1
|
Rudraraju M, Shan S, Liu F, Tyler J, Caldwell RB, Somanath PR, Narayanan SP. Pharmacological Modulation of β-Catenin Preserves Endothelial Barrier Integrity and Mitigates Retinal Vascular Permeability and Inflammation. J Clin Med 2023; 12:7145. [PMID: 38002758 PMCID: PMC10672253 DOI: 10.3390/jcm12227145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Compromised blood-retinal barrier (BRB) integrity is a significant factor in ocular diseases like uveitis and retinopathies, leading to pathological vascular permeability and retinal edema. Adherens and tight junction (AJ and TJ) dysregulation due to retinal inflammation plays a pivotal role in BRB disruption. We investigated the potential of ICG001, which inhibits β-catenin-mediated transcription, in stabilizing cell junctions and preventing BRB leakage. In vitro studies using human retinal endothelial cells (HRECs) showed that ICG001 treatment improved β-Catenin distribution within AJs post lipopolysaccharide (LPS) treatment and enhanced monolayer barrier resistance. The in vivo experiments involved a mouse model of LPS-induced ocular inflammation. LPS treatment resulted in increased albumin leakage from retinal vessels, elevated vascular endothelial growth factor (VEGF) and Plasmalemmal Vesicle-Associated Protein (PLVAP) expression, as well as microglia and macroglia activation. ICG001 treatment (i.p.) effectively mitigated albumin leakage, reduced VEGF and PLVAP expression, and reduced the number of activated microglia/macrophages. Furthermore, ICG001 treatment suppressed the surge in inflammatory cytokine synthesis induced by LPS. These findings highlight the potential of interventions targeting β-Catenin to enhance cell junction stability and improve compromised barrier integrity in various ocular inflammatory diseases, offering hope for better management and treatment options.
Collapse
Affiliation(s)
- Madhuri Rudraraju
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Jennifer Tyler
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Ruth B. Caldwell
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Sivaprasad S, Sen S, Cunha-Vaz J. Perspectives of diabetic retinopathy-challenges and opportunities. Eye (Lond) 2023; 37:2183-2191. [PMID: 36494431 PMCID: PMC10366207 DOI: 10.1038/s41433-022-02335-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/16/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) may lead to vision-threatening complications in people living with diabetes mellitus. Decades of research have contributed to our understanding of the pathogenesis of diabetic retinopathy from non-proliferative to proliferative (PDR) stages, the occurrence of diabetic macular oedema (DMO) and response to various treatment options. Multimodal imaging has paved the way to predict the impact of peripheral lesions and optical coherence tomography-angiography is starting to provide new knowledge on diabetic macular ischaemia. Moreover, the availability of intravitreal anti-vascular endothelial growth factors has changed the treatment paradigm of DMO and PDR. Areas of research have explored mechanisms of breakdown of the blood-retinal barrier, damage to pericytes, the extent of capillary non-perfusion, leakage and progression to neovascularisation. However, knowledge gaps remain. From this perspective, we highlight the challenges and future directions of research in this field.
Collapse
Affiliation(s)
- Sobha Sivaprasad
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| | - Sagnik Sen
- Department of Retina and Vitreous, Aravind Eye Hospital and Aravind Medical Research Foundation, Madurai, India
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
| | - José Cunha-Vaz
- AIBILI - Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
| |
Collapse
|
3
|
Allen RS, Khayat CT, Feola AJ, Win AS, Grubman AR, Chesler KC, He L, Dixon JA, Kern TS, Iuvone PM, Thule PM, Pardue MT. Diabetic rats with high levels of endogenous dopamine do not show retinal vascular pathology. Front Neurosci 2023; 17:1125784. [PMID: 37034167 PMCID: PMC10073440 DOI: 10.3389/fnins.2023.1125784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose Limited research exists on the time course of long-term retinal and cerebral deficits in diabetic rodents. Previously, we examined short term (4-8 weeks) deficits in the Goto-Kakizaki (GK) rat model of Type II diabetes. Here, we investigated the long-term (1-8 months) temporal appearance of functional deficits (retinal, cognitive, and motor), retinal vascular pathology, and retinal dopamine levels in the GK rat. Methods In GK rats and Wistar controls, retinal neuronal function (electroretinogram), cognitive function (Y-maze), and motor function (rotarod) were measured at 1, 2, 4, 6, and 8 months of age. In addition, we evaluated retinal vascular function (functional hyperemia) and glucose and insulin tolerance. Retinas from rats euthanized at ≥8 months were assessed for vascular pathology. Dopamine and DOPAC levels were measured via HPLC in retinas from rats euthanized at 1, 2, 8, and 12 months. Results Goto-Kakizaki rats exhibited significant glucose intolerance beginning at 4 weeks and worsening over time (p < 0.001). GK rats also showed significant delays in flicker and oscillatory potential implicit times (p < 0.05 to p < 0.001) beginning at 1 month. Cognitive deficits were observed beginning at 6 months (p < 0.05), but no motor deficits. GK rats showed no deficits in functional hyperemia and no increase in acellular retinal capillaries. Dopamine levels were twice as high in GK vs. Wistar retinas at 1, 2, 8, and 12 months (p < 0.001). Conclusion As shown previously, retinal deficits were detectable prior to cognitive deficits in GK rats. While retinal neuronal function was compromised, retinal vascular pathology was not observed, even at 12+ months. High endogenous levels of dopamine in the GK rat may be acting as an anti-angiogenic and providing protection against vascular pathology.
