1
|
Lu L, Ma D, Xi Z. Coexpression of TP53, BIM, and PTEN Enhances the Therapeutic Efficacy of Non-Small-Cell Lung Cancer. Biomacromolecules 2024; 25:792-808. [PMID: 38237562 DOI: 10.1021/acs.biomac.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
For non-small-cell lung cancer (NSCLC), the ubiquitous occurrence of concurrent multiple genomic alterations poses challenges to single-gene therapy. To increase therapeutic efficacy, we used the branch-PCR method to develop a multigene nanovector, NP-TP53-BIM-PTEN, that carried three therapeutic gene expression cassettes for coexpression. NP-TP53-BIM-PTEN exhibited a uniform size of 104.8 ± 24.2 nm and high serum stability. In cell transfection tests, NP-TP53-BIM-PTEN could coexpress TP53, BIM, and PTEN in NCI-H1299 cells and induce cell apoptosis with a ratio of up to 94.9%. Furthermore, NP-TP53-BIM-PTEN also inhibited cell proliferation with a ratio of up to 42%. In a mouse model bearing an NCI-H1299 xenograft tumor, NP-TP53-BIM-PTEN exhibited a stronger inhibitory effect on the NCI-H1299 xenograft tumor than the other test vectors without any detectable side effects. These results exhibited the potential of NP-TP53-BIM-PTEN as an effective and safe multigene nanovector to enhance NSCLC therapy efficacy, which will provide a framework for genome therapy with multigene combinations.
Collapse
Affiliation(s)
- Liqing Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Tizaoui K, Shin JI, Jeong GH, Yang JW, Park S, Kim JH, Hwang SY, Park SJ, Koyanagi A, Smith L. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina (B Aires) 2022; 58:medicina58081034. [PMID: 36013501 PMCID: PMC9415475 DOI: 10.3390/medicina58081034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
It is known that the etiology and clinical outcomes of autoimmune diseases are associated with a combination of genetic and environmental factors. In the case of the genetic factor, the SNPs of the PTPN22 gene have shown strong associations with several diseases. The recent exploding numbers of genetic studies have made it possible to find these associations rapidly, and a variety of autoimmune diseases were found to be associated with PTPN22 polymorphisms. Proteins encoded by PTPN22 play a key role in the adaptative and immune systems by regulating both T and B cells. Gene variants, particularly SNPs, have been shown to significantly disrupt several immune functions. In this review, we summarize the mechanism of how PTPN22 and its genetic variants are involved in the pathophysiology of autoimmune diseases. In addition, we sum up the findings of studies reporting the genetic association of PTPN22 with different types of diseases, including type 1 diabetes mellitus, systemic lupus erythematosus, juvenile idiopathic arthritis, and several other diseases. By understanding these findings comprehensively, we can explain the complex etiology of autoimmunity and help to determine the criteria of disease diagnosis and prognosis, as well as medication developments.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Basic Sciences, Division of Histology and Immunology, Faculty of Medicine Tunis, Tunis El Manar University, Tunis 2092, Tunisia;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Ji Hong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2019-3352; Fax: +82-2-3461-9473
| | - Soo Young Hwang
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Se Jin Park
- Department of Pediatrics, Eulji University School of Medicine, Daejeon 35233, Korea;
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain;
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| |
Collapse
|
3
|
Bednar KJ, Lee JH, Ort T. Tregs in Autoimmunity: Insights Into Intrinsic Brake Mechanism Driving Pathogenesis and Immune Homeostasis. Front Immunol 2022; 13:932485. [PMID: 35844555 PMCID: PMC9280893 DOI: 10.3389/fimmu.2022.932485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
CD4+CD25highFoxp3+ regulatory T-cells (Tregs) are functionally characterized for their ability to suppress the activation of multiple immune cell types and are indispensable for maintaining immune homeostasis and tolerance. Disruption of this intrinsic brake system assessed by loss of suppressive capacity, cell numbers, and Foxp3 expression, leads to uncontrolled immune responses and tissue damage. The conversion of Tregs to a pathogenic pro-inflammatory phenotype is widely observed in immune mediated diseases. However, the molecular mechanisms that underpin the control of Treg stability and suppressive capacity are incompletely understood. This review summarizes the concepts of Treg cell stability and Treg cell plasticity highlighting underlying mechanisms including translational and epigenetic regulators that may enable translation to new therapeutic strategies. Our enhanced understanding of molecular mechanism controlling Tregs will have important implications into immune homeostasis and therapeutic potential for the treatment of immune-mediated diseases.
Collapse
|
4
|
Bediaga NG, Garnham AL, Naselli G, Bandala-Sanchez E, Stone NL, Cobb J, Harbison JE, Wentworth JM, Ziegler AG, Couper JJ, Smyth GK, Harrison LC. Cytotoxicity-Related Gene Expression and Chromatin Accessibility Define a Subset of CD4+ T Cells That Mark Progression to Type 1 Diabetes. Diabetes 2022; 71:566-577. [PMID: 35007320 PMCID: PMC8893947 DOI: 10.2337/db21-0612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/12/2021] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes in children is heralded by a preclinical phase defined by circulating autoantibodies to pancreatic islet antigens. How islet autoimmunity is initiated and then progresses to clinical diabetes remains poorly understood. Only one study has reported gene expression in specific immune cells of children at risk associated with progression to islet autoimmunity. We analyzed gene expression with RNA sequencing in CD4+ and CD8+ T cells, natural killer (NK) cells, and B cells, and chromatin accessibility by assay for transposase-accessible chromatin sequencing (ATAC-seq) in CD4+ T cells, in five genetically at risk children with islet autoantibodies who progressed to diabetes over a median of 3 years ("progressors") compared with five children matched for sex, age, and HLA-DR who had not progressed ("nonprogressors"). In progressors, differentially expressed genes (DEGs) were largely confined to CD4+ T cells and enriched for cytotoxicity-related genes/pathways. Several top-ranked DEGs were validated in a semi-independent cohort of 13 progressors and 11 nonprogressors. Flow cytometry confirmed that progression was associated with expansion of CD4+ cells with a cytotoxic phenotype. By ATAC-seq, progression was associated with reconfiguration of regulatory chromatin regions in CD4+ cells, some linked to differentially expressed cytotoxicity-related genes. Our findings suggest that cytotoxic CD4+ T cells play a role in promoting progression to type 1 diabetes.
Collapse
Affiliation(s)
- Naiara G. Bediaga
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Gaetano Naselli
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Esther Bandala-Sanchez
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Natalie L. Stone
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Joanna Cobb
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Jessica E. Harbison
- Department of Endocrinology and Diabetes, Women’s and Children’s Hospital, North Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - John M. Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
| | - Annette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jennifer J. Couper
- Department of Endocrinology and Diabetes, Women’s and Children’s Hospital, North Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Leonard C. Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Corresponding author: Leonard C. Harrison,
| |
Collapse
|
5
|
Fasolino M, Schwartz GW, Patil AR, Mongia A, Golson ML, Wang YJ, Morgan A, Liu C, Schug J, Liu J, Wu M, Traum D, Kondo A, May CL, Goldman N, Wang W, Feldman M, Moore JH, Japp AS, Betts MR, Faryabi RB, Naji A, Kaestner KH, Vahedi G. Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes. Nat Metab 2022; 4:284-299. [PMID: 35228745 PMCID: PMC8938904 DOI: 10.1038/s42255-022-00531-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which immune cells destroy insulin-producing beta cells. The aetiology of this complex disease is dependent on the interplay of multiple heterogeneous cell types in the pancreatic environment. Here, we provide a single-cell atlas of pancreatic islets of 24 T1D, autoantibody-positive and nondiabetic organ donors across multiple quantitative modalities including ~80,000 cells using single-cell transcriptomics, ~7,000,000 cells using cytometry by time of flight and ~1,000,000 cells using in situ imaging mass cytometry. We develop an advanced integrative analytical strategy to assess pancreatic islets and identify canonical cell types. We show that a subset of exocrine ductal cells acquires a signature of tolerogenic dendritic cells in an apparent attempt at immune suppression in T1D donors. Our multimodal analyses delineate cell types and processes that may contribute to T1D immunopathogenesis and provide an integrative procedure for exploration and discovery of human pancreatic function.
Collapse
Affiliation(s)
- Maria Fasolino
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory W Schwartz
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Abhijeet R Patil
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aanchal Mongia
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maria L Golson
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yue J Wang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashleigh Morgan
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chengyang Liu
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Schug
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jinping Liu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Minghui Wu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Traum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ayano Kondo
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Catherine L May
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naomi Goldman
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wenliang Wang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael Feldman
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jason H Moore
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alberto S Japp
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert B Faryabi
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Ali Naji
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Ni L, Cao J, Yuan C, Zhou LT, Wu X. Expression of Ferroptosis-Related Genes is Correlated with Immune Microenvironment in Diabetic Kidney Disease. Diabetes Metab Syndr Obes 2022; 15:4049-4064. [PMID: 36597492 PMCID: PMC9805740 DOI: 10.2147/dmso.s388724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/26/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE This study aims to explore the correlation between ferroptosis and immune microenvironment (IME) in diabetic kidney disease (DKD) to provide a new clue for exploring the underlying molecular mechanisms. METHODS Corresponding RNA data of DKD patients were downloaded from GEO databases. The weighted gene co-expression network analysis (WGCNA) was used to construct the network, and the selected hub genes, then, overlapped with ferroptosis-related genes (FRGs) from FerrDb. Consensus clustering was performed to identify new molecular subgroups. ESTIMATE, TIMER and ssGSEA analyses were applied to determinate the IME and immune status. Functional analyses including GO, KEGG and GSEA were conducted to elucidate the underlying mechanisms. RESULTS Two molecular subtypes were identified based on the expression of FRGs. ESTIMATE algorithm revealed that there were significant differences in ESTIMATE score between these two clusters of DKD patients, with no significant difference found in stromal score and immune score. In addition, TIMER algorithm indicated there was a significant difference in the degree of T cell infiltration. The ssGSEA algorithm showed immunity was mainly concentrated in thick ascending limb and distal convoluted tubule in adult kidney. GO, KEGG and GSEA analyses revealed that the differentially expressed genes (DEGs) were mainly enriched in immune and metabolism associated pathways. CONCLUSION The ferroptosis may be induced by dysregulation of IME, thereby accelerating the progression of DKD. Our work could be applied to provide a new clue for exploring the underlying molecular mechanisms and sheds novel light on the therapy strategy of DKD.
