients' PB and BM throughout reconstitution. slanDCs accounted for all HSC sources. In patients' PB and BM, slanDCs were identified from day +21, showing median frequencies comparable to healthy donors, donor origin and kinetics of recovery similar to mDCs, pDCs, and monocytes. Under cyclosporin treatment, slanDCs displayed a normal pattern of maturation, and maintained an efficient chemotactic activity and capacity of releasing tumour necrosis factor (TNF)-α upon lipopolysaccharide (LPS) stimulation. None the less, they were almost undetectable in GVHD tissue specimens, being present only in intestinal acute GVHD samples. slanDCs reconstitute early, being donor-derived and functionally competent. The absence of slanDCs from most of the GVHD-targeted tissue specimens seems to rule out the direct participation of these cells in the majority of the local reactions characterizing GVHD.
Collapse
Affiliation(s)
- E Mimiola
- Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Circulating conventional and plasmacytoid dendritic cell subsets display distinct kinetics during in vivo repeated allergen skin challenges in atopic subjects. BIOMED RESEARCH INTERNATIONAL 2014; 2014:231036. [PMID: 24877070 PMCID: PMC4022198 DOI: 10.1155/2014/231036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/05/2014] [Indexed: 12/13/2022]
Abstract
Upon allergen challenge, DC subsets are recruited to target sites under the influence of chemotactic agents; however, details pertinent to their trafficking remain largely unknown. We investigated the kinetic profiles of blood and skin-infiltrating DC subsets in twelve atopic subjects receiving six weekly intradermal allergen and diluent injections. The role of activin-A, a cytokine induced in allergic and tissue repair processes, on the chemotactic profiles of DC subsets was also examined. Plasmacytoid (pDCs) and conventional DCs (cDCs) were evaluated at various time-points in the blood and skin. In situ activin-A expression was assessed in the skin and its effects on chemokine receptor expression of isolated cDCs were investigated. Blood pDCs were reduced 1 h after challenge, while cDCs decreased gradually within 24 h. Skin cDCs increased significantly 24 h after the first challenge, inversely correlating with blood cDCs. Activin-A in the skin increased 24 h after the first allergen challenge and correlated with infiltrating cDCs. Activin-A increased the CCR10/CCR4 expression ratio in cultured human cDCs. DC subsets demonstrate distinct kinetic profiles in the blood and skin especially during acute allergic inflammation, pointing to disparate roles depending on each phase of the inflammatory response. The effects of activin-A on modulating the chemotactic profile of cDCs suggest it may be a plausible therapeutic target for allergic diseases.
Collapse
|
17
|
Seeger P, Bosisio D, Parolini S, Badolato R, Gismondi A, Santoni A, Sozzani S. Activin A as a mediator of NK-dendritic cell functional interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1241-8. [PMID: 24395917 DOI: 10.4049/jimmunol.1301487] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interaction of NK cells with dendritic cells (DCs) results in reciprocal cell activation through the interaction of membrane proteins and the release of soluble factors. In this article, we report that in NK-DC cocultures, among a set of 84 cytokines investigated, activin A was the second highest induced gene, with CXCL8 being the most upregulated one. Activin A is a member of the TGF-β superfamily and was previously shown to possess both proinflammatory and anti-inflammatory activities. In NK-DC cocultures, the induction of activin A required cell contact and was dependent on the presence of proinflammatory cytokines (i.e., IFN-γ, TNF-α, and GM-CSF), as well as on NK cell-mediated DC killing. CD1(+) DCs were the main activin A producer cells among myeloid blood DC subsets. In NK-DC cocultures, inhibition of activin A by follistatin, a natural inhibitory protein, or by a specific blocking Ab, resulted in the upregulation of proinflammatory cytokine release (i.e., IL-6, IL-8, TNF-α) by DCs and in the increase of DC maturation. In conclusion, our study reports that activin A, produced during NK-DC interactions, represents a relevant negative feedback mechanism that might function to prevent excessive immune activation by DCs.
