1
|
Tang Q, Cheng T, Liu W. Egg Protein Compositions over Embryonic Development in Haemaphysalis hystricis Ticks. Animals (Basel) 2024; 14:3466. [PMID: 39682431 DOI: 10.3390/ani14233466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Tick eggs contain a series of proteins that play important roles in egg development. A thorough characterization of egg protein expression throughout development is essential for understanding tick embryogenesis and for screening candidate molecules to develop novel interventions. In this study, eggs at four developmental stages (0, 7, 14, and 21 incubation days) were collected, and their protein extraction was profiled using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). On the first day of egg protein extraction, protein bands from day-1 eggs were re-collected and subsequently analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The dynamic changes in forty egg proteins during development were further investigated using LC-parallel reaction monitoring (PRM)/MS analysis. A total of 108 transcripts were detected in day-1 eggs. Based on protein functions and families, these transcripts were classified into eight categories: transporters, enzymes, immunity and antimicrobial proteins, proteinase inhibitors, cytoskeletal proteins, heat shock proteins, secreted proteins, and uncharacterized proteins. Identification of the protein bands revealed that nine bands predominantly consisted of vitellogenin and vitellin-A, while other notable proteins included cathepsins and Kunitz domain-containing proteins. LC-PRM/MS analysis indicated that 28 transcripts increased significantly in abundance, including 13/18 enzymes, 1/1 antimicrobial peptide, 2/2 neutrophil elastase inhibitors, 3/4 vitellogenins, 3/3 heat shock proteins, 3/3 cytoskeletal proteins, 1/1 elongation factor-1, and 1/1 uncharacterized protein. Conversely, five transcripts showed a decrease significantly, including 1/1 Kunitz domain-containing protein, 2/6 aspartic proteases, and 2/5 serpins. This research provides a comprehensive overview of egg proteins and highlights the dynamic changes in protein expression during embryonic development, which may be pivotal for understanding protein functions and selecting potential candidates for further study.
Collapse
Affiliation(s)
- Qiwu Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Lv T, Xie X, Song N, Zhang S, Ding Y, Liu K, Diao L, Chen X, Jiang S, Li T, Zhang W, Cao Y. Expounding the role of tick in Africa swine fever virus transmission and seeking effective prevention measures: A review. Front Immunol 2022; 13:1093599. [PMID: 36591310 PMCID: PMC9800779 DOI: 10.3389/fimmu.2022.1093599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
African swine fever (ASF), a highly contagious, deadly infectious disease, has caused huge economic losses to animal husbandry with a 100% mortality rate of the most acute and acute infection, which is listed as a legally reported animal disease by the World Organization for Animal Health (OIE). African swine fever virus (ASFV) is the causative agent of ASF, which is the only member of the Asfarviridae family. Ornithodoros soft ticks play an important role in ASFV transmission by active biological or mechanical transmission or by passive transport or ingestion, particularly in Africa, Europe, and the United States. First, this review summarized recent reports on (1) tick species capable of transmitting ASFV, (2) the importance of ticks in the transmission and epidemiological cycle of ASFV, and (3) the ASFV strains of tick transmission, to provide a detailed description of tick-borne ASFV. Second, the dynamics of tick infection with ASFV and the tick-induced immune suppression were further elaborated to explain how ticks spread ASFV. Third, the development of the anti-tick vaccine was summarized, and the prospect of the anti-tick vaccine was recapitulated. Then, the marked attenuated vaccine, ASFV-G-ΔI177L, was compared with those of the anti-tick vaccine to represent potential therapeutic or strategies to combat ASF.
Collapse
Affiliation(s)
- Tianbao Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ning Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shilei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue Ding
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kun Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Luteng Diao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuang Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tiger Li
- Portsmouth Abbey School, Portsmouth, RI, United States
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China,Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China,*Correspondence: Yongguo Cao, ; Wenlong Zhang,
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China,Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China,*Correspondence: Yongguo Cao, ; Wenlong Zhang,
| |
Collapse
|
3
|
A Deeper Insight into the Tick Salivary Protein Families under the Light of Alphafold2 and Dali: Introducing the TickSialoFam 2.0 Database. Int J Mol Sci 2022; 23:ijms232415613. [PMID: 36555254 PMCID: PMC9779611 DOI: 10.3390/ijms232415613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Hard ticks feed for several days or weeks on their hosts and their saliva contains thousands of polypeptides belonging to dozens of families, as identified by salivary transcriptomes. Comparison of the coding sequences to protein databases helps to identify putative secreted proteins and their potential functions, directing and focusing future studies, usually done with recombinant proteins that are tested in different bioassays. However, many families of putative secreted peptides have a unique character, not providing significant matches to known sequences. The availability of the Alphafold2 program, which provides in silico predictions of the 3D polypeptide structure, coupled with the Dali program which uses the atomic coordinates of a structural model to search the Protein Data Bank (PDB) allows another layer of investigation to annotate and ascribe a functional role to proteins having so far being characterized as "unique". In this study, we analyzed the classification of tick salivary proteins under the light of the Alphafold2/Dali programs, detecting novel protein families and gaining new insights relating the structure and function of tick salivary proteins.
Collapse
|
4
|
Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022; 20:818-853. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Ticks, particularly hard ticks (Ixodidae), which are among the most important vectors of dangerous infectious agents, feed on their hosts for extended periods of time. With this lifestyle, numerous adaptations have evolved in ticks and their hosts, the pharmacological importance of which is increasingly being recognized. Many bioactive substances in tick saliva are being considered as the basis of new drugs. For example, components of tick cement can be developed into tissue adhesives or wound closures. Analgesic and antipruritic salivary components inhibit histamine or bradykinin, while other tick-derived molecules bind opioid or cannabinoid receptors. Tick saliva inhibits the extrinsic, intrinsic, or common pathway of blood coagulation with implications for the treatment of thromboembolic diseases. It contains vasodilating substances and affects wound healing. The broad spectrum of immunomodulatory and immunosuppressive effects of tick saliva, such as inhibition of chemokines or cellular immune responses, allows development of drugs against inflammation in autoimmune diseases and/or infections. Finally, modern vaccines against ticks can curb the spread of serious infections. The medical importance of the complex tick-host interactions is increasingly being recognized and translated into first clinical applications. Using selected examples, an overview of the mutual adaptations of ticks and hosts is given here, focusing on their significance to medical advance.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| |
Collapse
|
5
|
Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022; 20:818-855. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
6
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
7
|
Pérez-Sánchez R, Carnero-Morán A, Luz Valero M, Oleaga A. A proteomics informed by transcriptomics insight into the proteome of Ornithodoros erraticus adult tick saliva. Parasit Vectors 2022; 15:1. [PMID: 34980218 PMCID: PMC8722417 DOI: 10.1186/s13071-021-05118-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. The prevention and control of these diseases would greatly benefit from the elimination of O. erraticus populations, and anti-tick vaccines are envisaged as an effective and sustainable alternative to chemical acaricide usage for tick control. Ornithodoros erraticus saliva contains bioactive proteins that play essential functions in tick feeding and host defence modulation, which may contribute to host infection by tick-borne pathogens. Hence, these proteins could be candidate antigen targets for the development of vaccines aimed at the control and prevention of O. erraticus infestations and the diseases this tick transmits. The objective of the present work was to obtain and characterise the proteome of the saliva of O. erraticus adult ticks as a means to identify and select novel salivary antigen targets. METHODS A proteomics informed by transcriptomics (PIT) approach was applied to analyse samples of female and male saliva separately using the previously obtained O. erraticus sialotranscriptome as a reference database and two different mass spectrometry techniques, namely liquid chromatography-tandem mass spectrometry (LC-MS/MS) in data-dependent acquisition mode and sequential window acquisition of all theoretical fragment ion spectra MS (SWATH-MS). RESULTS Up to 264 and 263 proteins were identified by LC-MS/MS in the saliva of O. erraticus female and male ticks, respectively, totalling 387 non-redundant proteins. Of these, 224 were further quantified by SWATH-MS in the saliva of both male and female ticks. Quantified proteins were classified into 23 functional categories and their abundance compared between sexes. Heme/iron-binding proteins, protease inhibitors, proteases, lipocalins and immune-related proteins were the categories most abundantly expressed in females, while glycolytic enzymes, protease inhibitors and lipocalins were the most abundantly expressed in males. Ninety-seven proteins were differentially expressed between the sexes, of which 37 and 60 were overexpressed in females and males, respectively. CONCLUSIONS The PIT approach demonstrated its usefulness for proteomics studies of O. erraticus, a non-model organism without genomic sequences available, allowing the publication of the first comprehensive proteome of the saliva of O. erraticus reported to date. These findings confirm important quantitative differences between sexes in the O. erraticus saliva proteome, unveil novel salivary proteins and functions at the tick-host feeding interface and improve our understanding of the physiology of feeding in O. erraticus ticks. The integration of O. erraticus sialoproteomic and sialotranscriptomic data will drive a more rational selection of salivary candidates as antigen targets for the development of vaccines aimed at the control of O. erraticus infestations and the diseases it transmits.