Collapse
Affiliation(s)
- Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jingyuan Cao
- The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, People’s Republic of China
| | - Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Le-Ting Zhou
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Correspondence: Xiaoyan Wu; Le-Ting Zhou, Email ;
| |
Collapse
|
7
|
Lisowska KA, Storoniak H, Dębska-Ślizień A. T cell subpopulations and cytokine levels in hemodialysis patients. Hum Immunol 2021; 83:134-143. [PMID: 34802797 DOI: 10.1016/j.humimm.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
HD patients have impaired adaptive immune responses, which might depend on the primary cause of chronic kidney disease (CKD). We analyzed percentages of T cells subpopulations with the expression of CD69, CD25, CD95, and HLA-DR antigens in HD patients to determine the status of T cell activation. Also, we determined serum levels of cytokines: IL12p70, TNF, IL-10, IL-6, IL-1β, IL-8. HD patients had increased percentages of CD4+CD25+, CD4+CD69+, CD4+HLA-DR+, CD8+CD69+, and CD8+HLA-DR+ cells compared to healthy people. Also, their IL-6 and IL-8 serum levels were higher. Changes in T cell subpopulations were seen in patients with diabetic nephropathy (DN) or ischemic nephropathy (IN) but not with glomerulonephritis (GN). HD patients dialyzed for more than six months had a lower percentage of CD4+CD69+, CD8+HLA-DR+, CD8+CD95+ cells, higher IL-12p70 levels, and lower IL-8 levels. Our results show that HD treatment and CKD cause influence T cell activation status.
Collapse
Affiliation(s)
- Katarzyna A Lisowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Hanna Storoniak
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
8
|
Qin W, Sun L, Dong M, An G, Zhang K, Zhang C, Meng X. Regulatory T Cells and Diabetes Mellitus. Hum Gene Ther 2021; 32:875-881. [PMID: 33975439 DOI: 10.1089/hum.2021.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immune system dysfunction causes dysregulation of immune homeostasis, which in turn leads to autoimmune diseases. Regulatory T cells (Tregs) are a specialized T cell subpopulation that maintain peripheral tolerance and immune homeostasis. Diabetic patients are at an increased risk of developing cardiovascular diseases; thus, in terms of coronary risk, diabetes mellitus (DM) is considered coronary heart disease equivalent. Accumulating evidence indicates that Tregs play an important role in protecting against the development of various cardiovascular diseases. In this review, we provide an overview of the role of Tregs in the pathogenesis of DM, including type 1 DM, type 2 DM, latent autoimmune diabetes of adults, and gestational DM. In addition, we discuss the role of Tregs in diabetic complications, including cardiovascular diseases, nephropathy, neuropathy, and retinopathy. Tregs play a beneficial role in the pathogenesis of DM and diabetic complications, although the precise molecular mechanisms underlying the protective effect of Tregs against DM are still obscure. Collectively, modification of Tregs may provide a promising and novel future strategy for the prevention and therapy of DM and diabetic complications.
Collapse
Affiliation(s)
- Weidong Qin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guipeng An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Słomiński B, Skrzypkowska M, Ryba-Stanisławowska M, Myśliwiec M, Trzonkowski P. Associations of TP53 codon 72 polymorphism with complications and comorbidities in patients with type 1 diabetes. J Mol Med (Berl) 2021; 99:675-683. [PMID: 33495869 PMCID: PMC8055568 DOI: 10.1007/s00109-020-02035-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 11/26/2022]
Abstract
Wild-type TP53 plays an important role in the regulation of immune response and systemic inflammation. In type 1 diabetes (T1D), TP53 pathways are upregulated and an increased susceptibility to apoptosis is observed. We hypothesize that TP53 codon 72 polymorphism could be associated with complications and comorbidities in patients with T1D. We have investigated the associations of the TP53 codon 72 polymorphism with the T1D complications and comorbidities (retinopathy, nephropathy, hypertension, dyslipidemia, autoimmune thyroiditis, and celiac disease) in 350 patients. The key results of our approach are as follows: (1) In diabetic subjects, the Pro/Pro genotype is associated with an increased risk of microvascular complications, dyslipidemia, and celiac disease; (2) the Arg/Arg variant is associated with a decreased risk of autoimmune thyroiditis and celiac disease; (3) the Pro allele is associated with an increased risk of dyslipidemia, autoimmune thyroiditis, and celiac disease. Although further studies are required, our results for the first time indicate that the TP53 codon 72 polymorphism could be considered a genetic marker to predict the increased susceptibility to some T1D complications and comorbidities. KEY MESSAGES: We analyzed the TP53 codon 72 polymorphism in patients with T1D. Pro/Pro genotype is associated with an increased risk of microvascular complications, dyslipidemia, and celiac disease. The Arg/Arg variant is associated with a decreased risk of autoimmune thyroiditis and celiac disease. The Pro allele is associated with an increased risk of dyslipidemia, autoimmune thyroiditis, and celiac disease.
Collapse
Affiliation(s)
- Bartosz Słomiński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland.
| | - Maria Skrzypkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland
| | - Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Chair & Clinics of Paediatrics, Diabetology and Endocrinology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
10
|
Tang CL, Gao YR, Wang LX, Zhu YW, Pan Q, Zhang RH, Xiong Y. Role of regulatory T cells in Schistosoma-mediated protection against type 1 diabetes. Mol Cell Endocrinol 2019; 491:110434. [PMID: 31078638 DOI: 10.1016/j.mce.2019.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
The prevalence of T1D in developed societies is partly based on the hygiene hypothesis, that is, the loss of exposure to infectious agents accompanies the loss of immune stimuli shaping the immune system during development. Indeed, the components of parasites, such as Schistosoma, have been reported to ameliorate or prevent the development of T1D, which might be associated with immune cell activity especially that of regulatory T cells (Tregs). Schistosoma infection can lead to the expansion of Treg. Herein, we provide a comprehensive overview of the involvement of Tregs in the response against Schistosoma infection and the mechanism of Schistosoma-associated host protection against T1D.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Yan-Ru Gao
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Li-Xia Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ying Xiong
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
11
|
Imam S, Prathibha R, Dar P, Almotah K, Al-Khudhair A, Hasan SAM, Salim N, Jilani TN, Mirmira RG, Jaume JC. eIF5A inhibition influences T cell dynamics in the pancreatic microenvironment of the humanized mouse model of Type 1 Diabetes. Sci Rep 2019; 9:1533. [PMID: 30733517 PMCID: PMC6367423 DOI: 10.1038/s41598-018-38341-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
We have developed a transgenic mouse model of Type 1 Diabetes (T1D) in which human GAD65 is expressed in pancreatic β-cells, and human MHC-II is expressed on antigen presenting cells. Induced GAD65 antigen presentation activates T-cells, which initiates the downstream events leading to diabetes. In our humanized mice, we have shown downregulation of eukaryotic translation initiation factor 5 A (elF5A), expressed only in actively dividing mammalian cells. In-vivo inhibition of elF5A hypusination by deoxyhypusine synthase (DHS) inhibitor "GC7" was studied; DHS inhibitor alters the pathophysiology in our mouse model by catalyzing the crucial hypusination and the rate-limiting step of elF5A activation. In our mouse model, we have shown that inhibition of eIF5A resets the pro-inflammatory bias in the pancreatic microenvironment. There was: (a) reduction of Th1/Th17 response, (b) an increase in Treg numbers, (c) debase in IL17 and IL21 cytokines levels in serum, (d) lowering of anti-GAD65 antibodies, and (e) ablation of the ER stress that improved functionality of the β-cells, but minimal effect on the cytotoxic CD8 T-cell (CTL) mediated response. Conclusively, immune modulation, in the case of T1D, may help to manipulate inflammatory responses, decreasing disease severity, and may help manage T1D in early stages of disease. Our study also demonstrates that without manipulating the CTLs mediated response extensively, it is difficult to treat T1D.
Collapse
Affiliation(s)
- Shahnawaz Imam
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - R Prathibha
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Pervaiz Dar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shuhama, Srinagar, 190006, Jammu and Kashmir, India
| | - Khalil Almotah
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ahmed Al-Khudhair
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Syed Abdul-Moiz Hasan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Nancy Salim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Talha Naser Jilani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan Carlos Jaume
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Center for Diabetes and Endocrine Research (CeDER), Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
12
|
Grohová A, Dáňová K, Špíšek R, Palová-Jelínková L. Cell Based Therapy for Type 1 Diabetes: Should We Take Hyperglycemia Into Account? Front Immunol 2019; 10:79. [PMID: 30804929 PMCID: PMC6370671 DOI: 10.3389/fimmu.2019.00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is characterized by long standing hyperglycemia leading to numerous life-threatening complications. For type 1 diabetes mellitus, resulting from selective destruction of insulin producing cells by exaggerated immune reaction, the only effective therapy remains exogenous insulin administration. Despite accurate compliance to treatment of certain patients, transient episodes of hyperglycemia cannot be completely eliminated by this symptomatic treatment. Novel immunotherapeutic approaches based on tolerogenic dendritic cells, T regulatory cells and mesenchymal stem cells (MSCs) have been tested in clinical trials, endeavoring to directly modulate the autoimmune destruction process in pancreas. However, hyperglycemia itself affects the immune system and the final efficacy of cell-based immunotherapies could be affected by the different glycemic control of enrolled patients. The present review explores the impact of hyperglycemia on immune cells while providing greater insight into the molecular mechanisms of high glucose action and subsequent metabolic reprogramming of different immune cells. Furthermore, over-production of mitochondrial reactive oxygen species, formation of advanced glycation end products as a consequence of hyperglycemia and their downstream signalization in immune cells are also discussed. Since hyperglycemia in patients with type 1 diabetes mellitus might have an impact on immune-interventional treatment, the maintenance of a tight glucose control seems to be beneficial in patients considered for cell-based therapy.
