1
|
Hassan J, Saeed SM, Deka L, Uddin MJ, Das DB. Applications of Machine Learning (ML) and Mathematical Modeling (MM) in Healthcare with Special Focus on Cancer Prognosis and Anticancer Therapy: Current Status and Challenges. Pharmaceutics 2024; 16:260. [PMID: 38399314 PMCID: PMC10892549 DOI: 10.3390/pharmaceutics16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The use of data-driven high-throughput analytical techniques, which has given rise to computational oncology, is undisputed. The widespread use of machine learning (ML) and mathematical modeling (MM)-based techniques is widely acknowledged. These two approaches have fueled the advancement in cancer research and eventually led to the uptake of telemedicine in cancer care. For diagnostic, prognostic, and treatment purposes concerning different types of cancer research, vast databases of varied information with manifold dimensions are required, and indeed, all this information can only be managed by an automated system developed utilizing ML and MM. In addition, MM is being used to probe the relationship between the pharmacokinetics and pharmacodynamics (PK/PD interactions) of anti-cancer substances to improve cancer treatment, and also to refine the quality of existing treatment models by being incorporated at all steps of research and development related to cancer and in routine patient care. This review will serve as a consolidation of the advancement and benefits of ML and MM techniques with a special focus on the area of cancer prognosis and anticancer therapy, leading to the identification of challenges (data quantity, ethical consideration, and data privacy) which are yet to be fully addressed in current studies.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (S.M.S.)
| | | | - Lipika Deka
- Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK;
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
2
|
Ma Z, Davis SW, Ho YY. Flexible copula model for integrating correlated multi-omics data from single-cell experiments. Biometrics 2022. [PMID: 35622236 DOI: 10.1111/biom.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
Abstract
With recent advances in technologies to profile multi-omics data at the single-cell level, integrative multi-omics data analysis has been increasingly popular. It is increasingly common that information such as methylation changes, chromatin accessibility, and gene expression are jointly collected in a single-cell experiment. In biomedical studies, it is often of interest to study the associations between various data types and to examine how these associations might change according to other factors such as cell types and gene regulatory components. However, since each data type usually has a distinct marginal distribution, joint analysis of these changes of associations using multi-omics data is statistically challenging. In this paper, we propose a flexible copula-based framework to model covariate-dependent correlation structures independent of their marginals. In addition, the proposed approach could jointly combine a wide variety of univariate marginal distributions, either discrete or continuous, including the class of zero-inflated distributions. The performance of the proposed framework is demonstrated through a series of simulation studies. Finally, it is applied to a set of experimental data to investigate the dynamic relationship between single-cell RNA-sequencing, chromatin accessibility, and DNA methylation at different germ layers during mouse gastrulation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zichen Ma
- Department of Public Health Sciences, Clemson University, Clemson, SC, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Yen-Yi Ho
- Department of Statistics, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
3
|
PSCRIdb: A database of regulatory interactions and networks of pluripotent stem cell lines. J Biosci 2020. [DOI: 10.1007/s12038-020-00027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Banerjee K, Jana T, Ghosh Z, Saha S. PSCRIdb: A database of regulatory interactions and networks of pluripotent stem cell lines. J Biosci 2020; 45:53. [PMID: 32345779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pluripotency in stem cells is regulated by a complex network between the transcription factors, signaling molecules, mRNAs, and epigenetic regulators like non-coding RNAs. Different pluripotent stem cell (PSC) lines were isolated and characterized to study the regulatory network topology to understand the mechanism that control developmental potential of pluripotent cells. PSCRIdb is a manually curated database of regulatory interactions including protein-protein, protein-DNA, gene-gene, and miRNA-mRNA interactions in mouse and human pluripotent stem cells including embryonic stem cells and embryonic carcinoma cells. At present, 22 different mouse and human pluripotent stem-cell-line-specific regulatory interactions are compiled in the database. Detailed information of the four types of interaction data are presented in tabular format and graphical network view in Cytoscape layout. The database is available at http://bicresources.jcbose.ac.in/ ssaha4/pscridb. The database contains 3037 entries of experimentally validated molecular interactions that can be useful for systematic study of pluripotency integrating multi-omics data. In summary, the database can be a useful resource for identification of regulatory networks present in different pluripotent stem cell lines.
Collapse
|
5
|
Saint-Jean L, Barkas N, Harmelink C, Tompkins KL, Oakey RJ, Baldwin HS. Myocardial differentiation is dependent upon endocardial signaling during early cardiogenesis in vitro. Development 2019; 146:dev.172619. [PMID: 31023876 DOI: 10.1242/dev.172619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/10/2019] [Indexed: 01/18/2023]
Abstract
The endocardium interacts with the myocardium to promote proliferation and morphogenesis during the later stages of heart development. However, the role of the endocardium in early cardiac ontogeny remains under-explored. Given the shared origin, subsequent juxtaposition, and essential cell-cell interactions of endocardial and myocardial cells throughout heart development, we hypothesized that paracrine signaling from the endocardium to the myocardium is crucial for initiating early differentiation of myocardial cells. To test this, we generated an in vitro, endocardial-specific ablation model using the diphtheria toxin receptor under the regulatory elements of the Nfat c1 genomic locus (NFATc1-DTR). Early treatment of NFATc1-DTR mouse embryoid bodies with diphtheria toxin efficiently ablated endocardial cells, which significantly attenuated the percentage of beating EBs in culture and expression of early and late myocardial differentiation markers. The addition of Bmp2 during endocardial ablation partially rescued myocyte differentiation, maturation and function. Therefore, we conclude that early stages of myocardial differentiation rely on endocardial paracrine signaling mediated in part by Bmp2. Our findings provide novel insight into early endocardial-myocardial interactions that can be explored to promote early myocardial development and growth.
Collapse
Affiliation(s)
- Leshana Saint-Jean
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nikolaos Barkas
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Cristina Harmelink
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin L Tompkins
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rebecca J Oakey
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - H Scott Baldwin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA .,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Vlaski-Lafarge M, Loncaric D, Perez L, Labat V, Debeissat C, Brunet de la Grange P, Rossignol R, Ivanovic Z, Bœuf H. Bioenergetic Changes Underline Plasticity of Murine Embryonic Stem Cells. Stem Cells 2019; 37:463-475. [PMID: 30599083 DOI: 10.1002/stem.2965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
Murine embryonic stem cells (mESCs) are endowed by a time-dependent window of plasticity during their early commitment steps. Indeed, while mESCs deprived of leukemia inhibitory factor (LIF) for 24 hours revert to their naive pluripotent state after subsequent LIF readdition, cells deprived of LIF for 48 hours are no longer efficient in reverting, upon LIF addition, and undergo irreversible differentiation. We investigated undisclosed bioenergetic profiles of early mESC-derived committed cells versus their undifferentiated states in order to reveal specific bioenergetic changes associated with mESC plasticity. Multiparametric bioenergetic analysis revealed that pluripotent (+LIF) and reversibly committed cells (-LIF24h) are energetically flexible, depending on both oxidative phosphorylation (OXPHOS) and glycolysis. They exhibit high mitochondrial respiration in the presence of the main energetic substrates and can also rely on glycolysis in the presence of OXPHOS inhibitor. Inhibition of the glycolysis or mitochondrial respiration does not change drastically the expression of pluripotency genes, which remain well expressed. In addition, cells treated with these inhibitors keep their capacity to differentiate efficiently upon embryoid bodies formation. Transition from metabolically active mESCs to irreversibly committed cells is associated with a clear change in mitochondrial network morphology, to an increase of adenosine triphosphate (ATP) produced from glycolysis and a decline of ATP turnover and of the mitochondrial activity without change in the mitochondrial mass. Our study pointed that plasticity window of mESCs is associated with the bivalent energetic metabolism and potency to shift to glycolysis or OXPHOS on demand. LIF removal provokes glycolytic metabolic orientation and consecutive loss of the LIF-dependent reversion of cells to the pluripotent state. Stem Cells 2019;37:463-475.
