1
|
Gasparis S, Miłoszewski MM. Genetic Basis of Grain Size and Weight in Rice, Wheat, and Barley. Int J Mol Sci 2023; 24:16921. [PMID: 38069243 PMCID: PMC10706642 DOI: 10.3390/ijms242316921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Grain size is a key component of grain yield in cereals. It is a complex quantitative trait controlled by multiple genes. Grain size is determined via several factors in different plant development stages, beginning with early tillering, spikelet formation, and assimilates accumulation during the pre-anthesis phase, up to grain filling and maturation. Understanding the genetic and molecular mechanisms that control grain size is a prerequisite for improving grain yield potential. The last decade has brought significant progress in genomic studies of grain size control. Several genes underlying grain size and weight were identified and characterized in rice, which is a model plant for cereal crops. A molecular function analysis revealed most genes are involved in different cell signaling pathways, including phytohormone signaling, transcriptional regulation, ubiquitin-proteasome pathway, and other physiological processes. Compared to rice, the genetic background of grain size in other important cereal crops, such as wheat and barley, remains largely unexplored. However, the high level of conservation of genomic structure and sequences between closely related cereal crops should facilitate the identification of functional orthologs in other species. This review provides a comprehensive overview of the genetic and molecular bases of grain size and weight in wheat, barley, and rice, focusing on the latest discoveries in the field. We also present possibly the most updated list of experimentally validated genes that have a strong effect on grain size and discuss their molecular function.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, 05-870 Błonie, Poland;
| | | |
Collapse
|
2
|
Birkeli K, Gya R, Haugum SV, Velle LG, Vandvik V. Germination and seedling growth of Calluna vulgaris is sensitive to regional climate, heathland succession, and drought. Ecol Evol 2023; 13:e10199. [PMID: 37408632 PMCID: PMC10318425 DOI: 10.1002/ece3.10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
The coastal heathlands of Northwest Europe are highly valued cultural landscapes, that are critically endangered due to land use and climatic changes, such as increased frequency and severity of drought events. Our study is the first to assess how the germination and early seedling growth of Calluna vulgaris respond to drought. In a factorial design field experiment, we exposed maternal plants to three in-situ drought treatments (control, 60%, 90% roof coverage), across three successional stages after fire (pioneer, building, mature), and two regions (60°N, 65°N). Seeds from 540 plants within the experiment were, weighed, and exposed to five water potentials, ranging from -0.25 to -1.7 MPa, in a growth chamber experiment. We recorded germination (percentage, rate), seedling growth (above- vs. belowground allocation), and seedling functional traits (specific leaf area [SLA], specific root length [SRL]). Overall variation in germination between regions, successional stages, and maternal drought treatments was largely mediated by variation in seed mass. Plants from the northernmost region had higher seed mass and germination percentages. This is indicative of higher investment in seeds, likely linked to the populations' absence of vegetative root sprouting. Seeds from the mature successional stage germinated to lower final percentages than those from earlier successional stages, especially when the maternal plants had been exposed to drought (60% and 90% roof coverage). Exposure to reduced water availability decreased germination percentage and increased the time to 50% germination. Seedlings fully developed in the range -0.25 to -0.7 MPa, with increased root:shoot and lower SRL during reduced water availability, suggesting a resource-conservative response to drought during the early stages of development. Our results thus suggest a sensitivity to drought during the germination and seedling life-history stages that may reduce Calluna's ability to re-establish from seeds as the incidence and severity of droughts are projected to increase under future climates.
Collapse
Affiliation(s)
- Kristine Birkeli
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| | - Ragnhild Gya
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| | - Siri Vatsø Haugum
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
- The Heathland CentreAlverNorway
| | | | - Vigdis Vandvik
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| |
Collapse
|
3
|
Christie K, Pierson NR, Lowry DB, Holeski LM. Local adaptation of seed and seedling traits along a natural aridity gradient may both predict and constrain adaptive responses to climate change. AMERICAN JOURNAL OF BOTANY 2022; 109:1529-1544. [PMID: 36129014 PMCID: PMC9828382 DOI: 10.1002/ajb2.16070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Variation in seed and seedling traits underlies how plants interact with their environment during establishment, a crucial life history stage. We quantified genetic-based variation in seed and seedling traits in populations of the annual plant Plantago patagonica across a natural aridity gradient, leveraging natural intraspecific variation to predict how populations might evolve in response to increasing aridity associated with climate change in the Southwestern U.S. METHODS We quantified seed size, seed size variation, germination timing, and specific leaf area in a greenhouse common garden, and related these traits to the climates of source populations. We then conducted a terminal drought experiment to determine which traits were most predictive of survival under early-season drought. RESULTS All traits showed evidence of clinal variation-seed size decreased, germination timing accelerated, and specific leaf area increased with increasing aridity. Populations with more variable historical precipitation regimes showed greater variation in seed size, suggestive of past selection shaping a diversified bet-hedging strategy mediated by seed size. Seedling height, achieved via larger seeds or earlier germination, was a significant predictor of survival under drought. CONCLUSIONS We documented substantial interspecific trait variation as well as clinal variation in several important seed and seedling traits, yet these slopes were often opposite to predictions for how individual traits might confer drought tolerance. This work shows that plant populations may adapt to increasing aridity via correlated trait responses associated with alternative life history strategies, but that trade-offs might constrain adaptive responses in individual traits.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Biological SciencesNorthern Arizona UniversityFlagstaff, Arizona86011USA
- Department of Plant BiologyMichigan State UniversityEast Lansing, Michigan48824USA
| | - Natalie R. Pierson
- Department of Biological SciencesNorthern Arizona UniversityFlagstaff, Arizona86011USA
| | - David B. Lowry
- Department of Plant BiologyMichigan State UniversityEast Lansing, Michigan48824USA
| | - Liza M. Holeski
- Department of Biological SciencesNorthern Arizona UniversityFlagstaff, Arizona86011USA
| |
Collapse
|
4
|
Ćalić I, Groen SC, Choi JY, Joly‐Lopez Z, Hamann E, Natividad MA, Dorph K, Cabral CLU, Torres RO, Vergara GV, Henry A, Purugganan MD, Franks SJ. The influence of genetic architecture on responses to selection under drought in rice. Evol Appl 2022; 15:1670-1690. [PMID: 36330294 PMCID: PMC9624088 DOI: 10.1111/eva.13419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Accurately predicting responses to selection is a major goal in biology and important for successful crop breeding in changing environments. However, evolutionary responses to selection can be constrained by such factors as genetic and cross-environment correlations, linkage, and pleiotropy, and our understanding of the extent and impact of such constraints is still developing. Here, we conducted a field experiment to investigate potential constraints to selection for drought resistance in rice (Oryza sativa) using phenotypic selection analysis and quantitative genetics. We found that traits related to drought response were heritable, and some were under selection, including selection for earlier flowering, which could allow drought escape. However, patterns of selection generally were not opposite under wet and dry conditions, and we did not find individual or closely linked genes that influenced multiple traits, indicating a lack of evidence that antagonistic pleiotropy, linkage, or cross-environment correlations would constrain selection for drought resistance. In most cases, genetic correlations had little influence on responses to selection, with direct and indirect selection largely congruent. The exception to this was seed mass under drought, which was predicted to evolve in the opposite direction of direct selection due to correlations. Because of this indirect effect on selection on seed mass, selection for drought resistance was not accompanied by a decrease in seed mass, and yield increased with fecundity. Furthermore, breeding lines with high fitness and yield under drought also had high fitness and yield under wet conditions, indicating that there was no evidence for a yield penalty on drought resistance. We found multiple genes in which expression influenced both water use efficiency (WUE) and days to first flowering, supporting a genetic basis for the trade-off between drought escape and avoidance strategies. Together, these results can provide helpful guidance for understanding and managing evolutionary constraints and breeding stress-resistant crops.
