1
|
Lee J, Lee SH, Kim H, Chung SW. Effect of electrical muscle stimulation on the improvement of deltoid muscle atrophy in a rat shoulder immobilization model. J Orthop Res 2024. [PMID: 39097824 DOI: 10.1002/jor.25943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
Immobilization following trauma or surgery induces skeletal muscle atrophy, and improvement in the muscle atrophy is critical for successful clinical outcomes. The purpose of this study is to evaluate the effect of electrical muscle stimulation (EMS) on muscle atrophy. The study design is a controlled laboratory study. Eighty rats (56 to establish the deltoid muscle atrophy [DMA] model and 24 to evaluate the effect of EMS on the model) were used. DMA was induced by completely immobilizing the right shoulder of each rat by placing sutures between the scapula and humeral shaft, with the left shoulder as a control. After establishing the DMA model, rats were randomly assigned into three groups: low-frequency EMS (L-EMS, 10 Hz frequency), medium-frequency EMS (M-EMS, 50 Hz frequency), and control (eight rats per group). After 3 weeks, the deltoid muscles of each rat were harvested, alterations in gene expression and muscle cell size were evaluated, and immunohistochemical analysis was performed. DMA was most prominent 3 weeks after shoulder immobilization. Murf1 and Atrogin were significantly induced at the initial phase and gradually decreased at approximately 3 weeks; however, MyoD expressed an inverse relationship with Murf1 and Atrogin. IL6 expression was prominent at 1 week. The time point for the EMS effect evaluation was selected at 3 weeks, when the DMA was the most prominent with a change in relevant gene expression. The M-EMS group cell size was significantly larger than that of L-EMS and control group in both the immobilized and intact shoulders (all p < 0.05), without significant differences between the L-EMS and control groups. The M-EMS group showed significantly lower mRNA expressions of Murf1 and Atrogin and higher expressions of MyoD and Col1A1 than that of the control group (all p < 0.05). In immunohistochemical analysis, similar results were observed with lower Atrogin staining and higher MyoD and Col1A1 staining in the M-EMS group. DMA model was established by complete shoulder immobilization, with the most prominent muscle atrophy observed at 3 weeks. M-EMS improved DMA with changes in the expression of relevant genes. M-EMS might be a solution for strengthening atrophied skeletal muscles and facilitating rehabilitation after trauma or surgery.
Collapse
Affiliation(s)
- Jeongkun Lee
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Su Hyun Lee
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Hyuntae Kim
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
2
|
Lee J, Lho T, Lee J, Lee J, Chung SW. Influence of Frequent Corticosteroid Local Injections on the Expression of Genes and Proteins Related to Fatty Infiltration, Muscle Atrophy, Inflammation, and Fibrosis in Patients With Chronic Rotator Cuff Tears: A Pilot Study. Orthop J Sports Med 2024; 12:23259671241252421. [PMID: 38840789 PMCID: PMC11151761 DOI: 10.1177/23259671241252421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/09/2023] [Indexed: 06/07/2024] Open
Abstract
Background The effect of local corticosteroid (CS) injections on rotator cuff muscles remains poorly defined, despite the significance of muscle quality as a crucial prognostic factor for patients with rotator cuff tears (RCTs). Purpose To compare alterations in gene and protein expression patterns in the rotator cuff muscles of patients with RCTs who received frequent joint CS injections with alterations in those without a history of CS injections. Study Design Controlled laboratory study. Methods A total of 24 rotator cuff muscle samples with medium-sized tears from 12 patients with a frequent joint CS injection history (steroid group; 7 men and 5 women who had received ≥5 injections with at least 1 within the previous 3 months; mean age, 63.0 ± 7.2 years) and 12 age- and sex-matched control patients without a history of CS injections (no-steroid group) were acquired. Alterations in the expression of genes and proteins associated with adipogenesis, myogenesis, inflammation, and muscle fibrosis were compared between the groups using quantitative reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry. Statistical analysis included comparison of group means using the Mann-Whitney U test, chi-square test, or Fisher exact test and logistic regression for multivariate analysis. Results In the steroid group, the mRNA expression levels of adipogenic CCAAT/enhancer-binding protein alpha (C/EBPα; P = .008) and muscle atrophy-related genes (atrogin; P = .019) were significantly higher, and those of myogenic differentiation 1 (MyoD; P = .035), inflammatory interleukin 6 (IL-6; P = .035), and high mobility group box 1 (P = .003) were significantly lower compared with the no-steroid group. In addition, MyoD (P = .041) and IL-6 (P = .026) expression were decreased in the steroid versus no-steroid group. Immunohistochemistry revealed increased expression of C/EBPα and atrogin and decreased expression of MyoD and IL-6 in the steroid versus no-steroid group. Conclusion Patients with RCTs and a history of frequent CS injections exhibited an upregulation of adipogenic and muscle atrophy-related genes and proteins within the rotator cuff muscles and a downregulation in the expression of myogenic and inflammatory genes and proteins in the same muscles. Clinical Relevance These altered gene and protein expressions by frequent local CS injections may cause poor outcomes in patients with RCTs.
Collapse
Affiliation(s)
- JiHwan Lee
- Department of Medicine, Korea University Graduate School, Seoul, Republic of Korea
| | - Taewoo Lho
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jongwon Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jeongkun Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Yu H, Zhu G, Wang D, Huang X, Han F. PI3K/AKT/FOXO3a Pathway Induces Muscle Atrophy by Ubiquitin-Proteasome System and Autophagy System in COPD Rat Model. Cell Biochem Biophys 2024; 82:805-815. [PMID: 38386223 DOI: 10.1007/s12013-024-01232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Muscle atrophy is a common extrapulmonary co-morbidity affecting about 20% of patients with COPD. However, the mechanism of muscle atrophy in COPD remains unclear. This study investigated the role of the ubiquitin-proteasome system (UPS) and the autophagy system in COPD muscle atrophy and its mechanism. A COPD rat model was established to evaluate the in vitro effects of the UPS and the autophagy system in muscle atrophy. In addition, the role of the UPS, autophagy systems, and the expressions of the PI3K/AKT/FOXO3a pathway were studied in the CSE-induced L6 myoblast cells. Furthermore, we evaluated the effect of FOXO3a in the CSE-induced L6 myoblast cells using siRNA-FOXO3a. The results showed that the expression of ubiquitin-related proteins and autophagy-related proteins were significantly increased in the COPD rat model and CSE-induced L6 myoblast cells. At the same time, there was a concurrent decrease in the phosphorylation protein expression of PI3K and AKT, but the transcriptional activity of FOXO3a was increased in CSE-induced L6 myoblast cells. And siRNA-FOXO3a significantly decreased the expression level of the UPS and the autophagy system in CSE-induced L6 myoblast cells. These results suggest that PI3K/AKT/FOXO3a participates in COPD muscle atrophy by regulating the UPS and the autophagy systems.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiyin Zhu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Wang
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Huang
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Han
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Lee HY, Lee J, Lim H, Kim HY, Koo YS, Lim JS, Yoon Y. Lactobacillus gasseri BNR17 Ameliorates Dexamethasone-Induced Muscle Loss in BALB/c Mice and C2C12 Myotubes. J Med Food 2024; 27:385-395. [PMID: 38574296 DOI: 10.1089/jmf.2023.k.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
This study aimed to investigate the effects and mechanism of Lactobacillus gasseri BNR17, a probiotic strain isolated from human breast milk, on dexamethasone-induced muscle loss in mice and cultured myotubes. BALB/c mice were intraperitoneally injected with dexamethasone, and orally administered L. gasseri BNR17 for 21 days. L. gasseri BNR17 treatment ameliorated dexamethasone-induced decline in muscle function, as evidenced by an increase in forelimb grip strength, treadmill running time, and rotarod retention time in both female and male mice. In addition, L. gasseri BNR17 treatment significantly increased the mass of the gastrocnemius and quadriceps muscles. Dual-energy X-ray absorptiometry showed a significant increase in lean body mass and a decrease in fat mass in both whole body and hind limb after treatment with L. gasseri BNR17. It was found that L. gasseri BNR17 treatment downregulated serum myostatin level and the protein degradation pathway composed of muscle-specific ubiquitin E3 ligases, MuRF1 and MAFbx, and their transcription factor FoxO3. In contrast, L. gasseri BNR17 treatment upregulated serum insulin-like growth factor-1 level and Akt-mTOR-p70S6K signaling pathway involved in protein synthesis in muscle. As a result, L. gasseri BNR17 treatment significantly increased the levels of major muscular proteins such as myosin heavy chain and myoblast determination protein 1. Consistent with in vivo results, L. gasseri BNR17 culture supernatant significantly ameliorated dexamethasone-induced C2C12 myotube atrophy in vitro. In conclusion, L. gasseri BNR17 ameliorates muscle loss by downregulating the protein degradation pathway and upregulating the protein synthesis pathway.
Collapse
Affiliation(s)
- Hyeon-Yeong Lee
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jongkyu Lee
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyemi Lim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hye-Young Kim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Yeon-Su Koo
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ji-Su Lim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Yoosik Yoon
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
5
|
Chen L, Chen Y, Wang M, Lai L, Zheng L, Lu H. Ursolic acid alleviates cancer cachexia by inhibiting STAT3 signaling pathways in C2C12 myotube and CT26 tumor-bearing mouse model. Eur J Pharmacol 2024; 969:176429. [PMID: 38423241 DOI: 10.1016/j.ejphar.2024.176429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Cancer cachexia, a multi-organ disorder resulting from tumor and immune system interactions, prominently features muscle wasting and affects the survival of patients with cancer. Ursolic acid (UA) is known for its antioxidant, anti-inflammatory, and anticancer properties. However, its impact on cancer cachexia remains unexplored. This study aimed to assess the efficacy of UA in addressing muscle atrophy and organ dysfunction in cancer cachexia and reveal the mechanisms involved. UA dose-dependently ameliorated C2C12 myotube atrophy. Mechanistically, it inhibited the expression of muscle-specific RING finger containing protein 1 (MURF1) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3), and upregulated the mRNA or protein levels of myogenic differentiation antigen and myogenin in cultured C2C12 myotubes treated with conditioned medium. In vivo, UA protected CT26 tumor-bearing mice against loss of body weight, as well as increased skeletal muscle and epididymal fat without affecting tumor growth. Additionally, UA increased food intake in CT26 tumor-bearing mice. The mRNA expression of tumor necrosis-α and interleukin 6 was significantly downregulated in the intestine, gastrocnemius, and heart tissues following 38 d UA administration. UA treatment reversed the levels of myocardial function indicators, including creatine kinase, creatine kinase-MB, lactate dehydrogenase, car-dial troponin T, and glutathione. Finally, UA treatment significantly inhibited the expression of MURF1, the phosphorylation of nuclear factor kappa-B p65, and STAT3 in the gastrocnemius muscle and heart tissues of cachexic mice. Our findings suggest that UA is a promising natural compound for developing dietary supplements for cancer cachexia therapy owing to its anti-catabolic effects.