Collapse
Affiliation(s)
- Marija Vlaski-Lafarge
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Darija Loncaric
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Laura Perez
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France
| | - Véronique Labat
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Christelle Debeissat
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Philippe Brunet de la Grange
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | | | - Zoran Ivanovic
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Hélène Bœuf
- Inserm/U1026, University of Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Lloret-Llinares M, Karadoulama E, Chen Y, Wojenski LA, Villafano GJ, Bornholdt J, Andersson R, Core L, Sandelin A, Jensen TH. The RNA exosome contributes to gene expression regulation during stem cell differentiation. Nucleic Acids Res 2018; 46:11502-11513. [PMID: 30212902 PMCID: PMC6265456 DOI: 10.1093/nar/gky817] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Gene expression programs change during cellular transitions. It is well established that a network of transcription factors and chromatin modifiers regulate RNA levels during embryonic stem cell (ESC) differentiation, but the full impact of post-transcriptional processes remains elusive. While cytoplasmic RNA turnover mechanisms have been implicated in differentiation, the contribution of nuclear RNA decay has not been investigated. Here, we differentiate mouse ESCs, depleted for the ribonucleolytic RNA exosome, into embryoid bodies to determine to which degree RNA abundance in the two states can be attributed to changes in transcription versus RNA decay by the exosome. As a general observation, we find that exosome depletion mainly leads to the stabilization of RNAs from lowly transcribed loci, including several protein-coding genes. Depletion of the nuclear exosome cofactor RBM7 leads to similar effects. In particular, transcripts that are differentially expressed between states tend to be more exosome sensitive in the state where expression is low. We conclude that the RNA exosome contributes to down-regulation of transcripts with disparate expression, often in conjunction with transcriptional down-regulation.
Collapse
Affiliation(s)
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Luke A Wojenski
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Geno J Villafano
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Jette Bornholdt
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
| | - Leighton Core
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | | |
Collapse
|
8
|
Acharya A, Brungs S, Henry M, Rotshteyn T, Singh Yaduvanshi N, Wegener L, Jentzsch S, Hescheler J, Hemmersbach R, Boeuf H, Sachinidis A. Modulation of Differentiation Processes in Murine Embryonic Stem Cells Exposed to Parabolic Flight-Induced Acute Hypergravity and Microgravity. Stem Cells Dev 2018; 27:838-847. [PMID: 29630478 PMCID: PMC5995265 DOI: 10.1089/scd.2017.0294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/02/2018] [Indexed: 12/26/2022] Open
Abstract
Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of short-term altered gravity on embryonic development processes, we exposed mouse embryonic stem cells (mESCs) to phases of hypergravity and microgravity and studied the differentiation potential of the cells using wide-genome microarray analysis. During the 64th European Space Agency's parabolic flight campaign, mESCs were exposed to 31 parabolas. Each parabola comprised phases lasting 22 s of hypergravity, microgravity, and a repeat of hypergravity. On different parabolas, RNA was isolated for microarray analysis. After exposure to 31 parabolas, mESCs (P31 mESCs) were further differentiated under normal gravity (1 g) conditions for 12 days, producing P31 12-day embryoid bodies (EBs). After analysis of the microarrays, the differentially expressed genes were analyzed using different bioinformatic tools to identify developmental and nondevelopmental biological processes affected by conditions on the parabolic flight experiment. Our results demonstrated that several genes belonging to GOs associated with cell cycle and proliferation were downregulated in undifferentiated mESCs exposed to gravity changes. However, several genes belonging to developmental processes, such as vasculature development, kidney development, skin development, and to the TGF-β signaling pathway, were upregulated. Interestingly, similar enriched and suppressed GOs were obtained in P31 12-day EBs compared with ground control 12-day EBs. Our results show that undifferentiated mESCs exposed to alternate hypergravity and microgravity phases expressed several genes associated with developmental/differentiation and cell cycle processes, suggesting a transition from the undifferentiated pluripotent to a more differentiated stage of mESCs.
Collapse
Affiliation(s)
- Aviseka Acharya
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Sonja Brungs
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Cologne, Germany
| | - Margit Henry
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Tamara Rotshteyn
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Nirmala Singh Yaduvanshi
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Lucia Wegener
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Cologne, Germany
| | - Simon Jentzsch
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Cologne, Germany
| | - Jürgen Hescheler
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Cologne, Germany
| | - Helene Boeuf
- INSERM-U1026, BioTis, University of Bordeaux, Bordeaux, France
| | - Agapios Sachinidis
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Bylund JB, Hatzopoulos AK. Differentiation of Atrial Cardiomyocytes from Pluripotent Stem Cells Using the BMP Antagonist Grem2. J Vis Exp 2016:53919. [PMID: 27023256 PMCID: PMC4828231 DOI: 10.3791/53919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protocols for generating populations of cardiomyocytes from pluripotent stem cells have been developed, but these generally yield cells of mixed phenotypes. Researchers interested in pursuing studies involving specific myocyte subtypes require a more directed differentiation approach. By treating mouse embryonic stem (ES) cells with Grem2, a secreted BMP antagonist that is necessary for atrial chamber formation in vivo, a large number of cardiac cells with an atrial phenotype can be generated. Use of the engineered Myh6-DSRed-Nuc pluripotent stem cell line allows for identification, selection, and purification of cardiomyocytes. In this protocol embryoid bodies are generated from Myh6-DSRed-Nuc cells using the hanging drop method and kept in suspension until differentiation day 4 (d4). At d4 cells are treated with Grem2 and plated onto gelatin coated plates. Between d8-d10 large contracting areas are observed in the cultures and continue to expand and mature through d14. Molecular, histological and electrophysiogical analyses indicate cells in Grem2-treated cells acquire atrial-like characteristics providing an in vitro model to study the biology of atrial cardiomyocytes and their response to various pharmacological agents.
Collapse
Affiliation(s)
- Jeffery B Bylund
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine; Department of Pharmacology, Vanderbilt University
| | - Antonis K Hatzopoulos
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine; Department of Cell & Developmental Biology, Vanderbilt University School of Medicine;
| |
Collapse
|
10
|
Hammoud AA, Kirstein N, Mournetas V, Darracq A, Broc S, Blanchard C, Zeineddine D, Mortada M, Boeuf H. Murine Embryonic Stem Cell Plasticity Is Regulated through Klf5 and Maintained by Metalloproteinase MMP1 and Hypoxia. PLoS One 2016; 11:e0146281. [PMID: 26731538 PMCID: PMC4701481 DOI: 10.1371/journal.pone.0146281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which displays pleiotropic functions, depending on both cell maturity and cell type. LIF withdrawal leads to heterogeneous differentiation of mESCs with a proportion of the differentiated cells apoptosising. During LIF withdrawal, cells sequentially enter a reversible and irreversible phase of differentiation during which LIF addition induces different effects. However the regulators and effectors of LIF-mediated reprogramming are poorly understood. By employing a LIF-dependent 'plasticity' test, that we set up, we show that Klf5, but not JunB is a key LIF effector. Furthermore PI3K signaling, required for the maintenance of mESC pluripotency, has no effect on mESC plasticity while displaying a major role in committed cells by stimulating expression of the mesodermal marker Brachyury at the expense of endoderm and neuroectoderm lineage markers. We also show that the MMP1 metalloproteinase, which can replace LIF for maintenance of pluripotency, mimics LIF in the plasticity window, but less efficiently. Finally, we demonstrate that mESCs maintain plasticity and pluripotency potentials in vitro under hypoxic/physioxic growth conditions at 3% O2 despite lower levels of Pluri and Master gene expression in comparison to 20% O2.