Collapse
Affiliation(s)
- Irina Ćalić
- Department of Biological SciencesFordham UniversityBronxNew YorkUSA
- Institute of BotanyUniversity of CologneCologneGermany
| | - Simon C. Groen
- Department of NematologyUniversity of California at RiversideRiversideCaliforniaUSA
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jae Young Choi
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Zoé Joly‐Lopez
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Département de ChimieUniversité du Québec à MontréalQuébecCanada
| | - Elena Hamann
- Department of Biological SciencesFordham UniversityBronxNew YorkUSA
- Department of Genetics and Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Katherine Dorph
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | | | | | - Georgina V. Vergara
- International Rice Research InstituteLos BañosLagunaPhilippines
- Institute of Crop ScienceUniversity of the Philippines Los BañosLos BañosLagunaPhilippines
| | - Amelia Henry
- International Rice Research InstituteLos BañosLagunaPhilippines
| | - Michael D. Purugganan
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Center for Genomics and Systems BiologyNYU Abu Dhabi Research Institute, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Steven J. Franks
- Department of Biological SciencesFordham UniversityBronxNew YorkUSA
| |
Collapse
|
5
|
Seed Quantity or Quality?-Reproductive Responses of Females of Two Dioecious Woody Species to Long-Term Fertilisation. Int J Mol Sci 2022; 23:ijms23063187. [PMID: 35328608 PMCID: PMC8948795 DOI: 10.3390/ijms23063187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022] Open
Abstract
Although seed quality and quantity, as well as reproductive performance are important life history stages of plants, little is known about the reproductive responses of trees to environmental changes such as increased anthropogenic deposition of nitrogen (N) and phosphorus (P). Dioecious plants are good models with which to test the environmental impact on female or male reproductive responses individually. We analysed effects of different long-term nutritional availability on the reproductive performance of two dioecious species (Taxus baccata L. and Juniperus communis L.) characterised by different life histories. By using pot experiments with vegetatively propagated plants grown in different fertilisation conditions, we observed an increase in plant growth and strobili production but a decrease in seed efficiency. Seeds produced by fertilised plants had greater seed mass. Fertiliser addition did not change C or N content nor the C/N ratio of T. baccata seeds, but increased N content and the N/P ratio; however, it did lower the C/N ratio in J. communis. Fertilisation did not change the metabolite profile in T. baccata but 18 metabolites were changed in J. communis. The study revealed new links between species life history, environmental changes, and reproduction. The findings imply that future environmental conditions may alter both seed productivity, and quality, as well as plant reproductive behaviour.
Collapse
|
6
|
Green revolution to grain revolution: Florigen in the frontiers. J Biotechnol 2022; 343:38-46. [PMID: 34673121 DOI: 10.1016/j.jbiotec.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Burgeoning human population dents, globally, the brimming buffer stock as well as gain in food grain production. However, an imminent global starvation was averted through precise scientific intervention and pragmatic policy changes in the 1960s and was eulogized as the "Green Revolution". Miracle rice and wheat obtained through morphometric changes in the ideotype of these two crops yielded bumper harvest that nucleated in Asia and translated into Latin America. The altered agronomic traits in these two crops were the result of tinkering with the phyto-hormone "Gibberellin'. Recently, another plant hormone 'Cytokinin' has gained prominence for its involvement in the grain revolution in rice and other field crops. Suo moto homeostasis of CK by the cytokinin oxidase enzyme governs the cardinal shoot apical meristem that produces new flowering primordia thereby enhancing grain number. Similarly, the flowering hormone 'Florigen' impacts sympodia formation, flowering, and fruit production in tomato. The role of heterozygosity induced heterosis by florigen in revolutionizing tomato production and cellular homeostasis of CK by CK oxidising enzyme (CKX) in enhancing rice production has been path-breaking. This review highlights role of phytohormones in grain revolution and crop specific fine-tuning of gibberellins, cytokinins and florigen to accomplish maximum yield potential in field crops.
Collapse
|
7
|
Hodgson JG, Montserrat Marti G, Šerá B, Jones G, Bogaard A, Charles M, Font X, Ater M, Taleb A, Santini BA, Hmimsa Y, Palmer C, Wilson PJ, Band SR, Styring A, Diffey C, Green L, Nitsch E, Stroud E, Warham G. Seed size, number and strategies in annual plants: a comparative functional analysis and synthesis. ANNALS OF BOTANY 2020; 126:1109-1128. [PMID: 32812638 PMCID: PMC7751024 DOI: 10.1093/aob/mcaa151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Plants depend fundamentally on establishment from seed. However, protocols in trait-based ecology currently estimate seed size but not seed number. This can be rectified. For annuals, seed number should simply be a positive function of vegetative biomass and a negative function of seed size. METHODS Using published values of comparative seed number as the 'gold standard' and a large functional database, comparative seed yield and number per plant and per m2 were predicted by multiple regression. Subsequently, ecological variation in each was explored for English and Spanish habitats, newly calculated C-S-R strategies and changed abundance in the British flora. KEY RESULTS As predicted, comparative seed mass yield per plant was consistently a positive function of plant size and competitive ability, and largely independent of seed size. Regressions estimating comparative seed number included, additionally, seed size as a negative function. Relationships differed numerically between regions, habitats and C-S-R strategies. Moreover, some species differed in life history over their geographical range. Comparative seed yield per m2 was positively correlated with FAO crop yield, and increasing British annuals produced numerous seeds. Nevertheless, predicted values must be viewed as comparative rather than absolute: they varied according to the 'gold standard' predictor used. Moreover, regressions estimating comparative seed yield per m2 achieved low precision. CONCLUSIONS For the first time, estimates of comparative seed yield and number for >800 annuals and their predictor equations have been produced and the ecological importance of these regenerative traits has been illustrated. 'Regenerative trait-based ecology' remains in its infancy, with work needed on determinate vs. indeterminate flowering ('bet-hedging'), C-S-R methodologies, phylogeny, comparative seed yield per m2 and changing life history. Nevertheless, this has been a positive start and readers are invited to use estimates for >800 annuals, in the Supplementary data, to help advance 'regenerative trait-based ecology' to the next level.