Collapse
Affiliation(s)
- Pascal Seeger
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Kypriotou M, Rivero D, Haller S, Mariotto A, Huber M, Acha-Orbea H, Werner S, Hohl D. Activin a inhibits antigen-induced allergy in murine epicutaneous sensitization. Front Immunol 2013; 4:246. [PMID: 23986758 PMCID: PMC3749436 DOI: 10.3389/fimmu.2013.00246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/07/2013] [Indexed: 01/20/2023] Open
Abstract
Activin A, a member of the TGFβ superfamily, is involved in physiological processes such as cell differentiation, tissue homeostasis, wound healing, reproduction, and in pathological conditions, such as fibrosis, cancer, and asthma. Activin enhances mast cell maturation, as well as regulatory T-cell and Langerhans cell differentiation. In this study we investigated the potential role of activin in epicutaneous sensitization with ovalbumin (OVA), notably with respect to its effect on known Th2-polarization. For this purpose, transgenic mice overexpressing activin in keratinocytes and their wild-type (WT) controls were sensitized epicutaneously with OVA. Skin biopsies were analyzed with regard to histopathological features and mRNA expression of pro-inflammatory and Th1/Th2 cytokines, and Ig levels were measured in the serum. Unexpectedly, activin overexpressing animals were protected from Th2-cytokine expression and induction of OVA-specific IgE levels compared to WT animals. On the other hand, transgenic mice were more susceptible to inflammation compared to WT littermates after tape-stripping and saline (vehicle) or OVA application, as shown by increased pro-inflammatory cytokine mRNA levels and neutrophil accumulation at the site of the treatment. We conclude that activin protects from antigen-induced cutaneous Th2-polarization through modulation of the immune response. These findings highlight the role of activin in cutaneous sensitization, allergy, and in skin homeostasis.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital, CHUV , Lausanne , Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Moura J, da Silva L, Cruz MT, Carvalho E. Molecular and cellular mechanisms of bone morphogenetic proteins and activins in the skin: potential benefits for wound healing. Arch Dermatol Res 2013; 305:557-69. [PMID: 23800970 DOI: 10.1007/s00403-013-1381-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/05/2013] [Accepted: 06/14/2013] [Indexed: 01/13/2023]
Abstract
Bone morphogenetic proteins (BMPs) and activins are phylogenetically conserved proteins, belonging to the transforming growth factor-β superfamily, that signal through the phosphorylation of receptor-regulated Smad proteins, activating different cell responses. They are involved in various steps of skin morphogenesis and wound repair, as can be evidenced by the fact that their expression is increased in skin injuries. BMPs play not only a role in bone regeneration but are also involved in cartilage, tendon-like tissue and epithelial regeneration, maintain vascular integrity, capillary sprouting, proliferation/migration of endothelial cells and angiogenesis, promote neuron and dendrite formation, alter neuropeptide levels and are involved in immune response modulation, at least in animal models. On the other hand, activins are involved in wound repair through the regulation of skin and immune cell migration and differentiation, re-epithelialization and granulation tissue formation, and also promote the expression of collagens by fibroblasts and modulate scar formation. This review aims at enunciating the effects of BMPs and activins in the skin, namely in skin development, as well as in crucial phases of skin wound healing, such as inflammation, angiogenesis and repair, and will focus on the effects of these proteins on skin cells and their signaling pathways, exploring the potential therapeutic approach of the application of BMP-2, BMP-6 and activin A in chronic wounds, particularly diabetic foot ulcerations.