Collapse
Affiliation(s)
- Aya Abou Hammoud
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
- Lebanese University, Beyrouth, Liban
| | - Nina Kirstein
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Virginie Mournetas
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Anais Darracq
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Sabine Broc
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Camille Blanchard
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | | | | | - Helene Boeuf
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
- * E-mail:
| |
Collapse
|
11
|
Herberg M, Roeder I. Computational modelling of embryonic stem-cell fate control. Development 2015; 142:2250-60. [DOI: 10.1242/dev.116343] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The maintenance of pluripotency in embryonic stem cells (ESCs), its loss during lineage specification or its re-induction to generate induced pluripotent stem cells are central topics in stem cell biology. To uncover the molecular basis and the design principles of pluripotency control, a multitude of experimental, but also an increasing number of computational, studies have been published. Here, we consider recent reports that apply computational or mathematical modelling approaches to describe the regulatory processes that underlie cell fate decisions in mouse ESCs. We summarise the principles, the strengths and potentials but also the limitations of different computational strategies.
Collapse
Affiliation(s)
- Maria Herberg
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden D-01307, Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden D-01307, Germany
| |
Collapse
|
12
|
Meganathan K, Jagtap S, Srinivasan SP, Wagh V, Hescheler J, Hengstler J, Leist M, Sachinidis A. Neuronal developmental gene and miRNA signatures induced by histone deacetylase inhibitors in human embryonic stem cells. Cell Death Dis 2015; 6:e1756. [PMID: 25950486 PMCID: PMC4669700 DOI: 10.1038/cddis.2015.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cells (hESCs) may be applied to develop human-relevant sensitive in vitro test systems for monitoring developmental toxicants. The aim of this study was to identify potential developmental toxicity mechanisms of the histone deacetylase inhibitors (HDAC) valproic acid (VPA), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) relevant to the in vivo condition using a hESC model in combination with specific differentiation protocols and genome-wide gene expression and microRNA profiling. Analysis of the gene expression data showed that VPA repressed neural tube and dorsal forebrain (OTX2, ISL1, EMX2 and SOX10)-related transcripts. In addition, VPA upregulates axonogenesis and ventral forebrain-associated genes, such as SLIT1, SEMA3A, DLX2/4 and GAD2. HDACi-induced expression of miR-378 and knockdown of miR-378 increases the expression of OTX2 and EMX2, which supports our hypothesis that HDACi targets forebrain markers through miR-378. In conclusion, multilineage differentiation in vitro test system is very sensitive for monitoring molecular activities relevant to in vivo neuronal developmental toxicity. Moreover, miR-378 seems to repress the expression of the OTX2 and EMX2 and therefore could be a regulator of the development of neural tube and dorsal forebrain neurons.
Collapse
Affiliation(s)
- K Meganathan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - S Jagtap
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - S P Srinivasan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - V Wagh
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - J Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - J Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), Dortmund, Germany
| | - M Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - A Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| |
Collapse
|
13
|
Wei T, Peng X, Ye L, Wang J, Song F, Bai Z, Han G, Ji F, Lei H. Web resources for stem cell research. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:40-5. [PMID: 25701763 PMCID: PMC4411488 DOI: 10.1016/j.gpb.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/07/2023]
Abstract
In this short review, we have presented a brief overview on major web resources relevant to stem cell research. To facilitate more efficient use of these resources, we have provided a preliminary rating based on our own user experience of the overall quality for each resource. We plan to update the information on an annual basis.
Collapse
Affiliation(s)
- Ting Wei
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Ye
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajia Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhai Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouxian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangchun Han
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengmin Ji
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
14
|
Tanwar V, Bylund JB, Hu J, Yan J, Walthall JM, Mukherjee A, Heaton WH, Wang WD, Potet F, Rai M, Kupershmidt S, Knapik EW, Hatzopoulos AK. Gremlin 2 promotes differentiation of embryonic stem cells to atrial fate by activation of the JNK signaling pathway. Stem Cells 2015; 32:1774-88. [PMID: 24648383 DOI: 10.1002/stem.1703] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/17/2014] [Accepted: 02/23/2014] [Indexed: 01/23/2023]
Abstract
The bone morphogenetic protein antagonist Gremlin 2 (Grem2) is required for atrial differentiation and establishment of cardiac rhythm during embryonic development. A human Grem2 variant has been associated with familial atrial fibrillation, suggesting that abnormal Grem2 activity causes arrhythmias. However, it is not known how Grem2 integrates into signaling pathways to direct atrial cardiomyocyte differentiation. Here, we demonstrate that Grem2 expression is induced concurrently with the emergence of cardiovascular progenitor cells during differentiation of mouse embryonic stem cells (ESCs). Grem2 exposure enhances the cardiogenic potential of ESCs by 20-120-fold, preferentially inducing genes expressed in atrial myocytes such as Myl7, Nppa, and Sarcolipin. We show that Grem2 acts upstream to upregulate proatrial transcription factors CoupTFII and Hey1 and downregulate atrial fate repressors Irx4 and Hey2. The molecular phenotype of Grem2-induced atrial cardiomyocytes was further supported by induction of ion channels encoded by Kcnj3, Kcnj5, and Cacna1d genes and establishment of atrial-like action potentials shown by electrophysiological recordings. We show that promotion of atrial-like cardiomyocytes is specific to the Gremlin subfamily of BMP antagonists. Grem2 proatrial differentiation activity is conveyed by noncanonical BMP signaling through phosphorylation of JNK and can be reversed by specific JNK inhibitors, but not by dorsomorphin, an inhibitor of canonical BMP signaling. Taken together, our data provide novel mechanistic insights into atrial cardiomyocyte differentiation from pluripotent stem cells and will assist the development of future approaches to study and treat arrhythmias.
Collapse
Affiliation(s)
- Vineeta Tanwar
- Department of Medicine, Division of Cardiovascular Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Aksoy I, Jauch R, Eras V, Chng WBA, Chen J, Divakar U, Ng CKL, Kolatkar PR, Stanton LW. Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming. Stem Cells 2015; 31:2632-46. [PMID: 23963638 DOI: 10.1002/stem.1522] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/03/2013] [Accepted: 07/31/2013] [Indexed: 01/28/2023]
Abstract
The unique ability of Sox2 to cooperate with Oct4 at selective binding sites in the genome is critical for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). We have recently demonstrated that Sox17 can be converted into a reprogramming factor by alteration of a single amino acid (Sox17EK) within its DNA binding HMG domain. Here we expanded this study by introducing analogous mutations to 10 other Sox proteins and interrogated the role of N-and C-termini on the reprogramming efficiency. We found that point-mutated Sox7 and Sox17 can convert human and mouse fibroblasts into iPSCs, but Sox4, Sox5, Sox6, Sox8, Sox9, Sox11, Sox12, Sox13, and Sox18 cannot. Next we studied regions outside the HMG domain and found that the C-terminal transactivation domain of Sox17 and Sox7 enhances the potency of Sox2 in iPSC assays and confers weak reprogramming potential to the otherwise inactive Sox4EK and Sox18EK proteins. These results suggest that the glutamate (E) to lysine (K) mutation in the HMG domain is necessary but insufficient to swap the function of Sox factors. Moreover, the HMG domain alone fused to the VP16 transactivation domain is able to induce reprogramming, albeit at low efficiency. By molecular dissection of the C-terminus of Sox17, we found that the β-catenin interaction region contributes to the enhanced reprogramming efficiency of Sox17EK. To mechanistically understand the enhanced reprogramming potential of Sox17EK, we analyzed ChIP-sequencing and expression data and identified a subset of candidate genes specifically regulated by Sox17EK and not by Sox2.