Collapse
Affiliation(s)
- Anna Grohová
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia.,Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine, University Hospital Motol, Prague, Czechia
| | - Klára Dáňová
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Radek Špíšek
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| |
Collapse
|
13
|
Abstract
The clinical onset of type 1 diabetes is characterized by the destruction of the insulin-producing β cells of the pancreas and is caused by autoantigen-induced inflammation (insulitis) of the islets of Langerhans. The current standard of care for type 1 diabetes mellitus patients allows for management of the disease with exogenous insulin, but patients eventually succumb to many chronic complications such as limb amputation, blindness, and kidney failure. New therapeutic approaches now on the horizon are looking beyond glycemic management and are evaluating new strategies from protecting and regenerating endogenous islets to treating the underlying autoimmunity through selective modulation of key immune cell populations. Currently, there are no effective treatments for the autoimmunity that causes the disease, and strategies that aim to delay or prevent the onset of the disease will play an important role in the future of diabetes research. In this review, we summarize many of the key efforts underway that utilize molecular approaches to selectively modulate this disease and look at new therapeutic paradigms that can transform clinical treatment.
Collapse
Affiliation(s)
- Daniel Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Therapies that target beta-cell antigen-specific T cells subsets have not been as successful in patients with type 1 diabetes as in mice. This might be explained by complexities in the repertoire of beta-cell antigen-specific T cells and the variety of T cell subsets involved in type 1 diabetes development in human. RECENT FINDINGS T cells that infiltrate islets of people with type 1 diabetes (i) react towards known islet cell antigens but also unknown antigens, (ii) differ from one patient to another, and (iii) are also present in the circulation, but not in the islets, of healthy people. Moreover, several circulating memory T cell subsets not recognized as relevant in mouse are significantly associated with clinical outcome. A more detailed understanding of the specificity, phenotype, and function of T cells that are associated with defined clinical outcomes might identify new pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Aditi Narsale
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA, 92121, USA
| | - Joanna D Davies
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA, 92121, USA.
| |
Collapse
|
15
|
Ren X, Mou W, Su C, Chen X, Zhang H, Cao B, Li X, Wu D, Ni X, Gui J, Gong C. Increase in Peripheral Blood Intermediate Monocytes is Associated with the Development of Recent-Onset Type 1 Diabetes Mellitus in Children. Int J Biol Sci 2017; 13:209-218. [PMID: 28255273 PMCID: PMC5332875 DOI: 10.7150/ijbs.15659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022] Open
Abstract
Monocytes play important roles in antigen presentation and cytokine production to achieve a proper immune response, and are therefore largely implicated in the development and progression of autoimmune diseases. The aim of this study was to analyze the change in the intermediate (CD14+CD16+) monocyte subset in children with recent-onset type 1 diabetes mellitus (T1DM) and its possible association with clinical parameters reflecting islet β-cell dysfunction. Compared with age- and sex-matched healthy controls, intermediate monocytes were expanded in children with T1DM, which was positively associated with hemoglobin A1C and negatively associated with serum insulin and C-peptide. Interestingly, the intermediate monocytes in T1DM patients expressed higher levels of human leukocyte antigen-DR and CD86, suggesting better antigen presentation capability. Further analysis revealed that the frequency of CD45RO+CD4+ memory T cells was increased in the T1DM patients, and the memory T cell content was well correlated with the increase in intermediate monocytes. These results suggest that expanded intermediate monocytes are a predictive factor for the poor residual islet β-cell function in children with recent-onset T1DM.
Collapse
Affiliation(s)
- Xiaoya Ren
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wenjun Mou
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chang Su
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xi Chen
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hui Zhang
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Bingyan Cao
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaoqiao Li
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xin Ni
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Jingang Gui
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chunxiu Gong
- Key Laboratory of Major Diseases in Children by Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China.; Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Datta P, Webb LMC, Avdo I, Pascall J, Butcher GW. Survival of mature T cells in the periphery is intrinsically dependent on GIMAP1 in mice. Eur J Immunol 2016; 47:84-93. [PMID: 27792288 PMCID: PMC5244661 DOI: 10.1002/eji.201646599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
Abstract
An effective immune system depends upon the survival of mature T cells in the periphery. Members of the GIMAP family of GTPases have been proposed to regulate this homeostasis, supported by the paucity of peripheral T cells in rodents deficient for either GIMAP1 or GIMAP5. It is unclear whether this lack of T cells is a consequence of an ontological defect, causing the thymus to generate and export T cells incapable of surviving in the periphery, or whether (alternatively or additionally) mature T cells intrinsically require GIMAP1 for survival. Using the ERT2 Cre+ transgene, we conditionally deleted Gimap1 in C57BL/6 mice and demonstrate that GIMAP1 is intrinsically required for the survival of mature T cells in the periphery. We show that, in contrast to GIMAP5, this requirement is independent of the T-cells' activation status. We investigated the nature of the survival defect in GIMAP1-deficient CD4+ T cells and show that the death occurring after GIMAP1 ablation is accompanied by mitochondrial depolarization and activation of the extrinsic apoptotic pathway. This study shows that GIMAP1 is critical for maintaining the peripheral T-cell pool in mice and offers a potent target for the treatment of T-cell-mediated diseases.
Collapse
Affiliation(s)
- Preeta Datta
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Louise M C Webb
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Inxhina Avdo
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - John Pascall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
17
|
Abstract
Genetic and cellular studies of type 1 diabetes in patients and in the nonobese diabetic mouse model of type 1 diabetes point to an imbalance between effector T cells and regulatory T cells (Tregs) as a driver of the disease. The imbalance may arise as a consequence of genetically encoded defects in thymic deletion of islet antigen-specific T cells, induction of islet antigen-specific thymic Tregs, unfavorable tissue environment for peripheral Treg induction, and failure of islet antigen-specific Tregs to survive in the inflamed islets secondary to insufficient IL-2 signals. These understandings are the foundation for rationalized design of new therapeutic interventions to restore the balance by selectively targeting effector T cells and boosting Tregs.
Collapse
Affiliation(s)
- Allyson Spence
- Department of Surgery and UCSF Diabetes Center, University of California, 513 Parnassus HSE-520, Box 0780, San Francisco, CA, 94143, USA
| | - Qizhi Tang
- Department of Surgery and UCSF Diabetes Center, University of California, 513 Parnassus HSE-520, Box 0780, San Francisco, CA, 94143, USA.
| |
Collapse
|
18
|
Dousdampanis P, Trigka K, Mouzaki A. Tregs and kidney: From diabetic nephropathy to renal transplantation. World J Transplant 2016; 6:556-63. [PMID: 27683634 PMCID: PMC5036125 DOI: 10.5500/wjt.v6.i3.556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 02/05/2023] Open
Abstract
Kidney transplantation is recognised as the most effective treatment for patients with end-stage renal disease (ESRD). Kidney transplantation continues to face several challenges including long-term graft and patient survival, and the side effects of immunosuppressive therapy. The tendency in kidney transplantation is to avoid the side effects of immunosuppresants and induce immune tolerance. Regulatory T-cells (Tregs) contribute to self-tolerance, tolerance to alloantigen and transplant tolerance, mainly by suppressing the activation and function of reactive effector T-cells. Additionally, Tregs are implicated in the pathogenesis of diabetes, which is the leading cause of ESRD, suggesting that these cells play a role both in the pathogenesis of chronic kidney disease and the induction of transplant tolerance. Several strategies to achieve immunological tolerance to grafts have been tested experimentally, and include combinations of co-stimulatory blockade pathways, T-cell depletion, in vivo Treg-induction and/or infusion of ex-vivo expanded Tregs. However, a successful regimen that induces transplant tolerance is not yet available for clinical application. This review brings together certain key studies on the role of Tregs in ESRD, diabetes and kidney transplantation, only to emphasize that many more studies are needed to elucidate the clinical significance and the therapeutic applications of Tregs.