Collapse
Affiliation(s)
- J Moura
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
20
|
Hedger MP, de Kretser DM. The activins and their binding protein, follistatin-Diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev 2013; 24:285-95. [PMID: 23541927 DOI: 10.1016/j.cytogfr.2013.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/05/2013] [Indexed: 02/05/2023]
Abstract
The activins, as members of the transforming growth factor-β superfamily, are pleiotrophic regulators of cell development and function, including cells of the myeloid and lymphoid lineages. Clinical and animal studies have shown that activin levels increase in both acute and chronic inflammation, and are frequently indicators of disease severity. Moreover, inhibition of activin action can reduce inflammation, damage, fibrosis and morbidity/mortality in various disease models. Consequently, activin A and, more recently, activin B are emerging as important diagnostic tools and therapeutic targets in inflammatory and fibrotic diseases. Activin antagonists such as follistatin, an endogenous activin-binding protein, offer considerable promise as therapies in conditions as diverse as sepsis, liver fibrosis, acute lung injury, asthma, wound healing and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- M P Hedger
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
21
|
Quiescent innate response to infective filariae by human Langerhans cells suggests a strategy of immune evasion. Infect Immun 2013; 81:1420-9. [PMID: 23429540 DOI: 10.1128/iai.01301-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Filarial infection is initiated by mosquito-derived third-stage larvae (L3) deposited on the skin that transit through the epidermis, which contains Langerhans cells (LC) and keratinocytes (KC), among other cells. This earliest interaction between L3 and the LC likely conditions the priming of the immune system to the parasite. To determine the nature of this interaction, human LC (langerin(+) E-cadherin(+) CD1a(+)) were generated in vitro and exposed to live L3. LC exposed to live L3 for 48 h showed no alterations in the cell surface markers CD14, CD86, CD83, CD207, E-cadherin, CD80, CD40, and HLA-DR or in mRNA expression of inflammation-associated genes, such as those for interleukin 18 (IL-18), IL-18BP, and caspase 1. In contrast to L3, live tachyzoites of Toxoplasma gondii, an intracellular parasite, induced production of CXCL9, IP-10, and IL-6 in LC. Furthermore, preexposure of LC to L3 did not alter Toll-like receptor 3 (TLR3)- or TLR4-mediated expression of the proinflammatory cytokines IL-1β, gamma interferon (IFN-γ), IL-6, or IL-10. Interestingly, cocultures of KC and LC produced significantly more IL-18, IL-1α, and IL-8 than did cultures of LC alone, although exposure of the cocultures to live L3 did not result in altered cytokine production. Microarray examination of ex vivo LC from skin blisters that were exposed to live L3 also showed few significant changes in gene expression compared with unexposed blisters, further underscoring the relatively muted response of LC to L3. Our data suggest that failure by LC to initiate an inflammatory response to the invasive stage of filarial parasites may be a strategy for immune evasion by the filarial parasite.
Collapse
|
22
|
Activin, neutrophils, and inflammation: just coincidence? Semin Immunopathol 2013; 35:481-99. [PMID: 23385857 PMCID: PMC7101603 DOI: 10.1007/s00281-013-0365-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/17/2013] [Indexed: 01/18/2023]
Abstract
During the 26 years that have elapsed since its discovery, activin-A, a member of the transforming growth factor β super-family originally discovered from its capacity to stimulate follicle-stimulating hormone production by cultured pituitary gonadotropes, has been established as a key regulator of various fundamental biological processes, such as development, homeostasis, inflammation, and tissue remodeling. Deregulated expression of activin-A has been observed in several human diseases characterized by an immuno-inflammatory and/or tissue remodeling component in their pathophysiology. Various cell types have been recognized as sources of activin-A, and plentiful, occasionally contradicting, functions have been described mainly by in vitro studies. Not surprisingly, both harmful and protective roles have been postulated for activin-A in the context of several disorders. Recent findings have further expanded the functional repertoire of this molecule demonstrating that its ectopic overexpression in mouse airways can cause pathology that simulates faithfully human acute respiratory distress syndrome, a disorder characterized by strong involvement of neutrophils. This finding when considered together with the recent discovery that neutrophils constitute an important source of activin-A in vivo and earlier observations of upregulated activin-A expression in diseases characterized by strong activation of neutrophils may collectively imply a more intimate link between activin-A expression and neutrophil reactivity. In this review, we provide an outline of the functional repertoire of activin-A and suggest that this growth factor functions as a guardian of homeostasis, a modulator of immunity and an orchestrator of tissue repair activities. In this context, a relationship between activin-A and neutrophils may be anything but coincidental.
Collapse
|
23
|
Zhao M, Gao J, Zhu S, Qian L, Wang X, Gao J, Zhang Y, Yu Y, Han W, Wu M. Characterization of activin A in the culture of primitive human umbilical cord blood hematopoietic cells. Biomed Pharmacother 2012; 66:603-6. [PMID: 23089481 DOI: 10.1016/j.biopha.2012.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily controls many physiological processes such as cell proliferation and differentiation, immune responses, wound repair and various endocrine activities. As a member of TGF-β, activin A can maintain the pluripotency of embryonic stem cells. We report here that activin A exhibited cell type-dependent function of expanding the human primitive hematopoietic cells isolated from umbilical cord blood (UCB). However, the multipotency of the cells pretreated with activin A was exhausted in the sequential dilution culture. In conclusion, activin A may not be a key factor, but a regulator, in the multipotency maintenance of primitive hematopoietic cells and the application of activin A in the hematopoietic stem/progenitor cells (HS/PCs) culture expansion remains a significant challenge.