Collapse
Affiliation(s)
- John G Hodgson
- Unit of Comparative Plant Ecology, The University, Sheffield, UK
- Department of Archaeology, The University, Sheffield, UK
- For correspondence. Email
| | - Gabriel Montserrat Marti
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología (CSIC), Avda. Montañana, Zaragoza, Spain
| | - Bozena Šerá
- Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova, Bratislava, Slovakia
| | - Glynis Jones
- Department of Archaeology, The University, Sheffield, UK
| | - Amy Bogaard
- School of Archaeology, University of Oxford, Oxford, UK
| | - Mike Charles
- School of Archaeology, University of Oxford, Oxford, UK
| | - Xavier Font
- Centre de Documentació de Biodiversitat Vegetal, University of Barcelona, Barcelona, Spain
| | - Mohammed Ater
- Laboratoire Diversité et Conservation des Systèmes Biologiques (LDICOSYB), Département de Biologie, Faculté des Sciences de Tétouan, Université Abdelmalek Essaâdi, BP, Tétouan, Morocco
| | | | - Bianca A Santini
- Department of Animal and Plant Sciences, The University, Sheffield, UK
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP, Morelia, Michoacán, México
| | - Younes Hmimsa
- Laboratoire Diversité et Conservation des Systèmes Biologiques (LDICOSYB), Département de Biologie, Faculté des Sciences de Tétouan, Université Abdelmalek Essaâdi, BP, Tétouan, Morocco
| | - Carol Palmer
- Department of Archaeology, The University, Sheffield, UK
| | - Peter J Wilson
- Unit of Comparative Plant Ecology, The University, Sheffield, UK
| | - Stuart R Band
- Unit of Comparative Plant Ecology, The University, Sheffield, UK
| | - Amy Styring
- School of Archaeology, University of Oxford, Oxford, UK
| | | | - Laura Green
- School of Archaeology, University of Oxford, Oxford, UK
| | - Erika Nitsch
- School of Archaeology, University of Oxford, Oxford, UK
| | | | - Gemma Warham
- Department of Archaeology, The University, Sheffield, UK
| |
Collapse
|
8
|
Li M, Shao M, Zeng D, Ju T, Kellogg EA, Topp CN. Comprehensive 3D phenotyping reveals continuous morphological variation across genetically diverse sorghum inflorescences. THE NEW PHYTOLOGIST 2020; 226:1873-1885. [PMID: 32162345 PMCID: PMC7317572 DOI: 10.1111/nph.16533] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/23/2020] [Indexed: 05/21/2023]
Abstract
●Inflorescence architecture in plants is often complex and challenging to quantify, particularly for inflorescences of cereal grasses. Methods for capturing inflorescence architecture and for analyzing the resulting data are limited to a few easily captured parameters that may miss the rich underlying diversity. ●Here, we apply X-ray computed tomography combined with detailed morphometrics, offering new imaging and computational tools to analyze three-dimensional inflorescence architecture. To show the power of this approach, we focus on the panicles of Sorghum bicolor, which vary extensively in numbers, lengths, and angles of primary branches, as well as the three-dimensional shape, size, and distribution of the seed. ●We imaged and comprehensively evaluated the panicle morphology of 55 sorghum accessions that represent the five botanical races in the most common classification system of the species, defined by genetic data. We used our data to determine the reliability of the morphological characters for assigning specimens to race and found that seed features were particularly informative. ●However, the extensive overlap between botanical races in multivariate trait space indicates that the phenotypic range of each group extends well beyond its overall genetic background, indicating unexpectedly weak correlation between morphology, genetic identity, and domestication history.
Collapse
Affiliation(s)
- Mao Li
- Donald Danforth Plant Science CenterSt LouisMO63132USA
| | - Mon‐Ray Shao
- Donald Danforth Plant Science CenterSt LouisMO63132USA
| | - Dan Zeng
- Department of Computer Science and EngineeringWashington UniversitySt LouisMO63130USA
| | - Tao Ju
- Department of Computer Science and EngineeringWashington UniversitySt LouisMO63130USA
| | | | | |
Collapse
|
9
|
Muthukrishnan R, Sullivan LL, Shaw AK, Forester JD. Trait plasticity alters the range of possible coexistence conditions in a competition-colonisation trade-off. Ecol Lett 2020; 23:791-799. [PMID: 32086876 DOI: 10.1111/ele.13477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/13/2019] [Accepted: 01/15/2020] [Indexed: 01/18/2023]
Abstract
Most of the classical theory on species coexistence has been based on species-level competitive trade-offs. However, it is becoming apparent that plant species display high levels of trait plasticity. The implications of this plasticity are almost completely unknown for most coexistence theory. Here, we model a competition-colonisation trade-off and incorporate trait plasticity to evaluate its effects on coexistence. Our simulations show that the classic competition-colonisation trade-off is highly sensitive to environmental circumstances, and coexistence only occurs in narrow ranges of conditions. The inclusion of plasticity, which allows shifts in competitive hierarchies across the landscape, leads to coexistence across a much broader range of competitive and environmental conditions including disturbance levels, the magnitude of competitive differences between species, and landscape spatial patterning. Plasticity also increases the number of species that persist in simulations of multispecies assemblages. Plasticity may generally increase the robustness of coexistence mechanisms and be an important component of scaling coexistence theory to higher diversity communities.