Collapse
|
19
|
Labudzynskyi DO, Manoylov KU, Shymanskyy IO, Veliky MM. Immunoregulatory effects of vitamin D3 in experimentally induced type 1 diabetes. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716040071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Glisic S, Ghosh S. Comment on Yang et al. Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes. Diabetes 2015;64:3891-3902. Diabetes 2016; 65:e21. [PMID: 27208030 DOI: 10.2337/db15-1396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sanja Glisic
- Hematogenix Laboratory Services, Tinley Park, IL
| | | |
Collapse
|
21
|
Pesenacker AM, Wang AY, Singh A, Gillies J, Kim Y, Piccirillo CA, Nguyen D, Haining WN, Tebbutt SJ, Panagiotopoulos C, Levings MK. A Regulatory T-Cell Gene Signature Is a Specific and Sensitive Biomarker to Identify Children With New-Onset Type 1 Diabetes. Diabetes 2016; 65:1031-9. [PMID: 26786322 DOI: 10.2337/db15-0572] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/29/2015] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) is caused by immune-mediated destruction of insulin-producing β-cells. Insufficient control of autoreactive T cells by regulatory T cells (Tregs) is believed to contribute to disease pathogenesis, but changes in Treg function are difficult to quantify because of the lack of Treg-exclusive markers in humans and the complexity of functional experiments. We established a new way to track Tregs by using a gene signature that discriminates between Tregs and conventional T cells regardless of their activation states. The resulting 31-gene panel was validated with the NanoString nCounter platform and then measured in sorted CD4(+)CD25(hi)CD127(lo) Tregs from children with T1D and age-matched control subjects. By using biomarker discovery analysis, we found that expression of a combination of six genes, including TNFRSF1B (CD120b) and FOXP3, was significantly different between Tregs from subjects with new-onset T1D and control subjects, resulting in a sensitive (mean ± SD 0.86 ± 0.14) and specific (0.78 ± 0.18) biomarker algorithm. Thus, although the proportion of Tregs in peripheral blood is similar between children with T1D and control subjects, significant changes in gene expression can be detected early in disease process. These findings provide new insight into the mechanisms underlying the failure to control autoimmunity in T1D and might lead to a biomarker test to monitor Tregs throughout disease progression.
Collapse
Affiliation(s)
- Anne M Pesenacker
- Department of Surgery, The University of British Columbia, and Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Adele Y Wang
- Department of Surgery, The University of British Columbia, and Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Amrit Singh
- Department of Medicine and Centre for Heart Lung Innovation, The University of British Columbia, and Prevention of Organ Failure (PROOF) Centre of Excellence, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Jana Gillies
- Department of Surgery, The University of British Columbia, and Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Youngwoong Kim
- Department of Medicine and Centre for Heart Lung Innovation, The University of British Columbia, and Prevention of Organ Failure (PROOF) Centre of Excellence, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Duc Nguyen
- Department of Pediatrics, The University of British Columbia, and Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Broad Institute, Harvard Medical School, Boston, MA
| | - Scott J Tebbutt
- Department of Medicine and Centre for Heart Lung Innovation, The University of British Columbia, and Prevention of Organ Failure (PROOF) Centre of Excellence, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Constadina Panagiotopoulos
- Department of Pediatrics, The University of British Columbia, and Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Megan K Levings
- Department of Surgery, The University of British Columbia, and Child & Family Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Ferretti C, La Cava A. Adaptive immune regulation in autoimmune diabetes. Autoimmun Rev 2016; 15:236-41. [DOI: 10.1016/j.autrev.2015.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022]
|
23
|
Zhang D, Chen Y, Chen L, Yang R, Wang L, Liu W, Zhai Z, Shen Z. Ultraviolet irradiation promotes FOXP3 transcription via p53 in psoriasis. Exp Dermatol 2016; 25:513-8. [PMID: 26781862 DOI: 10.1111/exd.12942] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 02/03/2023]
Abstract
The decrease of forkhead box P3-positive (FOXP3 + ) regulatory T cells (Tregs) causes an immune imbalance with effector T cells in psoriasis. Previous studies have demonstrated that in addition to its known effects on keratinocytes and effector T cells, ultraviolet (UV) irradiation alleviates psoriasis via the upregulation of FOXP3 + Tregs. However, the mechanism is unclear. Here, we found that FOXP3 + T cells were increased in psoriatic lesions after UVB irradiation (t' = 3.7006, P < 0.01), as determined by immunohistochemical staining. In addition, the levels of FOXP3 and p53, one of the downstream targets of UV irradiation, showed accordant changes after UV irradiation. Experiments that used a MAPK inhibitor, p53 mutant cell lines, p53 inhibitor and p53 shRNA showed a decrease in FOXP3 levels, suggesting that p53 is required for UV-induced FOXP3 transcription. Next, we demonstrated that there are two binding sites for p53 on FOXP3 by informatics tools, a dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. One binding site (-1771 to -1583) is located at the promoter region and is adjacent to a previously reported p53-binding region in breast cancer cells. The other (+3845 to +4042) is located within the first intron and has not been previously reported. Our study demonstrated that FOXP3 is regulated, at least in part, by the binding of p53 to several binding sites in the promoter and intron regions following UV irradiation in psoriasis. It will be helpful to further clarify the regulatory mechanism of FOXP3 transcription and to provide new insights into the mechanisms that mediate the effects of UV irradiation in autoimmune skin disorders.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ling Chen
- Department of Dermatology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Riyao Yang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Li Wang
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenying Liu
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhifang Zhai
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhu Shen
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
24
|
Askenasy N. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation. Immunology 2016; 147:377-88. [PMID: 26749404 DOI: 10.1111/imm.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
25
|
Okubo Y, Torrey H, Butterworth J, Zheng H, Faustman DL. Treg activation defect in type 1 diabetes: correction with TNFR2 agonism. Clin Transl Immunology 2016; 5:e56. [PMID: 26900470 PMCID: PMC4735064 DOI: 10.1038/cti.2015.43] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022] Open
Abstract
Activated T-regulatory cells (aTregs) prevent or halt various forms of autoimmunity. We show that type 1 diabetics (T1D) have a Treg activation defect through an increase in resting Tregs (rTregs, CD4+CD25+Foxp3+CD45RA) and decrease in aTregs (CD4+CD25+Foxp3+CD45RO) (n= 55 T1D, n=45 controls, P=0.01). The activation defect persists life long in T1D subjects (T1D=45, controls=45, P=0.01, P=0.04). Lower numbers of aTregs had clinical significance because they were associated with a trend for less residual C-peptide secretion from the pancreas (P=0.08), and poorer HbA1C control (P=0.03). In humans, the tumor necrosis factor receptor 2 (TNFR2) is obligatory for Treg induction, maintenance and expansion of aTregs. TNFR2 agonism is a method for stimulating Treg conversion from resting to activated. Using two separate in vitro expansion protocols, TNFR2 agonism corrected the T1D activation defect by triggering conversion of rTregs into aTregs (n=54 T1D, P<0.001). TNFR2 agonism was superior to standard protocols and TNF in proliferating Tregs. In T1D, TNFR2 agonist-expanded Tregs were homogeneous and functionally potent by virtue of suppressing autologous cytotoxic T cells in a dose-dependent manner comparable to controls. Targeting the TNFR2 receptor for Treg expansion in vitro demonstrates a means to correct the activation defect in T1D.
Collapse
Affiliation(s)
- Yoshiaki Okubo
- Immunobiology Department, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| | - Heather Torrey
- Immunobiology Department, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| | - John Butterworth
- Immunobiology Department, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| | - Hui Zheng
- Department of Biostatistics, Massachusetts General Hospital , Boston, MA, USA
| | - Denise L Faustman
- Immunobiology Department, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
26
|
Webb LMC, Datta P, Bell SE, Kitamura D, Turner M, Butcher GW. GIMAP1 Is Essential for the Survival of Naive and Activated B Cells In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 196:207-16. [PMID: 26621859 DOI: 10.4049/jimmunol.1501582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/30/2015] [Indexed: 12/30/2022]
Abstract
An effective immune system depends upon regulation of lymphocyte function and homeostasis. In recent years, members of the GTPases of the immunity associated protein (GIMAP) family were proposed to regulate T cell homeostasis. In contrast, little is known about their function and mode of action in B cells. We used a combination of transgenic mice and in vivo and in vitro techniques to conditionally and electively ablate GIMAP1 in resting and activated peripheral B cells. Our data suggest that GIMAP1 is absolutely essential for the survival of peripheral B cells, irrespective of their activation state. Together with recent data showing increased expression of GIMAP1 in B cell lymphomas, our work points to the possible potential of GIMAP1 as a target for manipulation in a variety of B cell-mediated diseases.
Collapse
Affiliation(s)
- Louise M C Webb
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Preeta Datta
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Sarah E Bell
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| |
Collapse
|
27
|
Yang JHM, Cutler AJ, Ferreira RC, Reading JL, Cooper NJ, Wallace C, Clarke P, Smyth DJ, Boyce CS, Gao GJ, Todd JA, Wicker LS, Tree TIM. Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes. Diabetes 2015; 64:3891-902. [PMID: 26224887 PMCID: PMC4975524 DOI: 10.2337/db15-0516] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022]
Abstract
Defective immune homeostasis in the balance between FOXP3+ regulatory T cells (Tregs) and effector T cells is a likely contributing factor in the loss of self-tolerance observed in type 1 diabetes (T1D). Given the importance of interleukin-2 (IL-2) signaling in the generation and function of Tregs, observations that polymorphisms in genes in the IL-2 pathway associate with T1D and that some individuals with T1D exhibit reduced IL-2 signaling indicate that impairment of this pathway may play a role in Treg dysfunction and the pathogenesis of T1D. Here, we have examined IL-2 sensitivity in CD4+ T-cell subsets in 70 individuals with long-standing T1D, allowing us to investigate the effect of low IL-2 sensitivity on Treg frequency and function. IL-2 responsiveness, measured by STAT5a phosphorylation, was a very stable phenotype within individuals but exhibited considerable interindividual variation and was influenced by T1D-associated PTPN2 gene polymorphisms. Tregs from individuals with lower IL-2 signaling were reduced in frequency, were less able to maintain expression of FOXP3 under limiting concentrations of IL-2, and displayed reduced suppressor function. These results suggest that reduced IL-2 signaling may be used to identify patients with the highest Treg dysfunction and who may benefit most from IL-2 immunotherapy.