Collapse
Affiliation(s)
- Mei Zhao
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Antsiferova M, Werner S. The bright and the dark sides of activin in wound healing and cancer. J Cell Sci 2012; 125:3929-37. [PMID: 22991378 DOI: 10.1242/jcs.094789] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activin was initially described as a protein that stimulates release of follicle stimulating hormone from the pituitary, and it is well known for its important roles in different reproductive functions. In recent years, this multifunctional factor has attracted the attention of researchers in other fields, as new functions of activin in angiogenesis, inflammation, immunity, fibrosis and cancer have been discovered. Studies from our laboratory have identified activin as a crucial regulator of wound healing and skin carcinogenesis. On the one hand, it strongly accelerates the healing process of skin wounds but, on the other hand, it enhances scar formation and the susceptibility to skin tumorigenesis. Finally, results from several laboratories have revealed that activin enhances tumour formation and/or progression in some other organs, in particular through its effect on the tumour microenvironment, and that it also promotes cancer-induced bone disruption and muscle wasting. These findings provide the basis for the use of activin or its downstream targets for the improvement of impaired wound healing, and of activin antagonists for the prevention and treatment of fibrosis and of malignant tumours that overexpress activin. Here, we summarize the previously described roles of activin in wound healing and scar formation and discuss functional studies that revealed different functions of activin in the pathogenesis of cancer. The relevance of these findings for clinical applications will be highlighted.
Collapse
Affiliation(s)
- Maria Antsiferova
- Department of Biology, Institute of Molecular Health Sciences, ETH Honggerberg, HPL E12, 8093, Zurich, Switzerland.
| | | |
Collapse
|
25
|
de Kretser DM, O'Hehir RE, Hardy CL, Hedger MP. The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol 2012; 359:101-6. [PMID: 22037168 DOI: 10.1016/j.mce.2011.10.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 01/15/2023]
Abstract
Activin A, a member of the transforming growth factor-β superfamily of cytokines, is a critical controller of inflammation, immunity and fibrosis. It is rapidly released into the blood following a lipopolysaccharide challenge in experimental animals, through activation of the Toll-like receptor 4 signalling pathway. Blocking activin action by pre-treatment with its binding protein, follistatin, modifies the inflammatory cytokine cascade, and reduces the severity of the subsequent inflammatory response and mortality. Likewise, high serum levels of activin A are predictive of death in patients with septicaemia. However, activin A has complex immunomodulatory actions. It is produced by inflammatory macrophages, but can regulate either pro- or anti-inflammatory responses in these cells, depending on their prior activation status. Activin A is also produced by Th2 cells, and stimulates antibody production by B cells and the development of regulatory T cells. Production of activin A during inflammatory responses stimulates fibrosis and tissue remodelling, and follistatin inhibits these actions of activin A. The modulation of activin by follistatin may represent an important therapeutic target for the modulation and amelioration of inflammatory and fibrotic disorders.
Collapse
Affiliation(s)
- David M de Kretser
- Monash Institute of Medical Research and the Department of Immunology and Pathology, Monash University, Clayton Victoria 3800, Australia.
| | | | | | | |
Collapse
|
26
|
Gueiros LA, Gondak R, Jorge Júnior J, Coletta RD, Carvalho ADA, Leão JC, de Almeida OP, Vargas PA. Increased number of Langerhans cells in oral lichen planus and oral lichenoid lesions. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:661-6. [PMID: 22668625 DOI: 10.1016/j.oooo.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/06/2011] [Accepted: 12/01/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of this study was to quantify the presence of Langerhans cells (LC) in oral lichen planus (OLP) and oral lichenoid lesions (OLL), comparing them with normal epithelium. STUDY DESIGN Thirty-six patients with biopsy-proven OLP or OLL were selected for the study, as well as 23 control subjects free of inflammatory conditions. Immunohistochemical reactions were performed using the streptavidin-biotin peroxidase complex method with CD1a and CD83 primary antibodies. Densities were compared between groups and correlated with microscopic findings. RESULTS Patients with lichenoid conditions (OLP + OLL) presented higher densities of CD1a(+) cells than the control subjects (P = .03). Higher densities of CD1a were associated with a thinner layer of inflammatory cells (P = .02). CONCLUSIONS This study indicates that OLP and OLL are characterized by the recruitment of LC, which may play a significant role on its pathogenesis.