Collapse
Affiliation(s)
- Ricardo Pérez-Sánchez
- Parasitology Laboratory, Spanish National Research Council Institute of Natural Resources and Agrobiology (CSIC-IRNASA), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Angel Carnero-Morán
- Parasitology Laboratory, Spanish National Research Council Institute of Natural Resources and Agrobiology (CSIC-IRNASA), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - M. Luz Valero
- Proteomics Section, Central Service for Experimental Research, University of Valencia, Carrer del Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Ana Oleaga
- Parasitology Laboratory, Spanish National Research Council Institute of Natural Resources and Agrobiology (CSIC-IRNASA), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
- Proteomics Section, Central Service for Experimental Research, University of Valencia, Carrer del Dr. Moliner, 50, 46100 Burjassot, Spain
| |
Collapse
|
8
|
Denisov SS, Dijkgraaf I. Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Front Cell Infect Microbiol 2021; 11:769574. [PMID: 34722347 PMCID: PMC8548845 DOI: 10.3389/fcimb.2021.769574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
To feed successfully, ticks must bypass or suppress the host’s defense mechanisms, particularly the immune system. To accomplish this, ticks secrete specialized immunomodulatory proteins into their saliva, just like many other blood-sucking parasites. However, the strategy of ticks is rather unique compared to their counterparts. Ticks’ tendency for gene duplication has led to a diverse arsenal of dozens of closely related proteins from several classes to modulate the immune system’s response. Among these are chemokine-binding proteins, complement pathways inhibitors, ion channels modulators, and numerous poorly characterized proteins whose functions are yet to be uncovered. Studying tick immunomodulatory proteins would not only help to elucidate tick-host relationships but would also provide a rich pool of potential candidates for the development of immunomodulatory intervention drugs and potentially new vaccines. In the present review, we will attempt to summarize novel findings on the salivary immunomodulatory proteins of ticks, focusing on biomolecular targets, structure-activity relationships, and the perspective of their development into therapeutics.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
9
|
Pérez-Sánchez R, Carnero-Morán Á, Soriano B, Llorens C, Oleaga A. RNA-seq analysis and gene expression dynamics in the salivary glands of the argasid tick Ornithodoros erraticus along the trophogonic cycle. Parasit Vectors 2021; 14:170. [PMID: 33743776 PMCID: PMC7980729 DOI: 10.1186/s13071-021-04671-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. Tick salivary proteins secreted to the host at the feeding interface play critical roles for tick feeding and may contribute to host infection by tick-borne pathogens; accordingly, these proteins represent interesting antigen targets for the development of vaccines aimed at the control and prevention of tick infestations and tick-borne diseases. METHODS To identify these proteins, the transcriptome of the salivary glands of O. erraticus was de novo assembled and the salivary gene expression dynamics assessed throughout the trophogonic cycle using Illumina sequencing. The genes differentially upregulated after feeding were selected and discussed as potential antigen candidates for tick vaccines. RESULTS Transcriptome assembly resulted in 22,007 transcripts and 18,961 annotated transcripts, which represent 86.15% of annotation success. Most salivary gene expression took place during the first 7 days after feeding (2088 upregulated transcripts), while only a few genes (122 upregulated transcripts) were differentially expressed from day 7 post-feeding onwards. The protein families more abundantly overrepresented after feeding were lipocalins, acid and basic tail proteins, proteases (particularly metalloproteases), protease inhibitors, secreted phospholipases A2, 5'-nucleotidases/apyrases and heme-binding vitellogenin-like proteins. All of them are functionally related to blood ingestion and regulation of host defensive responses, so they can be interesting candidate protective antigens for vaccines. CONCLUSIONS The O. erraticus sialotranscriptome contains thousands of protein coding sequences-many of them belonging to large conserved multigene protein families-and shows a complexity and functional redundancy similar to those observed in the sialomes of other argasid and ixodid tick species. This high functional redundancy emphasises the need for developing multiantigenic tick vaccines to reach full protection. This research provides a set of promising candidate antigens for the development of vaccines for the control of O. erraticus infestations and prevention of tick-borne diseases of public and veterinary health relevance, such as TBRF and ASF. Additionally, this transcriptome constitutes a valuable reference database for proteomics studies of the saliva and salivary glands of O. erraticus.
Collapse
Affiliation(s)
- Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain.
| | - Ángel Carnero-Morán
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| | - Beatriz Soriano
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| |
Collapse
|
10
|
Changing the Recipe: Pathogen Directed Changes in Tick Saliva Components. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041806. [PMID: 33673273 PMCID: PMC7918122 DOI: 10.3390/ijerph18041806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
Ticks are obligate hematophagous parasites and are important vectors of a wide variety of pathogens. These pathogens include spirochetes in the genus Borrelia that cause Lyme disease, rickettsial pathogens, and tick-borne encephalitis virus, among others. Due to their prolonged feeding period of up to two weeks, hard ticks must counteract vertebrate host defense reactions in order to survive and reproduce. To overcome host defense mechanisms, ticks have evolved a large number of pharmacologically active molecules that are secreted in their saliva, which inhibits or modulates host immune defenses and wound healing responses upon injection into the bite site. These bioactive molecules in tick saliva can create a privileged environment in the host’s skin that tick-borne pathogens take advantage of. In fact, evidence is accumulating that tick-transmitted pathogens manipulate tick saliva composition to enhance their own survival, transmission, and evasion of host defenses. We review what is known about specific and functionally characterized tick saliva molecules in the context of tick infection with the genus Borrelia, the intracellular pathogen Anaplasma phagocytophilum, and tick-borne encephalitis virus. Additionally, we review studies analyzing sialome-level responses to pathogen challenge.
Collapse
|
11
|
Oleaga A, Soriano B, Llorens C, Pérez-Sánchez R. Sialotranscriptomics of the argasid tick Ornithodoros moubata along the trophogonic cycle. PLoS Negl Trop Dis 2021; 15:e0009105. [PMID: 33544727 PMCID: PMC7891743 DOI: 10.1371/journal.pntd.0009105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/18/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The argasid tick Ornithodoros moubata is the main vector of human relapsing fever (HRF) and African swine fever (ASF) in Africa. Salivary proteins are part of the host-tick interface and play vital roles in the tick feeding process and the host infection by tick-borne pathogens; they represent interesting targets for immune interventions aimed at tick control. The present work describes the transcriptome profile of salivary glands of O. moubata and assesses the gene expression dynamics along the trophogonic cycle using Illumina sequencing. De novo transcriptome assembling resulted in 71,194 transcript clusters and 41,011 annotated transcripts, which represent 57.6% of the annotation success. Most salivary gene expression takes place during the first 7 days after feeding (6,287 upregulated transcripts), while a minority of genes (203 upregulated transcripts) are differentially expressed between 7 and 14 days after feeding. The functional protein groups more abundantly overrepresented after blood feeding were lipocalins, proteases (especially metalloproteases), protease inhibitors including the Kunitz/BPTI-family, proteins with phospholipase A2 activity, acid tail proteins, basic tail proteins, vitellogenins, the 7DB family and proteins involved in tick immunity and defence. The complexity and functional redundancy observed in the sialotranscriptome of O. moubata are comparable to those of the sialomes of other argasid and ixodid ticks. This transcriptome provides a valuable reference database for ongoing proteomics studies of the salivary glands and saliva of O. moubata aimed at confirming and expanding previous data on the O. moubata sialoproteome. The soft tick Ornithodoros moubata constitutes an important medical and veterinary problem in Africa because, in addition to being the vector of African swine fever, it transmits human relapsing fever (HRF), a hyper-endemic and lethal, but still neglected, tick-borne disease. Effective control of HRF requires eradicating its vector tick from domestic environments. As chemical acaricide application is ineffective against this tick, development of anti-tick vaccines seems the most promising method for tick control. Salivary proteins play essential functions for tick feeding and survival, which convert them in potential antigen targets for the development of tick vaccines. To know which these proteins are, we obtained the salivary transcriptome of O. moubata females and established, for the first time in a soft tick, the salivary gene transcription dynamics along its trophogonic cycle. Thereby, we have identified numerous genes encoding bioactive proteins essential for tick feeding. This information is essential to drive the selection of candidate antigens for anti-tick vaccine development and evaluate its protective potential in animal immunization trials. These data significantly enlarge the current repertory of known protein-coding sequences from soft tick salivary glands and establish a valuable reference database to improve our knowledge of the O. moubata salivary proteome.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, Salamanca, Spain
- * E-mail:
| | - Beatriz Soriano
- Biotechvana, Scientific Park, University of Valencia, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Scientific Park, University of Valencia, Valencia, Spain
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, Salamanca, Spain
| |
Collapse
|
12
|
Narasimhan S, Kurokawa C, DeBlasio M, Matias J, Sajid A, Pal U, Lynn G, Fikrig E. Acquired tick resistance: The trail is hot. Parasite Immunol 2020; 43:e12808. [PMID: 33187012 DOI: 10.1111/pim.12808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
Acquired tick resistance is a phenomenon wherein the host elicits an immune response against tick salivary components upon repeated tick infestations. The immune responses, potentially directed against critical salivary components, thwart tick feeding, and the animal becomes resistant to subsequent tick infestations. The development of tick resistance is frequently observed when ticks feed on non-natural hosts, but not on natural hosts. The molecular mechanisms that lead to the development of tick resistance are not fully understood, and both host and tick factors are invoked in this phenomenon. Advances in molecular tools to address the host and the tick are beginning to reveal new insights into this phenomenon and to uncover a deeper understanding of the fundamental biology of tick-host interactions. This review will focus on the expanding understanding of acquired tick resistance and highlight the impact of this understanding on anti-tick vaccine development efforts.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Cheyne Kurokawa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Melody DeBlasio
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Geoffrey Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Aounallah H, Bensaoud C, M'ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front Immunol 2020; 11:583845. [PMID: 33072132 PMCID: PMC7538779 DOI: 10.3389/fimmu.2020.583845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Immunodeficiency disorders and autoimmune diseases are common, but a lack of effective targeted drugs and the side-effects of existing drugs have stimulated interest in finding therapeutic alternatives. Naturally derived substances are a recognized source of novel drugs, and tick saliva is increasingly recognized as a rich source of bioactive molecules with specific functions. Ticks use their saliva to overcome the innate and adaptive host immune systems. Their saliva is a rich cocktail of molecules including proteins, peptides, lipid derivatives, and recently discovered non-coding RNAs that inhibit or modulate vertebrate immune reactions. A number of tick saliva and/or salivary gland molecules have been characterized and shown to be promising candidates for drug development for vertebrate immune diseases. However, further validation of these molecules at the molecular, cellular, and organism levels is now required to progress lead candidates to clinical testing. In this paper, we review the data on the immuno-pharmacological aspects of tick salivary compounds characterized in vitro and/or in vivo and present recent findings on non-coding RNAs that might be exploitable as immunomodulatory therapies.