Collapse
Affiliation(s)
- Ranjan Muthukrishnan
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA
| | - Lauren L Sullivan
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA
| | - Allison K Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA
| | - James D Forester
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA
| |
Collapse
|
10
|
Souza ML, Lovato MB, Fagundes M, Valladares F, Lemos-Filho JP. Soil fertility and rainfall during specific phenological phases affect seed trait variation in a widely distributed Neotropical tree, Copaifera langsdorffii. AMERICAN JOURNAL OF BOTANY 2019; 106:1096-1105. [PMID: 31334843 DOI: 10.1002/ajb2.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Knowledge of intra-specific variation in seed traits and its environmental determinants is important for predicting plant responses to environmental changes. Here, we tested the hypothesis that differences in soil fertility and rainfall during specific phenological phases drive variation in seed traits in a widely distributed tree, Copaifera langsdorffii. We also tested the hypothesis that climatic heterogeneity increases within-plant variation in seed traits. METHODS Inter- and intra-population and within-plant variation in seed mass, number, and seed size/seed number were evaluated for 50 individuals from five populations distributed along a rainfall gradient and occurring on varying soil types. Using multivariate approaches, we tested the effects of soil fertility characteristics and rainfall in five reproductive phenological phases on seed traits. RESULTS The seed traits varied greatly both among populations and within plants. Inter-population variation in seed mass was driven by total rainfall during fruit development, and variation in seed number was influenced by total rainfall during the dry season before the reproductive phase. Phosphorus levels and potential acidity of the soil also explained the variations in seed mass and seed mass/seed number, respectively. A positive association between intra-annual variation in rainfall and within-plant variation in seed mass and seed number was found. CONCLUSION Both rainfall during specific reproductive phases and soil conditions shape the variation in the seed mass and number of C. langsdorffii. Environment-driven seed trait variation may contribute to this species' broad niche breadth, which in turn may determine the species' persistence under future climatic conditions.
Collapse
Affiliation(s)
- Matheus Lopes Souza
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, 31270, Brazil
| | - Maria Bernadete Lovato
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, 31270, Brazil
| | - Marcilio Fagundes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, CCBS-UNIMONTES, Montes Claros, 39401, Brazil
| | - Fernando Valladares
- LINCGlobal Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, 28006, Spain
- Departamento de Biología y Geología ESCET, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
| | - José Pires Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, 31270, Brazil
| |
Collapse
|
11
|
van Es SW, van der Auweraert EB, Silveira SR, Angenent GC, van Dijk AD, Immink RG. Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:316-328. [PMID: 30903633 PMCID: PMC6767503 DOI: 10.1111/tpj.14326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 05/17/2023]
Abstract
Members of the Arabidopsis thaliana TCP transcription factor (TF) family affect plant growth and development. We systematically quantified the effect of mutagenizing single or multiple TCP TFs and how altered vegetative growth or branching influences final seed yield. We monitored rosette growth over time and branching patterns and seed yield characteristics at the end of the lifecycle. Subsequently, an approach was developed to disentangle vegetative growth and to determine possible effects on seed yield. Analysis of growth parameters showed all investigated tcp mutants to be affected in certain growth aspects compared with wild-type plants, highlighting the importance of TCP TFs in plant development. Furthermore, we found evidence that all class II TCPs are involved in axillary branch outgrowth, either as inhibitors (BRANCHED-like genes) or enhancers (JAW- and TCP5-like genes). Comprehensive phenotyping of plants mutant for single or multiple TCP TFs reveals that the proposed opposite functions of class I and class II TCPs in plant growth needs revision and shows complex interactions between closely related TCP genes instead of full genetic redundancy. In various instances, the alterations in vegetative growth or in branching patterns result into negative trade-off effects on seed yield that were missed in previous studies, showing the importance of comprehensive and quantitative phenotyping.
Collapse
Affiliation(s)
- Sam W. van Es
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
- Present address:
Department of Plant PhysiologyUmeå Plant Science CentreUmeå University90187UmeåSweden
| | | | - Sylvia R. Silveira
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratório de Biotecnologia VegetalCentro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaSPCEP 13416‐000Brazil
| | - Gerco C. Angenent
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
| | - Aalt D.J. van Dijk
- BiometrisWageningen University and Research6708 PBWageningenThe Netherlands
- BioinformaticsWageningen University and Research6708 PBWageningenThe Netherlands
| | - Richard G.H. Immink
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
| |
Collapse
|
12
|
Bawa KS, Ingty T, Revell LJ, Shivaprakash KN. Correlated evolution of flower size and seed number in flowering plants (monocotyledons). ANNALS OF BOTANY 2019; 123:181-190. [PMID: 30165602 PMCID: PMC6344089 DOI: 10.1093/aob/mcy154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Background and Aims Kin selection theory predicts that a parent may minimize deleterious effects of competition among seeds developing within ovaries by increasing the genetic relatedness of seeds within an ovary. Alternatively, the number of developing seeds could be reduced to one or a few. It has also been suggested that single or few seeded fruits may be correlated with small flowers, and multi-ovulate ovaries or many seeded fruits may be associated with large flowers with specialized pollination mechanisms. We examined the correlation between flower size and seed number in 69 families of monocotyledons to assess if correlations are significant and independent of phylogeny. Methods We first examined the effect of phylogenetic history on the evolution of these two traits, flower size and seed number, and then mapped correlations between them on the latest phylogenetic tree of monocotyledons. Results The results provide phylogenetically robust evidence of strong correlated evolution between flower size and seed number and show that correlated evolution of traits is not constrained by phylogenetic history of taxa. Moreover, the two character combinations, small flowers and a single or few seeds per fruit, and large flowers and many seeded fruits, have persisted in monocotyledons longer than other trait combinations. Conclusions The analyses support the suggestion that most angiosperms may fall into two categories, one with large flowers and many seeded fruits and the other with small flowers and single or few seeded fruits, and kin selection within ovaries may explain the observed patterns.
Collapse
Affiliation(s)
- Kamaljit S Bawa
- Department of Biology, University of Massachusetts, Boston, MA, USA
- Ashoka Trust for Research in Ecology and the Environment, Bangalore, India
| | - Tenzing Ingty
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Liam J Revell
- Department of Biology, University of Massachusetts, Boston, MA, USA
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - K N Shivaprakash
- Ashoka Trust for Research in Ecology and the Environment, Bangalore, India
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Lázaro A, Larrinaga AR. A multi-level test of the seed number/size trade-off in two Scandinavian communities. PLoS One 2018; 13:e0201175. [PMID: 30052656 PMCID: PMC6063417 DOI: 10.1371/journal.pone.0201175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/10/2018] [Indexed: 01/09/2023] Open
Abstract
Seed size is a fundamental life-history trait for plants. A seed number/size trade-off is assumed because the resources invested in reproduction are limited; however, such a trade-off is not always observed. This could be a consequence of the method used for testing it, where the null hypothesis is dictated by common statistical practice, rather than being based on any underlying theory. Alternatively, there might be some population- and species-dependent variables that affect resource availability and, in turn, influence the presence and intensity of this trade-off. Using data on 42 herbs from two communities (lowland and alpine) from Southern Norway, we tested the validity of the classical linear model vs. two previously proposed models, based on resource competition, when assessing the existence of this trade-off at different levels. We also evaluated whether some species- (fruit aggregation, ovules/flower) and population-dependent (pollen limitation) variables could affect this trade-off. Classical linear modelling outperformed the other proposed functional models. Significant seed number/size relationships were negative in single-fruited species, whereas they were positive in species with infructescences of one-seeded fruits. Concordantly, fruit organization was the most influencing variable for the intra-specific trade-off in the lowland community. In the alpine community, species suffering higher pollen limitation showed more strongly negative slopes between seed size and seed number at the fruit/infructescence level. Across species, seed size and number were negatively related, although the relationship was significant in only one of the communities. No evidence of trade-off was found at the plant level. Linear models provide a flexible framework that allows coping with the variability in the seed number/size relationship. The emergence of the intra-specific relationship between seed number and size depends on species- and population-dependent variables, related to resource allocation and the pollination environment.