Collapse
Affiliation(s)
- Irene Aksoy
- Stem Cell and Developmental biology, Genome Institute of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ma Y, Yao N, Liu G, Dong L, Liu Y, Zhang M, Wang F, Wang B, Wei X, Dong H, Wang L, Ji S, Zhang J, Wang Y, Huang Y, Yu J. Functional screen reveals essential roles of miR-27a/24 in differentiation of embryonic stem cells. EMBO J 2014; 34:361-78. [PMID: 25519956 DOI: 10.15252/embj.201489957] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs play important roles in controlling the embryonic stem cell (ESC) state. Although much is known about microRNAs maintaining ESC state, microRNAs that are responsible for promoting ESC differentiation are less reported. Here, by screening 40 microRNAs pre-selected by their expression patterns and predicted targets in Dgcr8-null ESCs, we identify 14 novel differentiation-associated microRNAs. Among them, miR-27a and miR-24, restrained by c-Myc in ESC, exert their roles of silencing self-renewal through directly targeting several important pluripotency-associated factors, such as Oct4, Foxo1 and Smads. CRISPR/Cas9-mediated knockout of all miR-27/24 in ESCs leads to serious deficiency in ESC differentiation in vitro and in vivo. Moreover, depleting of them in mouse embryonic fibroblasts can evidently promote somatic cell reprogramming. Altogether, our findings uncover the essential role of miR-27 and miR-24 in ESC differentiation and also demonstrate novel microRNAs responsible for ESC differentiation.
Collapse
Affiliation(s)
- Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Nan Yao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Guang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lei Dong
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yufang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Meili Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bin Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xueju Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - He Dong
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lanlan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shaowei Ji
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Junwu Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yangming Wang
- Peking-Tsinghua Joint Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Databases and collaboration require standards for human stem cell research. Drug Discov Today 2014; 20:247-54. [PMID: 25449658 DOI: 10.1016/j.drudis.2014.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/26/2014] [Accepted: 10/20/2014] [Indexed: 11/20/2022]
Abstract
Stem cell research is at an important juncture: despite significant potential for human health and several countries with key initiatives to expedite commercialization, there are gaps in capturing and exploiting the results of past and current research. Here, we propose a concerted plan that could be taken to foster a more collaborative approach and ensure that all research efforts can be leveraged across the community. The creation of a definitive centralized database repository, or at least harmonized data repositories, for stem cell groups in academia and industry, enabling secure selective sharing of data when needed, could provide the core structure that is sought globally and protect intellectual property. The development of minimum information about stem cell experiments (MIASCE) could be key to this development.
Collapse
|
18
|
Pooley C, Ruau D, Lombard P, Gottgens B, Joshi A. TRES predicts transcription control in embryonic stem cells. Bioinformatics 2014; 30:2983-5. [PMID: 24958811 DOI: 10.1093/bioinformatics/btu399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SUMMARY Unraveling transcriptional circuits controlling embryonic stem cell maintenance and fate has great potential for improving our understanding of normal development as well as disease. To facilitate this, we have developed a novel web tool called 'TRES' that predicts the likely upstream regulators for a given gene list. This is achieved by integrating transcription factor (TF) binding events from 187 ChIP-sequencing and ChIP-on-chip datasets in murine and human embryonic stem (ES) cells with over 1000 mammalian TF sequence motifs. Using 114 TF perturbation gene sets, as well as 115 co-expression clusters in ES cells, we validate the utility of this approach. AVAILABILITY AND IMPLEMENTATION TRES is freely available at http://www.tres.roslin.ed.ac.uk. CONTACT Anagha.Joshi@roslin.ed.ac.uk or bg200@cam.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Christopher Pooley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Division of Developmental Biology, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 8GR, UK and Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - David Ruau
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Division of Developmental Biology, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 8GR, UK and Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Patrick Lombard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Division of Developmental Biology, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 8GR, UK and Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Berthold Gottgens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Division of Developmental Biology, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 8GR, UK and Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| | - Anagha Joshi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Division of Developmental Biology, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 8GR, UK and Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, UK
| |
Collapse
|
19
|
van Dartel DA, Schulpen SH, Theunissen PT, Bunschoten A, Piersma AH, Keijer J. Dynamic changes in energy metabolism upon embryonic stem cell differentiation support developmental toxicant identification. Toxicology 2014; 324:76-87. [DOI: 10.1016/j.tox.2014.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023]
|
20
|
Gaspar JA, Doss MX, Hengstler JG, Cadenas C, Hescheler J, Sachinidis A. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Circ Res 2014; 114:1346-60. [PMID: 24723659 DOI: 10.1161/circresaha.113.302021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, growing attention has been directed toward stem cell metabolism, with the key observation that the plasticity of stem cells also reflects the plasticity of their energy substrate metabolism. There seems to be a clear link between the self-renewal state of stem cells, in which cells proliferate without differentiation, and the activity of specific metabolic pathways. Differentiation is accompanied by a shift from anaerobic glycolysis to mitochondrial respiration. This metabolic switch of differentiating stem cells is required to cover the energy demands of the different organ-specific cell types. Among other metabolic signatures, amino acid and carbohydrate metabolism is most prominent in undifferentiated embryonic stem cells, whereas the fatty acid metabolic signature is unique in cardiomyocytes derived from embryonic stem cells. Identifying the specific metabolic pathways involved in pluripotency and differentiation is critical for further progress in the field of developmental biology and regenerative medicine. The recently generated knowledge on metabolic key processes may help to generate mature stem cell-derived somatic cells for therapeutic applications without the requirement of genetic manipulation. In the present review, the literature about metabolic features of stem cells and their cardiovascular cell derivatives as well as the specific metabolic gene signatures differentiating between stem and differentiated cells are summarized and discussed.
Collapse
Affiliation(s)
- John Antonydas Gaspar
- From the Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany (J.A.G., M.X.D., J.H., A.S.); and Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany (J.G.H., C.C.)
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Aksoy I, Giudice V, Delahaye E, Wianny F, Aubry M, Mure M, Chen J, Jauch R, Bogu GK, Nolden T, Himmelbauer H, Xavier Doss M, Sachinidis A, Schulz H, Hummel O, Martinelli P, Hübner N, Stanton LW, Real FX, Bourillot PY, Savatier P. Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells. Nat Commun 2014; 5:3719. [PMID: 24770696 DOI: 10.1038/ncomms4719] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/24/2014] [Indexed: 01/04/2023] Open
Abstract
Krüppel-like factors (Klf) 4 and 5 are two closely related members of the Klf family, known to play key roles in cell cycle regulation, somatic cell reprogramming and pluripotency. Here we focus on the functional divergence between Klf4 and Klf5 in the inhibition of mouse embryonic stem (ES) cell differentiation. Using microarrays and chromatin immunoprecipitation coupled to ultra-high-throughput DNA sequencing, we show that Klf4 negatively regulates the expression of endodermal markers in the undifferentiated ES cells, including transcription factors involved in the commitment of pluripotent stem cells to endoderm differentiation. Knockdown of Klf4 enhances differentiation towards visceral and definitive endoderm. In contrast, Klf5 negatively regulates the expression of mesodermal markers, some of which control commitment to the mesoderm lineage, and knockdown of Klf5 specifically enhances differentiation towards mesoderm. We conclude that Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in murine ES cells.
Collapse
Affiliation(s)
- Irène Aksoy
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France [4] Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore [5]
| | - Vincent Giudice
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France [4]
| | - Edwige Delahaye
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Florence Wianny
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Maxime Aubry
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Magali Mure
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Jiaxuan Chen
- Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore
| | - Ralf Jauch
- 1] Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore [2] Genome Regulation Laboratory, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Gireesh K Bogu
- Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore
| | - Tobias Nolden
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Heinz Himmelbauer
- 1] Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany [2] Center for Genomic Regulation (CRG), C. Dr. Aiguader 88, Barcelona 08003, Spain [3] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, Barcelona 08003, Spain
| | - Michael Xavier Doss
- 1] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, Barcelona 08003, Spain [2]
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Robert-Koch-Strasse. 39, Cologne 50931, Germany
| | - Herbert Schulz
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Oliver Hummel
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Paola Martinelli
- Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Lawrence W Stanton
- Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore
| | - Francisco X Real
- 1] Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, Madrid 28029, Spain [2] Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Pierre-Yves Bourillot
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Pierre Savatier
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| |
Collapse
|
23
|
Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H. Context-dependent wiring of Sox2 regulatory networks for self-renewal of embryonic and trophoblast stem cells. Mol Cell 2013; 52:380-92. [PMID: 24120664 DOI: 10.1016/j.molcel.2013.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/08/2013] [Accepted: 08/29/2013] [Indexed: 01/03/2023]
Abstract
Sox2 is a transcription factor required for the maintenance of pluripotency. It also plays an essential role in different types of multipotent stem cells, raising the possibility that Sox2 governs the common stemness phenotype. Here we show that Sox2 is a critical downstream target of fibroblast growth factor (FGF) signaling, which mediates self-renewal of trophoblast stem cells (TSCs). Sustained expression of Sox2 together with Esrrb or Tfap2c can replace FGF dependency. By comparing genome-wide binding sites of Sox2 in embryonic stem cells (ESCs) and TSCs combined with inducible knockout systems, we found that, despite the common role in safeguarding the stem cell state, Sox2 regulates distinct sets of genes with unique functions in these two different yet developmentally related types of stem cells. Our findings provide insights into the functional versatility of transcription factors during embryogenesis, during which they can be recursively utilized in a variable manner within discrete network structures.