Collapse
Affiliation(s)
- Hajer Aounallah
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia.,Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Youmna M'ghirbi
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Jindr Ich Chmelar
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
14
|
Failed Disruption of Tick Feeding, Viability, and Molting after Immunization of Mice and Sheep with Recombinant Ixodes ricinus Salivary Proteins IrSPI and IrLip1. Vaccines (Basel) 2020; 8:vaccines8030475. [PMID: 32858821 PMCID: PMC7564719 DOI: 10.3390/vaccines8030475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
To identify potential vaccine candidates against Ixodes ricinus and tick-borne pathogen transmission, we have previously sequenced the salivary gland transcriptomes of female ticks infected or not with Bartonella henselae. The hypothesized potential of both IrSPI (I. ricinus serine protease inhibitor) and IrLip1 (I. ricinus lipocalin 1) as protective antigens decreasing tick feeding and/or the transmission of tick-borne pathogens was based on their presumed involvement in dampening the host immune response to tick feeding. Vaccine endpoints included tick larval and nymphal mortality, feeding, and molting in mice and sheep. Whether the antigens were administered individually or in combination, the vaccination of mice or sheep elicited a potent antigen-specific antibody response. However, and contrary to our expectations, vaccination failed to afford protection against the infestation of mice and sheep by I. ricinus nymphs and larvae, respectively. Rather, vaccination with IrSPI and IrLip1 appeared to enhance tick engorgement and molting and decrease tick mortality. To the best of our knowledge, these observations represent the first report of induction of vaccine-mediated enhancement in relation to anti-tick vaccination.
Collapse
|
15
|
Chandrasekhar JL, Cox KM, Erickson LD. B Cell Responses in the Development of Mammalian Meat Allergy. Front Immunol 2020; 11:1532. [PMID: 32765532 PMCID: PMC7379154 DOI: 10.3389/fimmu.2020.01532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Studies of meat allergic patients have shown that eating meat poses a serious acute health risk that can induce severe cutaneous, gastrointestinal, and respiratory reactions. Allergic reactions in affected individuals following meat consumption are mediated predominantly by IgE antibodies specific for galactose-α-1,3-galactose (α-gal), a blood group antigen of non-primate mammals and therefore present in dietary meat. α-gal is also found within certain tick species and tick bites are strongly linked to meat allergy. Thus, it is thought that exposure to tick bites promotes cutaneous sensitization to tick antigens such as α-gal, leading to the development of IgE-mediated meat allergy. The underlying immune mechanisms by which skin exposure to ticks leads to the production of α-gal-specific IgE are poorly understood and are key to identifying novel treatments for this disease. In this review, we summarize the evidence of cutaneous exposure to tick bites and the development of mammalian meat allergy. We then provide recent insights into the role of B cells in IgE production in human patients with mammalian meat allergy and in a novel mouse model of meat allergy. Finally, we discuss existing data more generally focused on tick-mediated immunomodulation, and highlight possible mechanisms for how cutaneous exposure to tick bites might affect B cell responses in the skin and gut that contribute to loss of oral tolerance.
Collapse
Affiliation(s)
- Jessica L Chandrasekhar
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kelly M Cox
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Loren D Erickson
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
16
|
Piesz JL, Barker SE, Bricknell IR. Anti-chemotactic activity in the secretory/excretory products of Lepeophtheirus salmonis. FISH & SHELLFISH IMMUNOLOGY 2020; 98:296-300. [PMID: 31945482 DOI: 10.1016/j.fsi.2020.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
The ectoparasite, Lepeophtheirus salmonis (Kroyer 1837), is effective at avoiding elimination from its host, Atlantic salmon, Salmo salar L., by inhibiting the recruitment of immune cells to the site of attachment. In other ectoparasitic arthropods, numerous factors have been identified that bind or neutralize chemokines preventing their interaction with receptors on the surfaces of immune cells. To determine if L. salmonis is utilizing a similar mechanism of immune modulation, the chemotactic activity of peripheral blood leukocytes (PBL) to leukotriene B4 (LTB4) and the secreted/excreted products (SEPs) of the sea louse were investigated in vitro. The results showed that incubation of LTB4 with SEPs reduced leukocyte migration compared to LTB4 immune stimulation alone. Data suggests that one of the mechanisms L. salmonis may be using to regulate immune cell recruitment in Atlantic salmon is by inhibiting or neutralizing the activity of chemokines.
Collapse
Affiliation(s)
- Jessica L Piesz
- Molecular and Biomedical Sciences, The University of Maine, Orono, ME, 04469, USA; Aquaculture Research Institute, The University of Maine, Orono, ME, 04469, USA.
| | - Sarah E Barker
- Aquaculture Research Institute, The University of Maine, Orono, ME, 04469, USA
| | - Ian R Bricknell
- Aquaculture Research Institute, The University of Maine, Orono, ME, 04469, USA; School of Marine Sciences, The University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
17
|
Brouwer MAE, van de Schoor FR, Vrijmoeth HD, Netea MG, Joosten LAB. A joint effort: The interplay between the innate and the adaptive immune system in Lyme arthritis. Immunol Rev 2020; 294:63-79. [PMID: 31930745 PMCID: PMC7065069 DOI: 10.1111/imr.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Articular joints are a major target of Borrelia burgdorferi, the causative agent of Lyme arthritis. Despite antibiotic treatment, recurrent or persistent Lyme arthritis is observed in a significant number of patients. The host immune response plays a crucial role in this chronic arthritic joint complication of Borrelia infections. During the early stages of B. burgdorferi infection, a major hinder in generating a proper host immune response is the lack of induction of a strong adaptive immune response. This may lead to a delayed hyperinflammatory reaction later in the disease. Several mechanisms have been suggested that might be pivotal for the development of Lyme arthritis and will be highlighted in this review, from molecular mimicry of matrix metallopeptidases and glycosaminoglycans, to autoimmune responses to live bacteria, or remnants of Borrelia spirochetes in joints. Murine studies have suggested that the inflammatory responses are initiated by innate immune cells, but this does not exclude the involvement of the adaptive immune system in this dysregulated immune profile. Genetic predisposition, via human leukocyte antigen-DR isotype and microRNA expression, has been associated with the development of antibiotic-refractory Lyme arthritis. Yet the ultimate cause for (antibiotic-refractory) Lyme arthritis remains unknown. Complex processes of different immune cells and signaling cascades are involved in the development of Lyme arthritis. When these various mechanisms are fully been unraveled, new treatment strategies can be developed to target (antibiotic-refractory) Lyme arthritis more effectively.
Collapse
Affiliation(s)
- Michelle A. E. Brouwer
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Freek R. van de Schoor
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Hedwig D. Vrijmoeth
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Mihai G. Netea
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
- Department for Genomics & ImmunoregulationLife and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo A. B. Joosten
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
18
|
Hart CE, Ribeiro JM, Kazimirova M, Thangamani S. Tick-Borne Encephalitis Virus Infection Alters the Sialome of Ixodes ricinus Ticks During the Earliest Stages of Feeding. Front Cell Infect Microbiol 2020; 10:41. [PMID: 32133301 PMCID: PMC7041427 DOI: 10.3389/fcimb.2020.00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023] Open
Abstract
Ticks are hematophagous arthropods that transmit a number of pathogens while feeding. Among these is tick-borne encephalitis virus (TBEV), a flavivirus transmitted by Ixodes ricinus ticks in the temperate zone of Europe. The infection results in febrile illness progressing to encephalitis and meningitis with a possibility of fatality or long-term neurological sequelae. The composition of tick saliva plays an essential role in the initial virus transmission during tick feeding. Ticks secrete a diverse range of salivary proteins to modulate the host response, such as lipocalins to control the itch and inflammatory response, and both proteases and protease inhibitors to prevent blood coagulation. Here, the effect of viral infection of adult females of Ixodes ricinus was studied with the goal of determining how the virus alters the tick sialome to modulate host tissue response at the site of infection. Uninfected ticks or those infected with TBEV were fed on mice and removed and dissected one- and 3-h post-attachment. RNA from the salivary glands of these ticks, as well as from unfed ticks, was extracted and subjected to next-generation sequencing to determine the expression of key secreted proteins at each timepoint. Genes showing statistically significant up- or down-regulation between infected and control ticks were selected and compared to published literature to ascertain their function. From this, the effect of tick viral infection on the modulation of the tick-host interface was determined. Infected ticks were found to differentially express a number of uncategorized genes, proteases, Kunitz-type serine protease inhibitors, cytotoxins, and lipocalins at different timepoints. These virus-induced changes to the tick sialome may play a significant role in facilitating virus transmission during the early stages of tick feeding.