Collapse
Affiliation(s)
- Jennie H M Yang
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, U.K. National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, U.K.
| | - Antony J Cutler
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Ricardo C Ferreira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - James L Reading
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, U.K. National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, U.K
| | - Nicholas J Cooper
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Chris Wallace
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Pamela Clarke
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Deborah J Smyth
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | | | | | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Timothy I M Tree
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, U.K. National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, U.K.
| |
Collapse
|
28
|
Hillen MR, Radstake TRDJ, Hack CE, van Roon JAG. Thymic stromal lymphopoietin as a novel mediator amplifying immunopathology in rheumatic disease: Fig. 1. Rheumatology (Oxford) 2015; 54:1771-9. [DOI: 10.1093/rheumatology/kev241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 11/14/2022] Open
|
29
|
Heinonen MT, Laine AP, Söderhäll C, Gruzieva O, Rautio S, Melén E, Pershagen G, Lähdesmäki HJ, Knip M, Ilonen J, Henttinen TA, Kere J, Lahesmaa R. GIMAP GTPase family genes: potential modifiers in autoimmune diabetes, asthma, and allergy. THE JOURNAL OF IMMUNOLOGY 2015; 194:5885-94. [PMID: 25964488 DOI: 10.4049/jimmunol.1500016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022]
Abstract
GTPase of the immunity-associated protein (GIMAP) family members are differentially regulated during human Th cell differentiation and have been previously connected to immune-mediated disorders in animal studies. GIMAP4 is believed to contribute to the Th cell subtype-driven immunological balance via its role in T cell survival. GIMAP5 has a key role in BB-DR rat and NOD mouse lymphopenia. To elucidate GIMAP4 and GIMAP5 function and role in human immunity, we conducted a study combining genetic association in different immunological diseases and complementing functional analyses. Single nucleotide polymorphisms tagging the GIMAP haplotype variation were genotyped in Finnish type 1 diabetes (T1D) families and in a prospective Swedish asthma and allergic sensitization birth cohort. Initially, GIMAP5 rs6965571 was associated with risk for asthma and allergic sensitization (odds ratio [OR] 3.74, p = 0.00072, and OR 2.70, p = 0.0063, respectively) and protection from T1D (OR 0.64, p = 0.0058); GIMAP4 rs13222905 was associated with asthma (OR 1.28, p = 0.035) and allergic sensitization (OR 1.27, p = 0.0068). However, after false discovery rate correction for multiple testing, only the associations of GIMAP4 with allergic sensitization and GIMAP5 with asthma remained significant. In addition, transcription factor binding sites surrounding the associated loci were predicted. A gene-gene interaction in the T1D data were observed between the IL2RA rs2104286 and GIMAP4 rs9640279 (OR 1.52, p = 0.0064) and indicated between INS rs689 and GIMAP5 rs2286899. The follow-up functional analyses revealed lower IL-2RA expression upon GIMAP4 knockdown and an effect of GIMAP5 rs2286899 genotype on protein expression. Thus, the potential role of GIMAP4 and GIMAP5 as modifiers of immune-mediated diseases cannot be discarded.
Collapse
Affiliation(s)
- Mirkka T Heinonen
- Turku Centre of Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Biology, University of Turku, 20014 Turku, Finland; Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520 Turku Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, University of Turku, 20520 Turku, Finland
| | - Cilla Söderhäll
- Department of Bioscience and Nutrition and Center for Innovative Medicine, Karolinska Institutet, 141 83 Huddinge, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Sini Rautio
- Department of Information and Computer Science, Aalto University, 02150 Espoo, Finland
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden; Karolinska University Hospital, Astrid Lindgren Children's Hospital, 171 76 Solna, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Harri J Lähdesmäki
- Turku Centre of Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, 33521 Tampere, Finland; Folkhälsan Research Institute, 00290 Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, 20520 Turku, Finland; Department of Clinical Microbiology, University of Eastern Finland, 70211 Kuopio, Finland; and
| | | | - Juha Kere
- Department of Bioscience and Nutrition and Center for Innovative Medicine, Karolinska Institutet, 141 83 Huddinge, Stockholm, Sweden; Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, 00290 Helsinki, Finland
| | - Riitta Lahesmaa
- Turku Centre of Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland;
| | | |
Collapse
|
30
|
ElEssawy B, Li XC. Type 1 diabetes and T regulatory cells. Pharmacol Res 2015; 98:22-30. [PMID: 25959211 DOI: 10.1016/j.phrs.2015.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
T-regulatory cells (Tregs) play a fundamental role in the creation and maintenance of peripheral tolerance. Deficits in the numbers and/or function of Tregs may be an underlying cause of human autoimmune diseases including type 1 Diabetes Mellitus (T1D), whereas an over-abundance of Tregs can hinder immunity against cancer or pathogens. The importance of Tregs in the control of autoimmunity is well established in a variety of experimental animal models. In mice, manipulating the numbers and/or function of Tregs can decrease pathology in a wide range of contexts, including autoimmunity and it is widely assumed that similar approaches will be possible in humans. T1D, the most prevalent human autoimmune disease, has been a focus of interventions either through direct and indirect in vivo proliferations or through adoptive transfer of the in vitro generated antigen specific and non specific Treg. Some challenges still need to be addressed, including a more specific phenotype marker for Tregs; the reproducibility of satisfactory animal results in human and the reconcile of discrepancies between in vitro and in vivo studies. In this article, we will highlight the role of Tregs in autoimmune disease in general with a special focus on T1D, highlighting progress made and challenges ahead in developing Treg-based therapies.
Collapse
Affiliation(s)
| | - Xian C Li
- Immunobiology & Transplantation Research, Houston Methodist Hospital, Texas Medical Center, 6670 Bertner Avenue, R7-211, Houston, TX 77030, United States.
| |
Collapse
|
31
|
Central role of gimap5 in maintaining peripheral tolerance and T cell homeostasis in the gut. Mediators Inflamm 2015; 2015:436017. [PMID: 25944983 PMCID: PMC4405212 DOI: 10.1155/2015/436017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/15/2014] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis is often precipitated by an abnormal immune response to microbiota due to host genetic aberrancies. Recent studies highlight the importance of the host genome and microflora interactions in the pathogenesis of mucosal inflammation including IBD. Specifically, genome-wide (GWAS) and also next-generation sequencing (NGS)—including whole exome or genome sequencing—have uncovered a large number of susceptibility loci that predispose to autoimmune diseases and/or the two phenotypes of IBD. In addition, the generation of “IBD-prone” animal models using both reverse and forward genetic approaches has not only helped confirm the identification of susceptibility loci but also shed critical insight into the underlying molecular and cellular pathways that drive colitis development. In this review, we summarize recent findings derived from studies involving a novel early-onset model of colitis as it develops in GTPase of immunity-associated protein 5- (Gimap5-) deficient mice. In humans, GIMAP5 has been associated with autoimmune diseases although its function is poorly defined. Here, we discuss how defects in Gimap5 function impair immunological tolerance and lymphocyte survival and ultimately drive the development of CD4+ T cell-mediated early-onset colitis.
Collapse
|
32
|
Bell CJM, Sun Y, Nowak UM, Clark J, Howlett S, Pekalski ML, Yang X, Ast O, Waldhauer I, Freimoser-Grundschober A, Moessner E, Umana P, Klein C, Hosse RJ, Wicker LS, Peterson LB. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J Autoimmun 2014; 56:66-80. [PMID: 25457307 PMCID: PMC4298360 DOI: 10.1016/j.jaut.2014.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 01/10/2023]
Abstract
Regulatory T cells (Tregs) expressing FOXP3 are essential for the maintenance of self-tolerance and are deficient in many common autoimmune diseases. Immune tolerance is maintained in part by IL-2 and deficiencies in the IL-2 pathway cause reduced Treg function and an increased risk of autoimmunity. Recent studies expanding Tregs in vivo with low-dose IL-2 achieved major clinical successes highlighting the potential to optimize this pleiotropic cytokine for inflammatory and autoimmune disease indications. Here we compare the clinically approved IL-2 molecule, Proleukin, with two engineered IL-2 molecules with long half-lives owing to their fusion in monovalent and bivalent stoichiometry to a non-FcRγ binding human IgG1. Using nonhuman primates, we demonstrate that single ultra-low doses of IL-2 fusion proteins induce a prolonged state of in vivo activation that increases Tregs for an extended period of time similar to multiple-dose Proleukin. One of the common pleiotropic effects of high dose IL-2 treatment, eosinophilia, is eliminated at doses of the IL-2 fusion proteins that greatly expand Tregs. The long half-lives of the IL-2 fusion proteins facilitated a detailed characterization of an IL-2 dose response driving Treg expansion that correlates with increasingly sustained, suprathreshold pSTAT5a induction and subsequent sustained increases in the expression of CD25, FOXP3 and Ki-67 with retention of Treg-specific epigenetic signatures at FOXP3 and CTLA4. Fusion of IL-2 to human IgG1 extends IL-2 half-life and efficiency of Treg induction. Long-lived IL-2 efficacy allows for lower doses thereby increasing Treg specificity. Sustained pSTAT5a induction in Tregs by long-lived IL-2 correlates with Treg expansion. Increased stoichiometry, IgG-(IL-2)2, increases affinity and in vivo effects on Tregs
Collapse
Affiliation(s)
- Charles J M Bell
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 OXY, United Kingdom.
| | - Yongliang Sun
- Former Roche Site of Pharmaceutical Research and Early Development, Discovery Inflammation, Nutley, NJ 07110, USA.
| | - Urszula M Nowak
- Former Roche Site of Pharmaceutical Research and Early Development, Discovery Inflammation, Nutley, NJ 07110, USA.
| | - Jan Clark
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 OXY, United Kingdom.
| | - Sarah Howlett
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 OXY, United Kingdom.
| | - Marcin L Pekalski
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 OXY, United Kingdom.
| | - Xin Yang
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 OXY, United Kingdom.
| | - Oliver Ast
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Zurich, Wagistrasse 18, CH-8952 Schlieren, Switzerland.
