1
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
2
|
El Kharbili M, Aviszus K, Sasse SK, Zhao X, Serban KA, Majka SM, Gerber AN, Gally F. Macrophage programming is regulated by a cooperative interaction between fatty acid binding protein 5 and peroxisome proliferator-activated receptor γ. FASEB J 2022; 36:e22300. [PMID: 35436029 PMCID: PMC9320869 DOI: 10.1096/fj.202200128r] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Resolution of inflammation is an active process that is tightly regulated to achieve repair and tissue homeostasis. In the absence of resolution, persistent inflammation underlies the pathogenesis of chronic lung disease such as chronic obstructive pulmonary disease (COPD) with recurrent exacerbations. Over the course of inflammation, macrophage programming transitions from pro-inflammatory to pro-resolving, which is in part regulated by the nuclear receptor Peroxisome Proliferator-Activated Receptor γ (PPARγ). Our previous work demonstrated an association between Fatty Acid Binding Protein 5 (FABP5) expression and PPARγ activity in peripheral blood mononuclear cells of healthy and COPD patients. However, a role for FABP5 in macrophage programming has not been examined. Here, using a combination of in vitro and in vivo approaches, we demonstrate that FABP5 is necessary for PPARγ activation. In turn, PPARγ acts directly to increase FABP5 expression in primary human alveolar macrophages. We further illustrate that lack of FABP5 expression promotes a pro-inflammatory macrophage programming with increased secretion of pro-inflammatory cytokines and increased chromatin accessibility for pro-inflammatory transcription factors (e.g., NF-κB and MAPK). And finally, real-time cell metabolic analysis using the Seahorse technology shows an inhibition of oxidative phosphorylation in FABP5-deficient macrophages. Taken together, our data indicate that FABP5 and PPARγ reciprocally regulate each other's expression and function, consistent with a novel positive feedback loop between the two factors that mediates macrophage pro-resolving programming. Our studies highlight the importance of defining targets and regulatory mechanisms that control the resolution of inflammation and may serve to inform novel interventional strategies directed towards COPD.
Collapse
Affiliation(s)
- Manale El Kharbili
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
| | - Katja Aviszus
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
| | - Sarah K. Sasse
- Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Xiaoyun Zhao
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
| | - Karina A. Serban
- Department of MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Susan M. Majka
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Anthony N. Gerber
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Fabienne Gally
- Department of Immunology and Genomic MedicineNational Jewish HealthDenverColoradoUSA
- Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| |
Collapse
|
3
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
4
|
Nguyen JMK, Robinson DN, Sidhaye VK. Why new biology must be uncovered to advance therapeutic strategies for chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1-L11. [PMID: 33174444 PMCID: PMC7847061 DOI: 10.1152/ajplung.00367.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by the destruction of alveolar tissue (in emphysema) and airway remodeling (leading to chronic bronchitis), which cause difficulties in breathing. It is a growing public health concern with few therapeutic options that can reverse disease progression or mortality. This is in part because current treatments mainly focus on ameliorating symptoms induced by inflammatory pathways as opposed to curing disease. Hence, emerging research focused on upstream pathways are likely to be beneficial in the development of efficient therapeutics to address the root causes of disease. Some of these pathways include mitochondrial function, cytoskeletal structure and maintenance, and airway hydration, which are all affected by toxins that contribute to COPD. Because of the complexity of COPD and unknown targets for disease onset, simpler model organisms have proved to be useful tools in identifying disease-relevant pathways and targets. This review summarizes COPD pathology, current treatments, and therapeutic discovery research, with a focus on the aforementioned pathways that can advance the therapeutic landscape of COPD.
Collapse
Affiliation(s)
- Jennifer M K Nguyen
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
5
|
Ficociello G, Inverni A, Massimi L, Buccini G, Canepari S, Uccelletti D. Assessment of the effects of atmospheric pollutants using the animal model Caenorhabditis elegans. ENVIRONMENTAL RESEARCH 2020; 191:110209. [PMID: 32937173 DOI: 10.1016/j.envres.2020.110209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Air pollution is recognized as the world's largest environmental health risk. In this work we evaluated in vivo the effects of three relevant components of atmospheric dusts (brake dust, wood pellet ash and Saharan dust) employing the animal model Caenorhabditis elegans. Main endpoints of C. elegans such as life span, brood size and oxidative stress were addressed by exposing the nematodes to different dust concentrations. Brake dust and pellet ash affected the life span and increased significantly the oxidative stress of exposed nematodes, while Saharan dust showed no effects. Water soluble and insoluble fractions of these dusts were used to investigate the impact of the single fraction on C. elegans. The two fractions of brake dust and pellet ash exerted different effects on C. elegans endpoints in terms of life span and oxidative stress response. These fractions acted in different ways on the worm susceptibility to infection of two human pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) affecting the sek-1 gene expression. In conclusion, our study showed that C. elegans is a valuable tool to investigate in vivo possible effects of atmospheric dusts.
Collapse
Affiliation(s)
- Graziella Ficociello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Agnese Inverni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy; Chemistry Department, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Lorenzo Massimi
- Chemistry Department, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Giulio Buccini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Silvia Canepari
- Chemistry Department, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
6
|
Arimilli S, Makena P, Prasad GL. Combustible Cigarette and Smokeless Tobacco Product Preparations Differentially Regulate Intracellular Calcium Mobilization in HL60 Cells. Inflammation 2020; 42:1641-1651. [PMID: 31190105 PMCID: PMC6719334 DOI: 10.1007/s10753-019-01025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Changes in the level of intracellular calcium ([Ca2+]i) are central to leukocyte signaling and immune response. Although evidence suggests that cigarette smoking affects inflammatory response via an increase in intracellular calcium, it remains unclear if the use of smokeless tobacco (e.g., moist snuff) elicits a similar response. In this study, we evaluated the effects of tobacco product preparations (TPPs), including total particulate matter (TPM) from 3R4F reference cigarettes, smokeless tobacco extract (STE) from 2S3 reference moist snuff, and nicotine alone on Ca2+ mobilization in HL60 cells. Treatment with TPM, but not STE or nicotine alone, significantly increased [Ca2+]i in a concentration-dependent manner in HL60 cells. Moreover, TPM-induced [Ca2+]i increase was not related to extracellular Ca2+ and did not require the activation of the IP3 pathway nor involved the transient receptor potential (TRP) channels. Our findings indicate that, in cells having either intact or depleted endoplasmic reticulum (ER) Ca2+ stores, TPM-mediated [Ca2+]i increase involves cytosolic Ca2+ pools other than thapsigargin-sensitive ER Ca2+ stores. These results, for the first time, demonstrate that TPM triggers [Ca2+]i increases, while significantly higher nicotine equivalent doses of STE or nicotine alone, did not affect [Ca2+]i under the experimental conditions. In summary, our study suggests that in contrast with STE or nicotine preparations, TPM activates Ca2+ signaling pathways in HL60 cells. The differential effect of combustible and non-combustible TPPs on Ca2+ mobilization could be a useful in vitro endpoint for tobacco product evaluation.