Collapse
Affiliation(s)
- Charles E. Hart
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY, United States
- The Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, United States
| | - Jose M. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Saravanan Thangamani
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
19
|
Bensaoud C, Aounallah H, Sciani JM, Faria F, Chudzinski-Tavassi AM, Bouattour A, M'ghirbi Y. Proteomic informed by transcriptomic for salivary glands components of the camel tick Hyalomma dromedarii. BMC Genomics 2019; 20:675. [PMID: 31455241 PMCID: PMC6712667 DOI: 10.1186/s12864-019-6042-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Background The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. Results We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. Conclusion This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully. Electronic supplementary material The online version of this article (10.1186/s12864-019-6042-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie. .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice (Budweis), Czechia.
| | - Hajer Aounallah
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Juliana Mozer Sciani
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil.,Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Av. São Francisco de Assis, 218, CEP 12916-900, Bragança Paulista, São Paulo, Brazil
| | - Fernanda Faria
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | | | - Ali Bouattour
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Youmna M'ghirbi
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| |
Collapse
|
20
|
Chmelař J, Kotál J, Kovaříková A, Kotsyfakis M. The Use of Tick Salivary Proteins as Novel Therapeutics. Front Physiol 2019; 10:812. [PMID: 31297067 PMCID: PMC6607933 DOI: 10.3389/fphys.2019.00812] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The last three decades of research into tick salivary components have revealed several proteins with important pharmacological and immunological activities. Two primary interests have driven research into tick salivary secretions: the search for suitable pathogen transmission blocking or “anti-tick” vaccine candidates and the search for novel therapeutics derived from tick salivary components. Intensive basic research in the field of tick salivary gland transcriptomics and proteomics has identified several major protein families that play important roles in tick feeding and overcoming vertebrate anti-tick responses. Moreover, these families contain members with unrealized therapeutic potential. Here we review the major tick salivary protein families exploitable in medical applications such as immunomodulation, inhibition of hemostasis and inflammation. Moreover, we discuss the potential, opportunities, and challenges in searching for novel tick-derived drugs.
Collapse
Affiliation(s)
- Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.,Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, České Budějovice, Czechia
| | - Anna Kovaříková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.,Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, České Budějovice, Czechia
| |
Collapse
|
21
|
RNA-seq analysis of the salivary glands and midgut of the Argasid tick Ornithodoros rostratus. Sci Rep 2019; 9:6764. [PMID: 31043627 PMCID: PMC6494864 DOI: 10.1038/s41598-019-42899-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/21/2019] [Indexed: 01/28/2023] Open
Abstract
Ornithodoros rostratus is a South American argasid tick which importance relies on its itchy bite and potential as disease vector. They feed on a wide variety of hosts and secrete different molecules in their saliva and intestinal content that counteract host defences and help to accommodate and metabolize the relatively large quantity of blood upon feeding. The present work describes the transcriptome profile of salivary gland (SG) and midgut (MG) of O. rostratus using Illumina sequencing. A total of 8,031 contigs were assembled and assigned to different functional classes. Secreted proteins were the most abundant in the SG and accounted for ~67% of all expressed transcripts with contigs with identity to lipocalins and acid tail proteins being the most representative. On the other hand, immunity genes were upregulated in MG with a predominance of defensins and lysozymes. Only 10 transcripts in SG and 8 in MG represented ~30% of all RNA expressed in each tissue and one single contig (the acid tail protein ORN-9707) represented ~7% of all expressed contigs in SG. Results highlight the functional difference of each organ and identified the most expressed classes and contigs of O. rostratus SG and MG.
Collapse
|
22
|
Mans BJ. Chemical Equilibrium at the Tick-Host Feeding Interface:A Critical Examination of Biological Relevance in Hematophagous Behavior. Front Physiol 2019; 10:530. [PMID: 31118903 PMCID: PMC6504839 DOI: 10.3389/fphys.2019.00530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
Ticks secrete hundreds to thousands of proteins into the feeding site, that presumably all play important functions in the modulation of host defense mechanisms. The current review considers the assumption that tick proteins have functional relevance during feeding. The feeding site may be described as a closed system and could be treated as an ideal equilibrium system, thereby allowing modeling of tick-host interactions in an equilibrium state. In this equilibrium state, the concentration of host and tick proteins and their affinities will determine functional relevance at the tick-host interface. Using this approach, many characterized tick proteins may have functional relevant concentrations and affinities at the feeding site. Conversely, the feeding site is not an ideal closed system, but is dynamic and changing, leading to possible overestimation of tick protein concentration at the feeding site and consequently an overestimation of functional relevance. Ticks have evolved different possible strategies to deal with this dynamic environment and overcome the barrier that equilibrium kinetics poses to tick feeding. Even so, cognisance of the limitations that equilibrium binding place on deductions of functional relevance should serve as an important incentive to determine both the concentration and affinity of tick proteins proposed to be functional at the feeding site.
Collapse
Affiliation(s)
- Ben J. Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
23
|
Boulanger N. [Immunomodulatory effect of tick saliva in pathogen transmission]. Biol Aujourdhui 2019; 212:107-117. [PMID: 30973140 DOI: 10.1051/jbio/2019001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/29/2022]
Abstract
Ticks are the most important vectors of pathogens in human and veterinary medicine. These strictly haematophagous acarines produce a saliva containing a variety of bioactive molecules affecting host pharmacology and immunity. This process is vital for hard ticks to prevent rejection by the host during the blood meal that lasts several days. All actors involved in the immunity interplay are impacted by this saliva, the innate immunity being represented by resident and migrating immune cells, as well as the T and B lymphocytes of the adaptive immune system. The skin plays a key role in vector-borne diseases. During the long co-evolution with the tick, the infectious agents benefit from this favorable environment to be transmitted efficiently into the skin and to multiply in the vertebrate host. Therefore, the saliva is an important virulence booster, which enhances substantially their pathogenicity.
Collapse
Affiliation(s)
- Nathalie Boulanger
- EA7290, Virulence Bactérienne Précoce, Groupe Borrelia, Facultés de Pharmacie et Médecine, Université de Strasbourg, Institut de bactériologie, 3 rue Koeberlé, 67000 Strasbourg, France - Centre National de Référence Borrelia, Plateau technique de Microbiologie, CHRU Strasbourg, 1 rue Koeberlé, 67000 Strasbourg, France
| |
Collapse
|
24
|
Ellwanger JH, Chies JAB. Host immunogenetics in tick-borne encephalitis virus infection-The CCR5 crossroad. Ticks Tick Borne Dis 2019; 10:729-741. [PMID: 30879988 DOI: 10.1016/j.ttbdis.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/18/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
Abstract
The human Tick-borne encephalitis virus (TBEV) infection is a complex event encompassing factors derived from the virus itself, the vectors, the final host, and the environment as well. Classically, genetic traits stand out among the human factors that modify the susceptibility and progression of infectious diseases. However, and although this is a changing scenario, studies evaluating the genetic factors that affect the susceptibility specifically to TBEV infection and TBEV-related diseases are still scarce. There are already some interesting pieces of evidence showing that some genes and polymorphisms have a real impact on TBEV infection. Also, the inflammatory processes involving tick-human interactions began to be understood in greater detail. This review focuses on the immunogenetic and inflammatory aspects concerning tick-host interactions, TBEV infections, and tick-borne encephalitis. Of note, it has been described that polymorphisms in CD209, GSTM1, IL-10, IL-28B, MMP9, OAS2, OAS3, and TLR3 have a statistically significant impact on TBEV infection. Besides, CCR5, its ligands, and the CCR5Δ32 genetic variant seem to have a very important influence on the infection and its immune responses. Taking this information into consideration, a special discussion regarding the effects of CCR5 on TBEV infection and tick-borne encephalitis will be presented. Emerging topics (such as exosomes, evasins, and CCR5 blockers) involving immunological and inflammatory aspects of TBEV-human interactions will also be addressed. Lastly, the current picture of TBEV infection and the importance to address the TBEV-associated problems through the One Health perspective will be discussed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
25
|
Dissociating effect of salivary gland extract from Ixodes ricinus on human fibroblasts: Potential impact on Borrelia transmission. Ticks Tick Borne Dis 2018; 10:433-441. [PMID: 30595500 DOI: 10.1016/j.ttbdis.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
Understanding the mechanism of pathogen transmission is essential for the development of strategies to reduce arthropod-borne diseases. The pharmaco- and immunomodulatory properties of insect and acarine saliva play an essential role in the efficiency of pathogen transmission. The skin as the site where arthropod saliva and pathogens are inoculated - represents the key interface in vector-borne diseases. We identified tick molecules potentially involved in pathogen transmission, using micro-HPLC and mass spectrometry, followed by in vitro assays on human skin cells. Histone H4 isolated from Ixodes ricinus salivary gland extract was identified as a molecule with a dissociating effect on human primary fibroblasts. This histone might be involved in the formation of the feeding pool formed around the tick mouthparts and responsible of tissue necrosis in the vertebrate host. Thanks to its selective antimicrobial activity, it may also sterilize the feeding pool and facilitate transmission of pathogens such as Borrelia burgdorferi sensu lato.