Collapse
Affiliation(s)
- Amparo Lázaro
- Global Change Research Group, Mediterranean Institute for Advanced Studies (UIB-CSIC), C/ Miquel Marqués 21, Esporles, Balearic Islands, Spain
| | - Asier R. Larrinaga
- eNeBaDa, Rúa das Penas 57, Santiago de Compostela, A Coruña, and Misión Biológica de Galicia (CSIC), Carballeira 8, Salcedo, Pontevedra, Spain
| |
Collapse
|
14
|
Hovick SM, McArdle A, Harrison SK, Regnier EE. A mosaic of phenotypic variation in giant ragweed ( Ambrosia trifida): Local- and continental-scale patterns in a range-expanding agricultural weed. Evol Appl 2018; 11:995-1009. [PMID: 29928305 PMCID: PMC5999201 DOI: 10.1111/eva.12614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/03/2018] [Indexed: 11/29/2022] Open
Abstract
Spatial patterns of trait variation across a species' range have implications for population success and evolutionary change potential, particularly in range-expanding and weedy species that encounter distinct selective pressures at large and small spatial scales simultaneously. We investigated intraspecific trait variation in a common garden experiment with giant ragweed (Ambrosia trifida), a highly variable agricultural weed with an expanding geographic range and broad ecological amplitude. Our study included paired populations from agricultural and natural riparian habitats in each of seven regions ranging east to west from the core of the species' distribution in central Ohio to southeastern Minnesota, which is nearer the current invasion front. We observed trait variation across both large- and small-scale putative selective gradients. At large scales, giant ragweed populations from the westernmost locations were nearly four times more fecund and had a nearly 50% increase in reproductive allocation compared to populations from the core. The degree of surface texture on fruits also declined from east to west. Greater fecundity in the west represents a putative trade-off between fruit size and fruit number across the study region, although no such trade-off was found across individual plants. This pattern may effectively result in greater propagule pressure closer to the invasion front. At smaller spatial scales, plants from agricultural populations emerged later and were smaller than plants from riparian populations. However, because plants from agricultural populations allocated more biomass to reproduction, total fecundity did not differ across habitats. Our emergence data are consistent with previous observations showing delayed emergence in agricultural compared to natural populations; thus evolutionary change may be predictable as giant ragweed continues spreading into agricultural fields throughout North America. These shifts in life-history strategy apparently bear no fecundity cost, suggesting that giant ragweed's success can be attributed at least in part to its substantial adaptive potential.
Collapse
Affiliation(s)
- Stephen M. Hovick
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOHUSA
| | - Andrea McArdle
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOHUSA
| | - S. Kent Harrison
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOHUSA
| | - Emilie E. Regnier
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
15
|
Iriondo JM, Milla R, Volis S, Rubio de Casas R. Reproductive traits and evolutionary divergence between Mediterranean crops and their wild relatives. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:78-88. [PMID: 28976618 DOI: 10.1111/plb.12640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/27/2017] [Indexed: 05/12/2023]
Abstract
Changes in reproductive traits associated with domestication critically determine the evolutionary divergence between crops and their wild relatives, as well as the potential of crop plants to become feral. In this review, we examine the genetic mechanisms of plant domestication and the different types of selection involved, and describe the particularities of domestication of Mediterranean field crops with regard to their reproductive traits, showing illustrative examples. We also explore gene flow patterns between Mediterranean field crops and their wild relatives, along with their ecological, evolutionary and economic implications. Domestication entails multiple selective processes, including direct selection, environmental adaptation and developmental constraints. In contrast to clonal propagation in perennials, sexual reproduction and seed propagation in annuals and biennials have led to a distinct pathway of evolution of reproductive traits. Thus, the initial domestication and further breeding of Mediterranean field crops has brought about changes in reproductive traits, such as higher mean values and variance of seed and fruit sizes, reduced fruit and seed toxicity, non-shattering seeds and loss of seed dormancy. Evolution under domestication is not a linear process, and bi-directional gene flow between wild and crop taxa is a frequent phenomenon. Thus, hybridisation and introgression have played a very important role in determining the genetics of current cultivars. In turn, gene flow from crops to wild relatives can lead to introgression of crop genes into wild populations and potentially alter the characteristics of natural communities. In conclusion, plant evolution under domestication has not only changed the reproductive biology of cultivated taxa, its effects are multifaceted and have implications beyond agriculture.
Collapse
Affiliation(s)
- J M Iriondo
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - R Milla
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - S Volis
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - R Rubio de Casas
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
16
|
Züst T, Agrawal AA. Trade-Offs Between Plant Growth and Defense Against Insect Herbivory: An Emerging Mechanistic Synthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:513-534. [PMID: 28142282 DOI: 10.1146/annurev-arplant-042916-040856] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Costs of defense are central to our understanding of interactions between organisms and their environment, and defensive phenotypes of plants have long been considered to be constrained by trade-offs that reflect the allocation of limiting resources. Recent advances in uncovering signal transduction networks have revealed that defense trade-offs are often the result of regulatory "decisions" by the plant, enabling it to fine-tune its phenotype in response to diverse environmental challenges. We place these results in the context of classic studies in ecology and evolutionary biology, and propose a unifying framework for growth-defense trade-offs as a means to study the plant's allocation of limiting resources. Pervasive physiological costs constrain the upper limit to growth and defense traits, but the diversity of selective pressures on plants often favors negative correlations at intermediate trait levels. Despite the ubiquity of underlying costs of defense, the current challenge is using physiological and molecular approaches to predict the conditions where they manifest as detectable trade-offs.