Collapse
Affiliation(s)
- S Arimilli
- Eurofins Lancaster Laboratories PSS, Winston-Salem, NC, 27105, USA
| | - P Makena
- RAI Services Company, Winston-Salem, NC, 27105, USA.
| | - G L Prasad
- RAI Services Company, Winston-Salem, NC, 27105, USA
| |
Collapse
|
7
|
Long C, Lai Y, Li T, Nyunoya T, Zou C. Cigarette smoke extract modulates Pseudomonas aeruginosa bacterial load via USP25/HDAC11 axis in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L252-L263. [PMID: 31746627 DOI: 10.1152/ajplung.00142.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cigarette smoking increases susceptibility for microbial infection in respiratory system. However, the underlying molecular mechanism(s) is not fully elucidated. Here we report that cigarette smoking extract (CSE) increases bacterial load in lung epithelial cells via downregulation of the ubiquitin-specific protease 25 (USP25)/histone deacetylase 11 (HDAC11) axis. CSE treatment decreases HDAC11 at protein level in lung epithelial cells without significant changes of its transcription. Concomitantly, CSE treatment accelerates a ubiquitin-specific protease USP25 ubiquitination and degradation. Coimmunoprecipitation studies showed that USP25 associated with HDAC11. USP25 catalyzes deubiquitination of HDAC11, which regulates HDAC11 protein stability. CSE-mediated degradation of USP25 thereafter reduces HDAC11 at the protein level. Interestingly, CSE-downregulated USP25/HDAC11 axis increases the bacterial load of Pseudomonas aeruginosa in lung epithelial cells. These findings suggest that CSE-downregulated USP25 and HDAC11 may contribute to high susceptibility of bacterial infection in the cigarette smoking population.
Collapse
Affiliation(s)
- Chen Long
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yandong Lai
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tiao Li
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Toru Nyunoya
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Chunbin Zou
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Haghani A, Dalton HM, Safi N, Shirmohammadi F, Sioutas C, Morgan TE, Finch CE, Curran SP. Air Pollution Alters Caenorhabditis elegans Development and Lifespan: Responses to Traffic-Related Nanoparticulate Matter. J Gerontol A Biol Sci Med Sci 2019; 74:1189-1197. [PMID: 30828708 PMCID: PMC6625599 DOI: 10.1093/gerona/glz063] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/06/2019] [Indexed: 11/22/2022] Open
Abstract
Air pollution is a heterogeneous environmental toxicant that impacts humans throughout their life. We introduce Caenorhabditis elegans as a valuable air pollution model with its short lifespan, medium-throughput capabilities, and highly conserved biological pathways that impact healthspan. We exposed developmental and adult life stages of C. elegans to airborne nano-sized particulate matter (nPM) produced by traffic emissions and measured biological and molecular endpoints that changed in response. Acute nPM did not cause lethality in C. elegans, but short-term exposure during larval stage 1 caused delayed development. Gene expression responses to nPM exposure overlapped with responses of mouse and cell culture models of nPM exposure in previous studies. We showed further that the skn-1/Nrf2 antioxidant response has a role in the development and hormetic effects of nPM. This study introduces the worm as a new resource and complementary model for mouse and cultured cell systems to study air pollution toxicity across the lifespan.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - Hans M Dalton
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - Nikoo Safi
- Department of Biomedical Sciences, Center for Bioinformatics and Genomics, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles,Address correspondence to: Sean P. Curran, PhD, Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Suite 350, Los Angeles, CA 90089. E-mail:
| |
Collapse
|
9
|
Rao DM, Phan DT, Choo MJ, Weaver MR, Oberley-Deegan RE, Bowler RP, Gally F. Impact of fatty acid binding protein 5-deficiency on COPD exacerbations and cigarette smoke-induced inflammatory response to bacterial infection. Clin Transl Med 2019; 8:7. [PMID: 30877402 PMCID: PMC6420539 DOI: 10.1186/s40169-019-0227-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although cigarette smoking (CS) is by far the most important risk factor of chronic obstructive pulmonary disease (COPD), repeated and sustained infections are clearly linked to disease pathogenesis and are responsible for acute inflammatory flares (i.e. COPD exacerbations). We have previously identified Fatty Acid Binding Protein 5 (FABP5) as an important anti-inflammatory protein in primary airway epithelial cells. RESULTS In this study we found decreased FABP5 mRNA and protein levels in peripheral blood mononuclear cells (PBMCs) of COPD patients, especially among those who reported episodes of COPD exacerbations. Using wildtype (WT) and FABP5-/- mice, we examined the effects of FABP5 on CS and infection-induced inflammatory responses. Similarly to what we saw in airway epithelial cells, infection increased FABP5 expression while CS decreased FABP5 expression in mouse lung tissues. CS-exposed and P. aeruginosa-infected FABP5-/- mice had significantly increased inflammation as shown by increased lung histopathological score, cell infiltration and inflammatory cytokine levels. Restoration of FABP5 in alveolar macrophages using a lentiviral approach attenuated the CS- and bacteria-induced pulmonary inflammation. And finally, while P. aeruginosa infection increased PPARγ activity, CS or FABP5 knockdown greatly reduced PPARγ activity. CONCLUSIONS These findings support a model in which CS-induced FABP5 inhibition contributes to increased inflammation in COPD exacerbations. It is interesting to speculate that the increased inflammation is a result of decreased PPARγ activity.