Collapse
Affiliation(s)
- Rachael S. Allen
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cara T. Khayat
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
| | - Andrew J. Feola
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Alice S. Win
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Allison R. Grubman
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Kyle C. Chesler
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Li He
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Jendayi A. Dixon
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Timothy S. Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Veterans Administration Medical Center Research Service, Cleveland, OH, United States
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - P. Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Peter M. Thule
- Section Endocrinology and Metabolism, Atlanta VA Medical Center, Emory University School of Medicine, Decatur, GA, United States
| | - Machelle T. Pardue
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Kolibabka M, Dannehl M, Oezer K, Murillo K, Huang H, Riemann S, Hoffmann S, Gretz N, Schlotterer A, Feng Y, Hammes HP. Differences in junction-associated gene expression changes in three rat models of diabetic retinopathy with similar neurovascular phenotype. Neurobiol Dis 2023; 176:105961. [PMID: 36526091 DOI: 10.1016/j.nbd.2022.105961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy, also defined as microvascular complication of diabetes mellitus, affects the entire neurovascular unit with specific aberrations in every compartment. Neurodegeneration, glial activation and vasoregression are observed consistently in models of diabetic retinopathy. However, the order and the severity of these aberrations varies in different models, which is also true in patients. In this study, we analysed rat models of diabetic retinopathy with similar phenotypes to identify key differences in the pathogenesis. For this, we focussed on intercellular junction-associated gene expression, which are important for the communication and homeostasis within the neurovascular unit. Streptozotocin-injected diabetic Wistar rats, methylglyoxal supplemented Wistar rats and polycystin-2 transgenic (PKD) rats were analysed for neuroretinal function, vasoregression and retinal expression of junction-associated proteins. In all three models, neuroretinal impairment and vasoregression were observed, but gene expression profiling of junction-associated proteins demonstrated nearly no overlap between the three models. However, the differently expressed genes were from the main classes of claudins, connexins and integrins in all models. Changes in Rcor1 expression in diabetic rats and Egr1 expression in PKD rats confirmed the differences in upstream transcription factor level between the models. In PKD rats, a possible role for miRNA regulation was observed, indicated by an upregulation of miR-26b-5p, miR-122-5p and miR-300-3p, which was not observed in the other models. In silico allocation of connexins revealed not only differences in regulated subtypes, but also in affected retinal cell types, as well as connexin specific upstream regulators Sox7 and miR-92a-3p. In this study, we demonstrate that, despite their similar phenotype, models for diabetic retinopathy exhibit significant differences in their pathogenic pathways and primarily affected cell types. These results underline the importance for more sensitive diagnostic tools to identify pathogenic clusters in patients as the next step towards a desperately needed personalized therapy.
Collapse
Affiliation(s)
- Matthias Kolibabka
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany.