Collapse
Affiliation(s)
- Li Chen
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Yan Chen
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Mengxia Wang
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Linglin Lai
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Linbo Zheng
- Department Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Huiqin Lu
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
6
|
Hirunsai M, Srikuea R. Differential effects of cholecalciferol and calcitriol on muscle proteolysis and oxidative stress in angiotensin II-induced C2C12 myotube atrophy. Physiol Rep 2024; 12:e16011. [PMID: 38627219 PMCID: PMC11021198 DOI: 10.14814/phy2.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Renin-angiotensin system activation contributes to skeletal muscle atrophy in aging individuals with chronic diseases. We aimed to explore the effects of cholecalciferol (VD3) and calcitriol (1,25VD3) on signaling of muscle proteolysis and oxidative stress in myotubes challenged with angiotensin II (AII). The mouse C2C12 myotubes were assigned to vehicle, AII, AII + VD3, AII + 1,25VD3, and AII + losartan groups. The expression levels of muscle-specific E3 ubiquitin ligase proteins, autophagy-related proteins, and oxidative stress markers were investigated. We demonstrated the diverse effects of VD3 and 1,25VD3 on AII-induced myotube atrophy. The myotube diameter was preserved by treatment with 100 nM VD3 and losartan, while 1 and 10 nM 1,25VD3 increased levels of FoxO3a, MuRF1, and atrogin-1 protein expression in myotubes exposed to AII. Treatment with AII + 10 nM 1,25VD3 resulted in the upregulation of LC3B-II, LC3B-II/LC3B-I, and mature cathepsin L, which are autophagic marker proteins. The p62/SQSTM1 protein was downregulated and vitamin D receptor was upregulated after treatment with AII + 10 nM 1,25VD3. A cellular redox imbalance was observed as AII + 10 nM 1,25VD3-induced reactive oxygen species and NADPH oxidase-2 overproduction, and these changes were associated with an inadequate response of antioxidant superoxide dismutase-1 and catalase proteins. Collectively, these findings provide a translational perspective on the role of vitamin D3 in alleviating muscle atrophy related to high levels of AII.
Collapse
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy, Faculty of PharmacySrinakharinwirot UniversityNakhon NayokThailand
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
7
|
Hughes DC, Goodman CA, Baehr LM, Gregorevic P, Bodine SC. A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple. Am J Physiol Cell Physiol 2023; 325:C1567-C1582. [PMID: 37955121 PMCID: PMC10861180 DOI: 10.1152/ajpcell.00457.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Ubiquitination is an important post-translational modification (PTM) for protein substrates, whereby ubiquitin is added to proteins through the coordinated activity of activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The E3s provide key functions in the recognition of specific protein substrates to be ubiquitinated and aid in determining their proteolytic or nonproteolytic fates, which has led to their study as indicators of altered cellular processes. MuRF1 and MAFbx/Atrogin-1 were two of the first E3 ubiquitin ligases identified as being upregulated in a range of different skeletal muscle atrophy models. Since their discovery, the expression of these E3 ubiquitin ligases has often been studied as a surrogate measure of changes to bulk protein degradation rates. However, emerging evidence has highlighted the dynamic and complex regulation of the ubiquitin proteasome system (UPS) in skeletal muscle and demonstrated that protein ubiquitination is not necessarily equivalent to protein degradation. These observations highlight the potential challenges of quantifying E3 ubiquitin ligases as markers of protein degradation rates or ubiquitin proteasome system (UPS) activation. This perspective examines the usefulness of monitoring E3 ubiquitin ligases for determining specific or bulk protein degradation rates in the settings of skeletal muscle atrophy. Specific questions that remain unanswered within the skeletal muscle atrophy field are also identified, to encourage the pursuit of new research that will be critical in moving forward our understanding of the molecular mechanisms that govern protein function and degradation in muscle.
Collapse
Affiliation(s)
- David C Hughes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Leslie M Baehr
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| |
Collapse
|
8
|
Pan Y, Zhou T, Dong X, Wu L, Wang P, Wang S, Zhang A. Urotensin II can Induce Skeletal Muscle Atrophy Associated with Upregulating Ubiquitin-Proteasome System and Inhibiting the Differentiation of Satellite Cells in CRF Mice. Calcif Tissue Int 2023; 112:603-612. [PMID: 36892588 DOI: 10.1007/s00223-023-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Skeletal muscle wasting and atrophy is highly prevalent in chronic renal failure (CRF) and increases the risk of mortality. According to our previous study, we speculate that urotensin II (UII) can induce skeletal muscle atrophy by upregulating ubiquitin-proteasome system(UPS) in CRF. C2C12 mouse myoblast cells were differentiated into myotubes, and myotubes were exposed to different concentrations of UII. Myotube diameters, myosin heavy chain(MHC), p-Fxo03A, skeletal muscle-specific E3 ubiquitin ligases such as muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx/atrogin1) were detected. Three animal models (the sham operation mice as normal control (NC) group, wild-type C57BL/6 mice with 5/6 nephrectomy (WT CRF) group, UII receptor gene knock out (UT KO) mice with 5/6 nephrectomy (UT KO CRF) group) were designed. Cross-sectional area (CSA) of skeletal muscle tissues in three animal models were measured, and western blot detected protein of UII, p-Fxo03A, MAFbx and MuRF1, and immunofluorescence assays explored the satellite cell marker of Myod1 and Pax7, and PCR arrays detected the muscle protein degradation genes, protein synthesis genes and the genes which were involved in muscle components. UII could decrease mouse myotube diameters, and upregulate dephosphorylated Fxo03A protein. MAFbx and MuRF1 were higher in WT CRF group than that in NC group, but after UII receptor gene was knocked out (UT KO CRF), their expressions were downregulated. UII could inhibit the expression of Myod1 but not Pax7 in animal study. We first demonstrate that skeletal muscle atrophy induced by UII associated with upregulating ubiquitin-proteasome system and inhibiting the differentiation of satellite cells in CRF mice.
Collapse
Affiliation(s)
- Yajing Pan
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Ting Zhou
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Xingtong Dong
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Leiyun Wu
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Peiwen Wang
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Shiyuan Wang
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Sarcopenia phenotype and impaired muscle function in male mice with fast-twitch muscle-specific knockout of the androgen receptor. Proc Natl Acad Sci U S A 2023; 120:e2218032120. [PMID: 36669097 PMCID: PMC9942915 DOI: 10.1073/pnas.2218032120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sarcopenia is distinct from normal muscle atrophy in that it is closely related to a shift in the muscle fiber type. Deficiency of the anabolic action of androgen on skeletal muscles is associated with sarcopenia; however, the function of the androgen receptor (AR) pathway in sarcopenia remains poorly understood. We generated a mouse model (fast-twitch muscle-specific AR knockout [fmARKO] mice) in which the AR was selectively deleted in the fast-twitch muscle fibers. In young male mice, the deletion caused no change in muscle mass, but it reduced muscle strength and fatigue resistance and induced a shift in the soleus muscles from fast-twitch fibers to slow-twitch fibers (14% increase, P = 0.02). After middle age, with the control mice, the male fmARKO mice showed much less muscle function, accompanied by lower hindlimb muscle mass; this phenotype was similar to the progression of sarcopenia. The bone mineral density of the femur was significantly reduced in the fmARKO mice, indicating possible osteosarcopenia. Microarray and gene ontology analyses revealed that in male fmARKO mice, there was downregulation of polyamine biosynthesis-related geneswhich was confirmed by liquid chromatography-tandem mass spectrometry assay and the primary cultured myofibers. None of the AR deletion-related phenotypes were observed in female fmARKO mice. Our findings showed that the AR pathway had essential muscle type- and sex-specific roles in the differentiation toward fast-twitch fibers and in the maintenance of muscle composition and function. The AR in fast-twitch muscles was the dominant regulator of muscle fiber-type composition and muscle function, including the muscle-bone relationship.
Collapse
|
10
|
Paez HG, Pitzer CR, Alway SE. Age-Related Dysfunction in Proteostasis and Cellular Quality Control in the Development of Sarcopenia. Cells 2023; 12:cells12020249. [PMID: 36672183 PMCID: PMC9856405 DOI: 10.3390/cells12020249] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is a debilitating skeletal muscle disease that accelerates in the last decades of life and is characterized by marked deficits in muscle strength, mass, quality, and metabolic health. The multifactorial causes of sarcopenia have proven difficult to treat and involve a complex interplay between environmental factors and intrinsic age-associated changes. It is generally accepted that sarcopenia results in a progressive loss of skeletal muscle function that exceeds the loss of mass, indicating that while loss of muscle mass is important, loss of muscle quality is the primary defect with advanced age. Furthermore, preclinical models have suggested that aged skeletal muscle exhibits defects in cellular quality control such as the degradation of damaged mitochondria. Recent evidence suggests that a dysregulation of proteostasis, an important regulator of cellular quality control, is a significant contributor to the aging-associated declines in muscle quality, function, and mass. Although skeletal muscle mammalian target of rapamycin complex 1 (mTORC1) plays a critical role in cellular control, including skeletal muscle hypertrophy, paradoxically, sustained activation of mTORC1 recapitulates several characteristics of sarcopenia. Pharmaceutical inhibition of mTORC1 as well as caloric restriction significantly improves muscle quality in aged animals, however, the mechanisms controlling cellular proteostasis are not fully known. This information is important for developing effective therapeutic strategies that mitigate or prevent sarcopenia and associated disability. This review identifies recent and historical understanding of the molecular mechanisms of proteostasis driving age-associated muscle loss and suggests potential therapeutic interventions to slow or prevent sarcopenia.