Collapse
Affiliation(s)
- Luiz Alcino Gueiros
- Oral Medicine Unit, Department of Clinics and Preventive Dentistry, Federal University of Pernambuco, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Antsiferova M, Huber M, Meyer M, Piwko-Czuchra A, Ramadan T, MacLeod AS, Havran WL, Dummer R, Hohl D, Werner S. Activin enhances skin tumourigenesis and malignant progression by inducing a pro-tumourigenic immune cell response. Nat Commun 2011; 2:576. [PMID: 22146395 PMCID: PMC3247817 DOI: 10.1038/ncomms1585] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022] Open
Abstract
Activin is an important orchestrator of wound repair, but its potential role in skin carcinogenesis has not been addressed. Here we show using different types of genetically modified mice that enhanced levels of activin in the skin promote skin tumour formation and their malignant progression through induction of a pro-tumourigenic microenvironment. This includes accumulation of tumour-promoting Langerhans cells and regulatory T cells in the epidermis. Furthermore, activin inhibits proliferation of tumour-suppressive epidermal γδ T cells, resulting in their progressive loss during tumour promotion. An increase in activin expression was also found in human cutaneous basal and squamous cell carcinomas when compared with control tissue. These findings highlight the parallels between wound healing and cancer, and suggest inhibition of activin action as a promising strategy for the treatment of cancers overexpressing this factor. Activin is known to have a role in wound healing, but its role in skin cancer is unknown. Antsiferova et al. show that activin is elevated in human skin tumours, and by modulating epidermal immune cells, exacerbates tumour progression in a mouse model of skin cancer.
Collapse
Affiliation(s)
- Maria Antsiferova
- Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Activins are the members of transforming growth factor β superfamily and act as secreted proteins; they were originally identified with a reproductive function, acting as endocrine-derived regulators of pituitary follicular stimulating hormone. In recent years, additional functions of activins have been discovered, including a regulatory role during crucial phases of growth, differentiation, and development such as wound healing, tissue repair, and regulation of branching morphogenesis. The functions of activins through activin receptors are pleiotrophic, while involving in the etiology and pathogenesis of a variety of diseases and being cell type-specific, they have been identified as important players in cancer metastasis, immune responses, inflammation, and are most likely involved in cell migration. In this chapter, we highlight the current knowledge of activin signaling and discuss the potential physiological and pathological roles of activins acting on the migration of various cell types.
Collapse
|
29
|
Hedger MP, Winnall WR, Phillips DJ, de Kretser DM. The regulation and functions of activin and follistatin in inflammation and immunity. VITAMINS AND HORMONES 2011; 85:255-97. [PMID: 21353885 DOI: 10.1016/b978-0-12-385961-7.00013-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activins are members of the transforming growth factor β superfamily with broad and complex effects on cell growth and differentiation. Activin A has long been known to be a critical regulator of inflammation and immunity, and similar roles are now emerging for activin B, with which it shares 65% sequence homology. These molecules and their binding protein, follistatin, are widely expressed, and their production is increased in many acute and chronic inflammatory conditions. Synthesis and release of the activins are stimulated by inflammatory cytokines, Toll-like receptor ligands, and oxidative stress. The activins interact with heterodimeric serine/threonine kinase receptor complexes to activate SMAD transcription factors and the MAP kinase signaling pathways, which mediate inflammation, stress, and immunity. Follistatin binds to the activins with high affinity, thereby obstructing the activin receptor binding site, and targets them to cell surface proteoglycans and lysosomal degradation. Studies on transgenic mice and those with gene knockouts, together with blocking studies using exogenous follistatin, have established that activin A plays critical roles in the onset of cachexia, acute and chronic inflammatory responses such as septicemia, colitis and asthma, and fibrosis. However, activin A also directs the development of monocyte/macrophages, myeloid dendritic cells, and T cell subsets to promote type 2 and regulatory immune responses. The ability of both endogenous and exogenous follistatin to block the proinflammatory and profibrotic actions of activin A has led to interest in this binding protein as a potential therapeutic for limiting the severity of disease and to improve subsequent damage associated with inflammation and fibrosis. However, the ability of activin A to sculpt the subsequent immune response as well means that the full range of effects that might arise from blocking activin bioactivity will need to be considered in any therapeutic applications.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