Collapse
Affiliation(s)
- Kenjiro Adachi
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 6500047, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mathieu ME, Faucheux C, Saucourt C, Soulet F, Gauthereau X, Fédou S, Trouillas M, Thézé N, Thiébaud P, Boeuf H. MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate. Development 2013; 140:3311-22. [DOI: 10.1242/dev.091082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pluripotent mouse embryonic stem cells (mESCs), maintained in the presence of the leukemia inhibitory factor (LIF) cytokine, provide a powerful model with which to study pluripotency and differentiation programs. Extensive microarray studies on cultured cells have led to the identification of three LIF signatures. Here we focus on muscle ras oncogene homolog (MRAS), which is a small GTPase of the Ras family encoded within the Pluri gene cluster. To characterise the effects of Mras on cell pluripotency and differentiation, we used gain- and loss-of-function strategies in mESCs and in the Xenopus laevis embryo, in which Mras gene structure and protein sequence are conserved. We show that persistent knockdown of Mras in mESCs reduces expression of specific master genes and that MRAS plays a crucial role in the downregulation of OCT4 and NANOG protein levels upon differentiation. In Xenopus, we demonstrate the potential of Mras to modulate cell fate at early steps of development and during neurogenesis. Overexpression of Mras allows gastrula cells to retain responsiveness to fibroblast growth factor (FGF) and activin. Collectively, these results highlight novel conserved and pleiotropic effects of MRAS in stem cells and early steps of development.
Collapse
Affiliation(s)
- Marie-Emmanuelle Mathieu
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Corinne Faucheux
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Claire Saucourt
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Fabienne Soulet
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Xavier Gauthereau
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Sandrine Fédou
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Marina Trouillas
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Nadine Thézé
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Pierre Thiébaud
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Hélène Boeuf
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| |
Collapse
|
25
|
Xu H, Baroukh C, Dannenfelser R, Chen EY, Tan CM, Kou Y, Kim YE, Lemischka IR, Ma'ayan A. ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat045. [PMID: 23794736 PMCID: PMC3689438 DOI: 10.1093/database/bat045] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High content studies that profile mouse and human embryonic stem cells (m/hESCs) using various genome-wide technologies such as transcriptomics and proteomics are constantly being published. However, efforts to integrate such data to obtain a global view of the molecular circuitry in m/hESCs are lagging behind. Here, we present an m/hESC-centered database called Embryonic Stem Cell Atlas from Pluripotency Evidence integrating data from many recent diverse high-throughput studies including chromatin immunoprecipitation followed by deep sequencing, genome-wide inhibitory RNA screens, gene expression microarrays or RNA-seq after knockdown (KD) or overexpression of critical factors, immunoprecipitation followed by mass spectrometry proteomics and phosphoproteomics. The database provides web-based interactive search and visualization tools that can be used to build subnetworks and to identify known and novel regulatory interactions across various regulatory layers. The web-interface also includes tools to predict the effects of combinatorial KDs by additive effects controlled by sliders, or through simulation software implemented in MATLAB. Overall, the Embryonic Stem Cell Atlas from Pluripotency Evidence database is a comprehensive resource for the stem cell systems biology community. Database URL: http://www.maayanlab.net/ESCAPE
Collapse
Affiliation(s)
- Huilei Xu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1215, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sánchez-Alvarez R, Gayen S, Vadigepalli R, Anni H. Ethanol diverts early neuronal differentiation trajectory of embryonic stem cells by disrupting the balance of lineage specifiers. PLoS One 2013; 8:e63794. [PMID: 23724002 PMCID: PMC3665827 DOI: 10.1371/journal.pone.0063794] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/04/2013] [Indexed: 02/07/2023] Open
Abstract
Background Ethanol is a toxin responsible for the neurodevelopmental deficits of Fetal Alcohol Spectrum Disorders (FASD). Recent evidence suggests that ethanol modulates the protein expression of lineage specifier transcription factors Oct4 (Pou5f1) and Sox2 in early stages of mouse embryonic stem (ES) cell differentiation. We hypothesized that ethanol induced an imbalance in the expression of Oct4 and Sox2 in early differentiation, that dysregulated the expression of associated and target genes and signaling molecules and diverted cells from neuroectodermal (NE) formation. Methodology/Principal Findings We showed modulation by ethanol of 33 genes during ES cell differentiation, using high throughput microfluidic dynamic array chips measuring 2,304 real time quantitative PCR assays. Based on the overall gene expression dynamics, ethanol drove cells along a differentiation trajectory away from NE fate. These ethanol-induced gene expression changes were observed as early as within 2 days of differentiation, and were independent of cell proliferation or apoptosis. Gene expression changes were correlated with fewer βIII-tubulin positive cells of an immature neural progenitor phenotype, as well as a disrupted actin cytoskeleton were observed. Moreover, Tuba1a and Gapdh housekeeping genes were modulated by ethanol during differentiation and were replaced by a set of ribosomal genes with stable expression. Conclusions/Significance These findings provided an ethanol-response gene signature and pointed to the transcriptional dynamics underlying lineage imbalance that may be relevant to FASD phenotype.
Collapse
Affiliation(s)
- Rosa Sánchez-Alvarez
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Saurabh Gayen
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RV); (HA)
| | - Helen Anni
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RV); (HA)
| |
Collapse
|
27
|
Wang Q, Wagner RT, Cooney AJ. Regulatable in vivo biotinylation expression system in mouse embryonic stem cells. PLoS One 2013; 8:e63532. [PMID: 23667633 PMCID: PMC3646753 DOI: 10.1371/journal.pone.0063532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Embryonic stem (ES) cells have several unique attributes, the two most important of which are they can differentiate into all cell types in the body and they can proliferate indefinitely. To study the regulation of these phenomena, we developed a regulatable in vivo biotinylation expression system in mouse ES cells. The E. coli biotin ligase gene BirA, whose protein product can biotinylate a 15-aa peptide sequence, called the AviTag, was cloned downstream of an IRES. The primary vector containing the doxycycline controlled transactivator gene tTA and IRES-BirA was knocked into the ROSA26 locus by homologous recombination. The secondary vector containing the AviTag tagged hKlf4 gene was exchanged into the ROSA26 locus using Cre recombinase. Western blot analysis showed that the doxycycline induced BirA protein can biotinylate the doxycycline induced AviTag tagged hKlf4 protein. The induction of hKlf4 repressed cell growth in the presence or absence of LIF. Chromatin immunoprecipitation assays using streptavidin beads showed that the AviTag tagged hKlf4 protein could enrich the Nanog enhancer. Our results suggested that the regulatable biotinylation system is promising for the gene function studies in mouse ES cells.