Collapse
Affiliation(s)
- Tobias Züst
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland;
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology and Department of Entomology, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
17
|
Ando Y, Utsumi S, Ohgushi T. Aphid as a network creator for the plant‐associated arthropod community and its consequence for plant reproductive success. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yoshino Ando
- Center for Ecological Research Kyoto University Otsu Shiga 520‐2113 Japan
- Northern Forestry Research and Development Office Field Science Center for Northern Biosphere Hokkaido University Nayoro Hokkaido 096‐0071 Japan
| | - Shunsuke Utsumi
- Center for Ecological Research Kyoto University Otsu Shiga 520‐2113 Japan
- Uryu Experimental Forest Field Science Center for Northern Biosphere Hokkaido University Horokanai Hokkaido 074‐0741 Japan
| | - Takayuki Ohgushi
- Center for Ecological Research Kyoto University Otsu Shiga 520‐2113 Japan
| |
Collapse
|
18
|
Jahnke S, Roussel J, Hombach T, Kochs J, Fischbach A, Huber G, Scharr H. phenoSeeder - A Robot System for Automated Handling and Phenotyping of Individual Seeds. PLANT PHYSIOLOGY 2016; 172:1358-1370. [PMID: 27663410 PMCID: PMC5100762 DOI: 10.1104/pp.16.01122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/21/2016] [Indexed: 05/06/2023]
Abstract
The enormous diversity of seed traits is an intriguing feature and critical for the overwhelming success of higher plants. In particular, seed mass is generally regarded to be key for seedling development but is mostly approximated by using scanning methods delivering only two-dimensional data, often termed seed size. However, three-dimensional traits, such as the volume or mass of single seeds, are very rarely determined in routine measurements. Here, we introduce a device named phenoSeeder, which enables the handling and phenotyping of individual seeds of very different sizes. The system consists of a pick-and-place robot and a modular setup of sensors that can be versatilely extended. Basic biometric traits detected for individual seeds are two-dimensional data from projections, three-dimensional data from volumetric measures, and mass, from which seed density is also calculated. Each seed is tracked by an identifier and, after phenotyping, can be planted, sorted, or individually stored for further evaluation or processing (e.g. in routine seed-to-plant tracking pipelines). By investigating seeds of Arabidopsis (Arabidopsis thaliana), rapeseed (Brassica napus), and barley (Hordeum vulgare), we observed that, even for apparently round-shaped seeds of rapeseed, correlations between the projected area and the mass of seeds were much weaker than between volume and mass. This indicates that simple projections may not deliver good proxies for seed mass. Although throughput is limited, we expect that automated seed phenotyping on a single-seed basis can contribute valuable information for applications in a wide range of wild or crop species, including seed classification, seed sorting, and assessment of seed quality.
Collapse
Affiliation(s)
- Siegfried Jahnke
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Johanna Roussel
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Thomas Hombach
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Johannes Kochs
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Andreas Fischbach
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Gregor Huber
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Hanno Scharr
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| |
Collapse
|
19
|
Sornay E, Dewitte W, Murray JAH. Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture. PLANT SIGNALING & BEHAVIOR 2016; 11:e1192741. [PMID: 27286190 PMCID: PMC4991333 DOI: 10.1080/15592324.2016.1192741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The size of seeds is the result of cell proliferation and growth in the three seed compartments: the embryo, endosperm and integuments. Targeting expression of the D-type cyclin CYCD7;1 to the central cell and early endosperm (FWA:CYCD7;1) triggered nuclear divisions and partial ovule abortion, reducing seed number in each silique and leading to increased seed size. A similar effect on seed size was observed with other segregating embryo lethal mutations, suggesting caution is needed in interpreting apparent seed size phenotypes. Here, we show that the positive effect of FWA:CYCD7;1 on Arabidopsis seed size is modulated by the architecture of the mother plant. Larger seeds were produced in FWA:CYCD7;1 lines with unmodified inflorescences, and also upon removal of side branches and axillary stems. This phenotype was absent from inflorescences with increased axillary floral stems produced by pruning of the main stem. Given this apparent confounding influence of resource allocation on transgenes effect, we conclude that plant architecture is a further important factor to consider in appraising seed phenotypes.
Collapse
Affiliation(s)
- E. Sornay
- Cardiff School Biosciences, Cardiff University, Cardiff, Wales, UK
- CONTACT E. Sornay J.A.H. Murray Cardiff School of Biosciences, Sir Martin Evasn Building, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - W. Dewitte
- Cardiff School Biosciences, Cardiff University, Cardiff, Wales, UK
| | - J. A. H. Murray
- Cardiff School Biosciences, Cardiff University, Cardiff, Wales, UK
- CONTACT E. Sornay J.A.H. Murray Cardiff School of Biosciences, Sir Martin Evasn Building, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
20
|
Abstract
The cytokinins have been implicated in many facets of plant growth and development including cell division and differentiation, shoot and root growth, apical dominance, senescence, fruit and seed development, and the response to biotic and abiotic stressors. Cytokinin levels are regulated by a balance between biosynthesis [isopentenyl transferase (IPT)], activation [Lonely Guy (LOG)], inactivation (O-glucosyl transferase), re-activation (β-glucosidase), and degradation [cytokinin oxidase/dehydrogenase (CKX)]. During senescence, the levels of active cytokinins decrease, with premature senescence leading to a decrease in yield. During the early stages of fruit and seed development, cytokinin levels are transiently elevated, and coincide with nuclear and cell divisions which are a determinant of final seed size. Exogenous application of cytokinin, ectopic expression of IPT, or down-regulation of CKX have, on occasions, led to increased seed yield, leading to the suggestion that cytokinin may be limiting yield. However, manipulation of cytokinins is complex, not only because of their pleiotropic nature but also because the genes coding for biosynthesis and metabolism belong to multigene families, the members of which are themselves spatially and temporally differentiated. Previous research on yield of rice showed that plant breeders could directly target the cytokinins. Modern genome editing tools could be employed to target and manipulate cytokinin levels to increase seed yield with the concurrent aim of maintaining quality. However, how the cytokinin level is modified and whether IPT or CKX is targeted may depend on whether the plant is considered to be in a source-limiting environment or to be sink limited.