Collapse
|
26
|
Bensaoud C, Nishiyama MY, Ben Hamda C, Lichtenstein F, Castro de Oliveira U, Faria F, Loiola Meirelles Junqueira-de-Azevedo I, Ghedira K, Bouattour A, M'Ghirbi Y, Chudzinski-Tavassi AM. De novo assembly and annotation of Hyalomma dromedarii tick (Acari: Ixodidae) sialotranscriptome with regard to gender differences in gene expression. Parasit Vectors 2018; 11:314. [PMID: 29793520 PMCID: PMC5968504 DOI: 10.1186/s13071-018-2874-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hard ticks are hematophagous ectoparasites characterized by their long-term feeding. The saliva that they secrete during their blood meal is their crucial weapon against host-defense systems including hemostasis, inflammation and immunity. The anti-hemostatic, anti-inflammatory and immune-modulatory activities carried out by tick saliva molecules warrant their pharmacological investigation. The Hyalomma dromedarii Koch, 1844 tick is a common parasite of camels and probably the best adapted to deserts of all hard ticks. Like other hard ticks, the salivary glands of this tick may provide a rich source of many compounds whose biological activities interact directly with host system pathways. Female H. dromedarii ticks feed longer than males, thereby taking in more blood. To investigate the differences in feeding behavior as reflected in salivary compounds, we performed de novo assembly and annotation of H. dromedarii sialotranscriptome paying particular attention to variations in gender gene expression. RESULTS The quality-filtered Illumina sequencing reads deriving from a cDNA library of salivary glands led to the assembly of 15,342 transcripts. We deduced that the secreted proteins included: metalloproteases, glycine-rich proteins, mucins, anticoagulants of the mandanin family and lipocalins, among others. Expression analysis revealed differences in the expression of transcripts between male and female H. dromedarii that might explain the blood-feeding strategies employed by both genders. CONCLUSIONS The annotated sialome of H. dromedarii helps understand the interaction of tick-host molecules during blood-feeding and can lead to the discovery of new pharmacologically active proteins of ticks of the genus Hyalomma.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Milton Yutaka Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | - Cherif Ben Hamda
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT09, Laboratoire de Bioinformatique, Biomathematique et biostatiqtiques, 1002, Tunis, Tunisie
| | - Flavio Lichtenstein
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | - Ursula Castro de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | - Fernanda Faria
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | | | - Kais Ghedira
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT09, Laboratoire de Bioinformatique, Biomathematique et biostatiqtiques, 1002, Tunis, Tunisie
| | - Ali Bouattour
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie.
| | - Youmna M'Ghirbi
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | | |
Collapse
|
27
|
Couret D, Bourane S, Catan A, Nativel B, Planesse C, Dorsemans AC, Ait-Arsa I, Cournot M, Rondeau P, Patche J, Tran-Dinh A, Lambert G, Diotel N, Meilhac O. A hemorrhagic transformation model of mechanical stroke therapy with acute hyperglycemia in mice. J Comp Neurol 2018; 526:1006-1016. [PMID: 29277912 DOI: 10.1002/cne.24386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022]
Abstract
Clinical benefit for mechanical thrombectomy (MT) in stroke was recently demonstrated in multiple large prospective studies. Acute hyperglycemia (HG) is an important risk factor of poor outcome in stroke patients, including those that underwent MT. The aim of this therapy is to achieve a complete reperfusion in a short time, given that reperfusion damage is dependent on the duration of ischemia. Here, we investigated the effects of acute HG in a mouse model of ischemic stroke induced by middle cerebral artery occlusion (MCAO). Hyperglycemic (intraperitoneal [ip] injection of glucose) and control (ip saline injection) 10-week male C57BL6 mice were subjected to MCAO (30, 90, and 180 min) followed by reperfusion obtained by withdrawal of the monofilament. Infarct volume, hemorrhagic transformation (HT), neutrophil infiltration, and neurological scores were assessed at 24 hr by performing vital staining, ELISA immunofluorescence, and behavioral test, respectively. Glucose injection led to transient HG (blood glucose = 250-390 mg/dL) that significantly increased infarct volume, HT, and worsened neurological outcome. In addition, we report that HG promoted blood-brain barrier disruption as shown by hemoglobin accumulation in the brain parenchyma and tended to increase neutrophil extravasation within the infarcted area. Acute HG increased neurovascular damage for all MCAO durations tested. HTs were observed as early as 90 min after ischemia under hyperglycemic conditions. This model mimics MT ischemia/reperfusion and allows the exploration of brain injury in hyperglycemic conditions.
Collapse
Affiliation(s)
- David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.,CHU de La Réunion, Service de Neuroréanimation, Saint-Pierre de La Réunion, France
| | - Steeve Bourane
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Aurélie Catan
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Brice Nativel
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Anne-Claire Dorsemans
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Imade Ait-Arsa
- Plateforme CYROI, Cyclotron Réunion Océan Indien, Sainte-Clotilde, France
| | - Maxime Cournot
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.,Hôpital Gabriel Martin, Service de Cardiologie, Saint-Paul de La Réunion, France.,CHU de La Réunion, Saint-Denis de La Réunion, France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Jessica Patche
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | | | - Gilles Lambert
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.,CHU de La Réunion, Service de Neuroréanimation, Saint-Pierre de La Réunion, France.,CHU de La Réunion, Saint-Denis de La Réunion, France
| |
Collapse
|
28
|
Early Production of the Neutrophil-Derived Lipid Mediators LTB 4 and LXA 4 Is Modulated by Intracellular Infection with Leishmania major. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2014583. [PMID: 29181388 PMCID: PMC5664244 DOI: 10.1155/2017/2014583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/22/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022]
Abstract
Recruitment of neutrophil granulocytes to sites of infectious tissue damage is an early event in innate immune responses. Following chemotactic signals neutrophils establish a first line of defense in a swarm-like manner. Intracellular pathogens such as Leishmania major can, however, evade neutrophil-mediated killing and survive inside neutrophils. To achieve this the parasites evolved potent evasion mechanisms. Since neutrophils are a major source of inflammation regulating lipid mediators, we hypothesized that intracellular infection modifies the release of pro- and anti-inflammatory lipid mediators like leukotriene B4 (LTB4) and lipoxin A4 (LXA4), respectively. In the present study, we demonstrated in vitro that L. major-infected primary human neutrophils release an increased amount of LTB4, whereas LXA4 liberation is reduced during the first hours of infection. To investigate whether lipid mediator modulation is a common feature in intracellular infections, we tested the impact of an infection with Anaplasma phagocytophilum. Similarly to L. major, neutrophil infection with A. phagocytophilum led to an enhanced release of LTB4 and decreased LXA4 production. Together, our findings indicate that intracellular infections modulate the lipid mediator profile of neutrophils. This effect is likely to contribute to the survival of the pathogens in neutrophils and to the outcome of the infections.
Collapse
|
29
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
30
|
Valdés JJ, Cabezas-Cruz A, Sima R, Butterill PT, Růžek D, Nuttall PA. Substrate prediction of Ixodes ricinus salivary lipocalins differentially expressed during Borrelia afzelii infection. Sci Rep 2016; 6:32372. [PMID: 27584086 PMCID: PMC5008119 DOI: 10.1038/srep32372] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/05/2016] [Indexed: 11/13/2022] Open
Abstract
Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia.
Collapse
Affiliation(s)
- James J Valdés
- Institute of Parasitology, The Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.,Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 - CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Radek Sima
- Institute of Parasitology, The Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Philip T Butterill
- Biology Center, The Czech Academy of Sciences, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Daniel Růžek
- Institute of Parasitology, The Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.,Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic.,Biology Center, The Czech Academy of Sciences, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | | |
Collapse
|
31
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
32
|
Bullard RL, Williams J, Karim S. Temporal Gene Expression Analysis and RNA Silencing of Single and Multiple Members of Gene Family in the Lone Star Tick Amblyomma americanum. PLoS One 2016; 11:e0147966. [PMID: 26872360 PMCID: PMC4752215 DOI: 10.1371/journal.pone.0147966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Saliva is an integral factor in the feeding success of veterinary and medically important ticks. Therefore, the characterization of the proteins present in tick saliva is an important area of tick research. Here, we confirmed previously generated sialotranscriptome data using quantitative real-time PCR. The information obtained in this in-depth study of gene expression was used to measure the effects of metalloprotease gene silencing on tick feeding. We analyzed the temporal expression of seven housekeeping genes and 44 differentially expressed salivary molecules selected from a previously published Amblyomma americanum sialotranscriptome. Separate reference genes were selected for the salivary glands and midgut from among the seven housekeeping genes, to normalize the transcriptional expression of differentially expressed genes. The salivary gland reference gene, ubiquitin, was used to normalize the expression of 44 salivary genes. Unsurprisingly, each gene family was expressed throughout the blood meal, but the expression of specific genes differed at each time point. To further clarify the complex nature of the many proteins found in the saliva, we disrupted the translation of several members of the metalloprotease family. Intriguingly, the nucleotide sequence similarity of the reprolysin metalloprotease gene family is so homologous that a single synthesized dsRNA sequence knocked down multiple members of the family. The use of multigene knockdown yielded a more significant picture of the role of metalloproteases in tick feeding success, and changes were observed in the female engorgement weight and larval hatching success. Interestingly, the depletion of metalloprotease transcripts also reduced the total number of bacteria present in the salivary glands. These data provide insight into the expression and functions of tick salivary proteins expressed while feeding on its host.