Collapse
Affiliation(s)
- Hector G. Paez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher R. Pitzer
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stephen E. Alway
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Tennessee Institute of Regenerative Medicine, Memphis, TN 38163, USA
- Correspondence:
| |
Collapse
|
11
|
Sinam IS, Chanda D, Thoudam T, Kim MJ, Kim BG, Kang HJ, Lee JY, Baek SH, Kim SY, Shim BJ, Ryu D, Jeon JH, Lee IK. Pyruvate dehydrogenase kinase 4 promotes ubiquitin-proteasome system-dependent muscle atrophy. J Cachexia Sarcopenia Muscle 2022; 13:3122-3136. [PMID: 36259412 PMCID: PMC9745560 DOI: 10.1002/jcsm.13100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Muscle atrophy, leading to muscular dysfunction and weakness, is an adverse outcome of sustained period of glucocorticoids usage. However, the molecular mechanism underlying this detrimental condition is currently unclear. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in skeletal muscle and has been implicated in the pathogenesis of several diseases. The current study was designed to investigated and delineate the role of PDK4 in the context of muscle atrophy, which could be identified as a potential therapeutic avenue to protect against dexamethasone-induced muscle wasting. METHODS The dexamethasone-induced muscle atrophy in C2C12 myotubes was evaluated at the molecular level by expression of key genes and proteins involved in myogenesis, using immunoblotting and qPCR analyses. Muscle dysfunction was studied in vivo in wild-type and PDK4 knockout mice treated with dexamethasone (25 mg/kg body weight, i.p., 10 days). Body weight, grip strength, muscle weight and muscle histology were assessed. The expression of myogenesis markers were analysed using qPCR, immunoblotting and immunoprecipitation. The study was extended to in vitro human skeletal muscle atrophy analysis. RESULTS Knockdown of PDK4 was found to prevent glucocorticoid-induced muscle atrophy and dysfunction in C2C12 myotubes, which was indicated by induction of myogenin (0.3271 ± 0.102 vs 2.163 ± 0.192, ****P < 0.0001) and myosin heavy chain (0.3901 ± 0.047 vs. 0.7222 ± 0.082, **P < 0.01) protein levels and reduction of muscle atrophy F-box (10.77 ± 2.674 vs. 1.518 ± 0.172, **P < 0.01) expression. In dexamethasone-induced muscle atrophy model, mice with genetic ablation of PDK4 revealed increased muscle strength (162.1 ± 22.75 vs. 200.1 ± 37.09 g, ***P < 0.001) and muscle fibres (54.20 ± 11.85% vs. 84.07 ± 28.41%, ****P < 0.0001). To explore the mechanism, we performed coimmunoprecipitation and liquid chromatography-mass spectrometry analysis and found that myogenin is novel substrate of PDK4. PDK4 phosphorylates myogenin at S43/T57 amino acid residues, which facilitates the recruitment of muscle atrophy F-box to myogenin and leads to its subsequent ubiquitination and degradation. Finally, overexpression of non-phosphorylatable myogenin mutant using intramuscular injection prevented dexamethasone-induced muscle atrophy and preserved muscle fibres. CONCLUSIONS We have demonstrated that PDK4 mediates dexamethasone-induced skeletal muscle atrophy. Mechanistically, PDK4 phosphorylates and degrades myogenin via recruitment of E3 ubiquitin ligase, muscle atrophy F-box. Rescue of muscle regeneration by genetic ablation of PDK4 or overexpression of non-phosphorylatable myogenin mutant indicates PDK4 as an amenable therapeutic target in muscle atrophy.
Collapse
Affiliation(s)
- Ibotombi Singh Sinam
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Republic of Korea
| | - Dipanjan Chanda
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyeon-Ji Kang
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Yi Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Hoon Baek
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin-Yoon Kim
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Bum Jin Shim
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea.,Lead Contact
| |
Collapse
|
12
|
Hughes DC, Hardee JP, Waddell DS, Goodman CA. CORP: Gene delivery into murine skeletal muscle using in vivo electroporation. J Appl Physiol (1985) 2022; 133:41-59. [PMID: 35511722 DOI: 10.1152/japplphysiol.00088.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The strategy of gene delivery into skeletal muscles has provided exciting avenues in identifying new potential therapeutics towards muscular disorders and addressing basic research questions in muscle physiology through overexpression and knockdown studies. In vivo electroporation methodology offers a simple, rapidly effective technique for the delivery of plasmid DNA into post-mitotic skeletal muscle fibers and the ability to easily explore the molecular mechanisms of skeletal muscle plasticity. The purpose of this review is to describe how to robustly electroporate plasmid DNA into different hindlimb muscles of rodent models. Further, key parameters (e.g., voltage, hyaluronidase, plasmid concentration) which contribute to the successful introduction of plasmid DNA into skeletal muscle fibers will be discussed. In addition, details on processing tissue for immunohistochemistry and fiber cross-sectional area (CSA) analysis will be outlined. The overall goal of this review is to provide the basic and necessary information needed for successful implementation of in vivo electroporation of plasmid DNA and thus open new avenues of discovery research in skeletal muscle physiology.
Collapse
Affiliation(s)
- David C Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Justin P Hardee
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - David S Waddell
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Yoon JH, Lee SM, Lee Y, Kim MJ, Yang JW, Choi JY, Kwak JY, Lee KP, Yang YR, Kwon KS. Alverine citrate promotes myogenic differentiation and ameliorates muscle atrophy. Biochem Biophys Res Commun 2022; 586:157-162. [PMID: 34847441 DOI: 10.1016/j.bbrc.2021.11.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022]
Abstract
Sarcopenia is the age-related loss of muscle mass and function and no pharmacological medication has been approved for its treatment. We established an atrogin-1/MAFbx promoter assay to find drug candidates that inhibit myotube atrophy. Alverine citrate (AC) was identified using high-throughput screening of an existing drug library. AC is an established medicine for stomach and intestinal spasms. AC treatment increased myotube diameter and inhibited atrophy signals induced by either C26-conditioned medium or dexamethasone in cultured C2C12 myoblasts. AC also enhanced myoblast fusion through the upregulation of fusion-related genes during C2C12 myoblast differentiation. Oral administration of AC improves muscle mass and physical performance in aged mice, as well as hindlimb-disused mice. Taken together, our data suggest that AC may be a novel therapeutic candidate for improving muscle weakness, including sarcopenia.
Collapse
Affiliation(s)
- Jong Hyeon Yoon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | - Min Ju Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jae Won Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jeong Yi Choi
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ju Yeon Kwak
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea; Aventi Inc., Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Kwon D, Kim C, Woo YK, Hwang JK. Inhibitory Effects of Chrysanthemum ( Chrysanthemum morifolium Ramat.) Extract and Its Active Compound Isochlorogenic Acid A on Sarcopenia. Prev Nutr Food Sci 2021; 26:408-416. [PMID: 35047437 PMCID: PMC8747960 DOI: 10.3746/pnf.2021.26.4.408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Sarcopenia, age-related muscle atrophy, weakening muscle strength, and exercise capacity, generally accompany imbalances in protein metabolism. Chrysanthemum morifolium Ramat. extract (CME) and its active compound, isochlo-rogenic acid A (IcA), have been reported to have anti-oxidative, anti-diabetic, and neuroprotective effects. However, the roles of CME and IcA in the regulation of muscle protein turnover-related signaling pathways to attenuate sarcopenia have not been explored. In this study, we investigated CME and IcA based regulation of protein turnover in synthesizing muscle in vitro and in vivo. At the molecular level, CME and IcA promoted phosphorylation of PI3K/Akt and mTOR pathways, which stimulate synthesis of muscle proteins, and suppressed FoxO3a and E3 ubiquitin ligases during protein degrada-tion. In vivo, CME and IcA increased grip strength, exercise capacity, muscle mass and volume, and cross-sectional area of myofibers in middle-aged C57BL/6J mice. These results suggest that CME and IcA may have roles as functional food supplements for delaying sarcopenia by enhancing muscle mass recovery and function.
Collapse
Affiliation(s)
- Dowan Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Changhee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Yu Kyong Woo
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.,Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
15
|
Xu QY, Zhang QB, Zhou Y, Liu AY, Wang F. Preventive effect and possible mechanisms of ultrashort wave diathermy on myogenic contracture in a rabbit model. Sci Prog 2021; 104:368504211054992. [PMID: 34825614 PMCID: PMC10450593 DOI: 10.1177/00368504211054992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to determine the preventive effect of ultrashort wave diathermy on immobilization-induced myogenic contracture and to explore its underlying mechanisms. Forty-two rabbits were randomly assigned into control (Group C), immobilization (Group I, which was further divided into one week, Group I-1; two weeks, Group I-2; and four weeks, Group I-4, subgroups by the length of immobilization) and ultrashort wave prevention (Group U, which was further divided into one week, Group U-1; two weeks, Group U-2; and four weeks, Group U-4, by time of treatment) groups. Intervention effects were assessed by evaluating rectus femoris cross-sectional area (CSA), knee range of motion, and the protein levels for myogenic differentiation (MyoD) and muscle atrophy F-box (MAFbx-1) in the rectus femoris. Compared with those of Group C, in Groups I and U, total contracture, myogenic contracture, MyoD and MAFbx-1 levels were significantly elevated, and CSA was significantly smaller (p < 0.05). Compared with those of Group I at each time point, MyoD levels were significantly elevated, MAFbx-1 levels were significantly lower, CSA was significantly larger, and myogenic contracture was significantly alleviated in Group U (p < 0.05). In the early stages of contracture, ultrashort wave diathermy reduces muscle atrophy and delays the process of myogenic contracture during joint immobilization; the mechanism of this may be explained as increased expression of MyoD triggered by suppression of the MAFbx-1-mediated ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Qi-Yu Xu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Rehabilitation Medicine, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, China
| | - Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - A-Ying Liu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Feng Wang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
16
|
Liu H, Lee SM, Joung H. 2-D08 treatment regulates C2C12 myoblast proliferation and differentiation via the Erk1/2 and proteasome signaling pathways. J Muscle Res Cell Motil 2021; 42:193-202. [PMID: 34142311 PMCID: PMC8332585 DOI: 10.1007/s10974-021-09605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
SUMOylation is one of the post-translational modifications that involves the covalent attachment of the small ubiquitin-like modifier (SUMO) to the substrate. SUMOylation regulates multiple biological processes, including myoblast proliferation, differentiation, and apoptosis. 2-D08 is a synthetically available flavone, which acts as a potent cell-permeable SUMOylation inhibitor. Its mechanism of action involves preventing the transfer of SUMO from the E2 thioester to the substrate without influencing SUMO-activating enzyme E1 (SAE-1/2) or E2 Ubc9-SUMO thioester formation. However, both the effects and mechanisms of 2-D08 on C2C12 myoblast cells remain unclear. In the present study, we found that treatment with 2-D08 inhibits C2C12 cell proliferation and differentiation. We confirmed that 2-D08 significantly hampers the viability of C2C12 cells. Additionally, it inhibited myogenic differentiation, decreasing myosin heavy chain (MHC), MyoD, and myogenin expression. Furthermore, we confirmed that 2-D08-mediated anti-myogenic effects impair myoblast differentiation and myotube formation, reducing the number of MHC-positive C2C12 cells. In addition, we found that 2-D08 induces the activation of ErK1/2 and the degradation of MyoD and myogenin in C2C12 cells. Taken together, these results indicated that 2-D08 treatment results in the deregulated proliferation and differentiation of myoblasts. However, further research is needed to investigate the long-term effects of 2-D08 on skeletal muscles.