30
|
Kariyawasam HH, Semitekolou M, Robinson DS, Xanthou G. Activin-A: a novel critical regulator of allergic asthma. Clin Exp Allergy 2011; 41:1505-14. [PMID: 21631612 DOI: 10.1111/j.1365-2222.2011.03784.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Activin-A is a pleiotropic cytokine that belongs to the TGF-β superfamily and plays an important role in fundamental biological processes, such as development and tissue repair. Growing evidence proposes a crucial role for activin-A in immune-mediated responses and associated diseases, with both enhancing and suppressive effects depending on the cell type, the cytokine micromilieu and the context of the response. Several recent studies have demonstrated a striking increase in activin-A expression in experimental models of asthma, as well as, in the asthmatic airway in humans. Importantly, a strong immunoregulatory role for activin-A in allergic airway disease, with suppression of T helper (Th) type 2 cell-driven allergic responses and protection against the development of cardinal features of the asthmatic phenotype was revealed by in vivo functional studies. Activin-A-mediated immunosuppression is associated with induction of functional allergen-specific regulatory T cells. In human asthma, although activin-A levels are increased in the airway epithelium and submucosal cells, the expression of its signalling components is markedly decreased, pointing to decreased regulation. Nevertheless, a rapid activation of the activin-A signalling pathway is observed in the airway of individuals with asthma following inhalational allergen challenge, suggestive of an inherent protective mechanism to control disease. In support, in vitro studies using human airway epithelial cells have demonstrated that endogenous activin-A suppresses the release of inflammatory mediators, while it induces epithelial repair. Collectively, compelling evidence suggests that activin-A orchestrates the regulation of key events involved in the pathogenesis of allergic asthma. The critical role of activin-A in allergic airway responses places this cytokine as an exciting new therapeutic target for asthma.
Collapse
Affiliation(s)
- H H Kariyawasam
- Department of Allergy and Medical Rhinology, Royal National Throat Nose Ear Hospital, University College, London
| | | | | | | |
Collapse
|
31
|
|
32
|
When versatility matters: activins/inhibins as key regulators of immunity. Immunol Cell Biol 2011; 90:137-48. [DOI: 10.1038/icb.2011.32] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 2011; 117:5092-101. [PMID: 21389328 DOI: 10.1182/blood-2010-09-306993] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
M-CSF favors the generation of folate receptor β-positive (FRβ⁺), IL-10-producing, immunosuppressive, M2-polarized macrophages [M2 (M-CSF)], whereas GM-CSF promotes a proinflammatory, M1-polarized phenotype [M1 (GM-CSF)]. In the present study, we found that activin A was preferentially released by M1 (GM-CSF) macrophages, impaired the acquisition of FRβ and other M2 (M-CSF)-specific markers, down-modulated the LPS-induced release of IL-10, and mediated the tumor cell growth-inhibitory activity of M1 (GM-CSF) macrophages, in which Smad2/3 is constitutively phosphorylated. The contribution of activin A to M1 (GM-CSF) macrophage polarization was evidenced by the capacity of a blocking anti-activin A antibody to reduce M1 (GM-CSF) polarization markers expression while enhancing FRβ and other M2 (M-CSF) markers mRNA levels. Moreover, an inhibitor of activin receptor-like kinase 4/5/7 (ALK4/5/7 or SB431542) promoted M2 (M-CSF) marker expression but limited the acquisition of M1 (GM-CSF) polarization markers, suggesting a role for Smad2/3 activation in macrophage polarization. In agreement with these results, expression of activin A and M2 (M-CSF)-specific markers was oppositely regulated by tumor ascites. Therefore, activin A contributes to the proinflammatory macrophage polarization triggered by GM-CSF and limits the acquisition of the anti-inflammatory phenotype in a Smad2-dependent manner. Our results demonstrate that activin A-initiated Smad signaling skews macrophage polarization toward the acquisition of a proinflammatory phenotype.