Collapse
Affiliation(s)
- Rebekah L. Bullard
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Jaclyn Williams
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Shahid Karim
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| |
Collapse
|
33
|
Tirloni L, Islam MS, Kim TK, Diedrich JK, Yates JR, Pinto AFM, Mulenga A, You MJ, Da Silva Vaz I. Saliva from nymph and adult females of Haemaphysalis longicornis: a proteomic study. Parasit Vectors 2015; 8:338. [PMID: 26104117 PMCID: PMC4484640 DOI: 10.1186/s13071-015-0918-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Haemaphysalis longicornis is a major vector of Theileria spp., Anaplasma phagocytophilum, Babesia spp. and Coxiella burnetti in East Asian countries. All life stages of ixodid ticks have a destructive pool-feeding style in which they create a pool-feeding site by lacerating host tissue and secreting a variety of biologically active compounds that allows the tick to evade host responses, enabling the uptake of a blood meal. The identification and functional characterization of tick saliva proteins can be useful to elucidate the molecular mechanisms involved in tick development and to conceive new anti-tick control methods. METHODS H. longicornis tick saliva was collected from fully engorged nymphs and fully engorged adults induced by dopamine or pilocarpine, respectively. Saliva was digested with trypsin for LC-MS/MS sequencing and peptides were searched against tick and rabbit sequences. RESULTS A total of 275 proteins were identified, of which 135 were tick and 100 were rabbit proteins. Of the tick proteins, 30 proteins were identified exclusively in fully engorged nymph saliva, 74 in fully engorged adult females, and 31 were detected in both stages. The identified tick proteins include heme/iron metabolism-related proteins, oxidation/detoxification proteins, enzymes, proteinase inhibitors, tick-specific protein families, and cytoskeletal proteins. Proteins involved in signal transduction, transport and metabolism of carbohydrate, energy, nucleotide, amino acids and lipids were also detected. Of the rabbit proteins, 13 were present in nymph saliva, 48 in adult saliva, and 30 were present in both. The host proteins include immunoglobulins, complement system proteins, antimicrobial proteins, serum albumin, peroxiredoxin, serotransferrin, apolipoprotein, hemopexin, proteinase inhibitors, and hemoglobin/red blood cells-related products. CONCLUSIONS This study allows the identification of H. longicornis saliva proteins. In spontaneously detached tick saliva various proteins were identified, although results obtained with saliva of fully engorged ticks need to be carefully interpreted. However, it is interesting to note that proteins identified in this study were also described in other tick saliva proteomes using partially engorged tick saliva, including hemelipoprotein, proteases, protease inhibitors, proteins related to structural functions, transporter activity, metabolic processes, and others. In conclusion, these data can provide a deeper understanding to the biology of H. longicornis.
Collapse
Affiliation(s)
- Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Mohammad Saiful Islam
- Department of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Centre, Chonbuk National University, Jeonju, Republic of Korea.
- Department of Medicine, Surgery and Obstetrics, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | - Jolene K Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Antônio F M Pinto
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | - Myung-Jo You
- Department of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Centre, Chonbuk National University, Jeonju, Republic of Korea.
| | - Itabajara Da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
34
|
Rodriguez-Valle M, Xu T, Kurscheid S, Lew-Tabor AE. Rhipicephalus microplus serine protease inhibitor family: annotation, expression and functional characterisation assessment. Parasit Vectors 2015; 8:7. [PMID: 25564202 PMCID: PMC4322644 DOI: 10.1186/s13071-014-0605-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/14/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhipicephalus (Boophilus) microplus evades the host's haemostatic system through a complex protein array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors modulate diverse and essential proteases involved in different physiological processes. METHODS The identification of R. microplus serpin sequences was performed through a web-based bioinformatics environment called Yabi. The database search was conducted on BmiGi V1, BmiGi V2.1, five SSH libraries, Australian tick transcriptome libraries and RmiTR V1 using bioinformatics methods. Semi quantitative PCR was carried out using different adult tissues and tick development stages. The cDNA of four identified R. microplus serpins were cloned and expressed in Pichia pastoris in order to determine biological targets of these serpins utilising protease inhibition assays. RESULTS A total of four out of twenty-two serpins identified in our analysis are new R. microplus serpins which were named as RmS-19 to RmS-22. The analyses of DNA and predicted amino acid sequences showed high conservation of the R. microplus serpin sequences. The expression data suggested ubiquitous expression of RmS except for RmS-6 and RmS-14 that were expressed only in nymphs and adult female ovaries, respectively. RmS-19, and -20 were expressed in all tissues samples analysed showing their important role in both parasitic and non-parasitic stages of R. microplus development. RmS-21 was not detected in ovaries and RmS-22 was not identified in ovary and nymph samples but were expressed in the rest of the samples analysed. A total of four expressed recombinant serpins showed protease specific inhibition for Chymotrypsin (RmS-1 and RmS-6), Chymotrypsin / Elastase (RmS-3) and Thrombin (RmS-15). CONCLUSION This study constitutes an important contribution and improvement to the knowledge about the physiologic role of R. microplus serpins during the host-tick interaction.
Collapse
Affiliation(s)
- Manuel Rodriguez-Valle
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia Qld, 4072, Australia.
| | - Tao Xu
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia Qld, 4072, Australia.
| | | | - Ala E Lew-Tabor
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia Qld, 4072, Australia. .,Murdoch University, Centre for Comparative Genomics, Perth, Western Australia, 6150, Australia.
| |
Collapse
|
35
|
Microarray analysis of tick-infested skin in resistant and susceptible cattle confirms the role of inflammatory pathways in immune activation and larval rejection. Vet Parasitol 2014; 205:307-17. [PMID: 25108850 DOI: 10.1016/j.vetpar.2014.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 01/09/2023]
Abstract
Tick bites promote activation of an inflammatory process that is influenced by bovine genetic composition and its history of previous exposure. Taurine and indicine breeds are known to differ on its immune response development against Rhipicephalus microplus. Nevertheless, further investigation about the complex molecular pathways involved in the development of immune response to tick infestation in cattle presenting the same genetic background is mandatory. The aim of this work was to access the early immune response triggered by R. microplus larvae attachment in previously selected resistant and susceptible animals in a bovine F2 population derived from Gyr (Bos indicus)×Holstein (Bos taurus) crosses. Microarray data analysis of RNA samples from tick infested skin was used to evaluate the gene expression at 0, 24 and 48h after R. microplus larvae attachment. Our experimental design allowed us to deeply explore the immune response related to R. microplus infestation avoiding the innate differences between these breeds. The differentially expressed genes found reveal networks and pathways that suggest a key role of lipid metabolism in inflammation control and impairment of tick infestation in resistant animals. Acute phase response also seems to be impaired in susceptible animals. These results provide new insights about early immune response against ticks and raise the possibility of using immunomodulation processes to improve and develop novel tools for tick control.
Collapse
|
36
|
Tirloni L, Reck J, Terra RMS, Martins JR, Mulenga A, Sherman NE, Fox JW, Yates JR, Termignoni C, Pinto AFM, da Silva Vaz I. Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PLoS One 2014; 9:e94831. [PMID: 24762651 PMCID: PMC3998978 DOI: 10.1371/journal.pone.0094831] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/19/2014] [Indexed: 01/10/2023] Open
Abstract
The cattle tick Rhipicephalus (Boophilus) microplus is one of the most harmful parasites affecting bovines. Similarly to other hematophagous ectoparasites, R. microplus saliva contains a collection of bioactive compounds that inhibit host defenses against tick feeding activity. Thus, the study of tick salivary components offers opportunities for the development of immunological based tick control methods and medicinal applications. So far, only a few proteins have been identified in cattle tick saliva. The aim of this work was to identify proteins present in R. microplus female tick saliva at different feeding stages. Proteomic analysis of R. microplus saliva allowed identifying peptides corresponding to 187 and 68 tick and bovine proteins, respectively. Our data confirm that (i) R. microplus saliva is complex, and (ii) that there are remarkable differences in saliva composition between partially engorged and fully engorged female ticks. R. microplus saliva is rich mainly in (i) hemelipoproteins and other transporter proteins, (ii) secreted cross-tick species conserved proteins, (iii) lipocalins, (iv) peptidase inhibitors, (v) antimicrobial peptides, (vii) glycine-rich proteins, (viii) housekeeping proteins and (ix) host proteins. This investigation represents the first proteomic study about R. microplus saliva, and reports the most comprehensive Ixodidae tick saliva proteome published to date. Our results improve the understanding of tick salivary modulators of host defense to tick feeding, and provide novel information on the tick-host relationship.
Collapse
Affiliation(s)
- Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - José Reck
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Renata Maria Soares Terra
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- CAPES, Ministério da Educação do Brasil, Brasília, DF, Brasil
| | - João Ricardo Martins
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Albert Mulenga
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Nicholas E. Sherman
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jay W. Fox
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Antônio F. M. Pinto
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- CAPES, Ministério da Educação do Brasil, Brasília, DF, Brasil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol 2013; 4:337. [PMID: 24312085 PMCID: PMC3833115 DOI: 10.3389/fmicb.2013.00337] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/25/2013] [Indexed: 11/21/2022] Open
Abstract
Ticks are unique among hematophagous arthropods by continuous attachment to host skin and blood feeding for days; complexity and diversity of biologically active molecules differentially expressed in saliva of tick species; their ability to modulate the host defenses of pain and itch, hemostasis, inflammation, innate and adaptive immunity, and wound healing; and, the diverse array of infectious agents they transmit. All of these interactions occur at the cutaneous interface in a complex sequence of carefully choreographed host defense responses and tick countermeasures resulting in an environment that facilitates successful blood feeding and establishment of tick-borne infectious agents within the host. Here, we examine diverse patterns of tick attachment to host skin, blood feeding mechanisms, salivary gland transcriptomes, bioactive molecules in tick saliva, timing of pathogen transmission, and host responses to tick bite. Ticks engage and modulate cutaneous and systemic immune defenses involving keratinocytes, natural killer cells, dendritic cells, T cell subpopulations (Th1, Th2, Th17, Treg), B cells, neutrophils, mast cells, basophils, endothelial cells, cytokines, chemokines, complement, and extracellular matrix. A framework is proposed that integrates tick induced changes of skin immune effectors with their ability to respond to tick-borne pathogens. Implications of these changes are addressed. What are the consequences of tick modulation of host cutaneous defenses? Does diversity of salivary gland transcriptomes determine differential modulation of host inflammation and immune defenses and therefore, in part, the clades of pathogens effectively transmitted by different tick species? Do ticks create an immunologically modified cutaneous environment that enhances specific pathogen establishment? Can tick saliva molecules be used to develop vaccines that block pathogen transmission?