Collapse
Affiliation(s)
- Hyunju Liu
- Department of Obstetrics and Gynecology, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Su-Mi Lee
- Research Institute of Medical Sciences, Chonnam National University Medical School, Hwasun, Republic of Korea. .,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School,, 42, Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
| | - Hosouk Joung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Hwasun, Republic of Korea. .,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School,, 42, Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
17
|
Zheng Y, Liu T, Li Q, Li J. Integrated analysis of long non-coding RNAs (lncRNAs) and mRNA expression profiles identifies lncRNA PRKG1-AS1 playing important roles in skeletal muscle aging. Aging (Albany NY) 2021; 13:15044-15060. [PMID: 34051073 PMCID: PMC8221296 DOI: 10.18632/aging.203067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/28/2021] [Indexed: 12/27/2022]
Abstract
This study aimed to identify long non-coding RNAs (lncRNAs) involving in the skeletal muscle aging process. Skeletal muscle samples from old and young subjects were collected for lncRNA-sequencing. Differentially expressed genes (DEGs) and DElncRNAs between young and old groups were identified and a co-expression network was built. Further, a dexamethasone-induced muscle atrophy cell model was established to characterize the function of a critical lncRNA. A total of 424 DEGs, including 271 upregulated genes and 153 downregulated genes as well as 152 DElncRNAs including 76 up-regulated and 76 down-regulated lncRNAs were obtained. Functional analysis demonstrated that the DEGs were significantly related to immune response. Coexpression network demonstrated lncRNA AC004797.1, PRKG1-AS1 and GRPC5D-AS1 were crucial lncRNAs. Their expressions were further validated by qRT-PCR in human skeletal muscle and the muscle atrophy cell model. Further in vitro analysis suggested that knock-down of PRKG1-AS1 could significantly increase cell viability and decrease cell apoptosis. qRT-PCR and western blot analyses demonstrated that knock-down of PRKG1-AS1 could increase the expression of MyoD, MyoG and Mef2c. This study demonstrated that lncRNAs of GPRC5D-AS1, AC004797.1 and PRKG1-AS1 might involve the aging-associated disease processes.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Ting Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Qun Li
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| |
Collapse
|
18
|
Schätzl T, Kaiser L, Deigner HP. Facioscapulohumeral muscular dystrophy: genetics, gene activation and downstream signalling with regard to recent therapeutic approaches: an update. Orphanet J Rare Dis 2021; 16:129. [PMID: 33712050 PMCID: PMC7953708 DOI: 10.1186/s13023-021-01760-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Whilst a disease-modifying treatment for Facioscapulohumeral muscular dystrophy (FSHD) does not exist currently, recent advances in complex molecular pathophysiology studies of FSHD have led to possible therapeutic approaches for its targeted treatment. Although the underlying genetics of FSHD have been researched extensively, there remains an incomplete understanding of the pathophysiology of FSHD in relation to the molecules leading to DUX4 gene activation and the downstream gene targets of DUX4 that cause its toxic effects. In the context of the local proximity of chromosome 4q to the nuclear envelope, a contraction of the D4Z4 macrosatellite induces lower methylation levels, enabling the ectopic expression of DUX4. This disrupts numerous signalling pathways that mostly result in cell death, detrimentally affecting skeletal muscle in affected individuals. In this regard different options are currently explored either to suppress the transcription of DUX4 gene, inhibiting DUX4 protein from its toxic effects, or to alleviate the symptoms triggered by its numerous targets.
Collapse
Affiliation(s)
- Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104, Freiburg i. Br., Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, 18057, Rostock, Germany.
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
19
|
Steinert ND, Potts GK, Wilson GM, Klamen AM, Lin KH, Hermanson JB, McNally RM, Coon JJ, Hornberger TA. Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function. Cell Rep 2021; 34:108796. [PMID: 33657380 PMCID: PMC7967290 DOI: 10.1016/j.celrep.2021.108796] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
Mechanical signals, such as those evoked by maximal-intensity contractions (MICs), can induce an increase in muscle mass. Rapamycin-sensitive signaling events are widely implicated in the regulation of this process; however, recent studies indicate that rapamycin-insensitive signaling events are also involved. Thus, to identify these events, we generate a map of the MIC-regulated and rapamycin-sensitive phosphoproteome. In total, we quantify more than 10,000 unique phosphorylation sites and find that more than 2,000 of these sites are significantly affected by MICs, but remarkably, only 38 of the MIC-regulated events are mediated through a rapamycin-sensitive mechanism. Further interrogation of the rapamycin-insensitive phosphorylation events identifies the S473 residue on Tripartite Motif-Containing 28 (TRIM28) as one of the most robust MIC-regulated phosphorylation sites, and extensive follow-up studies suggest that TRIM28 significantly contributes to the homeostatic regulation of muscle size and function as well as the hypertrophy that occurs in response to increased mechanical loading.
Collapse
Affiliation(s)
- Nathaniel D Steinert
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregory K Potts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Amelia M Klamen
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kuan-Hung Lin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jake B Hermanson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel M McNally
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Caloric restriction following early-life high fat-diet feeding represses skeletal muscle TNF in male rats. J Nutr Biochem 2021; 91:108598. [PMID: 33549890 DOI: 10.1016/j.jnutbio.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Chronic metabolic diseases are on the rise worldwide and their etiology is multifactorial. Among them, inflammatory components like Tumor Necrosis Factor (TNF), contribute to whole-body metabolic impairment. Caloric Restriction (CR) combats metabolic diseases, but how it reduces inflammation remains understudied. We aimed to evaluate the impact of chronic CR on muscle inflammation, in particular TNF. In our study, 4-week old male Sprague-Dawley rats were fed a high-fat diet (HF, 45% Kcal of fat from lard) ad libitum for 3 months. After estimation of their energy requirement (1 month), they were then divided into three groups: HF ad libitum (OL), weight maintenance with AIN93M (9.5% Kcal from fat; ML, 100% of energy requirement), and caloric restriction (CR, AIN93M with 75% of energy requirement). This dietary intervention continued for six months. At this point, rats were sacrificed and gastrocnemius muscle was collected. CR induced a profound shift in fat and lean mass, and decreased growth factor IGF-1. Muscle qPCR analysis showed a marked decrease in inflammation and TNF (premRNA, mRNA, and protein) by CR, accompanied by Tnf promoter DNA hypermethylation. CR increased expression of histone deacetylase Sirt6 and decreased methyltransferase Suv39h1, together with decreased Tnf promoter and coding region binding of NF- κB and C/EBP-β. Following miRNA database mining, qPCR analysis revealed that CR downregulated the proinflammatory miR-19b and increased the anti-inflammatory miR-181a and its known targets. Chronic CR is able to regulate muscle-specific inflammation by targeting the NF-κB pathway as well as transcriptional and post-transcriptional regulation of Tnf gene.
Collapse
|
21
|
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021; 26:molecules26020407. [PMID: 33466753 PMCID: PMC7829870 DOI: 10.3390/molecules26020407] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
Collapse
|
22
|
Dettleff P, Zuloaga R, Fuentes M, Gonzalez P, Aedo J, Estrada JM, Molina A, Valdés JA. Physiological and molecular responses to thermal stress in red cusk-eel (Genypterus chilensis) juveniles reveals atrophy and oxidative damage in skeletal muscle. J Therm Biol 2020; 94:102750. [PMID: 33292991 DOI: 10.1016/j.jtherbio.2020.102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/30/2022]
Abstract
The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Environmental stressors, such as temperature, may generate important effects in fish physiology with negative impact. However, no information exists on the effects of thermal stress in Genypterus species or how this stressor affects the skeletal muscle. The present study evaluated for the first time the effect of high temperature stress in red cusk-eel juveniles to determine changes in plasmatic markers of stress (cortisol, glucose and lactate dehydrogenase (LDH)), the transcriptional effect in skeletal muscle genes related to (i) heat shock protein response (hsp60 and hsp70), (ii) muscle atrophy and growth (foxo1, foxo3, fbxo32, murf-1, myod1 and ddit4), and (iii) oxidative stress (cat, sod1 and gpx1), and evaluate the DNA damage (AP sites) and peroxidative damage (lipid peroxidation (HNE proteins)) in this tissue. Thermal stress generates a significant increase in plasmatic levels of cortisol, glucose and LDH activity and induced heat shock protein transcripts in muscle. We also observed an upregulation of atrophy-related genes (foxo1, foxo3 and fbxo32) and a significant modulation of growth-related genes (myod1 and ddit4). Thermal stress induced oxidative stress in skeletal muscle, as represented by the upregulation of antioxidant genes (cat and sod1) and a significant increase in DNA damage and lipid peroxidation. The present study provides the first physiological and molecular information of the effects of thermal stress on skeletal muscle in a Genypterus species, which should be considered in a climate change scenario.