Collapse
Affiliation(s)
- Deviyani M. Rao
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO 80206 USA
| | - Della T. Phan
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO 80206 USA
| | - Michelle J. Choo
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO 80206 USA
| | - Michael R. Weaver
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC 6.12.392, 985870 Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Russell P. Bowler
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| | - Fabienne Gally
- Department of Biomedical Research, National Jewish Health, 1400 Jackson St., Room K827, Denver, CO 80206 USA
| |
Collapse
|
10
|
Cobb E, Hall J, Palazzolo DL. Induction of Metallothionein Expression After Exposure to Conventional Cigarette Smoke but Not Electronic Cigarette (ECIG)-Generated Aerosol in Caenorhabditis elegans. Front Physiol 2018; 9:426. [PMID: 29740339 PMCID: PMC5925786 DOI: 10.3389/fphys.2018.00426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/05/2018] [Indexed: 11/21/2022] Open
Abstract
Aim: With the invention of electronic cigarettes (ECIG), many questions have been raised regarding their safety as an alternative to smoking conventional cigarettes. Conventional cigarette smoke contains a variety of toxicants including heavy metals. However, ECIG-generated aerosol contains only trace amounts of metals, adding to the argument for it being a safer alternative. In response to heavy metal exposure, metallothioneins are induced in cells to help store the metal, detoxify the body, and are also known responders to oxidative stress. In an attempt to add to the evaluation of the safety of ECIGs, metallothionein expression was quantified using the nematode Caenorhabditis elegans as an assessment of stress induced cellular damage caused by exposure. Methods: Adult nematodes were exposed to either ECIG aerosol or conventional cigarette smoke at doses of 15, 30, and 45 puffs, the equivalent of one, two, and three cigarettes, respectively. Movement, survival, and stress-induced sleep were assessed for up to 24 h after exposure. Relative expression levels for mtl-1 and mtl-2, C. elegans metallothionein genes, were analyzed after 1, 5, and 24 h post exposure using quantitative RT-PCR. Results: Nematodes exposed to conventional cigarette smoke underwent stress-induced sleep in a dose dependent manner with animals recovering to values within the range of air control after 5 h post exposure. Those exposed to ECIG aerosol did not undergo stress-induced sleep and were indistinguishable from controls. The expression of mtl-1 increased in a dose and time dependent manner in C. elegans exposed to conventional cigarette smoke, with a maximum expression observed at 5 h post exposure of 45 puffs. No induction of mtl-2 was observed in any animals. Additionally, ECIG aerosol did not induce expression of mtl-1 and mtl-2 at levels different than those of untreated. Conclusion: ECIG aerosol failed to induce a stress response in C. elegans. In contrast, conventional cigarette smoke induced the production of mtl-1 in a manner that correlates with the induction of stress-induced sleep suggesting a stress response to damage. The lack of cellular stress response to ECIG aerosol suggests it may be a safer alternative to conventional cigarettes.
Collapse
Affiliation(s)
- Eric Cobb
- School of Mathematics and Sciences, Lincoln Memorial University, Harrogate, TN, United States.,DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Julie Hall
- Department of Biology, School of Mathematics and Sciences, Lincoln Memorial University, Harrogate, TN, United States
| | - Dominic L Palazzolo
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
11
|
Kamaladevi A, Balamurugan K. Global Proteomics Revealed Klebsiella pneumoniae Induced Autophagy and Oxidative Stress in Caenorhabditis elegans by Inhibiting PI3K/AKT/mTOR Pathway during Infection. Front Cell Infect Microbiol 2017; 7:393. [PMID: 28932706 PMCID: PMC5592217 DOI: 10.3389/fcimb.2017.00393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
The enterobacterium, Klebsiella pneumoniae invades the intestinal epithelium of humans by interfering with multiple host cell response. To uncover a system-level overview of host response during infection, we analyzed the global dynamics of protein profiling in Caenorhabditis elegans using quantitative proteomics approach. Comparison of protein samples of nematodes exposed to K. pneumoniae for 12, 24, and 36 h by 2DE revealed several changes in host proteome. A total of 266 host-encoded proteins were identified by 2DE MALDI-MS/MS and LC-MS/MS and the interacting partners of the identified proteins were predicted by STRING 10.0 analysis. In order to understand the interacting partners of regulatory proteins with similar or close pI ranges, a liquid IEF was performed and the isolated fractions containing proteins were identified by LC-MS/MS. Functional bioinformatics analysis on identified proteins deciphered that they were mostly related to the metabolism, dauer formation, apoptosis, endocytosis, signal transduction, translation, developmental, and reproduction process. Gene enrichment analysis suggested that the metabolic process as the most overrepresented pathway regulated against K. pneumoniae infection. The dauer-like formation in infected C. elegans along with intestinal atrophy and ROS during the physiological analysis indicated that the regulation of metabolic pathway is probably through the involvement of mTOR. Immunoblot analysis supported the above notion that the K. pneumoniae infection induced protein mis-folding in host by involving PI3Kinase/AKT-1/mTOR mediated pathway. Furthermore, the susceptibility of pdi-2, akt-1, and mTOR C. elegans mutants confirmed the role and involvement of PI3K/AKT/mTOR pathway in mediating protein mis-folding which appear to be translating the vulnerability of host defense toward K. pneumoniae infection.
Collapse
|
12
|
Rao D, Perraud AL, Schmitz C, Gally F. Cigarette smoke inhibits LPS-induced FABP5 expression by preventing c-Jun binding to the FABP5 promoter. PLoS One 2017; 12:e0178021. [PMID: 28542209 PMCID: PMC5436865 DOI: 10.1371/journal.pone.0178021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
Abstract
Cigarette smoking is the primary cause of chronic obstructive pulmonary disease (COPD) with repeated and sustained infections linked to disease pathogenesis and exacerbations. The airway epithelium constitutes the first line of host defense against infection and is known to be impaired in COPD. We have previously identified Fatty Acid Binding Protein 5 (FABP5) as an important anti-inflammatory player during respiratory infections and showed that overexpression of FABP5 in primary airway epithelial cells protects against bacterial infection and inflammation. While cigarette smoke down regulates FABP5 expression, its mechanism remains unknown. In this report, we have identified three putative c-Jun binding sites on the FABP5 promoter and show that cigarette smoke inhibits the binding of c-Jun to its consensus sequence and prevents LPS-induced FABP5 expression. Using chromatin immunoprecipitation, we have determined that c-Jun binds the FABP5 promoter when stimulated with LPS but the presence of cigarette smoke greatly reduces this binding. Furthermore, cigarette smoke or a mutation in the c-Jun binding site inhibits LPS-induced FABP5 promoter activity. These data demonstrate that cigarette smoke interferes with FABP5 expression in response to bacterial infection. Thus, functional activation of FABP5 may be a new therapeutic strategy when treating COPD patients suffering from exacerbations.