Collapse
Affiliation(s)
- Stephen Wikel
- Department of Medical Sciences, Frank H. Netter MD School of Medicine, Quinnipiac University Hamden, CT, USA
| |
Collapse
|
38
|
Sakhon OS, Severo MS, Kotsyfakis M, Pedra JHF. A Nod to disease vectors: mitigation of pathogen sensing by arthropod saliva. Front Microbiol 2013; 4:308. [PMID: 24155744 PMCID: PMC3801108 DOI: 10.3389/fmicb.2013.00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/26/2013] [Indexed: 01/29/2023] Open
Abstract
Arthropod saliva possesses anti-hemostatic, anesthetic, and anti-inflammatory properties that facilitate feeding and, inadvertently, dissemination of pathogens. Vector-borne diseases caused by these pathogens affect millions of people each year. Many studies address the impact of arthropod salivary proteins on various immunological components. However, whether and how arthropod saliva counters Nod-like (NLR) sensing remains elusive. NLRs are innate immune pattern recognition molecules involved in detecting microbial molecules and danger signals. Nod1/2 signaling results in activation of the nuclear factor-κB and the mitogen-activated protein kinase pathways. Caspase-1 NLRs regulate the inflammasome~– a protein scaffold that governs the maturation of interleukin (IL)-1β and IL-18. Recently, several vector-borne pathogens have been shown to induce NLR activation in immune cells. Here, we provide a brief overview of NLR signaling and discuss clinically relevant vector-borne pathogens recognized by NLR pathways. We also elaborate on possible anti-inflammatory effects of arthropod saliva on NLR signaling and microbial pathogenesis for the purpose of exchanging research perspectives.
Collapse
Affiliation(s)
- Olivia S Sakhon
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | | | |
Collapse
|
39
|
Poole NM, Mamidanna G, Smith RA, Coons LB, Cole JA. Prostaglandin E(2) in tick saliva regulates macrophage cell migration and cytokine profile. Parasit Vectors 2013; 6:261. [PMID: 24025197 PMCID: PMC3846740 DOI: 10.1186/1756-3305-6-261] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/04/2013] [Indexed: 12/29/2022] Open
Abstract
Background Ticks are obligate hematophagous ectoparasites that suppress the host’s immune and inflammatory responses by secreting immuno-modulatory and anti-inflammatory molecules in their saliva. In previous studies we have shown that tick salivary gland extract (SGE) and saliva from Dermacentor variabilis have distinct effects on platelet-derived growth factor (PDGF)-stimulated IC-21 macrophage and NIH3T3-L1 fibroblast migration. Since tick saliva contains a high concentration of prostaglandin E2 (PGE2), a potent modulator of inflammation, we used a PGE2 receptor antagonist to evaluate the role of PGE2 in the different migratory responses induced by saliva and its impact on macrophage cytokine profile. Methods Adult ticks were fed on female New Zealand white rabbits for 5-8 days. Female ticks were stimulated with dopamine/theophylline to induce salivation and saliva was pooled. Competitive enzyme immunoassays (EIA) were used to measure saliva PGE2 content and the changes in macrophage intracellular cyclic adenosine monophosphate (cAMP) levels. The effects of tick saliva on macrophage and fibroblast migration were assessed in the absence and presence of the PGE2 receptor antagonist, AH 6809, using blind well chamber assays. A cytokine antibody array was used to examine the effects of tick saliva on macrophage cytokine secretion. Statistical significance was determined by one-way ANOVA; Student Newman-Kuels post-test was used for multiple comparisons. Results The saliva-induced increase in PDGF-stimulated macrophage migration was reversed by AH 6809. The inhibition of PDGF-stimulated fibroblast migration by saliva was also antagonist-sensitive. Tick saliva induced macrophages to secrete copious amounts of PGE2, and conditioned medium from these cells caused an AH 6809-sensitive inhibition of stimulated fibroblast migration, showing that macrophages can regulate fibroblast activity. We show that tick saliva decreased the secretion of the pro-inflammatory cytokines regulated and normal T cell expressed and secreted (RANTES/CCL5), tumor necrosis factor-alpha (TNF-α), and soluble TNF receptor I (sTNFRI) through a PGE2-dependent mechanism mediated by cAMP. Saliva had similar effects on lipopolysaccharide (LPS) stimulated macrophages. Conclusions Our data show that ticks utilize salivary PGE2 to subvert the ability of macrophages to secrete pro-inflammatory mediators and recruit fibroblasts to the feeding lesion, therefore inhibiting wound healing.
Collapse
Affiliation(s)
- Nina M Poole
- Department of Biological Sciences, The University of Memphis, 239 Ellington Hall, 3700 Walker Avenue, Memphis TN, 38152, USA.
| | | | | | | | | |
Collapse
|
40
|
Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 2013; 3:43. [PMID: 23971008 PMCID: PMC3747359 DOI: 10.3389/fcimb.2013.00043] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023] Open
Abstract
Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences Bratislava, Slovakia.
| | | |
Collapse
|
41
|
Rhipicephalus microplus lipocalins (LRMs): Genomic identification and analysis of the bovine immune response using in silico predicted B and T cell epitopes. Int J Parasitol 2013; 43:739-52. [DOI: 10.1016/j.ijpara.2013.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/17/2022]
|
42
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 381] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
43
|
Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses. PLoS Pathog 2013; 9:e1003450. [PMID: 23825947 PMCID: PMC3695081 DOI: 10.1371/journal.ppat.1003450] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/07/2013] [Indexed: 12/28/2022] Open
Abstract
Hard ticks subvert the immune responses of their vertebrate hosts in order to feed for much longer periods than other blood-feeding ectoparasites; this may be one reason why they transmit perhaps the greatest diversity of pathogens of any arthropod vector. Tick-induced immunomodulation is mediated by salivary components, some of which neutralise elements of innate immunity or inhibit the development of adaptive immunity. As dendritic cells (DC) trigger and help to regulate adaptive immunity, they are an ideal target for immunomodulation. However, previously described immunoactive components of tick saliva are either highly promiscuous in their cellular and molecular targets or have limited effects on DC. Here we address the question of whether the largest and globally most important group of ticks (the ixodid metastriates) produce salivary molecules that specifically modulate DC activity. We used chromatography to isolate a salivary gland protein (Japanin) from Rhipicephalus appendiculatus ticks. Japanin was cloned, and recombinant protein was produced in a baculoviral expression system. We found that Japanin specifically reprogrammes DC responses to a wide variety of stimuli in vitro, radically altering their expression of co-stimulatory and co-inhibitory transmembrane molecules (measured by flow cytometry) and their secretion of pro-inflammatory, anti-inflammatory and T cell polarising cytokines (assessed by Luminex multiplex assays); it also inhibits the differentiation of DC from monocytes. Sequence alignments and enzymatic deglycosylation revealed Japanin to be a 17.7 kDa, N-glycosylated lipocalin. Using molecular cloning and database searches, we have identified a group of homologous proteins in R. appendiculatus and related species, three of which we have expressed and shown to possess DC-modulatory activity. All data were obtained using DC generated from at least four human blood donors, with rigorous statistical analysis. Our results suggest a previously unknown mechanism for parasite-induced subversion of adaptive immunity, one which may also facilitate pathogen transmission. Dendritic cells (DC) are specialised cells of the vertebrate immune system. DC can sense different types of infectious agents and parasites, and both trigger and help regulate the specific types of immunity needed to eliminate them. We have discovered that the largest and globally most important group of hard ticks produce a unique family of proteins in their saliva that selectively targets DC, radically altering functions that would otherwise induce robust immune responses; these proteins also prevent DC developing from precursor cells. The production of these salivary molecules may help to explain two highly unusual features of these hard ticks compared with other blood-feeding parasites: their ability to feed continuously on their vertebrate hosts for considerable lengths of time (7 days or more) without eliciting potentially damaging immune responses, and their capacity to transmit possibly the greatest variety of pathogens of any type of invertebrate.