Collapse
Affiliation(s)
- Phillip Dettleff
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Pamela Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Jorge Aedo
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
23
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
24
|
Gonzalez-Ruiz C, Cordero-Anguiano P, Morales-Guadarrama A, Mondragón-Lozano R, Sánchez-Torres S, Salgado-Ceballos H, Villarreal F, Meaney E, Ceballos G, Nájera N. (-)-Epicatechin reduces muscle waste after complete spinal cord transection in a murine model: role of ubiquitin-proteasome system. Mol Biol Rep 2020; 47:8975-8985. [PMID: 33151476 DOI: 10.1007/s11033-020-05954-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
The skeletal muscle mass reduces 30-60% after spinal cord injury, this is mostly due to protein degradation through ubiquitin-proteasome system. In this work, we propose that the flavanol (-)-epicatechin, due its widespread biological effects on muscle health, can prevent muscle mass decrease after spinal cord injury. Thirty-six female Long Evans rats were randomized into 5 groups: (1) Spinal cord injury 7 days, (2) Spinal cord injury + (-)-epicatechin 7 days, (3) Spinal cord injury 30 days, (4) Spinal cord injury + (-)-epicatechin 30 days and (5) Sham (Only laminectomy). Hind limb perimeter, muscle cross section area, fiber cross section area and ubiquitin-proteasome system protein expression together with total protein ubiquitination were assessed. At 30 days Spinal cord injury group lost 49.52 ± 2.023% of muscle cross section area (-)-epicatechin treated group lost only 24.28 ± 15.45% being a significant difference. Ubiquitin-proteasome markers showed significant changes. FOXO1a increased in spinal cord injury group vs Sham (-)-epicatechin reduced this increase. In spinal cord injury group MAFbx increased significantly vs Sham but decrease in (-)-epicatechin treatment group at 30 days. At 7 and 30 days MuRF1 increased in the spinal cord injury and decreased in the (-)-epicatechin group. The global protein ubiquitination increases after spinal cord injury, epicatechin treatment induce a significant decrease in protein ubiquitination. These results suggest that (-)-epicatechin reduces the muscle waste after spinal cord injury through down regulation of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Cristian Gonzalez-Ruiz
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico
| | - Paola Cordero-Anguiano
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico
| | - Axayacatl Morales-Guadarrama
- Centro Nacional de Investigación en Imagenología e Instrumentación Médica, Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, Mexico, Mexico
| | - Rodrigo Mondragón-Lozano
- Consejo Nacional de Ciencia y Tecnología, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Stephanie Sánchez-Torres
- División de Ciencias Biológicas y de la Salud, Posgrado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico, Mexico
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | | | - Eduardo Meaney
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico
| | - Guillermo Ceballos
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico.
| | - Nayelli Nájera
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico.
| |
Collapse
|
25
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
26
|
Quintana HT, Baptista VIDA, Lazzarin MC, Antunes HKM, Le Sueur-Maluf L, de Oliveira CAM, de Oliveira F. Insulin Modulates Myogenesis and Muscle Atrophy Resulting From Skin Scald Burn in Young Male Rats. J Surg Res 2020; 257:56-68. [PMID: 32818785 DOI: 10.1016/j.jss.2020.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Burn injuries (BIs) due to scalding are one of the most common accidents among children. BIs greater than 40% of total body surface area are considered extensive and result in local and systemic response. We sought to assess morphological and myogenic mechanisms through both short- and long-term intensive insulin therapies that affect the skeletal muscle after extensive skin BI in young rats. MATERIALS AND METHODS Wistar rats aged 21 d were distributed into four groups: control (C), control with insulin (C + I), scald burn injury (SI), and SI with insulin (SI + I). The SI groups were submitted to a 45% total body surface area burn, and the C + I and SI + I groups received insulin (5 UI/Kg/d) for 4 or 14 d. Glucose tolerance and the homeostatic model assessment of insulin resistance index were determined. Gastrocnemius muscles were analyzed for histopathological, morphometric, and immunohistochemical myogenic parameters (Pax7, MyoD, and MyoG); in addition, the expression of genes related to muscle atrophy (MuRF1 and MAFbx) and its regulation (IGF-1) were also assessed. RESULTS Short-term treatment with insulin favored muscle regeneration by primary myogenesis and decreased muscle atrophy in animals with BIs, whereas the long-term treatment modulated myogenesis by increasing the MyoD protein. Both treatments improved histopathological parameters and secondary myogenesis by increasing the MyoG protein. CONCLUSIONS Treatment with insulin benefits myogenic parameters during regeneration and modulates MuRF1, an important mediator of muscle atrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Flavia de Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
27
|
Suzuki K, Matsumoto M, Katoh Y, Liu L, Ochiai K, Aizawa Y, Nagatomi R, Okuno H, Itoi E, Igarashi K. Bach1 promotes muscle regeneration through repressing Smad-mediated inhibition of myoblast differentiation. PLoS One 2020; 15:e0236781. [PMID: 32776961 PMCID: PMC7416950 DOI: 10.1371/journal.pone.0236781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
It has been reported that Bach1-deficient mice show reduced tissue injuries in diverse disease models due to increased expression of heme oxygenase-1 (HO-1)that possesses an antioxidant function. In contrast, we found that Bach1 deficiency in mice exacerbated skeletal muscle injury induced by cardiotoxin. Inhibition of Bach1 expression in C2C12 myoblast cells using RNA interference resulted in reduced proliferation, myotube formation, and myogenin expression compared with control cells. While the expression of HO-1 was increased by Bach1 silencing in C2C12 cells, the reduced myotube formation was not rescued by HO-1 inhibition. Up-regulations of Smad2, Smad3 and FoxO1, known inhibitors of muscle cell differentiation, were observed in Bach1-deficient mice and Bach1-silenced C2C12 cells. Therefore, Bach1 may promote regeneration of muscle by increasing proliferation and differentiation of myoblasts.
Collapse
Affiliation(s)
- Katsushi Suzuki
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasutake Katoh
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Japan Agency for Medical Research and Development, Chiyoda, Tokyo, Japan
| | - Liang Liu
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuta Aizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Okuno
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Orthopaedic Surgery, Tohoku Rosai Hospital, Sendai, Miyagi, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
28
|
Zhang DH, Yin HD, Li JJ, Wang Y, Yang CW, Jiang XS, DU HR, Liu YP. KLF5 regulates chicken skeletal muscle atrophy via the canonical Wnt/β-catenin signaling pathway. Exp Anim 2020; 69:430-440. [PMID: 32641593 PMCID: PMC7677084 DOI: 10.1538/expanim.20-0046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent studies in mice suggested that KLF5 (Kruppel like factor 5), a zinc-finger transcription factor, plays an important role in skeletal muscle development and regeneration. As an important factor in the process of muscle development, KLF5 participates in the regulation of the cell cycle, cell survival, and cell dryness under different environmental conditions, but it is not clear whether KLF5 participates in muscle atrophy. Therefore, we investigated whether KLF5 can regulate the atrophy of chicken satellite cells in vitro and examined its mechanism of action. qPCR showed that KLF5 gene knockdown promoted the expression of key genes in muscle atrophy. Subsequently, we sequenced and analyzed the transcriptomes of KLF5 silenced and control cells, and we showed that the differentially expressed genes were mainly enriched in 10 signaling pathways (P<0.05), with differential gene and enrichment analyses indicating that the Wnt signaling pathways are extremely important. In conclusion, our results indicate that KLF5 may regulate the atrophy of chicken skeletal muscle through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dong-Hao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Hua-Dong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Jing-Jing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Chao-Wu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang, Sichuan province, Chengdu 610066, China
| | - Xiao-Song Jiang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang, Sichuan province, Chengdu 610066, China
| | - Hua-Rui DU
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang, Sichuan province, Chengdu 610066, China
| | - Yi-Ping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| |
Collapse
|
29
|
Ehmsen JT, Höke A. Cellular and molecular features of neurogenic skeletal muscle atrophy. Exp Neurol 2020; 331:113379. [PMID: 32533969 DOI: 10.1016/j.expneurol.2020.113379] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Neurogenic atrophy refers to the loss of muscle mass and function that results directly from injury or disease of the peripheral nervous system. Individuals with neurogenic atrophy may experience reduced functional status and quality of life and, in some circumstances, reduced survival. Distinct pathological findings on muscle histology can aid in diagnosis of a neurogenic cause for muscle dysfunction, and provide indicators for the chronicity of denervation. Denervation induces pleiotypic responses in skeletal muscle, and the molecular mechanisms underlying neurogenic muscle atrophy appear to share common features with other causes of muscle atrophy, including activation of FOXO transcription factors and corresponding induction of ubiquitin-proteasomal and lysosomal degradation. In this review, we provide an overview of histologic features of neurogenic atrophy and a summary of current understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Jeffrey T Ehmsen
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Langendorf EK, Rommens PM, Drees P, Mattyasovszky SG, Ritz U. Detecting the Effects of the Glucocorticoid Dexamethasone on Primary Human Skeletal Muscle Cells-Differences to the Murine Cell Line. Int J Mol Sci 2020; 21:E2497. [PMID: 32260276 PMCID: PMC7177793 DOI: 10.3390/ijms21072497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle atrophy is characterized by a decrease in muscle fiber size as a result of a decreased protein synthesis, which leads to degradation of contractile muscle fibers. It can occur after denervation and immobilization, and glucocorticoids (GCs) may also increase protein breakdown contributing to the loss of muscle mass and myofibrillar proteins. GCs are already used in vitro to induce atrophic conditions, but until now no studies with primary human skeletal muscle existed. Therefore, this study deals with the effects of the GC dexamethasone (dex) on primary human myoblasts and myotubes. After incubation with 1, 10, and 100 µM dex for 48 and 72 h, gene and protein expression analyses were performed by qPCR and Western blot. Foxo, MuRF-1, and MAFbx were significantly upregulated by dex, and there was increased gene expression of myogenic markers. However, prolonged incubation periods demonstrated no Myosin protein degradation, but an increase of MuRF-1 expression. In conclusion, applying dex did not only differently affect primary human myoblasts and myotubes, as differences were also observed when compared to murine cells. Based on our findings, studies using cell lines or animal cells should be interpreted with caution as signaling transduction and functional behavior might differ in diverse species.
Collapse
Affiliation(s)
| | | | | | | | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.K.L.); (P.M.R.); (P.D.); (S.G.M.)
| |
Collapse
|
31
|
Girgis CM, Cha KM, So B, Tsang M, Chen J, Houweling PJ, Schindeler A, Stokes R, Swarbrick MM, Evesson FJ, Cooper ST, Gunton JE. Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. J Cachexia Sarcopenia Muscle 2019; 10:1228-1240. [PMID: 31225722 PMCID: PMC6903451 DOI: 10.1002/jcsm.12460] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It has long been recognized that vitamin D deficiency is associated with muscle weakness and falls. Vitamin D receptor (VDR) is present at very low levels in normal muscle. Whether vitamin D plays a direct role in muscle function is unknown and is a subject of hot debate. Myocyte-specific deletion of VDR would provide a strategy to answer this question. METHODS Myocyte-specific vitamin D receptor (mVDR) null mice were generated by crossing human skeletal actin-Cre mice with floxed VDR mice. The effects of gene deletion on the muscle phenotype were studied in terms of body tissue composition, muscle tissue histology, and gene expression by real-time PCR. RESULTS Unlike whole-body VDR knockout mice, mVDR mice showed a normal body size. The mVDR showed a distinct muscle phenotype featuring reduced proportional lean mass (70% vs. 78% of lean mass), reduced voluntary wheel-running distance (22% decrease, P = 0.009), reduced average running speed, and reduced grip strength (7-16% reduction depending on age at testing). With their decreased voluntary exercise, and decreased lean mass, mVDR have increased proportional fat mass at 20% compared with 13%. Surprisingly, their muscle fibres showed slightly increased diameter, as well as the presence of angular fibres and central nuclei suggesting ongoing remodelling. There were, however, no clear changes in fibre type and there was no increase in muscle fibrosis. VDR is a transcriptional regulator, and changes in the expression of candidate genes was examined in RNA extracted from skeletal muscle. Alterations were seen in myogenic gene expression, and there was decreased expression of cell cycle genes cyclin D1, D2, and D3 and cyclin-dependent kinases Cdk-2 and Cdk-4. Expression of calcium handling genes sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCA) Serca2b and Serca3 was decreased and Calbindin mRNA was lower in mVDR muscle. CONCLUSIONS This study demonstrates that vitamin D signalling is needed for myocyte function. Despite the low level of VDR protein normally found muscle, deleting myocyte VDR had important effects on muscle size and strength. Maintenance of normal vitamin D signalling is a useful strategy to prevent loss of muscle function and size.