Collapse
Affiliation(s)
- Deviyani Rao
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
| | - Anne-Laure Perraud
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Denver, United States of America
| | - Carsten Schmitz
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Denver, United States of America
| | - Fabienne Gally
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
| |
Collapse
|
13
|
Sobkowiak R, Zielezinski A, Karlowski WM, Lesicki A. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells. Drug Chem Toxicol 2017; 40:470-483. [PMID: 28049353 DOI: 10.1080/01480545.2016.1264411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.
Collapse
Affiliation(s)
- Robert Sobkowiak
- a Department of Cell Biology , Adam Mickiewicz University , Poznań , Poland and
| | - Andrzej Zielezinski
- b Department of Computational Biology , Faculty of Biology, Adam Mickiewicz University , Poznań , Poland
| | - Wojciech M Karlowski
- b Department of Computational Biology , Faculty of Biology, Adam Mickiewicz University , Poznań , Poland
| | - Andrzej Lesicki
- a Department of Cell Biology , Adam Mickiewicz University , Poznań , Poland and
| |
Collapse
|
14
|
da Costa Souza P, Parra ER, Atanazio MJ, da Silva OB, Noleto GS, Ab'Saber AM, de Morais Fernezlian S, Takagaki T, Capelozzi VL. Different morphology, stage and treatment affect immune cell infiltration and long-term outcome in patients with non-small-cell lung carcinoma. Histopathology 2016; 61:587-96. [PMID: 22716510 DOI: 10.1111/j.1365-2559.2012.04318.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Development of effective immune-based therapies for patients with non-small-cell lung carcinoma (NSCLC) depends on an accurate characterization of complex interactions that occur between immune cells and the tumour environment. METHODS AND RESULTS Innate and adaptive immune responses were evaluated in relation to prognosis in 65 patients with surgically excised NSCLC. Immunohistochemistry and morphometry were used to determine the abundance and distribution of immune cells. We found low numbers of immune cells and levels of cytokines in the tumour environment when compared with surrounding parenchyma. Smoking was associated inversely with the adaptive immune response and directly with innate immunity. We observed a prominent adaptive immune response in squamous cell carcinomas (SCC) but greater innate immune responses in adenocarcinomas and large cell carcinomas. Cox model analysis showed a low risk of death for smoking <41 packs/year, N0 tambour stage, squamous carcinoma, CD4(+) > 16.81% and macrophages/monocytes >4.5%. Collectively, the data indicate that in NSCLC there is not a substantive local immune cell infiltrate within the tumour. CONCLUSION Although immune cell infiltration is limited in NSCLC it appears to have an impact on prognosis and this may be of relevance for new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Paola da Costa Souza
- Department of PathologyDiscipline of Oncology, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Panitz D, Swamy H, Nehrke K. A C. elegans model of electronic cigarette use: Physiological effects of e-liquids in nematodes. BMC Pharmacol Toxicol 2015; 16:32. [PMID: 26637209 PMCID: PMC4669627 DOI: 10.1186/s40360-015-0030-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/12/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Electronic cigarettes (e-cigs) have recently become very popular particularly among the younger generation. These nicotine delivery devices are viewed as a preferable alternative to more conventional forms of tobacco use and are thought to reduce the risk of chronic obstructive pulmonary disease, the third leading cause of death worldwide. However, there is very little data available on the consequences of e-cig use, though recently nicotine-independent inflammatory responses have been reported. The genetic model organism Caenorhabditis elegans is a soil nematode whose cell biology is remarkably well conserved with mammals. Here, we used C. elegans to test the physiologic effects of e-liquids used to refill e-cigs. METHODS Larval worms were exposed from hatching onwards to low concentrations (0.2 %) of e-liquids, distilled e-liquid vapor, propylene glycol (PG), or M9 buffer as a negative control. E-liquids tested included grape, menthol, and V2 Red "classic tobacco" flavors. Nicotine (48 ppm) was tested as a second level variable. Stereotypical physiological outputs were then measured, including developmental rate, fecundity, locomotion, lifespan, and the induction of canonical stress signaling pathways. RESULTS A small but significant impairment of developmental rate and brood size was observed for PG and V2 Red treated worms compared to the negative control. Worms treated with e-liquids containing nicotine fared significantly worse than those that did not, but vaporization did not increase toxicity. Finally, both PG and V2 Red e-liquid induced an oxidative stress response in the absence of nicotine. CONCLUSIONS PG exposure is sufficient to induce an oxidative stress response in nematodes, while nicotine is not. Both PG and nicotine independently influence physiologic measures of health and viability. The e-liquid flavorings did not significantly impact outcomes and there was no evidence for vaporization altering toxicity. These data suggest that the major physiologically significant component of e-liquids besides nicotine is likely the common solvent PG. We conclude that C. elegans are an appropriate model to rapidly assess parameters that may contribute to the basic cell biological effects of e-cigs.
Collapse
Affiliation(s)
- Daniel Panitz
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel.
- Department of Medicine and Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Harsha Swamy
- Department Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Keith Nehrke
- Department of Medicine and Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA.
- Department Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, Box 675, NY, 14642, USA.
| |
Collapse
|
16
|
Kanteti R, Dhanasingh I, El-Hashani E, Riehm JJ, Stricker T, Nagy S, Zaborin A, Zaborina O, Biron D, Alverdy JC, Im HK, Siddiqui S, Padilla PA, Salgia R. C. elegans and mutants with chronic nicotine exposure as a novel model of cancer phenotype. Cancer Biol Ther 2015; 17:91-103. [PMID: 26574927 PMCID: PMC6093410 DOI: 10.1080/15384047.2015.1108495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously investigated MET and its oncogenic mutants relevant to lung cancer
in C. elegans. The inactive orthlogues of the receptor tyrosine
kinase Eph and MET, namely vab-1 and RB2088 respectively, the
temperature sensitive constitutively active form of KRAS, SD551
(let-60; GA89) and the inactive c-CBL equivalent mutants in
sli-1 (PS2728, PS1258, and MT13032) when subjected to
chronic exposure of nicotine resulted in a significant loss in egg-laying
capacity and fertility. While the vab-1 mutant revealed
increased circular motion in response to nicotine, the other mutant strains
failed to show any effect. Overall locomotion speed increased with increasing
nicotine concentration in all tested mutant strains except in the
vab-1 mutants. Moreover, chronic nicotine exposure, in
general, upregulated kinases and phosphatases. Taken together, these studies
provide evidence in support of C. elegans as initial in
vivo model to study nicotine and its effects on oncogenic mutations
identified in humans.