| | - Inja Waldhauer
- Roche Pharmaceutical Research and Early Development, Oncology Discovery & Translational Area, Roche Innovation Center Zurich, Wagistrasse 18, CH-8952 Schlieren, Switzerland.
| | - Anne Freimoser-Grundschober
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Zurich, Wagistrasse 18, CH-8952 Schlieren, Switzerland.
| | - Ekkehard Moessner
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Zurich, Wagistrasse 18, CH-8952 Schlieren, Switzerland.
| | - Pablo Umana
- Roche Pharmaceutical Research and Early Development, Oncology Discovery & Translational Area, Roche Innovation Center Zurich, Wagistrasse 18, CH-8952 Schlieren, Switzerland.
| | - Christian Klein
- Roche Pharmaceutical Research and Early Development, Oncology Discovery & Translational Area, Roche Innovation Center Zurich, Wagistrasse 18, CH-8952 Schlieren, Switzerland.
| | - Ralf J Hosse
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Zurich, Wagistrasse 18, CH-8952 Schlieren, Switzerland.
| | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 OXY, United Kingdom.
| | - Laurence B Peterson
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 OXY, United Kingdom; Former Roche Site of Pharmaceutical Research and Early Development, Discovery Inflammation, Nutley, NJ 07110, USA.
| |
Collapse
|
33
|
Schwefel D, Daumke O. GTP-dependent scaffold formation in the GTPase of Immunity Associated Protein family. Small GTPases 2014; 2:27-30. [PMID: 21686278 DOI: 10.4161/sgtp.2.1.14938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 11/19/2022] Open
Abstract
GTP ases of Immunity-Associated Proteins (GIMAPs) are a family of guanine nucleotide binding (G) proteins which are implicated in the regulation of apoptosis in lymphocytes. GIMAPs are composed of an amino-terminal G domain and carboxy-terminal extensions of varying size. Our recent biochemical and structural analysis of a representative GIMAP family member, GIMAP2, revealed the molecular basis of GTP-dependent oligomerization which involves two interfaces in the G domain. Whereas the amphipathic helix α7 in the C-terminal extension closely folds against the G domain in the GDP-bound state, it might be released in the GTP-bound state to assemble interaction partners. We also showed that the GIMAP2 oligomer functions at the surface of lipid droplets in a Jurkat T cell line. Here, we review our recent work and discuss the GIMAP2 oligomer as a GTP-dependent protein scaffold at the surface of lipid droplets controlling apoptosis.
Collapse
Affiliation(s)
- David Schwefel
- Max-Delbrück-Centrum für Molekulare Medizin; Freie Universität Berlin
| | | |
Collapse
|
34
|
Low-dose interleukin-2 therapy: a driver of an imbalance between immune tolerance and autoimmunity. Int J Mol Sci 2014; 15:18574-92. [PMID: 25322151 PMCID: PMC4227233 DOI: 10.3390/ijms151018574] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/22/2014] [Accepted: 10/08/2014] [Indexed: 01/21/2023] Open
Abstract
For many years, the role of interleukin-2 (IL-2) in autoimmune responses was established as a cytokine possessing strong pro-inflammatory activity. Studies of the past few years have changed our knowledge on IL-2 in autoimmune chronic inflammation, suggesting its protective role, when administered at low-doses. The disrupted balance between regulatory and effector T cells (Tregs and Teffs, respectively) is a characteristic of autoimmune diseases, and is dependent on homeostatic cytokines, including IL-2. Actually, inherent defects in the IL-2 signaling pathway and/or levels leading to Treg compromised function and numbers as well as Th17 expansion have been attributed to autoimmune disorders. In this review, we discuss the role of IL-2 in the pathogenesis of autoimmune diseases. In particular, we highlight the impact of the dysregulated IL-2 pathway on disruption of the Treg/Th17 balance, reversal of which appears to be a possible mechanism of the low-dose IL-2 treatment. The negative effects of IL-2 on the differentiation of follicular helper T cells (Tfh) and pathogenic Th17 cells, both of which contribute to autoimmunity, is emphasized in the paper as well. We also compare the current IL-2-based therapies of animal and human subjects with immune-mediated diseases aimed at boosting the Treg population, which is the most IL-2-dependent cell subset desirable for sufficient control of autoimmunity. New perspectives of therapeutic approaches focused on selective delivery of IL-2 to inflamed tissues, thus allowing local activity of IL-2 to be combined with its reduced systemic and pleiotropic toxicity, are also proposed in this paper.
Collapse
|
35
|
Hosid S, Ioshikhes I. Apoptotic lymphocytes of H. sapiens lose nucleosomes in GC-rich promoters. PLoS Comput Biol 2014; 10:e1003760. [PMID: 25077608 PMCID: PMC4117428 DOI: 10.1371/journal.pcbi.1003760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
We analyzed two sets of human CD4+ nucleosomal DNA directly sequenced by Illumina (Solexa) high throughput sequencing method. The first set has ∼40 M sequences and was produced from the normal CD4+ T lymphocytes by micrococcal nuclease. The second set has ∼44 M sequences and was obtained from peripheral blood lymphocytes by apoptotic nucleases. The different nucleosome sets showed similar dinucleotide positioning AA/TT, GG/CC, and RR/YY (R is purine, Y - pyrimidine) patterns with periods of 10–10.4 bp. Peaks of GG/CC and AA/TT patterns were shifted by 5 bp from each other. Two types of promoters in H. sapiens: AT and GC-rich were identified. AT-rich promoters in apoptotic cell had +1 nucleosome shifts 50–60 bp downstream from those in normal lymphocytes. GC-rich promoters in apoptotic cells lost 80% of nucleosomes around transcription start sites as well as in total DNA. Nucleosome positioning was predicted by combination of {AA, TT}, {GG, CC}, {WW, SS} and {RR, YY} patterns. In our study we found that the combinations of {AA, TT} and {GG, CC} provide the best results and successfully mapped 33% of nucleosomes 147 bp long with precision ±15 bp (only 31/147 or 21% is expected). We analyzed nucleosomal DNA of human CD4+ T normal and apoptotic lymphocytes. Dinucleotide positions (pattern) of AA/TT, GG/CC, WW/SS (W is adenine or thymine, S is guanine or cytosine) and RR/YY (R is purine, Y - pyrimidine) of nucleosome sequences in both cell conditions are similar and have period 10–10.4 bp. We successfully mapped 33% of nucleosomes with precision ±15 bp by combination of {AA, TT}, {GG, CC}, {WW, SS} and {RR, YY} patterns. We identified two types of promoters in H. sapience: AT and GC-rich. AT-rich promoters keep nucleosomes around transcription start site when GC-rich promoters lost 80% of nucleosomes during apoptosis at the same region.
Collapse
Affiliation(s)
- Sergey Hosid
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilya Ioshikhes
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
36
|
Gloria-Bottini F, Saccucci P, Banci M, Nardi P, Scognamiglio M, Pellegrino A, Bottini E, Chiariello L. Effect of genetic factors on the association between coronary artery disease and PTPN22 polymorphism. World J Cardiol 2014; 6:376-380. [PMID: 24976909 PMCID: PMC4072827 DOI: 10.4330/wjc.v6.i6.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/16/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
PTPN22 has been previously found associated with coronary artery disease (CAD). In the present note we have studied the effect of p53 codon 72, acid phosphatse locus 1 (ACP1) and adenosine deaminase (ADA) genetic polymorphism on the strength of association between PTPN22 and CAD. We have studied 133 non diabetic subjects with CAD, 122 non diabetic cardiovascular patients without CAD and 269 healthy blood donors. Informed written consent was obtained from all subjects and the study was approved by the Ethical Committee. A high significant association between PTPN22 and CAD is observed in carriers of *A allele of ACP1 with a higher proportion of *T allele carriers in non diabetic subjects with CAD as compared to controls and to non diabetic subjects with cardiovascular disease without CAD. A similar pattern is observed in carriers of *Pro allele of p53 codon 72 with a higher proportion of *T allele carriers in non diabetic subjects with CAD as compared to other groups. A highly significant association between PTPN22 and CAD is observed in carriers of ADA2 *2 allele with higher proportion of *T allele carriers in non diabetic subjects with CAD as compared to other group. There is a high significant correlation between the number of factors that contributes to increase the strength of association between PTPN22 *T and CAD and the proportion of *T carriers in CAD. ACP1, p53 codon 72 and ADA are involved in immune reaction and give an important additive contribution to the strength of association between PTPN22 and CAD. This study stresses the importance of the simultaneous analysis of multiple genes functionally related to a specific disease: the approach may give important hints to understand multifactorial disorders.
Collapse
|
37
|
Gupta S, Cerosaletti K, Long SA. Renegade homeostatic cytokine responses in T1D: drivers of regulatory/effector T cell imbalance. Clin Immunol 2014; 151:146-54. [PMID: 24576418 DOI: 10.1016/j.clim.2014.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/11/2014] [Indexed: 01/12/2023]
Abstract
Homeostatic cytokines contribute to the balance between regulatory and effector T cells (Tregs and Teffs respectively) and are necessary to maintain peripheral tolerance. These cytokines include IL-2 that supports Treg and IL-7 and IL-15 that drive Teff. In overt settings of lost tolerance (i.e. graft rejection), IL-2 Treg signatures are decreased while IL-7 and IL-15 Teff signatures are often enhanced. Similar cytokine profile imbalances also occur in some autoimmune diseases. In type 1 diabetes (T1D), there are underlying defects in the IL-2 pathway and Teff cytokine blockade can prevent and treat diabetes in NOD mice. In this review, we summarize evidence of IL-2, IL-7 and IL-15 genetic and cellular alterations in T1D patients. We then discuss how the combined effect of these cytokine profiles may together contribute to altered Treg/Teff ratios and functions in T1D. Implications for combination therapies and suggestions for integrated cytokine and Treg/Teff biomarker development are then proposed.