Collapse
Affiliation(s)
- Christian M Girgis
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, New South Wales, Australia.,Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Diabetes and Endocrinology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Kuan Minn Cha
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin So
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Tsang
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer Chen
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter J Houweling
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron Schindeler
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Westmead, Australia
| | - Rebecca Stokes
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael M Swarbrick
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Frances J Evesson
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, The Children's Hospital at Westmead, The Discipline of Child and Adolescent Health, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Sandra T Cooper
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, The Children's Hospital at Westmead, The Discipline of Child and Adolescent Health, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jenny E Gunton
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, New South Wales, Australia.,Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Division of Immunology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Exploring the Interface between Inflammatory and Therapeutic Glucocorticoid Induced Bone and Muscle Loss. Int J Mol Sci 2019; 20:ijms20225768. [PMID: 31744114 PMCID: PMC6888251 DOI: 10.3390/ijms20225768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/02/2023] Open
Abstract
Due to their potent immunomodulatory anti-inflammatory properties, synthetic glucocorticoids (GCs) are widely utilized in the treatment of chronic inflammatory disease. In this review, we examine our current understanding of how chronic inflammation and commonly used therapeutic GCs interact to regulate bone and muscle metabolism. Whilst both inflammation and therapeutic GCs directly promote systemic osteoporosis and muscle wasting, the mechanisms whereby they achieve this are distinct. Importantly, their interactions in vivo are greatly complicated secondary to the directly opposing actions of GCs on a wide array of pro-inflammatory signalling pathways that underpin catabolic and anti-anabolic metabolism. Several clinical studies have attempted to address the net effects of therapeutic glucocorticoids on inflammatory bone loss and muscle wasting using a range of approaches. These have yielded a wide array of results further complicated by the nature of inflammatory disease, underlying the disease management and regimen of GC therapy. Here, we report the latest findings related to these pathway interactions and explore the latest insights from murine models of disease aimed at modelling these processes and delineating the contribution of pre-receptor steroid metabolism. Understanding these processes remains paramount in the effective management of patients with chronic inflammatory disease.
Collapse
|
33
|
A Chalcone from Ashitaba ( Angelica keiskei) Stimulates Myoblast Differentiation and Inhibits Dexamethasone-Induced Muscle Atrophy. Nutrients 2019; 11:nu11102419. [PMID: 31658768 PMCID: PMC6835314 DOI: 10.3390/nu11102419] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Ashitaba, Angelica keiskei Koidzumi (AK), as a traditional medicine in Korea, Japan, and China, has been known as an elixir of life having therapeutic potential. However, there is no scientific evidence to support that Ashitaba can enhance or maintain muscle strength. To find a new therapeutic agent from the medicinal plant, we evaluated the anti-myopathy effect of chalcones from ethanol extract of AK (EAK) in cellular and animal models of muscle atrophy. To examine anti-myopathy activity, EAK was treated into dexamethasone injected rats and muscle thickness and histopathological images were analyzed. Oral administration of EAK (250 or 500 mg/kg) alleviated muscle atrophic damages and down-regulated the mRNA levels of muscle-specific ubiquitin-E3 ligases. Among ten compounds isolated from EAK, 4-hydroxyderricin was the most effective principle in stimulating myogenesis of C2C12 myoblasts via activation of p38 mitogen-activated protein kinase (MAPK). In three cellular muscle atrophy models with C2C12 myoblasts damaged by dexamethasone or cancer cell-conditioned medium, 4-hydroxyderricin protected the myosin heavy chain (MHC) degradation through suppressing expressions of MAFbx, MuRF-1 and myostatin. These results suggest that the ethanol extract and its active principle, 4-hydroxyderricin from AK, can overcome the muscle atrophy through double mechanisms of decreasing muscle protein degradation and activating myoblast differentiation.
Collapse
|
34
|
Suryadevara V, Willis MS. Walk the Line: The Role of Ubiquitin in Regulating Transcription in Myocytes. Physiology (Bethesda) 2019; 34:327-340. [PMID: 31389777 PMCID: PMC6863375 DOI: 10.1152/physiol.00055.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/06/2023] Open
Abstract
The ubiquitin-proteasome offers novel targets for potential therapies with their specific activities and tissue localization. Recently, the expansion of our understanding of how ubiquitin ligases (E3s) specifically regulate transcription has demonstrated their roles in skeletal muscle, complementing their roles in protein quality control and protein degradation. This review focuses on skeletal muscle E3s that regulate transcription factors critical to myogenesis and the maintenance of skeletal muscle wasting diseases.
Collapse
Affiliation(s)
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Internal Medicine, Krannert Institute of Cardiology and Division of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
35
|
Sin TK, Zhang G, Zhang Z, Gao S, Li M, Li YP. Cancer Takes a Toll on Skeletal Muscle by Releasing Heat Shock Proteins-An Emerging Mechanism of Cancer-Induced Cachexia. Cancers (Basel) 2019; 11:cancers11091272. [PMID: 31480237 PMCID: PMC6770863 DOI: 10.3390/cancers11091272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Cancer-associated cachexia (cancer cachexia) is a major contributor to the modality and mortality of a wide variety of solid tumors. It is estimated that cachexia inflicts approximately ~60% of all cancer patients and is the immediate cause of ~30% of all cancer-related death. However, there is no established treatment of this disorder due to the poor understanding of its underlying etiology. The key manifestations of cancer cachexia are systemic inflammation and progressive loss of skeletal muscle mass and function (muscle wasting). A number of inflammatory cytokines and members of the TGFβ superfamily that promote muscle protein degradation have been implicated as mediators of muscle wasting. However, clinical trials targeting some of the identified mediators have not yielded satisfactory results. Thus, the root cause of the muscle wasting associated with cancer cachexia remains to be identified. This review focuses on recent progress of laboratory studies in the understanding of the molecular mechanisms of cancer cachexia that centers on the role of systemic activation of Toll-like receptor 4 (TLR4) by cancer-released Hsp70 and Hsp90 in the development and progression of muscle wasting, and the downstream signaling pathways that activate muscle protein degradation through the ubiquitin-proteasome and the autophagy-lysosome pathways in response to TLR4 activation. Verification of these findings in humans could lead to etiology-based therapies of cancer cachexia by targeting multiple steps in this signaling cascade.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Song Gao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Ninfali C, Siles L, Darling DS, Postigo A. Regulation of muscle atrophy-related genes by the opposing transcriptional activities of ZEB1/CtBP and FOXO3. Nucleic Acids Res 2019; 46:10697-10708. [PMID: 30304480 PMCID: PMC6237734 DOI: 10.1093/nar/gky835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Multiple physiopathological and clinical conditions trigger skeletal muscle atrophy through the induction of a group of proteins (atrogenes) that includes components of the ubiquitin–proteasome and autophagy-lysosomal systems. Atrogenes are induced by FOXO transcription factors, but their regulation is still not fully understood. Here, we showed that the transcription factor ZEB1, best known for promoting tumor progression, inhibits muscle atrophy and atrogene expression by antagonizing FOXO3-mediated induction of atrogenes. Compared to wild-type counterparts, hindlimb immobilization in Zeb1-deficient mice resulted in enhanced muscle atrophy and higher expression of a number of atrogenes, including Atrogin-1/Fbxo32, MuRF1/Trim63, Ctsl, 4ebp1, Gabarapl1, Psma1 and Nrf2. Likewise, in the C2C12 myogenic cell model, ZEB1 knockdown augmented both myotube diameter reduction and atrogene upregulation in response to nutrient deprivation. Mechanistically, ZEB1 directly represses in vitro and in vivo Fbxo32 and Trim63 promoter transcription in a stage-dependent manner and in a reverse pattern with MYOD1. ZEB1 bound to the Fbxo32 promoter in undifferentiated myoblasts and atrophic myotubes, but not in non-atrophic myotubes, where it is displaced by MYOD1. ZEB1 repressed both promoters through CtBP-mediated inhibition of FOXO3 transcriptional activity. These results set ZEB1 as a new target in therapeutic approaches to clinical conditions causing muscle mass loss.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain
| | - Douglas S Darling
- Center for Genetics and Molecular Medicine and Department of Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain.,Molecular Targets Program, James G. Brown Cancer Center, Louisville, KY 40202, USA.,ICREA, Barcelona 08010, Spain
| |
Collapse
|
37
|
Albooshoke SN, Bakhtiarizadeh MR. Divergent gene expression through PI3K/akt signalling pathway cause different models of hypertrophy growth in chicken. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1634498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- S. N. Albooshoke
- Department of Animal Science, Khuzestan Agricultural and Natural Resources, Research and Education Center, AREEO, Ahwaz, Iran
| | - M. R. Bakhtiarizadeh
- Department of Animal Science, College of Aburaihan, Iran University of Tehran, Tehran, Iran
| |
Collapse
|
38
|
Shaping Striated Muscles with Ubiquitin Proteasome System in Health and Disease. Trends Mol Med 2019; 25:760-774. [PMID: 31235369 DOI: 10.1016/j.molmed.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
For long-lived contractile cells, such as striated muscle cells, maintaining proteome integrity is a challenging task. These cells require hundreds of components that must be properly synthesized, folded, and incorporated into the basic contractile unit, the sarcomere. Muscle protein quality control in cells is mainly guaranteed by the ubiquitin-proteasome system (UPS), the lysosome-autophagy system, and various molecular chaperones. Recent studies establish the concept of dedicated UPS in the regulation of sarcomere assembly during development and in adult life to maintain the intricate and interwoven organization of protein complexes in muscle. Failure of sarcomere protein quality control often represents the basis of severe myopathies and cardiomyopathies in human, further highlighting its importance in producing and maintaining the contractile machinery of muscle cells in shape.