Collapse
Affiliation(s)
- Rajani Kanteti
- a Department of Medicine , Section of Hematology/Oncology, University of Chicago , Chicago , IL , USA
| | - Immanuel Dhanasingh
- a Department of Medicine , Section of Hematology/Oncology, University of Chicago , Chicago , IL , USA
| | | | - Jacob J Riehm
- a Department of Medicine , Section of Hematology/Oncology, University of Chicago , Chicago , IL , USA
| | - Thomas Stricker
- c Department of Pathology , Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Stanislav Nagy
- d Department of Physics , James Franck Institute, and the College, University of Chicago , Chicago , IL , USA
| | - Alexander Zaborin
- e Department of Surgery , Pritzker School of Medicine, University of Chicago , Chicago , IL , USA
| | - Olga Zaborina
- e Department of Surgery , Pritzker School of Medicine, University of Chicago , Chicago , IL , USA
| | - David Biron
- d Department of Physics , James Franck Institute, and the College, University of Chicago , Chicago , IL , USA
| | - John C Alverdy
- e Department of Surgery , Pritzker School of Medicine, University of Chicago , Chicago , IL , USA
| | - Hae Kyung Im
- f Department of Medicine , Section of Genetic Medicine, University of Chicago , Chicago , IL , USA
| | - Shahid Siddiqui
- g Department of Medicine , University of Chicago, Chicago, IL and Department of Basic and Oral Biology, UQUDENT, U. Q. University , Makkah , KSA
| | - Pamela A Padilla
- h Department of Biological Sciences , University of North- Texas , Denton , TX , USA
| | - Ravi Salgia
- a Department of Medicine , Section of Hematology/Oncology, University of Chicago , Chicago , IL , USA
| |
Collapse
|
17
|
Shi X, Zhou Z, Wang L, Wang M, Shi S, Wang Z, Song L. The immunomodulation of nicotinic acetylcholine receptor subunits in Zhikong scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2015; 47:611-622. [PMID: 26455648 DOI: 10.1016/j.fsi.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR), the best-studied ionotropic neuron receptor protein, is a key player in neuronal communication, and it has been reported to play an important role in immunomodulation of vertebrates. Although nAChRs have also been identified in most invertebrates, the knowledge about their immunomodulation is still limited. In the present study, two scallop nAChR genes were identified from Chlamys farreri (designed as CfnAChR1 and CfnAChR2), which encoded 384 and 443 amino acids, respectively. The conserved disulfide-linked cystines, ion selectivity residues and the hydrophobic gating residues (L251, V255 and V259) were identified in CfnAChR1 and CfnAChR2. The immunoreactivities of CfnAChR1 and CfnAChR2 were observed in all the tested scallop tissues, including adductor muscle, mantle, gill, hepatopancreas, kidney and gonad. After LPS (0.5 mg mL(-1)) stimulation, the expression of CfnAChR1 mRNA in haemocytes increased significantly by 9.83-fold (P < 0.05) and 12.93-fold (P < 0.05) at 3 h and 24 h, respectively. While the expression level of CfnAChR2 mRNA increased 43.94% at 12 h after LPS stimulation (P < 0.05). After TNF-α (50 ng mL(-1)) stimulation, the expression levels of CfnAChR1 and CfnAChR2 both increased significantly at 1 h, which were 21.33-fold (P < 0.05) and 2.44-fold (P < 0.05) of that in the PBS group, respectively. The results collectively indicated that the cholinergic nervous system in scallops could be activated by immune stimulations through CfnAChR1 and CfnAChR2, which function as the links between the cholinergic nervous system and immune system.
Collapse
Affiliation(s)
- Xiaowei Shi
- Linyi University, Linyi 276000, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China; Shandong Provincial Engineering Technology Research Center for Lunan Chinese Herbal Medicine, Linyi 276000, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China
| | | | - Zhen Wang
- Linyi University, Linyi 276000, China; Shandong Provincial Engineering Technology Research Center for Lunan Chinese Herbal Medicine, Linyi 276000, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
18
|
López Hernández Y, Yero D, Pinos-Rodríguez JM, Gibert I. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens. Front Microbiol 2015; 6:38. [PMID: 25699030 PMCID: PMC4316775 DOI: 10.3389/fmicb.2015.00038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.
Collapse
Affiliation(s)
- Yamilé López Hernández
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Juan M Pinos-Rodríguez
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
19
|
Rose JK, Miller MK, Crane SA, Hope KA, Pittman PG. Parental and larval exposure to nicotine modulate spontaneous activity as well as cholinergic and GABA receptor expression in adult C. elegans. Neurotoxicol Teratol 2013; 39:122-7. [PMID: 23906944 DOI: 10.1016/j.ntt.2013.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/09/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Early nicotine exposure has been associated with many long-term consequences that include neuroanatomical alterations, as well as behavioral and cognitive deficits. To describe the effects of early nicotine exposure in Caenorhabditis elegans, the current study observed spontaneous locomotor activity (i.e., reversals) either in the presence or absence of nicotine. Expression of acr-16 (a nicotinic receptor subunit) and a β-like GABA(A) receptor subunit, gab-1, were also examined with RT-PCR. Worms were exposed to nicotine (30 μM) throughout "zygote formation" (period that includes oocyte maturation, ovulation and fertilization), from hatching to adulthood ("larval development") or across both zygote and larval development. Adult larval-exposed worms only showed an increase in spontaneous behavior when tested on nicotine (p<0.001) but levels of activity similar to controls when tested on plain plates (p>0.30). Larval-exposed worms also showed control levels of acr-16 nicotinic receptor expression (p>0.10) but increased gab-1 expression relative to controls (p<0.01). In contrast, zygote-exposed and zygote- plus larval-exposed worms showed a similar increase in spontaneous behavior on plain plates (p<0.001 and p=0.001, respectively) but control levels of responding when tested on nicotine (p>0.90 for each). However, expression of acr-16 and gab-1 was downregulated in zygote-exposed (p<0.01 and p<0.05, respectively) and significantly upregulated in the zygote- plus larval-exposed worms (p<0.000 for each); most surprising was the over five-fold increase in gab-1 expression. These results suggest that spontaneous motor behavior and receptor expression are differentially modulated by nicotine exposure during larval development and/or zygote formation. As well, these findings demonstrate that C. elegans, as a model system, is also sensitive to nicotine exposure during early development and provides the basis for future research to uncover specific mechanisms by which early nicotine exposure modifies neuronal signaling and alters behavior.