| | - Marcus Dannehl
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany
| | - Kübra Oezer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Katharina Murillo
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany
| | - Hongpeng Huang
- Experimental Pharmacology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13 - 17, 68167 Manheim, Germany
| | - Sarah Riemann
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany
| | - Sigrid Hoffmann
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13 - 17, 68167 Manheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany
| |
Collapse
|
5
|
Aldosari DI, Malik A, Alhomida AS, Ola MS. Implications of Diabetes-Induced Altered Metabolites on Retinal Neurodegeneration. Front Neurosci 2022; 16:938029. [PMID: 35911994 PMCID: PMC9328693 DOI: 10.3389/fnins.2022.938029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the major complications of diabetic eye diseases, causing vision loss and blindness worldwide. The concept of diabetic retinopathy has evolved from microvascular disease into more complex neurovascular disorders. Early in the disease progression of diabetes, the neuronal and glial cells are compromised before any microvascular abnormalities clinically detected by the ophthalmoscopic examination. This implies understanding the pathophysiological mechanisms at the early stage of disease progression especially due to diabetes-induced metabolic alterations to damage the neural retina so that early intervention and treatments options can be identified to prevent and inhibit the progression of DR. Hyperglycemia has been widely considered the major contributor to the progression of the retinal damage, even though tight control of glucose does not seem to have a bigger effect on the incidence or progression of retinal damage that leads to DR. Emerging evidence suggests that besides diabetes-induced hyperglycemia, dyslipidemia and amino acid defects might be a major contributor to the progression of early neurovascular retinal damage. In this review, we have discussed recent advances in the alterations of key metabolites of carbohydrate, lipid, and amino acids and their implications for neurovascular damage in DR.
Collapse
|
6
|
Chen Y, Lin J, Schlotterer A, Kurowski L, Hoffmann S, Hammad S, Dooley S, Buchholz M, Hu J, Fleming I, Hammes HP. MicroRNA-124 Alleviates Retinal Vasoregression via Regulating Microglial Polarization. Int J Mol Sci 2021; 22:ijms222011068. [PMID: 34681723 PMCID: PMC8538759 DOI: 10.3390/ijms222011068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Microglial activation is implicated in retinal vasoregression of the neurodegenerative ciliopathy-associated disease rat model (i.e., the polycystic kidney disease (PKD) model). microRNA can regulate microglial activation and vascular function, but the effect of microRNA-124 (miR-124) on retinal vasoregression remains unclear. Transgenic PKD and wild-type Sprague Dawley (SD) rats received miR-124 at 8 and 10 weeks of age intravitreally. Retinal glia activation was assessed by immunofluorescent staining and in situ hybridization. Vasoregression and neuroretinal function were evaluated by quantitative retinal morphometry and electroretinography (ERG), respectively. Microglial polarization was determined by immunocytochemistry and qRT-PCR. Microglial motility was examined via transwell migration assays, wound healing assays, and single-cell tracking. Our data showed that miR-124 inhibited glial activation and improved vasoregession, as evidenced by the reduced pericyte loss and decreased acellular capillary formation. In addition, miR-124 improved neuroretinal function. miR-124 shifted microglial polarization in the PKD retina from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype by suppressing TNF-α, IL-1β, CCL2, CCL3, MHC-II, and IFN-γ and upregulating Arg1 and IL-10. miR-124 also decreased microglial motility in the migration assays. The transcriptional factor of C/EBP-α-PU.1 signaling, suppressed by miR-124 both in vivo (PKD retina) and in vitro (microglial cells), could serve as a key regulator in microglial activation and polarization. Our data illustrate that miR-124 regulates microglial activation and polarization. miR-124 inhibits pericyte loss and thereby alleviates vasoregression and ameliorates neurovascular function.
Collapse
Affiliation(s)
- Ying Chen
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Luke Kurowski
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Sigrid Hoffmann
- Center of Medical Research, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany;
| | - Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (S.H.); (S.D.)
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (S.H.); (S.D.)
| | - Malte Buchholz
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University Marburg, Hans-Meerwein-Str. 3, D-35043 Marburg, Germany;
| | - Jiong Hu
- Institute for Vascular Signalling, Center for Molecular Medicine, Goethe University, D-60590 Frankfurt, Germany; (J.H.); (I.F.)
| | - Ingrid Fleming
- Institute for Vascular Signalling, Center for Molecular Medicine, Goethe University, D-60590 Frankfurt, Germany; (J.H.); (I.F.)
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
- Correspondence: ; Tel.: +49-621-383-2663
| |
Collapse
|
7
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
8
|
Riemann S, Kolibabka M, Busch S, Lin J, Hoffmann S, Gretz N, Feng Y, Wohlfart P, Hammes HP. Microglial Activation Is Associated With Vasoprotection in a Rat Model of Inflammatory Retinal Vasoregression. Front Physiol 2021; 12:660164. [PMID: 33981252 PMCID: PMC8107726 DOI: 10.3389/fphys.2021.660164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Vascular dysfunction and vasoregression are hallmarks of a variety of inflammatory central nervous system disorders and inflammation-related retinal diseases like diabetic retinopathy. Activation of microglia and the humoral innate immune system are contributing factors. Anti-inflammatory approaches have been proposed as therapies for neurovascular diseases, which include the modulation of microglial activation. The present study aimed at investigating the effects of microglial activation by clodronate-coated liposomes on vasoregression in a model of retinal degeneration. Clodronate treatment over 5 weeks led to an increase in activated CD74+ microglia and completely prevented acellular capillaries and pericyte loss. Gene expression analyses indicated that vasoprotection was due to the induction of vasoprotective factors such as Egr1, Stat3, and Ahr while expression of pro-inflammatory genes remained unchanged. We concluded that activated microglia led to a shift toward induction of pleiotropic protective pathways supporting vasoprotection in neurovascular retinal diseases.