Collapse
|
39
|
Recent Data on Cellular Component Turnover: Focus on Adaptations to Physical Exercise. Cells 2019; 8:cells8060542. [PMID: 31195688 PMCID: PMC6627613 DOI: 10.3390/cells8060542] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/22/2022] Open
Abstract
Significant progress has expanded our knowledge of the signaling pathways coordinating muscle protein turnover during various conditions including exercise. In this manuscript, the multiple mechanisms that govern the turnover of cellular components are reviewed, and their overall roles in adaptations to exercise training are discussed. Recent studies have highlighted the central role of the energy sensor (AMP)-activated protein kinase (AMPK), forkhead box class O subfamily protein (FOXO) transcription factors and the kinase mechanistic (or mammalian) target of rapamycin complex (MTOR) in the regulation of autophagy for organelle maintenance during exercise. A new cellular trafficking involving the lysosome was also revealed for full activation of MTOR and protein synthesis during recovery. Other emerging candidates have been found to be relevant in organelle turnover, especially Parkin and the mitochondrial E3 ubiquitin protein ligase (Mul1) pathways for mitochondrial turnover, and the glycerolipids diacylglycerol (DAG) for protein translation and FOXO regulation. Recent experiments with autophagy and mitophagy flux assessment have also provided important insights concerning mitochondrial turnover during ageing and chronic exercise. However, data in humans are often controversial and further investigations are needed to clarify the involvement of autophagy in exercise performed with additional stresses, such as hypoxia, and to understand the influence of exercise modality. Improving our knowledge of these pathways should help develop therapeutic ways to counteract muscle disorders in pathological conditions.
Collapse
|
40
|
Aniort J, Stella A, Philipponnet C, Poyet A, Polge C, Claustre A, Combaret L, Béchet D, Attaix D, Boisgard S, Filaire M, Rosset E, Burlet-Schiltz O, Heng AE, Taillandier D. Muscle wasting in patients with end-stage renal disease or early-stage lung cancer: common mechanisms at work. J Cachexia Sarcopenia Muscle 2019; 10:323-337. [PMID: 30697967 PMCID: PMC6463476 DOI: 10.1002/jcsm.12376] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Loss of muscle mass worsens many diseases such as cancer and renal failure, contributes to the frailty syndrome, and is associated with an increased risk of death. Studies conducted on animal models have revealed the preponderant role of muscle proteolysis and in particular the activation of the ubiquitin proteasome system (UPS). Studies conducted in humans remain scarce, especially within renal deficiency. Whether a shared atrophying programme exists independently of the nature of the disease remains to be established. The aim of this work was to identify common modifications at the transcriptomic level or the proteomic level in atrophying skeletal muscles from cancer and renal failure patients. METHODS Muscle biopsies were performed during scheduled interventions in early-stage (no treatment and no detectable muscle loss) lung cancer (LC), chronic haemodialysis (HD), or healthy (CT) patients (n = 7 per group; 86% male; 69.6 ± 11.4, 67.9 ± 8.6, and 70.2 ± 7.9 years P > 0.9 for the CT, LC, and HD groups, respectively). Gene expression of members of the UPS, autophagy, and apoptotic systems was measured by quantitative real-time PCR. A global analysis of the soluble muscle proteome was conducted by shotgun proteomics for investigating the processes altered. RESULTS We found an increased expression of several UPS and autophagy-related enzymes in both LC and HD patients. The E3 ligases MuRF1 (+56 to 78%, P < 0.01), MAFbx (+68 to 84%, P = 0.02), Hdm2 (+37 to 59%, P = 0.02), and MUSA1/Fbxo30 (+47 to 106%, P = 0.01) and the autophagy-related genes CTPL (+33 to 47%, P = 0.03) and SQSTM1 (+47 to 137%, P < 0.01) were overexpressed. Mass spectrometry identified >1700 proteins, and principal component analysis revealed three differential proteomes that matched to the three groups of patients. Orthogonal partial least square discriminant analysis created a model, which distinguished the muscles of diseased patients (LC or HD) from those of CT subjects. Proteins that most contributed to the model were selected. Functional analysis revealed up to 238 proteins belonging to nine metabolic processes (inflammatory response, proteolysis, cytoskeleton organization, glucose metabolism, muscle contraction, oxidant detoxification, energy metabolism, fatty acid metabolism, and extracellular matrix) involved in and/or altered by the atrophying programme in both LC and HD patients. This was confirmed by a co-expression network analysis. CONCLUSIONS We were able to identify highly similar modifications of several metabolic pathways in patients exhibiting diseases with different aetiologies (early-stage LC vs. long-term renal failure). This strongly suggests that a common atrophying programme exists independently of the disease in human.
Collapse
Affiliation(s)
- Julien Aniort
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France.,Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, France
| | - Carole Philipponnet
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France.,Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Anais Poyet
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France.,Nephrology Department, Hospital of Roanne, Roanne, France
| | - Cécile Polge
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| | - Agnès Claustre
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| | - Lydie Combaret
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| | - Daniel Béchet
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| | - Didier Attaix
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| | - Stéphane Boisgard
- Orthopedic Surgery Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Marc Filaire
- Thoracic Surgery Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Eugénio Rosset
- Vascular Surgery Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, France
| | - Anne-Elisabeth Heng
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France.,Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Daniel Taillandier
- INRA, Université Clermont Auvergne, UMR 1019, Human Nutrition Unit (UNH), CNRH Auvergne (Centre de Recherche en Nutrition Humaine d'Auvergne), Clermont-Ferrand, France
| |
Collapse
|
41
|
Teng S, Huang P. The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell function. Stem Cell Res Ther 2019; 10:103. [PMID: 30898146 PMCID: PMC6427880 DOI: 10.1186/s13287-019-1186-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In addition to its primary function to provide movement and maintain posture, the skeletal muscle plays important roles in energy and glucose metabolism. In healthy humans, skeletal muscle is the major site for postprandial glucose uptake and impairment of this process contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). A key component to the maintenance of skeletal muscle integrity and plasticity is the presence of muscle progenitor cells, including satellite cells, fibroadipogenic progenitors, and some interstitial progenitor cells associated with vessels (myo-endothelial cells, pericytes, and mesoangioblasts). In this review, we aim to discuss the emerging concepts related to these progenitor cells, focusing on the identification and characterization of distinct progenitor cell populations, and the impact of obesity and T2DM on these cells. The recent advances in stem cell therapies by targeting diabetic and obese muscle are also discussed.
Collapse
Affiliation(s)
- Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
42
|
Vassilakos G, Barton ER. Insulin-Like Growth Factor I Regulation and Its Actions in Skeletal Muscle. Compr Physiol 2018; 9:413-438. [PMID: 30549022 DOI: 10.1002/cphy.c180010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) pathway is essential for promoting growth and survival of virtually all tissues. It bears high homology to its related protein insulin, and as such, there is an interplay between these molecules with regard to their anabolic and metabolic functions. Skeletal muscle produces a significant proportion of IGF-1, and is highly responsive to its actions, including increased muscle mass and improved regenerative capacity. In this overview, the regulation of IGF-1 production, stability, and activity in skeletal muscle will be described. Second, the physiological significance of the forms of IGF-1 produced will be discussed. Last, the interaction of IGF-1 with other pathways will be addressed. © 2019 American Physiological Society. Compr Physiol 9:413-438, 2019.
Collapse
Affiliation(s)
- Georgios Vassilakos
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
43
|
Bouchè M, Lozanoska-Ochser B, Proietti D, Madaro L. Do neurogenic and cancer-induced muscle atrophy follow common or divergent paths? Eur J Transl Myol 2018; 28:7931. [PMID: 30662704 PMCID: PMC6317130 DOI: 10.4081/ejtm.2018.7931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/05/2018] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle is a dynamic tissue capable of responding to a large variety of physiological stimuli by adjusting muscle fiber size, metabolism and function. However, in pathological conditions such as cancer and neural disorders, this finely regulated homeostasis is impaired leading to severe muscle wasting, reduced muscle fiber size (atrophy), and impaired function. These disease features develop due to enhanced protein breakdown, which relies on two major degradation systems: the ubiquitin-proteasome and the autophagy-lysosome. These systems are independently regulated by different signalling pathways, which in physiological conditions, determine protein and organelle turnover. However, alterations in one or both systems, as it happens in several disorders, leads to enhanced protein breakdown and muscle atrophy. Although this is a common feature in the different types of muscle atrophy, the relative contribution of each of these systems is still under debate. Here, we will briefly describe the regulation and the activity of the ubiquitin-proteasome and the autophagy-lysosome systems during muscle wasting. We will then discuss what we know regarding how these pathways are involved in cancer induced and in neurogenic muscle atrophy, highlighting common and divergent paths. It is now clear that there is no one unifying common mechanism that can be applied to all models of muscle loss. Detailed understanding of the pathways and proteolysis mechanisms involved in each model will hopefully help the development of drugs to counteract muscle wasting in specific conditions.
Collapse
Affiliation(s)
- Marina Bouchè
- DAHFMO, Unit of Histology, Sapienza University of Rome, 00161 Rome, Italy.,Interuniversity Institute of Myology, Italy
| | | | - Daisy Proietti
- DAHFMO, Unit of Histology, Sapienza University of Rome, 00161 Rome, Italy.,IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Luca Madaro
- IRCCS, Fondazione Santa Lucia, Rome, Italy.,Interuniversity Institute of Myology, Italy
| |
Collapse
|
44
|
Mota R, Parry TL, Yates CC, Qiang Z, Eaton SC, Mwiza JM, Tulasi D, Schisler JC, Patterson C, Zaglia T, Sandri M, Willis MS. Increasing Cardiomyocyte Atrogin-1 Reduces Aging-Associated Fibrosis and Regulates Remodeling in Vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1676-1692. [PMID: 29758183 DOI: 10.1016/j.ajpath.2018.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/10/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The muscle-specific ubiquitin ligase atrogin-1 (MAFbx) has been identified as a critical regulator of pathologic and physiological cardiac hypertrophy; it regulates these processes by ubiquitinating transcription factors [nuclear factor of activated T-cells and forkhead box O (FoxO) 1/3]. However, the role of atrogin-1 in regulating transcription factors in aging has not previously been described. Atrogin-1 cardiomyocyte-specific transgenic (Tg+) adult mice (α-major histocompatibility complex promoter driven) have normal cardiac function and size. Herein, we demonstrate that 18-month-old atrogin-1 Tg+ hearts exhibit significantly increased anterior wall thickness without functional impairment versus wild-type mice. Histologic analysis at 18 months revealed atrogin-1 Tg+ mice had significantly less fibrosis and significantly greater nuclei and cardiomyocyte cross-sectional analysis. Furthermore, by real-time quantitative PCR, atrogin-1 Tg+ had increased Col 6a4, 6a5, 6a6, matrix metalloproteinase 8 (Mmp8), and Mmp9 mRNA, suggesting a role for atrogin-1 in regulating collagen deposits and MMP-8 and MMP-9. Because atrogin-1 Tg+ mice exhibited significantly less collagen deposition and protein levels, enhanced Mmp8 and Mmp9 mRNA may offer one mechanism by which collagen levels are kept in check in the aged atrogin-1 Tg+ heart. In addition, atrogin-1 Tg+ hearts showed enhanced FoxO1/3 activity. The present study shows a novel link between atrogin-1-mediated regulation of FoxO1/3 activity and reduced collagen deposition and fibrosis in the aged heart. Therefore, targeting FoxO1/3 activity via the muscle-specific atrogin-1 ubiquitin ligase may offer a muscle-specific method to modulate aging-related cardiac fibrosis.