Collapse
Affiliation(s)
- Jacqueline K Rose
- Program in Behavioral Neuroscience and Department of Psychology, Western Washington University, 516 High St., Bellingham, WA, USA.
| | | | | | | | | |
Collapse
|
20
|
Gally F, Kosmider B, Weaver MR, Pate KM, Hartshorn KL, Oberley-Deegan RE. FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L64-72. [PMID: 23624787 DOI: 10.1152/ajplung.00276.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The early inflammatory response to influenza A virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which inflammatory cells invade the respiratory tract remain unclear. Uncontrolled inflammation and oxidative stress cause lung damage in response to influenza A infection. We have previously shown that the fatty acid binding protein 5 (FABP5) has anti-inflammatory properties. We speculate that, as a transporter of fatty acids, FABP5 plays an important protective role against oxidative damage to lipids during infection as well. Using FABP5-/- and wild-type (WT) mice infected with influenza A virus, we showed that FABP5-/- mice had increased cell infiltration of macrophages and neutrophils compared with WT mice. FABP5-/- mice presented lower viral burden but lost as much weight as WT mice. The adaptive immune response was also increased in FABP5-/- mice as illustrated by the accumulation of T and B cells in the lung tissues and increased levels of H1N1-specific IgG antibodies. FABP5 deficiency greatly enhanced oxidative damage and lipid peroxidation following influenza A infection and presented with sustained tissue inflammation. Interestingly, FABP5 expression decreased following influenza A infection in WT lung tissues that corresponded to a decrease in the anti-inflammatory molecule PPAR-γ activity. In conclusion, our results demonstrate a previously unknown contribution of FABP5 to influenza A virus pathogenesis by controlling excessive oxidative damage and inflammation. This property could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Fabienne Gally
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
21
|
Gally F, Chu HW, Bowler RP. Cigarette smoke decreases airway epithelial FABP5 expression and promotes Pseudomonas aeruginosa infection. PLoS One 2013; 8:e51784. [PMID: 23349676 PMCID: PMC3551956 DOI: 10.1371/journal.pone.0051784] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/06/2012] [Indexed: 12/21/2022] Open
Abstract
Cigarette smoking is the primary cause of Chronic Obstructive Pulmonary Disease (COPD), which is characterized by chronic inflammation of the airways and destruction of lung parenchyma. Repeated and sustained bacterial infections are clearly linked to disease pathogenesis (e.g., exacerbations) and a huge burden on health care costs. The airway epithelium constitutes the first line of host defense against infection and our previous study indicated that Fatty Acid Binding Protein 5 (FABP5) is down regulated in airway epithelial cells of smokers with COPD as compared to smokers without COPD. We hypothesized that cigarette smoke (CS) exposure down regulates FABP5, thus, contributing to a more sustained inflammation in response to bacterial infection. In this report, we show that FABP5 is increased following bacterial infection but decreased following CS exposure of primary normal human bronchial epithelial (NHBE) cells. The goal of this study was to address FABP5 function by knocking down or overexpressing FABP5 in primary NHBE cells exposed to CS. Our data indicate that FABP5 down regulation results in increased P. aeruginosa bacterial load and inflammatory cytokine levels (e.g., IL-8) and decreased expression of the anti-bacterial peptide, β defensin-2. On the contrary, FABP5 overexpression exerts a protective function in airway epithelial cells against P. aeruginosa infection by limiting the production of IL-8 and increasing the expression of β defensin-2. Our study indicates that FABP5 exerts immunomodulatory functions in the airway epithelium against CS exposure and subsequent bacterial infection through its modulation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-γ activity. These findings support the development of FABP5/PPAR-γ-targeted therapeutic approach to prevent airway inflammation by restoring antimicrobial immunity during COPD exacerbations.
Collapse
Affiliation(s)
- Fabienne Gally
- Pulmonary Division, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Hong Wei Chu
- Pulmonary Division, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Russell P. Bowler
- Pulmonary Division, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
22
|
Brody JS. Transcriptome alterations induced by cigarette smoke. Int J Cancer 2012; 131:2754-62. [PMID: 22961494 DOI: 10.1002/ijc.27829] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/16/2012] [Indexed: 12/24/2022]
Abstract
Cigarette smoke alters the transcriptome of multiple tissues; those directly exposed to toxic products and those exposed to circulating components and metabolic products of tobacco smoke. In most tissues and organs that have been studied, the smoking transcriptome is characterized by increased expression of antioxidant and xenobiotic genes as well as a wide spectrum of inflammation-related genes, and potential oncogenic genes. Smoking is associated with an increased incidence of cancer in a number of organs both those directly exposed (lungs and airways) and those indirectly exposed (bladder, liver, pancreas). Individual transcriptomic responses vary, based to some degree on as yet to be clarified genetic factors, and likely how and what the individual has smoked. The complexity of individual responses to tobacco exposure and of smoking-related cancers in various organs is beginning to be revealed in transcriptomic and whole genome sequencing studies, of both tumors and cytologically normal appearing cells that have been exposed to cigarette smoke or its products creating a genomic "field of injury." The recent application of next generation sequencing to defining the transcriptome alterations induced by cigarette smoke holds the promise of discovering new approaches to personalized prevention and treatment of smoking-related lung diseases in the future.
Collapse
Affiliation(s)
- Jerome S Brody
- Boston University School of Medicine, Pulmonary Center (R-3), Boston, MA 02118, USA.
| |
Collapse
|
23
|
Francis SMS, Tan ME, Fung PR, Shaw JG, Semmler AB, Nataatmadja M, Bowman RV, Fong KM, Yang IA. Peripheral compartment innate immune response to Haemophilus influenzae and Streptococcus pneumoniae in chronic obstructive pulmonary disease patients. Innate Immun 2012; 19:428-37. [PMID: 23212542 DOI: 10.1177/1753425912466926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alterations in innate immunity that predispose to chronic obstructive pulmonary disease (COPD) exacerbations are poorly understood. We examined innate immunity gene expression in peripheral blood polymorphonuclear leukocytes (PMN) and monocytes stimulated by Haemophilus influenzae and Streptococcus pneumoniae. Thirty COPD patients (15 rapid and 15 non-rapid lung function decliners) and 15 smokers without COPD were studied. Protein expression of IL-8, IL-6, TNF-α and IFN-γ (especially monocytes) increased with bacterial challenge. In monocytes stimulated with S. pneumoniae, TNF-α protein expression was higher in COPD (non-rapid decliners) than in smokers. In co-cultures of monocytes and PMN, mRNA expression of TGF-β1 and MYD88 was up-regulated, and CD14, TLR2 and IFN-γ down-regulated with H. influenzae challenge. TNF-α mRNA expression was increased with H. influenzae challenge in COPD. Cytokine responses were similar between rapid and non-rapid decliners. TNF-α expression was up-regulated in non-rapid decliners in response to H. influenzae (monocytes) and S. pneumoniae (co-culture of monocytes and PMN). Exposure to bacterial pathogens causes characteristic innate immune responses in peripheral blood monocytes and PMN in COPD. Bacterial exposure significantly alters the expression of TNF-α in COPD patients, although not consistently. There did not appear to be major differences in innate immune responses between rapid and non-rapid decliners.