Collapse
Affiliation(s)
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand School of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
21
|
The genetic basis of natural variation in seed size and seed number and their trade-off using Arabidopsis thaliana MAGIC lines. Genetics 2014; 198:1751-8. [PMID: 25313128 DOI: 10.1534/genetics.114.170746] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Offspring number and size are key traits determining an individual's fitness and a crop's yield. Yet, extensive natural variation within species is observed for these traits. Such variation is typically explained by trade-offs between fecundity and quality, for which an optimal solution is environmentally dependent. Understanding the genetic basis of seed size and number, as well as any possible genetic constraints preventing the maximization of both, is crucial from both an evolutionary and applied perspective. We investigated the genetic basis of natural variation in seed size and number using a set of Arabidopsis thaliana multiparent advanced generation intercross (MAGIC) lines. We also tested whether life history affects seed size, number, and their trade-off. We found that both seed size and seed number are affected by a large number of mostly nonoverlapping QTL, suggesting that seed size and seed number can evolve independently. The allele that increases seed size at most identified QTL is from the same natural accession, indicating past occurrence of directional selection for seed size. Although a significant trade-off between seed size and number is observed, its expression depends on life-history characteristics, and generally explains little variance. We conclude that the trade-off between seed size and number might have a minor role in explaining the maintenance of variation in seed size and number, and that seed size could be a valid target for selection.
Collapse
|
22
|
Saeki Y, Tuda M, Crowley PH. Allocation tradeoffs and life histories: a conceptual and graphical framework. OIKOS 2014. [DOI: 10.1111/oik.00956] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Manzano-Piedras E, Marcer A, Alonso-Blanco C, Picó FX. Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana. PLoS One 2014; 9:e87836. [PMID: 24498381 PMCID: PMC3912251 DOI: 10.1371/journal.pone.0087836] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022] Open
Abstract
The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.
Collapse
Affiliation(s)
- Esperanza Manzano-Piedras
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Arnald Marcer
- CREAF, Cerdanyola del Vallès, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - F. Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| |
Collapse
|
24
|
Zhang L, Sun X, Tian Y, Gong X. Composted green waste as a substitute for peat in growth media: effects on growth and nutrition of Calathea insignis. PLoS One 2013; 8:e78121. [PMID: 24205121 PMCID: PMC3812227 DOI: 10.1371/journal.pone.0078121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
Peat mined from endangered wetland ecosystems is generally used as a component in soilless potting media in horticulture but is a costly and non-renewable natural resource. The objective of this work was to study the feasibility of replacing peat with different percentages (0, 10, 30, 50, 70, 90, and 100%) of composted green waste (CGW) as growth media for the production of the ornamental plant Calathea insignis. Compared with 100% peat media, media containing CGW had improved physical and chemical characteristics to achieve the acceptable ranges. Moreover, CGW addition had increased the stability (i.e., reduced the decomposition rates) of growth media mixtures, as indicated by comparison of particle-size distribution at the start and end of a 7-month greenhouse experiment. Addition of CGW also supported increased plant growth (biomass production, root morphology, nutrient contents, and photosynthetic pigment contents). The physical and chemical characteristics of growth media and plant growth were best with a medium containing 70% CGW and were better in a medium with 100% CGW than in one with 100% peat media. These results indicate that CGW is a viable alternative to peat for the cultivation of Calathea insignis.
Collapse
Affiliation(s)
- Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing, P.R. China
| | - Xiangyang Sun
- College of Forestry, Beijing Forestry University, Beijing, P.R. China
- * E-mail:
| | - Yun Tian
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, P.R. China
| | - Xiaoqiang Gong
- College of Forestry, Beijing Forestry University, Beijing, P.R. China
| |
Collapse
|
25
|
Saeki Y, Crowley PH. The size-number trade-off in clonal broods of a parasitic wasp: responses to the amount and timing of resource availability. Funct Ecol 2012. [DOI: 10.1111/1365-2435.12014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yoriko Saeki
- Department of Biology; University of Kentucky; Lexington; KY; USA
| | | |
Collapse
|
26
|
Pichancourt JB, van Klinken RD. Phenotypic plasticity influences the size, shape and dynamics of the geographic distribution of an invasive plant. PLoS One 2012; 7:e32323. [PMID: 22384216 PMCID: PMC3288080 DOI: 10.1371/journal.pone.0032323] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 11/18/2022] Open
Abstract
Phenotypic plasticity has long been suspected to allow invasive species to expand their geographic range across large-scale environmental gradients. We tested this possibility in Australia using a continental scale survey of the invasive tree Parkinsonia aculeata (Fabaceae) in twenty-three sites distributed across four climate regions and three habitat types. Using tree-level responses, we detected a trade-off between seed mass and seed number across the moisture gradient. Individual trees plastically and reversibly produced many small seeds at dry sites or years, and few big seeds at wet sites and years. Bigger seeds were positively correlated with higher seed and seedling survival rates. The trade-off, the relation between seed mass, seed and seedling survival, and other fitness components of the plant life-cycle were integrated within a matrix population model. The model confirms that the plastic response resulted in average fitness benefits across the life-cycle. Plasticity resulted in average fitness being positively maintained at the wet and dry range margins where extinction risks would otherwise have been high (“Jack-of-all-Trades” strategy JT), and fitness being maximized at the species range centre where extinction risks were already low (“Master-of-Some” strategy MS). The resulting hybrid “Jack-and-Master” strategy (JM) broadened the geographic range and amplified average fitness in the range centre. Our study provides the first empirical evidence for a JM species. It also confirms mechanistically the importance of phenotypic plasticity in determining the size, the shape and the dynamic of a species distribution. The JM allows rapid and reversible phenotypic responses to new or changing moisture conditions at different scales, providing the species with definite advantages over genetic adaptation when invading diverse and variable environments. Furthermore, natural selection pressure acting on phenotypic plasticity is predicted to result in maintenance of the JT and strengthening of the MS, further enhancing the species invasiveness in its range centre.
Collapse
|
27
|
Hector A, Bell T, Hautier Y, Isbell F, Kéry M, Reich PB, van Ruijven J, Schmid B. BUGS in the analysis of biodiversity experiments: species richness and composition are of similar importance for grassland productivity. PLoS One 2011; 6:e17434. [PMID: 21399688 PMCID: PMC3047546 DOI: 10.1371/journal.pone.0017434] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 02/03/2011] [Indexed: 11/24/2022] Open
Abstract
The idea that species diversity can influence ecosystem functioning has been controversial and its importance relative to compositional effects hotly debated. Unfortunately, assessing the relative importance of different explanatory variables in complex linear models is not simple. In this paper we assess the relative importance of species richness and species composition in a multilevel model analysis of net aboveground biomass production in grassland biodiversity experiments by estimating variance components for all explanatory variables. We compare the variance components using a recently introduced graphical Bayesian ANOVA. We show that while the use of test statistics and the R2 gives contradictory assessments, the variance components analysis reveals that species richness and composition are of roughly similar importance for primary productivity in grassland biodiversity experiments.