Collapse
Affiliation(s)
- Qin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ryan T. Wagner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Austin J. Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ogony JW, Malahias E, Vadigepalli R, Anni H. Ethanol alters the balance of Sox2, Oct4, and Nanog expression in distinct subpopulations during differentiation of embryonic stem cells. Stem Cells Dev 2013; 22:2196-210. [PMID: 23470161 DOI: 10.1089/scd.2012.0513] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factors Sox2, Oct4, and Nanog regulate within a narrow dose-range embryonic stem (ES) cell pluripotency and cell lineage commitment. Excess of Oct4 relative to Sox2 guides cells to mesoendoderm (ME), while abundance of Sox2 promotes neuroectoderm (NE) formation. Literature does not address whether ethanol interferes with these regulatory interactions during neural development. We hypothesized that ethanol exposure of ES cells in early differentiation causes an imbalance of Oct4 and Sox2 that diverts cells away from NE to ME lineage, consistent with the teratogenesis effects caused by prenatal alcohol exposure. Mouse ES cells were exposed to ethanol (0, 25, 50, and 100 mM) during retinoic acid (10 nM)-directed differentiation to NE for 0-6 days, and the expression of Sox2, Oct4, and Nanog was measured in single live cells by multiparametric flow cytometry, and the cellular phenotype was characterized by immunocytochemistry. Our data showed an ethanol dose- and time-dependent asymmetric modulation of Oct4 and Sox2 expression, as early as after 2 days of exposure. Single-cell analysis of the correlated expression of Sox2, Oct4, and Nanog revealed that ethanol promoted distinct subpopulations with a high Oct4/Sox2 ratio. Ethanol-exposed cells differentiated to fewer β-III tubulin-immunoreactive cells with an immature neuronal phenotype by 4 days. We interpret these data as suggesting that ethanol diverted cells in early differentiation from the NE fate toward the ME lineage. Our results provide a novel insight into the mode of ethanol action and opportunities for discovery of prenatal biomarkers at early stages.
Collapse
Affiliation(s)
- Joshua W Ogony
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
29
|
Wells CA, Mosbergen R, Korn O, Choi J, Seidenman N, Matigian NA, Vitale AM, Shepherd J. Stemformatics: visualisation and sharing of stem cell gene expression. Stem Cell Res 2012; 10:387-95. [PMID: 23466562 DOI: 10.1016/j.scr.2012.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 12/21/2022] Open
Abstract
Genome-scale technologies are increasingly adopted by the stem cell research community, because of the potential to uncover the molecular events most informative about a stem cell state. These technologies also present enormous challenges around the sharing and visualisation of data derived from different laboratories or under different experimental conditions. Stemformatics is an easy to use, publicly accessible portal that hosts a large collection of exemplar stem cell data. It provides fast visualisation of gene expression across a range of mouse and human datasets, with transparent links back to the original studies. One difficulty in the analysis of stem cell signatures is the paucity of public pathways/gene lists relevant to stem cell or developmental biology. Stemformatics provides a simple mechanism to create, share and analyse gene sets, providing a repository of community-annotated stem cell gene lists that are informative about pathways, lineage commitment, and common technical artefacts. Stemformatics can be accessed at stemformatics.org.
Collapse
Affiliation(s)
- Christine A Wells
- The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, 4072 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Davis MR, Summers KM. Structure and function of the mammalian fibrillin gene family: implications for human connective tissue diseases. Mol Genet Metab 2012; 107:635-47. [PMID: 22921888 DOI: 10.1016/j.ymgme.2012.07.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 12/31/2022]
Abstract
Fibrillins and latent transforming growth factor β binding proteins (LTBPs) are components of the extracellular matrix of connective tissue. While fibrillins are integral to the 10nm microfibrils, and often associated with elastin, all family members are likely to have an additional role in regulating the bioavailability of transforming growth factor β (TGBβ). Both fibrillins and LTBPs are large glycoproteins, containing a series of calcium binding epidermal growth factor domains as well as a number of copies of a unique 8 cysteine domain found only in this protein superfamily. There are three mammalian fibrillins and four LTBPs. Fibrillin monomers link head to tail in microfibrils which can then form two and three dimensional structures. In some tissues elastin is recruited to the fibrillin microfibrils to provide elasticity to the tissue. LTBPs are part of the TGBβ large latent complex which sequesters TGBβ in the extracellular matrix. Fibrillin-1 appears to bind to LTBPs to assist in this process and is thus involved in regulating the bioavailability of TGBβ. Mutation of fibrillin genes results in connective tissue phenotypes which reflect both the increased level of active TGBβ and the structural failure of the extracellular matrix due to the absence or abnormality of fibrillin protein. Fibrillinopathies include Marfan syndrome, familial ectopia lentis, familial thoracic aneurysm (mutations of FBN1) and congenital contractural arachnodactyly (mutation of FBN2). There are no diseases currently associated with mutation of FBN3 in humans, and this gene is no longer active in rodents. Expression patterns of fibrillin genes are consistent with their role in extracellular matrix structure of connective tissue. FBN1 expression is high in most cell types of mesenchymal origin, particularly bone. Human and mouse FBN2 expression is high in fetal cells and has more restricted expression in mesenchymal cell types postnatally. FBN3 is expressed early in development (embryonic and fetal tissues) in humans. The fibrillins are thus important in maintaining the structure and integrity of the extracellular matrix and, in combination with their sequence family members the LTBPs, also contribute to the regulation of the TGFβ family of major growth factors.
Collapse
Affiliation(s)
- Margaret R Davis
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | | |
Collapse
|
31
|
Yu J, Xing X, Zeng L, Sun J, Li W, Sun H, He Y, Li J, Zhang G, Wang C, Li Y, Xie L. SyStemCell: a database populated with multiple levels of experimental data from stem cell differentiation research. PLoS One 2012; 7:e35230. [PMID: 22807998 PMCID: PMC3396617 DOI: 10.1371/journal.pone.0035230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
Elucidation of the mechanisms of stem cell differentiation is of great scientific interest. Increasing evidence suggests that stem cell differentiation involves changes at multiple levels of biological regulation, which together orchestrate the complex differentiation process; many related studies have been performed to investigate the various levels of regulation. The resulting valuable data, however, remain scattered. Most of the current stem cell-relevant databases focus on a single level of regulation (mRNA expression) from limited stem cell types; thus, a unifying resource would be of great value to compile the multiple levels of research data available. Here we present a database for this purpose, SyStemCell, deposited with multi-level experimental data from stem cell research. The database currently covers seven levels of stem cell differentiation-associated regulatory mechanisms, including DNA CpG 5-hydroxymethylcytosine/methylation, histone modification, transcript products, microRNA-based regulation, protein products, phosphorylation proteins and transcription factor regulation, all of which have been curated from 285 peer-reviewed publications selected from PubMed. The database contains 43,434 genes, recorded as 942,221 gene entries, for four organisms (Homo sapiens, Mus musculus, Rattus norvegicus, and Macaca mulatta) and various stem cell sources (e.g., embryonic stem cells, neural stem cells and induced pluripotent stem cells). Data in SyStemCell can be queried by Entrez gene ID, symbol, alias, or browsed by specific stem cell type at each level of genetic regulation. An online analysis tool is integrated to assist researchers to mine potential relationships among different regulations, and the potential usage of the database is demonstrated by three case studies. SyStemCell is the first database to bridge multi-level experimental information of stem cell studies, which can become an important reference resource for stem cell researchers. The database is available at http://lifecenter.sgst.cn/SyStemCell/.
Collapse
Affiliation(s)
- Jian Yu
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Xiaobin Xing
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lingyao Zeng
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Tongji University, Shanghai, China
| | - Jiehuan Sun
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Huazhong Science and Technology University, Wuhan, Hubei, China
| | - Wei Li
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Huazhong Science and Technology University, Wuhan, Hubei, China
| | - Han Sun
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying He
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Li
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Huazhong Science and Technology University, Wuhan, Hubei, China
| | - Guoqing Zhang
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Chuan Wang
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Yixue Li
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (LX); (YL)
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai, China
- * E-mail: (LX); (YL)
| |
Collapse
|
32
|
Mathieu ME, Saucourt C, Mournetas V, Gauthereau X, Thézé N, Praloran V, Thiébaud P, Bœuf H. LIF-dependent signaling: new pieces in the Lego. Stem Cell Rev Rep 2012; 8:1-15. [PMID: 21537995 PMCID: PMC3285761 DOI: 10.1007/s12015-011-9261-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine.