Collapse
|
44
|
Barratt-Due A, Thorgersen EB, Egge K, Pischke S, Sokolov A, Hellerud BC, Lindstad JK, Pharo A, Bongoni AK, Rieben R, Nunn M, Scott H, Mollnes TE. Combined inhibition of complement C5 and CD14 markedly attenuates inflammation, thrombogenicity, and hemodynamic changes in porcine sepsis. THE JOURNAL OF IMMUNOLOGY 2013; 191:819-27. [PMID: 23761634 DOI: 10.4049/jimmunol.1201909] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Complement and the TLR family constitute two important branches of innate immunity. We previously showed attenuating effects on inflammation and thromogenicity by inhibiting the TLR coreceptor CD14 in porcine sepsis. In the present study, we explored the effect of the C5 and leukotriene B4 inhibitor Ornithodoros moubata complement inhibitor (OmCI; also known as coversin) alone and combined with anti-CD14 on the early inflammatory, hemostatic, and hemodynamic responses in porcine Escherichia coli-induced sepsis. Pigs were randomly allocated to negative controls (n = 6), positive controls (n = 8), intervention with OmCI (n = 8), or with OmCI and anti-CD14 (n = 8). OmCI ablated C5 activation and formation of the terminal complement complex and significantly decreased leukotriene B4 levels in septic pigs. Granulocyte tissue factor expression, formation of thrombin-antithrombin complexes (p < 0.001), and formation of TNF-α and IL-6 (p < 0.05) were efficiently inhibited by OmCI alone and abolished or strongly attenuated by the combination of OmCI and anti-CD14 (p < 0.001 for all). Additionally, the combined therapy attenuated the formation of plasminogen activator inhibitor-1 (p < 0.05), IL-1β, and IL-8, increased the formation of IL-10, and abolished the expression of wCD11R3 (CD11b) and the fall in neutrophil cell count (p < 0.001 for all). Finally, OmCI combined with anti-CD14 delayed increases in heart rate by 60 min (p < 0.05) and mean pulmonary artery pressure by 30 min (p < 0.01). Ex vivo studies confirmed the additional effect of combining anti-CD14 with OmCI. In conclusion, upstream inhibition of the key innate immunity molecules, C5 and CD14, is a potential broad-acting treatment regimen in sepsis as it efficiently attenuated inflammation and thrombogenicity and delayed hemodynamic changes.
Collapse
Affiliation(s)
- Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital, National Hospital, University of Oslo, 0424 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Francischetti IMB, Assumpção TCF, Ma D, Li Y, Vicente EC, Uieda W, Ribeiro JMC. The "Vampirome": Transcriptome and proteome analysis of the principal and accessory submaxillary glands of the vampire bat Desmodus rotundus, a vector of human rabies. J Proteomics 2013; 82:288-319. [PMID: 23411029 DOI: 10.1016/j.jprot.2013.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Vampire bats are notorious for being the sole mammals that strictly feed on fresh blood for their survival. While their saliva has been historically associated with anticoagulants, only one antihemostatic (plasminogen activator) has been molecularly and functionally characterized. Here, RNAs from both principal and accessory submaxillary (submandibular) salivary glands of Desmodus rotundus were extracted, and ~200 million reads were sequenced by Illumina. The principal gland was enriched with plasminogen activators with fibrinolytic properties, members of lipocalin and secretoglobin families, which bind prohemostatic prostaglandins, and endonucleases, which cleave neutrophil-derived procoagulant NETs. Anticoagulant (tissue factor pathway inhibitor, TFPI), vasodilators (PACAP and C-natriuretic peptide), and metalloproteases (ADAMTS-1) were also abundantly expressed. Members of the TSG-6 (anti-inflammatory), antigen 5/CRISP, and CCL28-like (antimicrobial) protein families were also sequenced. Apyrases (which remove platelet agonist ADP), phosphatases (which degrade procoagulant polyphosphates), and sphingomyelinase were found at lower transcriptional levels. Accessory glands were enriched with antimicrobials (lysozyme, defensin, lactotransferrin) and protease inhibitors (TIL-domain, cystatin, Kazal). Mucins, heme-oxygenase, and IgG chains were present in both glands. Proteome analysis by nano LC-MS/MS confirmed that several transcripts are expressed in the glands. The database presented herein is accessible online at http://exon.niaid.nih.gov/transcriptome/D_rotundus/Supplemental-web.xlsx. These results reveal that bat saliva emerges as a novel source of modulators of vascular biology. BIOLOGICAL SIGNIFICANCE Vampire bat saliva emerges as a novel source of antihemostatics which modulate several aspects of vascular biology.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Genes (Basel) 2012; 3:702-41. [PMID: 24705082 PMCID: PMC3899984 DOI: 10.3390/genes3040702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/06/2023] Open
Abstract
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase.
Collapse
Affiliation(s)
| | - Ard M Nijhof
- Institut für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany.
| | - Wilma Fick
- Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.
| | - Christian Stutzer
- Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa.
| | | |
Collapse
|
47
|
Menten-Dedoyart C, Faccinetto C, Golovchenko M, Dupiereux I, Van Lerberghe PB, Dubois S, Desmet C, Elmoualij B, Baron F, Rudenko N, Oury C, Heinen E, Couvreur B. Neutrophil extracellular traps entrap and kill Borrelia burgdorferi sensu stricto spirochetes and are not affected by Ixodes ricinus tick saliva. THE JOURNAL OF IMMUNOLOGY 2012; 189:5393-401. [PMID: 23109724 DOI: 10.4049/jimmunol.1103771] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lyme disease is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. They are transmitted mainly by Ixodes ricinus ticks. After a few hours of infestation, neutrophils massively infiltrate the bite site. They can kill Borrelia via phagocytosis, oxidative burst, and hydrolytic enzymes. However, factors in tick saliva promote propagation of the bacteria in the host even in the presence of a large number of neutrophils. The neutrophil extracellular trap (NET) consists in the extrusion of the neutrophil's own DNA, forming traps that can retain and kill bacteria. The production of reactive oxygen species is apparently associated with the onset of NETs (NETosis). In this article, we describe NET formation at the tick bite site in vivo in mice. We show that Borrelia burgdorferi sensu stricto spirochetes become trapped and killed by NETs in humans and that the bacteria do not seem to release significant nucleases to evade this process. Saliva from I. ricinus did not affect NET formation by human neutrophils or its stability. However, it greatly decreased neutrophil reactive oxygen species production, suggesting that a strong decrease of hydrogen peroxide does not affect NET formation. Finally, round bodies trapped in NETs were observed, some of them staining as live bacteria. This observation could help contribute to a better understanding of the early steps of Borrelia invasion and erythema migrans formation after tick bite.
Collapse
Affiliation(s)
- Catherine Menten-Dedoyart
- Laboratory of Human Histology-Centre de Recherche sur les Protéines Prion, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Heinze DM, Carmical JR, Aronson JF, Thangamani S. Early immunologic events at the tick-host interface. PLoS One 2012; 7:e47301. [PMID: 23077588 PMCID: PMC3471850 DOI: 10.1371/journal.pone.0047301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022] Open
Abstract
Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, cutaneous bite-site lesions were analyzed using Affymetrix mouse genome 430A 2.0 arrays and histopathology at 1, 3, 6, and 12 hours after uninfected Ixodes scapularis nymphal tick attachment. At 1 and 3 hrs after attachment, the gene expression profile is markedly different than at later time points. Upregulated gene ontology term clusters enriched at 1 and 3 hrs were related to post-translational modification. At 6 and 12 hrs, cytoskeletal rearrangements, DNA replication/cell division, inflammation, and chemotaxis were prominent clusters. At 6 and 12 hrs, extracellular matrix, signaling, and DNA binding clusters were downregulated. Histopathological analysis shows minimal inflammation at 1 and 3 hrs but an appreciable neutrophil infiltrate at 6 and 12 hrs. In addition, putative hyperemia, localized necrosis, and increased ECM deposition were identified. Putting the gene expression and histopathology analysis together suggests early tick feeding is characterized by modulation of host responses in resident cells that merges into a nascent, neutrophil-driven immune response by 12 hrs post-attachment.
Collapse
Affiliation(s)
- Dar M. Heinze
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - J. Russ Carmical
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Judith F. Aronson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
49
|
Lew-Tabor AE, Kurscheid S, Barrero R, Gondro C, Moolhuijzen PM, Rodriguez Valle M, Morgan JAT, Covacin C, Bellgard MI. Gene expression evidence for off-target effects caused by RNA interference-mediated gene silencing of Ubiquitin-63E in the cattle tick Rhipicephalus microplus. Int J Parasitol 2011; 41:1001-14. [PMID: 21712043 DOI: 10.1016/j.ijpara.2011.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 01/10/2023]
Affiliation(s)
- A E Lew-Tabor
- CRC for Beef Genetic Technologies, Armidale, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ribeiro JM, Anderson JM, Manoukis NC, Meng Z, Francischetti IM. A further insight into the sialome of the tropical bont tick, Amblyomma variegatum. BMC Genomics 2011; 12:136. [PMID: 21362191 PMCID: PMC3060141 DOI: 10.1186/1471-2164-12-136] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/01/2011] [Indexed: 01/02/2023] Open
Abstract
Background Ticks--vectors of medical and veterinary importance--are themselves also significant pests. Tick salivary proteins are the result of adaptation to blood feeding and contain inhibitors of blood clotting, platelet aggregation, and angiogenesis, as well as vasodilators and immunomodulators. A previous analysis of the sialotranscriptome (from the Greek sialo, saliva) of Amblyomma variegatum is revisited in light of recent advances in tick sialomes and provides a database to perform a proteomic study. Results The clusterized data set has been expertly curated in light of recent reviews on tick salivary proteins, identifying many new families of tick-exclusive proteins. A proteome study using salivary gland homogenates identified 19 putative secreted proteins within a total of 211 matches. Conclusions The annotated sialome of A. variegatum allows its comparison to other tick sialomes, helping to consolidate an emerging pattern in the salivary composition of metastriate ticks; novel protein families were also identified. Because most of these proteins have no known function, the task of functional analysis of these proteins and the discovery of novel pharmacologically active compounds becomes possible.
Collapse
Affiliation(s)
- José Mc Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA.
| | | | | | | | | |
Collapse
|