Collapse
Affiliation(s)
- Andy Hector
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang S, Zhao C, Lamb EG. Cotyledon damage affects seed number through final plant size in the annual grassland species Medicago lupulina. ANNALS OF BOTANY 2011; 107:437-42. [PMID: 21196450 PMCID: PMC3043934 DOI: 10.1093/aob/mcq259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/09/2010] [Accepted: 11/22/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS The effects of cotyledon damage on seedling growth and survival are relatively well established, but little is known about the effects on aspects of plant fitness such as seed number and size. Here the direct and indirect mechanisms linking cotyledon damage and plant fitness in the annual species Medicago lupulina are examined. METHODS Growth and reproductive traits, including mature plant size, time to first flowering, flower number, seed number and individual seed mass were monitored in M. lupulina plants when zero, one or two cotyledons were removed at 7 d old. Structural equation modelling (SEM) was used to examine the mechanisms linking cotyledon damage to seed number and seed mass. KEY RESULTS Cotyledon damage reduced seed number but not individual seed mass. The primary mechanism was a reduction in plant biomass with cotyledon damage that in turn reduced seed number primarily through a reduction in flower numbers. Although cotyledon damage delayed flower initiation, it had little effect on seed number. Individual seed mass was not affected by cotyledon removal, but there was a trade-off between seed number and seed mass. CONCLUSIONS It is shown how a network of indirect mechanisms link damage to cotyledons and fitness in M. lupulina. Cotyledon damage had strong direct effects on both plant size and flowering phenology, but an analysis of the causal relationships among plant traits and fitness components showed that a reduction in plant size associated with cotyledon damage was an important mechanism influencing fitness.
Collapse
Affiliation(s)
- Shiting Zhang
- Institute of Ecology, Key Laboratory of Arid and Grassland Agroecology of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Chuan Zhao
- Institute of Ecology, Key Laboratory of Arid and Grassland Agroecology of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Eric G. Lamb
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
29
|
Fakheran S, Paul-Victor C, Heichinger C, Schmid B, Grossniklaus U, Turnbull LA. Adaptation and extinction in experimentally fragmented landscapes. Proc Natl Acad Sci U S A 2010; 107:19120-5. [PMID: 20956303 PMCID: PMC2973902 DOI: 10.1073/pnas.1010846107] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Competition and disturbance are potent ecological forces that shape evolutionary trajectories. These forces typically work in opposition: when disturbance is infrequent, densities are high and competition is intense. In contrast, frequent disturbance creates a low-density environment in which competition is weak and good dispersal essential. We exploited recent advances in genomic research to quantify the response to selection by these powerful ecological forces at the phenotypic and molecular genetic level in experimental landscapes. We grew the annual plant Arabidopsis thaliana in discrete patches embedded in a hostile matrix and varied the number and size of patches and the intensity of disturbance, by creating both static and dynamic landscapes. In static landscapes all patches were undisturbed, whereas in dynamic landscapes all patches were destroyed in each generation, forcing seeds to disperse to new locations. We measured the resulting changes in phenotypic, genetic, and genotypic diversity after five generations of selection. Simulations revealed that the observed loss of genetic diversity dwarfed that expected under drift, with dramatic diversity loss, particularly from dynamic landscapes. In line with ecological theory, static landscapes favored good competitors; however, competitive ability was linked to growth rate and not, as expected, to seed mass. In dynamic landscapes, there was strong selection for increased dispersal ability in the form of increased inflorescence height and reduced seed mass. The most competitive genotypes were almost eliminated from highly disturbed landscapes, raising concern over the impact of increased levels of human-induced disturbance in natural landscapes.
Collapse
Affiliation(s)
- Sima Fakheran
- Institute of Evolutionary Biology and Environmental Studies and Zürich-Basel Plant Science Center, University of Zürich, CH-8057 Zürich, Switzerland; and
| | - Cloé Paul-Victor
- Institute of Evolutionary Biology and Environmental Studies and Zürich-Basel Plant Science Center, University of Zürich, CH-8057 Zürich, Switzerland; and
| | - Christian Heichinger
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland
| | - Bernhard Schmid
- Institute of Evolutionary Biology and Environmental Studies and Zürich-Basel Plant Science Center, University of Zürich, CH-8057 Zürich, Switzerland; and
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland
| | - Lindsay A. Turnbull
- Institute of Evolutionary Biology and Environmental Studies and Zürich-Basel Plant Science Center, University of Zürich, CH-8057 Zürich, Switzerland; and
| |
Collapse
|
30
|
Paul-Victor C, Züst T, Rees M, Kliebenstein DJ, Turnbull LA. A new method for measuring relative growth rate can uncover the costs of defensive compounds in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 187:1102-1111. [PMID: 20561205 DOI: 10.1111/j.1469-8137.2010.03325.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
*Most plants suffer some degree of herbivore attack and many actively defend themselves against such an event. However, while such defence is generally assumed to be costly, it has sometimes proved difficult to demonstrate the costs of defensive compounds. *Here, we present a method for analysing growth rates which allows the effects of variation in initial plant size to be properly accounted for and apply it to 30 lines from a recombinant inbred population of Arabidopsis thaliana. We then relate different measures of relative growth rate (RGR) to damage caused by a specialist lepidopteran insect and to levels of putative defensive compounds measured on the same lines. *We show that seed size variation within the recombinant inbred population is large enough to generate differences in RGR, even when no other physiological differences exist. However, once size-standardized, RGR was positively correlated with herbivore damage (fast-growing lines suffered more damage) and was negatively correlated with the concentration of several glucosinolate compounds. *We conclude that defensive compounds do have a growth cost and that the production of such compounds results in reduced herbivore damage. However, size standardization of RGR was essential to uncovering the growth costs of defensive compounds.
Collapse
Affiliation(s)
- Cloé Paul-Victor
- Institute of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, University of Zurich, Zurich CH-8057, Switzerland
| | - Tobias Züst
- Institute of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, University of Zurich, Zurich CH-8057, Switzerland
| | - Mark Rees
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | - Lindsay A Turnbull
- Institute of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, University of Zurich, Zurich CH-8057, Switzerland
| |
Collapse
|
31
|
Abstract
Flowering plants have evolved to be a predominant life form on earth. A common principle of flowering plants and probably one of the main reasons for their evolutionary success is the rapid development of an embryo next to a supporting tissue called the endosperm. The embryo and the endosperm are protected by surrounding maternal tissues, the integuments, and the trinity of integuments, embryo and endosperm comprise the plant seed. For proper seed development, these three structures have to develop in a highly controlled and co-ordinated manner, representing a paradigm for cell-cell communication during development. Communication pathways between the endosperm and the seed coat are now beginning to be unravelled. Moreover, recently isolated mutants affecting plant reproduction have allowed a genetic dissection of seed development, and revealed that the embryo plays a previously unrecognized yet important role in co-ordinating seed development.
Collapse
|