Collapse
Affiliation(s)
- Sarah Riemann
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Kolibabka
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie Busch
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sigrid Hoffmann
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Paulus Wohlfart
- Sanofi Aventis Deutschland GmbH, TA Diabetes R&D, Frankfurt, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Czyzynska-Cichon I, Janik-Hazuka M, Szafraniec-Szczęsny J, Jasinski K, Węglarz WP, Zapotoczny S, Chlopicki S. Low Dose Curcumin Administered in Hyaluronic Acid-Based Nanocapsules Induces Hypotensive Effect in Hypertensive Rats. Int J Nanomedicine 2021; 16:1377-1390. [PMID: 33658778 PMCID: PMC7917338 DOI: 10.2147/ijn.s291945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Vascular drug delivery becomes a promising direction in the development of novel therapeutic strategies in the treatment of cardiovascular pathologies, such as hypertension. However, targeted delivery of hydrophobic substances, with poor bioavailability, remains a challenge. Here, we described the hypotensive effects of a low dose of curcumin delivered to the vascular wall using hyaluronic acid-based nanocapsules. Methods The group of hypertensive TGR(m-Ren2)27 rats, was administrated respectively with the vehicle, curcumin solution or curcumin delivered using hyaluronic acid-based nanocapsules (HyC12-Cur), for 7 days each, maintaining the wash-out period between treatments. Arterial blood pressure (systolic - SBP, diastolic – DBP) and heart rate (HR) were monitored continuously using a telemetry system (Data Science International), and Mean Arterial Pressure (MAP) was calculated from SBP and DBP. Results In hypertensive rats, a low dose of curcumin (4.5 mg/kg) administrated in HyC12-Cur for 7 days resulted in a gradual inhibition of SBP, DBP and MAP increase without an effect on HR. At the end of HyC12-Cur – based treatment changes in SBP, DBP and MAP amounted to −2.0±0.8 mmHg, −3.9±0.7 mmHg and −3.3±0.7 mmHg, respectively. In contrast, the administration of a curcumin solution (4.5 mg/kg) did not result in a significant hypotensive effect and the animals constantly developed hypertension. Vascular delivery of capsules with curcumin was confirmed using newly developed fluorine-rich nanocapsules (HyFC10-PFOB) with a shell based on a HA derivative and similar size as HyC12-Cur. HyFC10-PFOB gave fluorine signals in rat aortas analyzed ex vivo with a 19F NMR technique after a single intragastric administration. Conclusion These results suggest that nanocapsules based on hyaluronic acid, the ubiquitous glycosaminoglycan of the extracellular matrix and an integral part of endothelial glycocalyx, may represent a suitable approach to deliver hydrophobic, poorly bioavailable compounds, to the vascular wall.