Collapse
Affiliation(s)
- Marie-Emmanuelle Mathieu
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Claire Saucourt
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Virginie Mournetas
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Xavier Gauthereau
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Nadine Thézé
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Vincent Praloran
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Pierre Thiébaud
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Hélène Bœuf
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| |
Collapse
|
33
|
Gaspar JA, Doss MX, Winkler J, Wagh V, Hescheler J, Kolde R, Vilo J, Schulz H, Sachinidis A. Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells. Stem Cells Dev 2012; 21:2471-84. [PMID: 22420508 DOI: 10.1089/scd.2011.0637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.
Collapse
Affiliation(s)
- John Antonydas Gaspar
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jackson M, Axton RA, Taylor AH, Wilson JA, Gordon-Keylock SAM, Kokkaliaris KD, Brickman JM, Schulz H, Hummel O, Hubner N, Forrester LM. HOXB4 can enhance the differentiation of embryonic stem cells by modulating the hematopoietic niche. Stem Cells 2012; 30:150-60. [PMID: 22084016 DOI: 10.1002/stem.782] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hematopoietic differentiation of embryonic stem cells (ESCs) in vitro has been used as a model to study early hematopoietic development, and it is well documented that hematopoietic differentiation can be enhanced by overexpression of HOXB4. HOXB4 is expressed in hematopoietic progenitor cells (HPCs) where it promotes self-renewal, but it is also expressed in the primitive streak of the gastrulating embryo. This led us to hypothesize that HOXB4 might modulate gene expression in prehematopoietic mesoderm and that this property might contribute to its prohematopoietic effect in differentiating ESCs. To test our hypothesis, we developed a conditionally activated HOXB4 expression system using the mutant estrogen receptor (ER(T2)) and showed that a pulse of HOXB4 prior to HPC emergence in differentiating ESCs led to an increase in hematopoietic differentiation. Expression profiling revealed an increase in the expression of genes associated with paraxial mesoderm that gives rise to the hematopoietic niche. Therefore, we considered that HOXB4 might modulate the formation of the hematopoietic niche as well as the production of hematopoietic cells per se. Cell mixing experiments supported this hypothesis demonstrating that HOXB4 activation can generate a paracrine as well as a cell autonomous effect on hematopoietic differentiation. We provide evidence to demonstrate that this activity is partly mediated by the secreted protein FRZB.
Collapse
Affiliation(s)
- Melany Jackson
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ni TT, Rellinger EJ, Mukherjee A, Stephens L, Thorne CA, Kim K, Hu J, Xie S, Lee E, Marnett L, Hatzopoulos AK, Zhong TP. Discovering small molecules that promote cardiomyocyte generation by modulating Wnt signaling. CHEMISTRY & BIOLOGY 2011; 18:1658-68. [PMID: 22195568 PMCID: PMC3645312 DOI: 10.1016/j.chembiol.2011.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 09/18/2011] [Accepted: 09/19/2011] [Indexed: 01/12/2023]
Abstract
We have developed a robust in vivo small-molecule screen that modulates heart size and cardiomyocyte generation in zebrafish. Three structurally related compounds (Cardionogen-1 to Cardionogen-3) identified from our screen enlarge the size of the developing heart via myocardial hyperplasia. Increased cardiomyocyte number in Cardionogen-treated embryos is due to expansion of cardiac progenitor cells. In zebrafish embryos and murine embryonic stem (ES) cells, Cardionogen treatment promotes cardiogenesis during and after gastrulation, whereas it inhibits heart formation before gastrulation. Cardionogen-induced effects can be antagonized by increasing Wnt/β-catenin signaling activity. We demonstrate that Cardionogen inhibits Wnt/β-catenin-dependent transcription in murine ES cells and zebrafish embryos. Cardionogen can rescue Wnt8-induced cardiomyocyte deficiency and heart-specific phenotypes during development. These findings demonstrate that in vivo small-molecule screens targeting heart size can reveal compounds with cardiomyogenic effects and identify underlying target pathways.
Collapse
Affiliation(s)
- Terri T. Ni
- State Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 20043, China
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Eric J. Rellinger
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Amrita Mukherjee
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Lauren Stephens
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Cutris A Thorne
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Kwangho Kim
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Jiangyong Hu
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Shuying Xie
- State Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 20043, China
| | - Ethan Lee
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Larry Marnett
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Antonis K. Hatzopoulos
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Tao P. Zhong
- State Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 20043, China
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| |
Collapse
|
36
|
Rai M, Walthall JM, Hu J, Hatzopoulos AK. Continuous antagonism by Dkk1 counter activates canonical Wnt signaling and promotes cardiomyocyte differentiation of embryonic stem cells. Stem Cells Dev 2011; 21:54-66. [PMID: 21861760 DOI: 10.1089/scd.2011.0326] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Embryonic stem (ES) cells give rise to mesodermal progenitors that differentiate to hematopoietic and cardiovascular cells. The wnt signaling pathway plays multiple roles in cardiovascular development through a network of intracellular effectors. To monitor global changes in wnt signaling during ES cell differentiation, we generated independent ES cell lines carrying the luciferase gene under promoters that uniquely respond to specific wnt pathway branches. Our results show that successive, mutually exclusive waves of noncanonical and canonical wnt signaling precede mesoderm differentiation. Blocking the initial noncanonical JNK/AP-1 signaling with SP60125 aborts cardiovascular differentiation and promotes hematopoiesis, whereas interference with the subsequent peak of canonical wnt signaling using Dkk1 has the opposite effect. Dkk1 blockade triggers counter mechanisms that lead to delayed and extended activation of canonical wnt signaling and mesoderm differentiation that appear to favor the cardiomyocytic lineage at the expense of hematopoietic cells. The cardiomyocytic yield can be further enhanced by overexpression of Wnt11 leading to approximately 95-fold enrichment in contracting cells. Our results suggest that the initial noncanonical wnt signaling is necessary for subsequent activation of canonical signaling and that the latter operates under a regulatory loop which responds to suppression with hyperactivation of compensatory mechanisms. This model provides new insights on wnt signaling during ES cell differentiation and points to a method to induce cardiomyocytic differentiation without precise timing of wnt signaling manipulation. Taking into account the heterogeneity of pluripotent cells, these findings might present an advantage to enhance the cardiogenic potential of stem cells.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Cell Differentiation
- Cell Line
- Embryonic Stem Cells/drug effects
- Embryonic Stem Cells/metabolism
- Embryonic Stem Cells/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Intercellular Signaling Peptides and Proteins/pharmacology
- Luciferases, Firefly/biosynthesis
- Luciferases, Firefly/genetics
- Mice
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Promoter Regions, Genetic
- Real-Time Polymerase Chain Reaction
- Transcriptional Activation
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt Signaling Pathway
Collapse
Affiliation(s)
- Meena Rai
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-6300, USA
| | | | | | | |
Collapse
|
37
|
Reimand J, Arak T, Vilo J. g:Profiler--a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 2011; 39:W307-15. [PMID: 21646343 PMCID: PMC3125778 DOI: 10.1093/nar/gkr378] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Functional interpretation of candidate gene lists is an essential task in modern biomedical research. Here, we present the 2011 update of g:Profiler (http://biit.cs.ut.ee/gprofiler/), a popular collection of web tools for functional analysis. g:GOSt and g:Cocoa combine comprehensive methods for interpreting gene lists, ordered lists and list collections in the context of biomedical ontologies, pathways, transcription factor and microRNA regulatory motifs and protein–protein interactions. Additional tools, namely the biomolecule ID mapping service (g:Convert), gene expression similarity searcher (g:Sorter) and gene homology searcher (g:Orth) provide numerous ways for further analysis and interpretation. In this update, we have implemented several features of interest to the community: (i) functional analysis of single nucleotide polymorphisms and other DNA polymorphisms is supported by chromosomal queries; (ii) network analysis identifies enriched protein–protein interaction modules in gene lists; (iii) functional analysis covers human disease genes; and (iv) improved statistics and filtering provide more concise results. g:Profiler is a regularly updated resource that is available for a wide range of species, including mammals, plants, fungi and insects.