Collapse
Affiliation(s)
- Shipra Gupta
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Karen Cerosaletti
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
38
|
Piccioni M, Chen Z, Tsun A, Li B. Regulatory T-cell differentiation and their function in immune regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:67-97. [PMID: 25261205 DOI: 10.1007/978-94-017-9487-9_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Regulatory T-cells (Treg) represent a subset of CD4+ T-cells characterized by high suppressive capacity, which can be generated in the thymus or induced in the periphery. The deleterious phenotype of the Scurfy mouse, which develops an X-linked lymphoproliferative disease resulting from defective T-cell tolerance, clearly demonstrates the importance of Treg cells for the maintenance of immune homeostasis. Although significant progress has been achieved, much information regarding the development, characteristics and function of Treg cells remain lacking. This chapter highlights the most recent discoveries in the field of Treg biology, focusing on the development and role of this cell subset in the maintenance of immune balance.
Collapse
Affiliation(s)
- Miranda Piccioni
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institute Pasteur of Shanghai, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | | | | | | |
Collapse
|
39
|
Saccucci P, Verrotti A, Giannini C, Verini M, Chiarelli F, Neri A, Magrini A. p53 Codon 72 Genetic Polymorphism in Asthmatic Children: Evidence of Interaction With Acid Phosphatase Locus 1. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2013; 6:252-6. [PMID: 24843801 PMCID: PMC4021244 DOI: 10.4168/aair.2014.6.3.252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 02/26/2013] [Accepted: 05/03/2013] [Indexed: 01/11/2023]
Abstract
Several lines of evidence are implicating an increased persistence of apoptotic cells in patients with asthma. This is largely due to a combination of inhibition, or defects in the apoptotic process and/or impaired apoptotic cell removal mechanisms. Among apoptosis-inducing genes, an important role is played by p53. In the present study, we have investigated the possible relationship between p53 codon 72 polymorphism and asthma and the interaction with ACP1, a genetic polymorphism involved in the susceptibility to allergic asthma. We studied 125 asthmatic children and 123 healthy subjects from the Caucasian population of Central Italy. p53 codon 72 and ACP1 polymorphisms were evaluated using a restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) method. There is a statistically significant association between p53 codon 72 polymorphism and allergic asthma: Arg/Arg genotype is more represented in asthmatic patients than in controls (P=0.018). This association, however, is present in subjects with low ACP1 activity A/A and A/B only (P=0.023). The proportion of children with A/A and A/B genotype carrying Arg/Arg genotype is significantly high in asthmatic children than in controls (OR=1.941; 95% C.I. 1.042-3.628). Our finding could have important clinical implications since the subjects with A/A and A/B genotypes of ACP1 carrying Arg/Arg genotype are more susceptible to allergic asthma than Pro/Pro genotype.
Collapse
Affiliation(s)
- Patrizia Saccucci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, School of Medicine, Rome, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of Chieti Gabriele D'Annunzio, Chieti, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti Gabriele D'Annunzio, Chieti, Italy
| | - Marcello Verini
- Department of Pediatrics, University of Chieti Gabriele D'Annunzio, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti Gabriele D'Annunzio, Chieti, Italy
| | - Anna Neri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, School of Medicine, Rome, Italy
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, School of Medicine, Rome, Italy
| |
Collapse
|
40
|
Fousteri G, Liossis SNC, Battaglia M. Roles of the protein tyrosine phosphatase PTPN22 in immunity and autoimmunity. Clin Immunol 2013; 149:556-65. [PMID: 24269925 DOI: 10.1016/j.clim.2013.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 02/07/2023]
Abstract
PTPN22 is a protein tyrosine phosphatase expressed by the majority of cells belonging to the innate and adaptive immune systems. Polymorphisms in PTPN22 are associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and type 1 diabetes. This review discusses the role of PTPN22 in T and B cells, and its function in innate immune cells, such as monocytes, dendritic cells and NK cells. We focus particularly on the complexity that underlies the function of PTPN22 in the biological processes of the immune system; such complexity has led various research groups to produce rather conflicting data.
Collapse
Affiliation(s)
- Georgia Fousteri
- San Raffaele Scientific Institute, Diabetes Research Institute, Via Olgettina 58, Milan, Italy.
| | | | | |
Collapse
|
41
|
Elaziz DSA, Hafez MH, Galal NM, Meshaal SS, El Marsafy AM. CD4(+) CD25(+) cells in type 1 diabetic patients with other autoimmune manifestations. J Adv Res 2013; 5:647-55. [PMID: 25685533 PMCID: PMC4293905 DOI: 10.1016/j.jare.2013.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/29/2022] Open
Abstract
The existence of multiple autoimmune disorders in diabetics may indicate underlying primary defects of immune regulation. The study aims at estimation of defects of CD4(+) CD25(+high) cells among diabetic children with multiple autoimmune manifestations, and identification of disease characteristics in those children. Twenty-two cases with type 1 diabetes associated with other autoimmune diseases were recruited from the Diabetic Endocrine and Metabolic Pediatric Unit (DEMPU), Cairo University along with twenty-one normal subjects matched for age and sex as a control group. Their anthropometric measurements, diabetic profiles and glycemic control were recorded. Laboratory investigations included complete blood picture, glycosylated hemoglobin, antithyroid antibodies, celiac antibody panel and inflammatory bowel disease markers when indicated. Flow cytometric analysis of T-cell subpopulation was performed using anti-CD3, anti-CD4, anti-CD8, anti-CD25 monoclonal antibodies. Three cases revealed a proportion of CD4(+) CD25(+high) below 0.1% and one case had zero counts. However, this observation did not mount to a significant statistical difference between the case and control groups neither in percentage nor absolute numbers. Significant statistical differences were observed between the case and the control groups regarding their height, weight centiles, as well as hemoglobin percentage, white cell counts and the absolute lymphocytic counts. We concluded that, derangements of CD4(+) CD25(+high) cells may exist among diabetic children with multiple autoimmune manifestations indicating defects of immune controllers.
Collapse
Affiliation(s)
| | - Mona H Hafez
- Pediatric Department, Faculty of Medicine, Cairo University, Egypt
| | - Nermeen M Galal
- Pediatric Department, Faculty of Medicine, Cairo University, Egypt
| | - Safa S Meshaal
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Egypt
| | | |
Collapse
|
42
|
Xufré C, Costa M, Roura-Mir C, Codina-Busqueta E, Usero L, Pizarro E, Obiols G, Jaraquemada D, Martí M. Low frequency of GITR+ T cells in ex vivo and in vitro expanded Treg cells from type 1 diabetic patients. Int Immunol 2013; 25:563-74. [DOI: 10.1093/intimm/dxt020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
43
|
Marek-Trzonkowska N, Myśliwec M, Siebert J, Trzonkowski P. Clinical application of regulatory T cells in type 1 diabetes. Pediatr Diabetes 2013; 14:322-32. [PMID: 23627860 DOI: 10.1111/pedi.12029] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Tregs) are responsible for the maintenance of peripheral tolerance. Animal studies have shown that administration of Tregs can prevent type 1 diabetes (DM1). Several clinical trials attempted to induce Tregs with various agents, and thus provide long-term tolerance of β cells in DM1. Nevertheless, most of these studies have focused on clinical parameters (e.g. C-peptide) and not Treg numbers nor their function after treatment. Therefore, it is not possible to conclude if the majority of these therapies failed because the drugs did not induce Tregs, or if they failed despite Treg expansion. The current knowledge regarding Tregs, along with our experience in Treg therapy of patients with graft versus host disease, prompted us to use ex vivo expanded Tregs in 10 children with recent-onset DM1. No adverse effects in the treated individuals were observed. There was a significant increase in Treg number in peripheral blood immediately after the treatment administration, while the first clinical differences between treated and control patients were observed 4 months after Treg injection. Treated individuals had higher C-peptide levels and lower insulin requirements than non-treated children. Eleven months after diagnosis of DM1, there are still 2 individuals who are independent of exogenous insulin. These results indicate that autologous Tregs are a safe and well-tolerated therapy in children with DM1, which can inhibit or delay the destruction of pancreatic β cells. Additionally, Tregs can be a useful tool for local protection of transplanted pancreatic islets. Isolation and expansion of antigen-specific Tregs is one of the directions for future studies on cellular therapy of DM1.
Collapse
|
44
|
Gloria-Bottini F, Banci M, Saccucci P, Neri A, Bottini E, Magrini A. p53 codon 72 polymorphism and coronary artery disease: evidence of interaction with ACP₁. Med Sci Monit 2013. [PMID: 23197232 PMCID: PMC3560788 DOI: 10.12659/msm.883597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Common biological features between cancer and atherosclerosis suggest possible association of p53 with atherosclerotic diseases, but data on such a relationship are controversial, suggesting interactions with other variables. Acid phosphatase locus 1 (ACPACP₁) is a polymorphic gene that controls the synthesis of an enzyme involved in important metabolic functions. Since ACPACP₁ is associated with coronary artery disease (CAD), we searched for possible interactions between this enzyme and p53 codon 72 polymorphism with regard to their effects on susceptibility to CAD. MATERIAL/METHODS The study included 381 patients admitted to the hospital for cardiovascular disease (232 patients with CAD and 149 with other cardiovascular problems) and 97 healthy newborns. RESULTS The proportion of subjects carrying the *Pro allele of p53 codon 72 and the high activity *B*C genotype of ACPACP₁ is higher in CAD (10.3%) than in non-CAD patients (2.0%) and in healthy newborns (6.2%). CONCLUSIONS The data suggest an interaction between p53 codon 72 and ACPACP₁ wherein a positive effect of the p53 *Pro allele on susceptibility to CAD occurs, but only in the presence of the ACPACP₁ genotype characterized by high enzymatic activity.