Collapse
Affiliation(s)
- Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, 30-348, Poland
| | | | - Joanna Szafraniec-Szczęsny
- Jagiellonian University, Faculty of Chemistry, Krakow, 30-387, Poland.,Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Krakow, 30-688, Poland
| | - Krzysztof Jasinski
- Institute of Nuclear Physics Polish Academy of Sciences, Department of Magnetic Resonance Imaging, Krakow, 31-342, Poland
| | - Władysław P Węglarz
- Institute of Nuclear Physics Polish Academy of Sciences, Department of Magnetic Resonance Imaging, Krakow, 31-342, Poland
| | | | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, 30-348, Poland.,Jagiellonian University Medical College, Faculty of Medicine, Department of Pharmacology, Krakow, 31-531, Poland
| |
Collapse
|
10
|
Mrugacz M, Bryl A, Zorena K. Retinal Vascular Endothelial Cell Dysfunction and Neuroretinal Degeneration in Diabetic Patients. J Clin Med 2021; 10:jcm10030458. [PMID: 33504108 PMCID: PMC7866162 DOI: 10.3390/jcm10030458] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) has become a vital societal problem as epidemiological studies demonstrate the increasing incidence of type 1 and type 2 diabetes. Lesions observed in the retina in the course of diabetes, referred to as diabetic retinopathy (DR), are caused by vascular abnormalities and are ischemic in nature. Vascular lesions in diabetes pertain to small vessels (microangiopathy) and involve precapillary arterioles, capillaries and small veins. Pericyte loss, thickening of the basement membrane, and damage and proliferation of endothelial cells are observed. Endothelial cells (monolayer squamous epithelium) form the smooth internal vascular lining indispensable for normal blood flow. Breaking its continuity initiates blood coagulation at that site. The endothelium controls the process of exchange of chemical substances (nutritional, regulatory, waste products) between blood and the retina, and blood cell passing through the vascular wall. Endothelial cells produce biologically active substances involved in blood coagulation, regulating vascular wall tension and stimulating neoangiogenesis. On the other hand, recent studies have demonstrated that diabetic retinopathy may be not only a microvascular disease, but is a result of neuroretinal degeneration. Neuroretinal degeneration appears structurally, as neural apoptosis of amacrine and Muller cells, reactive gliosis, ganglion cell layer/inner plexiform (GCL) thickness, retinal thickness, and retinal nerve fiber layer thickness, and a reduction of the neuroretinal rim in minimum rim width (MRW) and functionally as an abnormal electroretinogram (ERG), dark adaptation, contrast sensitivity, color vision, and microperimetric test. The findings in early stages of diabetic retinopathy may precede microvascular changes of this disease. Furthermore, the article's objective is to characterize the factors and mechanisms conducive to microvascular changes and neuroretinal apoptosis in diabetic retinopathy. Only when all the measures preventing vascular dysfunction are determined will the risk of complications in the course of diabetes be minimized.
Collapse
Affiliation(s)
- Malgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Anna Bryl
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 18-211 Gdańsk, Poland
| |
Collapse
|
11
|
Lim HB, Shin YI, Lee MW, Lee JU, Lee WH, Kim JY. Association of Myopia with Peripapillary Retinal Nerve Fiber Layer Thickness in Diabetic Patients Without Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2021; 61:30. [PMID: 32797199 PMCID: PMC7443111 DOI: 10.1167/iovs.61.10.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the association between myopia and peripapillary retinal nerve fiber layer (pRNFL) thickness in diabetic patients without diabetic retinopathy (DR). Methods A total of 271 eyes of 271 participants were included. They were divided into four groups according to the presence of myopia (≤ -3 diopters [D]) and diabetes without DR: (1) control group (n = 76), (2) myopia group (n = 57), (3) diabetes group (n = 82), and (4) diabetes + myopia group (n = 56). The peripapillary average and sector RNFL thicknesses were measured and compared among the four groups to determine the effects of myopia and diabetes. Covariates were adjusted using analyses of covariance. Linear regression analyses were fitted to evaluate the factors associated with pRNFL. Results Spherical equivalents were 0.12 ± 1.31 D in the control group, -4.00 ± 1.47 D in the myopia group, 0.00 ± 1.05 D in the diabetes group, and -4.33 ± 1.70 D in the diabetes + myopia group (P < 0.001). The respective axial lengths (ALs) were 23.91 ± 0.99 mm, 25.16 ± 0.94 mm, 23.68 ± 0.77 mm, and 25.34 ± 1.33 mm (P < 0.001). The average pRNFL showed a progressive decrease from the control group (97.16 ± 8.73 µm) to the myopia group (94.04 ± 9.13 µm) to the diabetes group (93.33 ± 9.07 µm) to the diabetes + myopia group (91.25 ± 9.72 µm) (P = 0.009). Age, diabetes, hypertension, and AL were significantly correlated with the pRNFL. The rate of reduction of pRNFL with increasing age was higher in the diabetes + myopia group than in the other groups, and pRNFL in the diabetes groups decreased more steeply with increasing AL compared to the non-diabetic groups. Conclusions Myopia and diabetes are important factors affecting pRNFL thickness, and the simultaneous presence of diabetes and myopia results in greater pRNFL damage than observed with either pathology alone.