Collapse
|
34
|
Ochiel DO, Ochsenbauer C, Kappes JC, Ghosh M, Fahey JV, Wira CR. Uterine epithelial cell regulation of DC-SIGN expression inhibits transmitted/founder HIV-1 trans infection by immature dendritic cells. PLoS One 2010; 5:e14306. [PMID: 21179465 PMCID: PMC3001862 DOI: 10.1371/journal.pone.0014306] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 11/19/2010] [Indexed: 01/10/2023] Open
Abstract
Background Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus). However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC) to infection with HIV-1. Methodology/Principal Findings Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM) decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-β) mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- β1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-β1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection. Conclusions/Significance Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Daniel O Ochiel
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America.
| | | | | | | | | | | |
Collapse
|
35
|
Van Pottelberge GR, Bracke KR, Demedts IK, De Rijck K, Reinartz SM, van Drunen CM, Verleden GM, Vermassen FE, Joos GF, Brusselle GG. Selective accumulation of langerhans-type dendritic cells in small airways of patients with COPD. Respir Res 2010; 11:35. [PMID: 20307269 PMCID: PMC2858735 DOI: 10.1186/1465-9921-11-35] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 03/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background Dendritic cells (DC) linking innate and adaptive immune responses are present in human lungs, but the characterization of different subsets and their role in COPD pathogenesis remain to be elucidated. The aim of this study is to characterize and quantify pulmonary myeloid DC subsets in small airways of current and ex-smokers with or without COPD. Methods Myeloid DC were characterized using flowcytometry on single cell suspensions of digested human lung tissue. Immunohistochemical staining for langerin, BDCA-1, CD1a and DC-SIGN was performed on surgical resection specimens from 85 patients. Expression of factors inducing Langerhans-type DC (LDC) differentiation was evaluated by RT-PCR on total lung RNA. Results Two segregated subsets of tissue resident pulmonary myeloid DC were identified in single cell suspensions by flowcytometry: the langerin+ LDC and the DC-SIGN+ interstitial-type DC (intDC). LDC partially expressed the markers CD1a and BDCA-1, which are also present on their known blood precursors. In contrast, intDC did not express langerin, CD1a or BDCA-1, but were more closely related to monocytes. Quantification of DC in the small airways by immunohistochemistry revealed a higher number of LDC in current smokers without COPD and in COPD patients compared to never smokers and ex-smokers without COPD. Importantly, there was no difference in the number of LDC between current and ex-smoking COPD patients. In contrast, the number of intDC did not differ between study groups. Interestingly, the number of BDCA-1+ DC was significantly lower in COPD patients compared to never smokers and further decreased with the severity of the disease. In addition, the accumulation of LDC in the small airways significantly correlated with the expression of the LDC inducing differentiation factor activin-A. Conclusions Myeloid DC differentiation is altered in small airways of current smokers and COPD patients resulting in a selective accumulation of the LDC subset which correlates with the pulmonary expression of the LDC-inducing differentiation factor activin-A. This study identified the LDC subset as an interesting focus for future research in COPD pathogenesis.
Collapse
Affiliation(s)
- Geert R Van Pottelberge
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Maarten Egeler R, van Halteren AGS, Hogendoorn PCW, Laman JD, Leenen PJM. Langerhans cell histiocytosis: fascinating dynamics of the dendritic cell-macrophage lineage. Immunol Rev 2010; 234:213-32. [DOI: 10.1111/j.0105-2896.2009.00883.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Activin A induces dendritic cell migration through the polarized release of CXC chemokine ligands 12 and 14. Blood 2009; 113:5848-56. [DOI: 10.1182/blood-2008-12-194597] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Activin A is a dimeric protein, member of the transforming growth factor (TGF)–β family that plays a crucial role in wound repair and in fetal tolerance. Emerging evidence also proposes activin A as a key mediator in inflammation. This study reports that activin A induces the directional migration of immature myeloid dendritic cells (iDCs) through the activation of ALK4 and ActRIIA receptor chains. Conversely, activin A was not active on plasmacytoid dendritic cells (DCs) or mature myeloid DCs. iDC migration to activin A was phosphatidylinositol 3-kinase γ–dependent, Bordetella pertussis toxin– and cycloheximide-sensitive, and was inhibited by M3, a viral-encoded chemokine-binding protein. In a real-time video microscopy-based migration assay, activin A induced polarization of iDCs, but not migration. These characteristics clearly differentiated the chemotactic activities of activin A from TGF-β and classic chemokines. By the use of combined pharmacologic and low-density microarray analysis, it was possible to define that activin-A–induced migration depends on the selective and polarized release of 2 chemokines, namely CXC chemokine ligands 12 and 14. This study extends the proinflammatory role of activin A to DC recruitment and provides a cautionary message about the reliability of the in vitro chemotaxis assays in discriminating direct versus indirect chemotactic agonists.
Collapse
|