Collapse
Affiliation(s)
- Fulvia Gloria-Bottini
- Department of Biopathology and Imaging Diagnostics, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Schwefel D, Arasu BS, Marino SF, Lamprecht B, Köchert K, Rosenbaum E, Eichhorst J, Wiesner B, Behlke J, Rocks O, Mathas S, Daumke O. Structural insights into the mechanism of GTPase activation in the GIMAP family. Structure 2013; 21:550-9. [PMID: 23454188 DOI: 10.1016/j.str.2013.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/17/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
Abstract
GTPases of immunity-associated proteins (GIMAPs) are regulators of lymphocyte survival and homeostasis. We previously determined the structural basis of GTP-dependent GIMAP2 scaffold formation on lipid droplets. To understand how its GTP hydrolysis is activated, we screened for other GIMAPs on lipid droplets and identified GIMAP7. In contrast to GIMAP2, GIMAP7 displayed dimerization-stimulated GTP hydrolysis. The crystal structure of GTP-bound GIMAP7 showed a homodimer that assembled via the G domains, with the helical extensions protruding in opposite directions. We identified a catalytic arginine that is supplied to the opposing monomer to stimulate GTP hydrolysis. GIMAP7 also stimulated GTP hydrolysis by GIMAP2 via an analogous mechanism. Finally, we found GIMAP2 and GIMAP7 expression differentially regulated in several human T cell lymphoma lines. Our findings suggest that GTPase activity in the GIMAP family is controlled by homo- and heterodimerization. This may have implications for the differential roles of some GIMAPs in lymphocyte survival.
Collapse
Affiliation(s)
- David Schwefel
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Long SA, Buckner JH, Greenbaum CJ. IL-2 therapy in type 1 diabetes: "Trials" and tribulations. Clin Immunol 2013; 149:324-31. [PMID: 23499139 DOI: 10.1016/j.clim.2013.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 01/08/2023]
Abstract
IL-2 facilitates immunity or tolerance depending on its availability. In model systems, it is well established that low dose IL-2 promotes selective expansion of regulatory T cells (Treg), an IL-2 responsive cell type known to control autoimmunity. Moreover, many autoimmune diseases are marked by defects in Treg and/or IL-2/IL-2 receptor signaling. Thus, patients with immune-mediated diseases were treated with IL-2 with the goal of increasing Treg and controlling autoimmunity. In graft versus host disease, HCV-induced vasculitis and type 1 diabetes (T1D), Treg numbers increased with IL-2 therapy. Yet there was no relationship between Treg number and clinical outcome. In fact, in T1D subjects treated with rapamycin and IL-2 therapy there was no measureable clinical benefit. In this review, we compare results from IL-2 treatment of patients with immune-mediated diseases, discuss possible mechanisms of IL-2 treatment and suggest future directions for use of IL-2 therapy in T1D.
Collapse
Affiliation(s)
- S Alice Long
- Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | | | | |
Collapse
|
47
|
Singh R. Signal oscillation is another reason for variability in microarray-based gene expression quantification. PLoS One 2013; 8:e54753. [PMID: 23349963 PMCID: PMC3549950 DOI: 10.1371/journal.pone.0054753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Microarrays have been widely used for various biological applications, such as, gene expression profiling, determination of SNPs, and disease profiling. However, quantification and analysis of microarray data have been a challenge. Previously, by taking into account translational and rotational diffusion of the target DNA, we have shown that the rate of hybridization depends on its size. Here, by mathematical modeling of surface diffusion of transcript, we show that the dynamics of hybridization on DNA microarray surface is inherently oscillatory and the amplitude of oscillation depends on fluid velocity. We found that high fluid velocity enhances the signal without affecting the background, and reduces the oscillation, thereby reducing likelihood of inter- and intra-experiment variability. We further show that a strong probe reduces dependence of signal-to-noise ratio on probe strength, decreasing inter-microarray variability. On the other hand, weaker probes are required for SNP detection. Therefore, we recommend high fluid velocity and strong probes for all microarray applications except determination of SNPs. For SNP detection, we recommend high fluid velocity with weak probe on the spot. We also recommend a surface with high adsorption and desorption rates of transcripts.
Collapse
Affiliation(s)
- Raghvendra Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
48
|
Demkow U, Winklewski P, Ciepiela O, Popko K, Lipińska A, Kucharska A, Michalska B, Wąsik M. Modulatory effect of insulin on T cell receptor mediated calcium signaling is blunted in long lasting type 1 diabetes mellitus. Pharmacol Rep 2012; 64:150-6. [PMID: 22580531 DOI: 10.1016/s1734-1140(12)70741-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/29/2011] [Indexed: 01/12/2023]
Abstract
Insulin significantly influences Ca(2+) signals evoked by various stimulants. In type 1 recent onset diabetes mellitus the proliferative response of T cells is significantly decreased. The number of clinical trials exploring the role of anti-CD3 monoclonal antibodies (mAb) as a therapeutic agent in recent onset diabetes mellitus type 1 is increasing last years. Therefore, a better understanding of the interplay between T cell receptor (TCR) dependent Ca(2+) increase, and insulin is of vital clinical significance. The aim of the study was to assess the effect of insulin on TCR evoked Ca(2+) responses in T lymphocytes obtained from healthy volunteers and patients suffering from long lasting diabetes mellitus type 1. Analysis was performed with use of the flow cytometer. We demonstrated that T cells ability to mobilize Ca(2+) was significantly reduced in long lasting diabetes mellitus type 1. Ca(2+) decrease achieved by the long term incubation with anti-CD3 mAb in T cells from healthy volunteers was restored by insulin. Strong interrelationship between baseline Ca(2+) level and plateau phase response to TCR stimulation was observed in the cytoplasm of cells pre-incubated with insulin from both healthy subjects and diabetic patients (r = 0.95, p < 0.0001 and r = 0.94, p < 0.0001, respectively). We postulate the existence of the interplay between TCR mediated activation and insulin. The TCR-insulin interplay is blunted in long lasting diabetes mellitus type 1. These observations may have an important implication for future therapeutic options in diabetes.
Collapse
Affiliation(s)
- Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Marszałkowska 24, PL 00-576 Warszawa, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes. PLoS One 2012; 7:e46941. [PMID: 23071669 PMCID: PMC3469658 DOI: 10.1371/journal.pone.0046941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 09/10/2012] [Indexed: 12/14/2022] Open
Abstract
Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse – a model for human type 1 diabetes (T1D). The molecular events that lead to insulitis and initiate autoimmune diabetes are poorly understood. Since TID is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease. We evaluated the molecular phenotype (mRNA and protein expression) and molecular networks of ex vivo unfractionated spleen leukocytes from 2 and 4 week-old NOD mice in comparison to two control strains. Analysis of the global gene expression profiles and hierarchical clustering revealed that the majority (∼90%) of the differentially expressed genes in NOD mice were repressed. Furthermore, analysis using a modern suite of multiple bioinformatics approaches identified abnormal molecular pathways that can be divided broadly into 2 categories: metabolic pathways, which were predominant at 2 weeks, and immune response pathways, which were predominant at 4 weeks. Network analysis by Ingenuity pathway analysis identified key genes/molecules that may play a role in regulating these pathways. These included five that were common to both ages (TNF, HNF4A, IL15, Progesterone, and YWHAZ), and others that were unique to 2 weeks (e.g. MYC/MYCN, TGFB1, and IL2) and to 4 weeks (e.g. IFNG, beta-estradiol, p53, NFKB, AKT, PRKCA, IL12, and HLA-C). Based on the literature, genes that may play a role in regulating metabolic pathways at 2 weeks include Myc and HNF4A, and at 4 weeks, beta-estradiol, p53, Akt, HNF4A and AR. Our data suggest that abnormalities in regulation of metabolic pathways in the immune cells of young NOD mice lead to abnormalities in the immune response pathways and as such may play a role in the initiation of autoimmune diabetes. Thus, targeting metabolism may provide novel approaches to preventing and/or treating autoimmune diabetes.
Collapse
|
50
|
Kinoshita M, Kayama H, Kusu T, Yamaguchi T, Kunisawa J, Kiyono H, Sakaguchi S, Takeda K. Dietary folic acid promotes survival of Foxp3+ regulatory T cells in the colon. THE JOURNAL OF IMMUNOLOGY 2012; 189:2869-78. [PMID: 22869901 DOI: 10.4049/jimmunol.1200420] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dietary compounds as well as commensal microbiota contribute to the generation of a unique gut environment. In this study, we report that dietary folic acid (FA) is required for the maintenance of Foxp3+ regulatory T cells (Tregs) in the colon. Deficiency of FA in the diet resulted in marked reduction of Foxp3+ Tregs selectively in the colon. Blockade of folate receptor 4 and treatment with methotrexate, which inhibits folate metabolic pathways, decreased colonic Foxp3+ Tregs. Compared with splenic Tregs, colonic Tregs were more activated to proliferate vigorously and were highly sensitive to apoptosis. In colonic Tregs derived from mice fed with a FA-deficient diet, expression of anti-apoptotic molecules Bcl-2 and Bcl-xL was severely decreased. A general reduction of peripheral Tregs was induced by a neutralizing Ab against IL-2, but a further decrease by additional FA deficiency was observed exclusively in the colon. Mice fed with an FA-deficient diet exhibited higher susceptibility to intestinal inflammation. These findings reveal the previously unappreciated role of dietary FA in promotion of survival of Foxp3+ Tregs that are in a highly activated state in the colon.
Collapse
Affiliation(s)
- Makoto Kinoshita
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|