Collapse
Affiliation(s)
- Roberto Mota
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Cecelia C Yates
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhaoyan Qiang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Pharmacology, Tianjin Medical University, Tianjin, China
| | - Samuel C Eaton
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Jean Marie Mwiza
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Deepthi Tulasi
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Jonathan C Schisler
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, New York
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Dulbecco Telethon Institute, Padova, Italy
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina; Indiana Center for Musculoskeletal Health and Department of Pathology and Laboratory Medicine, University of Indiana School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
45
|
Lee H, Lee SJ, Bae GU, Baek NI, Ryu JH. Canadine from Corydalis turtschaninovii Stimulates Myoblast Differentiation and Protects against Myotube Atrophy. Int J Mol Sci 2017; 18:ijms18122748. [PMID: 29258243 PMCID: PMC5751347 DOI: 10.3390/ijms18122748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023] Open
Abstract
Cachexia and sarcopenia are the main causes of muscle atrophy. These result in a reduction in the muscle fiber area, myo-protein content, and muscle strength, with various molecular modulators being involved. Although several reports have proposed potential therapeutic agents, no effective treatments have been found for muscle atrophy. We searched for myogenic modulators from medicinal plants to treat muscle diseases. We isolated six alkaloids from Corydalis turtschaninovii and evaluated their myogenic potential by using the MyoD reporter gene assay in C2C12 cells. Among the tested compounds, canadine showed the strongest transactivation of MyoD and increased MHC expression during myogenesis. The activation of p38 MAP kinase and Akt are major mechanisms that contribute to the myogenesis by canadine. Canadine increased the number of multinucleated and cylinder-shaped myotubes during myogenesis of C2C12 myoblasts. To determine the preventive effect of canadine in cancer-induced muscle wasting, differentiated C2C12 myotubes were treated with conditioned media from CT26 colon carcinoma culture (CT26 CM) in the presence of canadine. Canadine ameliorated the muscle protein degradation caused by CT26-CM by down-regulating the muscle specific-E3 ligases, MAFbx/atrogin-1 and MuRF1. In this study, we found that canadine from C. turtschaninovii stimulates myogenesis and also inhibits muscle protein degradation. Therefore, we suggest canadine as a protective agent against muscle atrophy.
Collapse
Affiliation(s)
- Hyejin Lee
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
| | - Sang-Jin Lee
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
| | - Gyu-Un Bae
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
| | - Nam-In Baek
- The Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 17104, Korea;
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
- Correspondence: ; Tel.: +82-2-710-9568
| |
Collapse
|
46
|
Abstract
The eukaryotic initiation factor 3 (eIF3) is one of the most complex translation initiation factors in mammalian cells, consisting of several subunits (eIF3a to eIF3m). It is crucial in translation initiation and termination, and in ribosomal recycling. Accordingly, deregulated eIF3 expression is associated with different pathological conditions, including cancer. In this manuscript, we discuss the interactome and function of each subunit of the human eIF3 complex. Furthermore, we review how altered levels of eIF3 subunits correlate with neurodegenerative disorders and cancer onset and development; in addition, we evaluate how such misregulation may also trigger infection cascades. A deep understanding of the molecular mechanisms underlying eIF3 role in human disease is essential to develop new eIF3-targeted therapeutic approaches and thus, overcome such conditions.
Collapse
Affiliation(s)
- Andreia Gomes-Duarte
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Rafaela Lacerda
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Juliane Menezes
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Luísa Romão
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
47
|
Proctor CJ, Goljanek-Whysall K. Using computer simulation models to investigate the most promising microRNAs to improve muscle regeneration during ageing. Sci Rep 2017; 7:12314. [PMID: 28951568 PMCID: PMC5614911 DOI: 10.1038/s41598-017-12538-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression through interactions with target sites within mRNAs, leading to enhanced degradation of the mRNA or inhibition of translation. Skeletal muscle expresses many different miRNAs with important roles in adulthood myogenesis (regeneration) and myofibre hypertrophy and atrophy, processes associated with muscle ageing. However, the large number of miRNAs and their targets mean that a complex network of pathways exists, making it difficult to predict the effect of selected miRNAs on age-related muscle wasting. Computational modelling has the potential to aid this process as it is possible to combine models of individual miRNA:target interactions to form an integrated network. As yet, no models of these interactions in muscle exist. We created the first model of miRNA:target interactions in myogenesis based on experimental evidence of individual miRNAs which were next validated and used to make testable predictions. Our model confirms that miRNAs regulate key interactions during myogenesis and can act by promoting the switch between quiescent/proliferating/differentiating myoblasts and by maintaining the differentiation process. We propose that a threshold level of miR-1 acts in the initial switch to differentiation, with miR-181 keeping the switch on and miR-378 maintaining the differentiation and miR-143 inhibiting myogenesis.
Collapse
Affiliation(s)
- Carole J Proctor
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Institute of Cellular Medicine and Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK.
| | - Katarzyna Goljanek-Whysall
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
48
|
Comprehensive analysis of lncRNAs and mRNAs in skeletal muscle of rainbow trout (Oncorhynchus mykiss) exposed to estradiol. Sci Rep 2017; 7:11780. [PMID: 28924252 PMCID: PMC5603547 DOI: 10.1038/s41598-017-12136-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023] Open
Abstract
Estradiol (E2) is a steroid hormone that negatively affects muscle growth in rainbow trout (Oncorhynchus mykiss), but the mechanisms directing with this response are not fully understood. To better characterize the effects of E2 in muscle, we identified differentially regulated mRNAs and lncRNAs in juvenile rainbow trout exposed to E2. Here, we performed next-generation RNA sequencing and comprehensive bioinformatics analyses to characterize the transcriptome profiles, including mRNAs and long noncoding RNAs (lncRNAs), in skeletal muscle of rainbow trout injected with E2. A total of 226 lncRNAs and 253 mRNAs were identified as differentially regulated. We identified crucial pathways, including several signal transduction pathways, hormone response, oxidative response and protein, carbon and fatty acid metabolism pathways. Subsequently, a functional lncRNA-mRNA co-expression network was constructed, which consisted of 681 co-expression relationships between 164 lncRNAs and 201 mRNAs. Moreover, a lncRNA-pathway network was constructed. A total of 65 key lncRNAs were identified that regulate 20 significantly enriched pathways. Overall, our analysis provides insights into mRNA and lncRNA networks in rainbow trout skeletal muscle and their regulation by E2 while understanding the molecular mechanism of lncRNAs.
Collapse
|
49
|
Adams V, Reich B, Uhlemann M, Niebauer J. Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol 2017; 313:H72-H88. [PMID: 28476924 DOI: 10.1152/ajpheart.00470.2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
For decades, we have known that exercise training exerts beneficial effects on the human body, and clear evidence is available that a higher fitness level is associated with a lower incidence of suffering premature cardiovascular death. Despite this knowledge, it took some time to also incorporate physical exercise training into the treatment plan for patients with cardiovascular disease (CVD). In recent years, in addition to continuous exercise training, further training modalities such as high-intensity interval training and pyramid training have been introduced for coronary artery disease patients. The beneficial effect for patients with CVD is clearly documented, and during the last years, we have also started to understand the molecular mechanisms occurring in the skeletal muscle (limb muscle and diaphragm) and endothelium, two systems contributing to exercise intolerance in these patients. In the present review, we describe the effects of the different training modalities in CVD and summarize the molecular effects mainly in the skeletal muscle and cardiovascular system.
Collapse
Affiliation(s)
- Volker Adams
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Bernhard Reich
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Madlen Uhlemann
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
50
|
Xue Q, Zhang G, Li T, Ling J, Zhang X, Wang J. Transcriptomic profile of leg muscle during early growth in chicken. PLoS One 2017; 12:e0173824. [PMID: 28291821 PMCID: PMC5349469 DOI: 10.1371/journal.pone.0173824] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/26/2017] [Indexed: 11/27/2022] Open
Abstract
The early growth pattern, especially the age of peak growth, of broilers affects the time to market and slaughter weight, which in turn affect the profitability of the poultry industry. However, the underlying mechanisms regulating chicken growth and development have rarely been studied. This study aimed to identify candidate genes involved in chicken growth and investigated the potential regulatory mechanisms of early growth in chicken. RNA sequencing was applied to compare the transcriptomes of chicken muscle tissues at three developmental stages during early growth. In total, 978 differentially expressed genes (DEGs) (fold change ≥ 2; false discovery rate < 0.05) were detected by pairwise comparison. Functional analysis showed that the DEGs are mainly involved in the processes of cell growth, muscle development, and cellular activities (such as junction, migration, assembly, differentiation, and proliferation). Many of the DEGs are well known to be related to chicken growth, such as MYOD1, GH, IGF2BP2, IGFBP3, SMYD1, CEBPB, FGF2, and IGFBP5. KEGG pathway analysis identified that the DEGs were significantly enriched in five pathways (P < 0.1) related to growth and development: extracellular matrix–receptor interaction, focal adhesion, tight junction, insulin signaling pathway, and regulation of the actin cytoskeleton. A total of 42 DEGs assigned to these pathways are potential candidate genes inducing the difference in growth among the three developmental stages, such as MYH10, FGF2, FGF16, FN1, CFL2, MAPK9, IRS1, PHKA1, PHKB, and PHKG1. Thus, our study identified a series of genes and several pathways that may participate in the regulation of early growth in chicken. These results should serve as an important resource revealing the molecular basis of chicken growth and development.
Collapse
Affiliation(s)
- Qian Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail: (JW); (GZ)
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jiaojiao Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail: (JW); (GZ)
| |
Collapse
|