Collapse
|
24
|
Case SR, Martin RJ, Jiang D, Minor MN, Chu HW. MicroRNA-21 inhibits toll-like receptor 2 agonist-induced lung inflammation in mice. Exp Lung Res 2011; 37:500-8. [PMID: 21892915 DOI: 10.3109/01902148.2011.596895] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Impaired airway innate immunity (e.g., suppressed Toll-like receptor 2 [TLR2] signaling) has been reported in allergic lungs with bacterial infection. Recently, an allergic mouse lung milieu including the T-helper type 2 (Th2) cytokine interleukin-13 (IL-13) has been shown to up-regulate lung microRNA-21 (miR-21) expression. Whether miR-21 modulates in vivo TLR2 signaling is unknown. The goal of this study was to determine if in vivo, miR-21 regulates a TLR2 agonist-induced lung inflammatory response. Balb/c mice were intranasally pretreated with a locked nucleic acid (LNA) in vivo inhibitor probe for mouse miR-21 or a control probe, followed by intranasal instillation of a TLR2 agonist Pam3CSK4, or saline (control). Four and/or 24 hours later, mice treated with the miR-21 inhibitor probe, as compared to the control probe, significantly increased lung leukocytes, including neutrophils and the keratinocyte-derived chemokine (KC). IL-13 treatment for 72 hours increased (P < .05) miR-21 in cultured primary normal human airway epithelial cells. These results, for the first time, suggest an in vivo role of miR-21 in suppressing TLR2 signaling, and further support that IL-13 can up-regulate miR-21 in human airway epithelial cells. Functional studies on miR-21 likely provide novel approaches to modulate TLR2 signaling in Th2 cytokine-exposed airways.
Collapse
Affiliation(s)
- Stephanie R Case
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | | | | | | | | |
Collapse
|
25
|
Brody JS, Steiling K. Interaction of cigarette exposure and airway epithelial cell gene expression. Annu Rev Physiol 2011; 73:437-56. [PMID: 21090967 DOI: 10.1146/annurev-physiol-012110-142219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is responsible for lung cancer and chronic obstructive pulmonary disease (COPD), the leading cause of death from cancer and the second-leading cause of death in the United States. In the United States, 46 million people smoke, with an equal number of former smokers. Moreover, 20-25% of current or former smokers will develop either disease, and smokers with one disease are at increased risk for developing the other. There are no tools for predicting risk of developing either disease; no accepted tools for early diagnosis of potentially curable lung cancer; and no tools for defining molecular pathways or molecular subtypes of these diseases, for predicting rate of progression, or for assessing response to therapy at a biochemical or molecular level. This review discusses current studies and the future potential of measuring global gene expression in epithelial cells that are in the airway field of injury and of using the genomic information derived to begin to answer some of the above questions.
Collapse
Affiliation(s)
- Jerome S Brody
- Pulmonary Center, Boston University School of Medicine, Massachusetts 02218, USA.
| | | |
Collapse
|
26
|
Handel AE, Williamson AJ, Disanto G, Dobson R, Giovannoni G, Ramagopalan SV. Smoking and multiple sclerosis: an updated meta-analysis. PLoS One 2011; 6:e16149. [PMID: 21249154 PMCID: PMC3020969 DOI: 10.1371/journal.pone.0016149] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/14/2010] [Indexed: 01/29/2023] Open
Abstract
Background Multiple sclerosis (MS) is a leading cause of disability in young adults. Susceptibility to MS is determined by environmental exposure on the background of genetic risk factors. A previous meta-analysis suggested that smoking was an important risk factor for MS but many other studies have been published since then. Methods/Principal Findings We performed a Medline search to identify articles published that investigated MS risk following cigarette smoking. A total of 14 articles were included in this study. This represented data on 3,052 cases and 457,619 controls. We analysed these studies in both a conservative (limiting our analysis to only those where smoking behaviour was described prior to disease onset) and non-conservative manner. Our results show that smoking is associated with MS susceptibility (conservative: risk ratio (RR) 1.48, 95% confidence interval (CI) 1.35–1.63, p<10−15; non-conservative: RR 1.52, 95% CI 1.39–1.66, p<10−19). We also analysed 4 studies reporting risk of secondary progression in MS and found that this fell just short of statistical significance with considerable heterogeneity (RR 1.88, 95% CI 0.98–3.61, p = 0.06). Discussion Our results demonstrate that cigarette smoking is important in determining MS susceptibility but the effect on the progression of disease is less certain. Further work is needed to understand the mechanism behind this association and how smoking integrates with other established risk factors.