Collapse
Affiliation(s)
- Jüri Reimand
- University of Tartu, Institute of Computer Science, Tartu, Estonia.
| | | | | |
Collapse
|
38
|
Warsow G, Greber B, Falk SSI, Harder C, Siatkowski M, Schordan S, Som A, Endlich N, Schöler H, Repsilber D, Endlich K, Fuellen G. ExprEssence--revealing the essence of differential experimental data in the context of an interaction/regulation net-work. BMC SYSTEMS BIOLOGY 2010; 4:164. [PMID: 21118483 PMCID: PMC3012047 DOI: 10.1186/1752-0509-4-164] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/30/2010] [Indexed: 12/15/2022]
Abstract
Background Experimentalists are overwhelmed by high-throughput data and there is an urgent need to condense information into simple hypotheses. For example, large amounts of microarray and deep sequencing data are becoming available, describing a variety of experimental conditions such as gene knockout and knockdown, the effect of interventions, and the differences between tissues and cell lines. Results To address this challenge, we developed a method, implemented as a Cytoscape plugin called ExprEssence. As input we take a network of interaction, stimulation and/or inhibition links between genes/proteins, and differential data, such as gene expression data, tracking an intervention or development in time. We condense the network, highlighting those links across which the largest changes can be observed. Highlighting is based on a simple formula inspired by the law of mass action. We can interactively modify the threshold for highlighting and instantaneously visualize results. We applied ExprEssence to three scenarios describing kidney podocyte biology, pluripotency and ageing: 1) We identify putative processes involved in podocyte (de-)differentiation and validate one prediction experimentally. 2) We predict and validate the expression level of a transcription factor involved in pluripotency. 3) Finally, we generate plausible hypotheses on the role of apoptosis, cell cycle deregulation and DNA repair in ageing data obtained from the hippocampus. Conclusion Reducing the size of gene/protein networks to the few links affected by large changes allows to screen for putative mechanistic relationships among the genes/proteins that are involved in adaptation to different experimental conditions, yielding important hypotheses, insights and suggestions for new experiments. We note that we do not focus on the identification of 'active subnetworks'. Instead we focus on the identification of single links (which may or may not form subnetworks), and these single links are much easier to validate experimentally than submodules. ExprEssence is available at http://sourceforge.net/projects/expressence/.
Collapse
Affiliation(s)
- Gregor Warsow
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Ernst-Heydemann-Strasse 8, Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Karantzali E, Lekakis V, Ioannou M, Hadjimichael C, Papamatheakis J, Kretsovali A. Sall1 regulates embryonic stem cell differentiation in association with nanog. J Biol Chem 2010; 286:1037-45. [PMID: 21062744 PMCID: PMC3020710 DOI: 10.1074/jbc.m110.170050] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sall1 is a multi-zinc finger transcription factor that regulates kidney organogenesis. It is considered to be a transcriptional repressor, preferentially localized on heterochromatin. Mutations or deletions of the human SALL1 gene are associated with the Townes-Brocks syndrome. Despite its high expression, no function was yet assigned for Sall1 in embryonic stem (ES) cells. In the present study, we show that Sall1 is expressed in a differentiation-dependent manner and physically interacts with Nanog and Sox2, two components of the core pluripotency network. Genome-wide mapping of Sall1-binding loci has identified 591 genes, 80% of which are also targeted by Nanog. A large proportion of these genes are related to self-renewal and differentiation. Sall1 positively regulates and synergizes with Nanog for gene transcriptional regulation. In addition, our data show that Sall1 suppresses the ectodermal and mesodermal differentiation. Specifically, the induction of the gastrulation markers T brachyury, Goosecoid, and Dkk1 and the neuroectodermal markers Otx2 and Hand1 was inhibited by Sall1 overexpression during embryoid body differentiation. These data demonstrate a novel role for Sall1 as a member of the transcriptional network that regulates stem cell pluripotency.
Collapse
Affiliation(s)
- Efthimia Karantzali
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, 70013 Heraklio, Crete, Greece
| | | | | | | | | | | |
Collapse
|
40
|
Huang W, Cao X, Zhong S. Network-based comparison of temporal gene expression patterns. Bioinformatics 2010; 26:2944-51. [PMID: 20889495 DOI: 10.1093/bioinformatics/btq561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION In the pursuits of mechanistic understanding of cell differentiation, it is often necessary to compare multiple differentiation processes triggered by different external stimuli and internal perturbations. Available methods for comparing temporal gene expression patterns are limited to a gene-by-gene approach, which ignores co-expression information and thus is sensitive to measurement noise. METHODS We present a method for co-expression network based comparison of temporal expression patterns (NACEP). NACEP compares the temporal patterns of a gene between two experimental conditions, taking into consideration all of the possible co-expression modules that this gene may participate in. The NACEP program is available at http://biocomp.bioen.uiuc.edu/nacep. RESULTS We applied NACEP to analyze retinoid acid (RA)-induced differentiation of embryonic stem (ES) cells. The analysis suggests that RA may facilitate neural differentiation by inducing the shh and insulin receptor pathways. NACEP was also applied to compare the temporal responses of seven RNA inhibition (RNAi) experiments. As proof of concept, we demonstrate that the difference in the temporal responses to RNAi treatments can be used to derive interaction relationships of transcription factors (TFs), and therefore infer regulatory modules within a transcription network. In particular, the analysis suggested a novel regulatory relationship between two pluripotency regulators, Esrrb and Tbx3, which was supported by in vivo binding of Esrrb to the promoter of Tbx3. AVAILABILITY The NACEP program and the supplementary documents are available at http://biocomp.bioen.uiuc.edu/nacep. CONTACT szhong@illinois.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei Huang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
41
|
Bourillot PY, Savatier P. Krüppel-like transcription factors and control of pluripotency. BMC Biol 2010; 8:125. [PMID: 20875146 PMCID: PMC2946285 DOI: 10.1186/1741-7007-8-125] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/22/2010] [Indexed: 01/04/2023] Open
Abstract
Recent papers have demonstrated a role for Krüppel-like transcription factors 2, 4 and 5 in the control of mouse embryonic stem cell pluripotency. However, it is not clear whether each factor has a unique role or whether they are functionally redundant. A paper by Parisi and colleagues in BMC Biology now sheds light on the mechanism by which Klf5 regulates pluripotency. See research article http://www.biomedcentral.com/1741-7007/8/128
Collapse
|
42
|
Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing. Cell Death Differ 2010; 18:383-95. [PMID: 20865013 DOI: 10.1038/cdd.2010.109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
As neuronal differentiation of embryonic stem cells (ESCs) recapitulates embryonic neurogenesis, disturbances of this process may model developmental neurotoxicity (DNT). To identify the relevant steps of in vitro neurodevelopment, we implemented a differentiation protocol yielding neurons with desired electrophysiological properties. Results from focussed transcriptional profiling suggested that detection of non-cytotoxic developmental disturbances triggered by toxicants such as retinoic acid (RA) or cyclopamine was possible. Therefore, a broad transcriptional profile of the 20-day differentiation process was obtained. Cluster analysis of expression kinetics, and bioinformatic identification of overrepresented gene ontologies revealed waves of regulation relevant for DNT testing. We further explored the concept of superimposed waves as descriptor of ordered, but overlapping biological processes. The initial wave of transcripts indicated reorganization of chromatin and epigenetic changes. Then, a transient upregulation of genes involved in the formation and patterning of neuronal precursors followed. Simultaneously, a long wave of ongoing neuronal differentiation started. This was again superseded towards the end of the process by shorter waves of neuronal maturation that yielded information on specification, extracellular matrix formation, disease-associated genes and the generation of glia. Short exposure to lead during the final differentiation phase, disturbed neuronal maturation. Thus, the wave kinetics and the patterns of neuronal specification define the time windows and end points for examination of DNT.
Collapse
|