Collapse
Affiliation(s)
- Adam E. Handel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Alexander J. Williamson
- Department of Physical and Theoretical Chemistry, University of Oxford, Oxford, United Kingdom
| | - Giulio Disanto
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Ruth Dobson
- Barts and The London School of Medicine and Dentistry, Blizard Institute of Cell and Molecular Science, Queen Mary University of London, London, United Kingdom
| | - Gavin Giovannoni
- Barts and The London School of Medicine and Dentistry, Blizard Institute of Cell and Molecular Science, Queen Mary University of London, London, United Kingdom
- * E-mail: (GG); (SVR)
| | - Sreeram V. Ramagopalan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
- Barts and The London School of Medicine and Dentistry, Blizard Institute of Cell and Molecular Science, Queen Mary University of London, London, United Kingdom
- * E-mail: (GG); (SVR)
| |
Collapse
|
27
|
Lee CC, Middaugh NA, Howie SRC, Ezzati M. Association of secondhand smoke exposure with pediatric invasive bacterial disease and bacterial carriage: a systematic review and meta-analysis. PLoS Med 2010; 7:e1000374. [PMID: 21151890 PMCID: PMC2998445 DOI: 10.1371/journal.pmed.1000374] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/22/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND A number of epidemiologic studies have observed an association between secondhand smoke (SHS) exposure and pediatric invasive bacterial disease (IBD) but the evidence has not been systematically reviewed. We carried out a systematic review and meta-analysis of SHS exposure and two outcomes, IBD and pharyngeal carriage of bacteria, for Neisseria meningitidis (N. meningitidis), Haemophilus influenzae type B (Hib), and Streptococcus pneumoniae (S. pneumoniae). METHODS AND FINDINGS Two independent reviewers searched Medline, EMBASE, and selected other databases, and screened articles for inclusion and exclusion criteria. We identified 30 case-control studies on SHS and IBD, and 12 cross-sectional studies on SHS and bacterial carriage. Weighted summary odd ratios (ORs) were calculated for each outcome and for studies with specific design and quality characteristics. Tests for heterogeneity and publication bias were performed. Compared with those unexposed to SHS, summary OR for SHS exposure was 2.02 (95% confidence interval [CI] 1.52-2.69) for invasive meningococcal disease, 1.21 (95% CI 0.69-2.14) for invasive pneumococcal disease, and 1.22 (95% CI 0.93-1.62) for invasive Hib disease. For pharyngeal carriage, summary OR was 1.68 (95% CI, 1.19-2.36) for N. meningitidis, 1.66 (95% CI 1.33-2.07) for S. pneumoniae, and 0.96 (95% CI 0.48-1.95) for Hib. The association between SHS exposure and invasive meningococcal and Hib diseases was consistent regardless of outcome definitions, age groups, study designs, and publication year. The effect estimates were larger in studies among children younger than 6 years of age for all three IBDs, and in studies with the more rigorous laboratory-confirmed diagnosis for invasive meningococcal disease (summary OR 3.24; 95% CI 1.72-6.13). CONCLUSIONS When considered together with evidence from direct smoking and biological mechanisms, our systematic review and meta-analysis indicates that SHS exposure may be associated with invasive meningococcal disease. The epidemiologic evidence is currently insufficient to show an association between SHS and invasive Hib disease or pneumococcal disease. Because the burden of IBD is highest in developing countries where SHS is increasing, there is a need for high-quality studies to confirm these results, and for interventions to reduce exposure of children to SHS.
Collapse
Affiliation(s)
- Chien-Chang Lee
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Nicole A. Middaugh
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Stephen R. C. Howie
- Bacterial Diseases Programme, Medical Research Council (UK) Laboratories, Fajara, The Gambia
| | - Majid Ezzati
- Department of Global Health and Population, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
- MRC-HPA Center for Environment and Health, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Kawli T, He F, Tan MW. It takes nerves to fight infections: insights on neuro-immune interactions from C. elegans. Dis Model Mech 2010; 3:721-31. [PMID: 20829562 PMCID: PMC2965399 DOI: 10.1242/dmm.003871] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune response is evoked as a consequence of interactions between invading foreign infectious agents and host immune cells. A successful innate immune response is pivotal in maintaining the delicate balance between health and disease; an insufficient response results in infection, whereas an excessive response results in prolonged inflammation and tissue damage. Alterations in the state and function of the nervous system influence the immune response. The nervous system regulates innate immune responses through the release of neurotransmitters, neuropeptides and neurohormones. However, many questions related to the molecular and cellular mechanisms involved, the physiological role of the link between the immune and the nervous system, and the biological significance of neuro-immune interactions remain unresolved. The interactions between the nematode Caenorhabditis elegans and its pathogens provide insights into mechanisms of neuroendocrine regulation of immunity and address many outstanding issues related to neuro-immune interactions.
Collapse
Affiliation(s)
- Trupti Kawli
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 394305, USA
| | | | | |
Collapse
|
29
|
Cigarette smoke inhibits airway epithelial cell innate immune responses to bacteria. Infect Immun 2010; 78:2146-52. [PMID: 20194598 DOI: 10.1128/iai.01410-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human upper respiratory tract, including the nasopharynx, is colonized by a diverse array of microorganisms. While the host generally exists in harmony with the commensal microflora, under certain conditions, these organisms may cause local or systemic disease. Respiratory epithelial cells act as local sentinels of the innate immune system, responding to conserved microbial patterns through activation of signal transduction pathways and cytokine production. In addition to colonizing microbes, these cells may also be influenced by environmental agents, including cigarette smoke (CS). Because of the strong relationship among secondhand smoke exposure, bacterial infection, and sinusitis, we hypothesized that components in CS might alter epithelial cell innate immune responses to pathogenic bacteria. We examined the effect of CS condensate (CSC) or extract (CSE) on signal transduction and cytokine production in primary and immortalized epithelial cells of human or murine origin in response to nontypeable Haemophilus influenzae and Staphylococcus aureus. We observed that epithelial production of interleukin-8 (IL-8) and IL-6 in response to bacterial stimulation was significantly inhibited in the presence of CS (P < 0.001 for inhibition by either CSC or CSE). In contrast, epithelial production of beta interferon (IFN-beta) was not inhibited. CSC decreased NF-kappaB activation (P < 0.05) and altered the kinetics of mitogen-activated protein kinase phosphorylation in cells exposed to bacteria. Treatment of CSC with antioxidants abrogated CSC-mediated reduction of epithelial IL-8 responses to bacteria (P > 0.05 compared to cells without CSC treatment). These results identify a novel oxidant-mediated immunosuppressive role for CS in epithelial cells.
Collapse
|
30
|
O'Callaghan D, Vergunst A. Non-mammalian animal models to study infectious disease: worms or fly fishing? Curr Opin Microbiol 2010; 13:79-85. [PMID: 20045373 DOI: 10.1016/j.mib.2009.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
A major challenge in studying human infectious diseases is to understand in detail the molecular bases, including both pathogen and host-related factors, which contribute to disease development. Non-mammalian models have proven to be of great value for our understanding of disease and have shown conservation in fundamental virulence mechanisms for the infection of evolutionary divergent hosts. In this review we describe recent advances with three major non-mammalian models used for analysis of infectious disease in humans; the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the zebrafish Danio rerio.
Collapse
Affiliation(s)
- David O'Callaghan
- INSERM Espri 26, UFR Médecine, Université de Montpellier 1, EA4204, UFR Médecine, Nimes, France.
| | | |
Collapse
|