Collapse
Affiliation(s)
- Hyung Bin Lim
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Yong-Il Shin
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Rhee's Eye Hospital, Daejeon, Republic of Korea
| | - Min Woo Lee
- Department of Ophthalmology, Konyang University Hospital, Daejeon, Republic of Korea
| | - Jong-Uk Lee
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Woo Hyuk Lee
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jung-Yeul Kim
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Lin J, Hu J, Schlotterer A, Wang J, Kolibabka M, Awwad K, Dietrich N, Breitschopf K, Wohlfart P, Kannt A, Lorenz K, Feng Y, Popp R, Hoffmann S, Fleming I, Hammes HP. Protective effect of Soluble Epoxide Hydrolase Inhibition in Retinal Vasculopathy associated with Polycystic Kidney Disease. Am J Cancer Res 2020; 10:7857-7871. [PMID: 32685025 PMCID: PMC7359083 DOI: 10.7150/thno.43154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Vasoregression secondary to glial activation develops in various retinal diseases, including retinal degeneration and diabetic retinopathy. Photoreceptor degeneration and subsequent retinal vasoregression, characterized by pericyte loss and acellular capillary formation in the absence diabetes, are also seen in transgenic rats expressing the polycystic kidney disease (PKD) gene. Activated Müller glia contributes to retinal vasodegeneration, at least in part via the expression of the soluble epoxide hydrolase (sEH). Given that an increase in sEH expression triggered vascular destabilization in diabetes, and that vasoregression is similar in diabetic mice and PKD rats, the aim of the present study was to determine whether sEH inhibition could prevent retinal vasoregression in the PKD rat. Methods: One-month old male homozygous transgenic PKD rats were randomly allocated to receive vehicle or a sEH inhibitor (sEH-I; Sar5399, 30 mg/kg) for four weeks. Wild-type Sprague-Dawley (SD) littermates received vehicle as controls. Retinal sEH expression and activity were measured by Western blotting and LC-MS, and vasoregression was quantified in retinal digestion preparations. Microglial activation and immune response cytokines were assessed by immunofluorescence and quantitative PCR, respectively. 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) mediated Notch signaling, microglial activation and migration were assessed in vivo and in vitro. Results: This study demonstrates that sEH expression and activity were increased in PKD retinae, which led to elevated production of 19,20-DHDP and the depression of Notch signaling. The latter changes elicited pericyte loss and the recruitment of CD11b+/CD74+ microglia to the perivascular region. Microglial activation increased the expression of immune-response cytokines, and reduced levels of Notch3 and delta-like ligand 4 (Dll4). Treatment with Sar5399 decreased 19,20-DHDP generation and increased Notch3 expression. Sar5399 also prevented vasoregression by reducing pericyte loss and suppressed microglial activation as well as the expression of immune-response cytokines. Mechanistically, the activation of Notch signaling by Dll4 maintained a quiescent microglial cell phenotype, i.e. reduced both the surface presentation of CD74 and microglial migration. In contrast, in retinal explants, 19,20-DHDP and Notch inhibition both promoted CD74 expression and reversed the Dll4-induced decrease in migration. Conclusions: Our data indicate that 19,20-DHDP-induced alterations in Notch-signaling result in microglia activation and pericyte loss and contribute to retinal vasoregression in polycystic kidney disease. Moreover, sEH inhibition can ameliorate vasoregression through reduced activity of inflammatory microglia. sEH inhibition is thus an attractive new therapeutic approach to prevent retinal vasoregression.
Collapse
|
13
|
Lim HB, Shin YI, Lee MW, Koo H, Lee WH, Kim JY. Ganglion Cell - Inner Plexiform Layer Damage in Diabetic Patients: 3-Year Prospective, Longitudinal, Observational Study. Sci Rep 2020; 10:1470. [PMID: 32001760 PMCID: PMC6992712 DOI: 10.1038/s41598-020-58465-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes is expected to accelerate age-related ganglion cell–inner plexiform layer (GC-IPL) loss, but there is limited information on the rate of reduction in GC-IPL thicknesses. We aimed to evaluate the reduction rate of GC-IPL thickness in diabetic patients, and to compare the rates between patients without and with diabetic retinopathy (DR). We included 112 eyes of 112 patients with diabetes [49 eyes without DR (no-DR group) and 63 eyes with mild to moderate non-proliferative DR (NPDR group)] and 63 eyes of 63 normal controls (control group) in this study. Macular GC-IPL thickness in all participants was measured for 3 years at 1-year intervals. The reduction rates of GC-IPL thickness were determined by linear mixed models and compared among the three groups. The estimated reduction rates of the average GC-IPL thickness in the no-DR (−0.627 μm/year) and NPDR (−0.987 μm/year) groups were 2.26-fold (p = 0.010) and 3.56-fold (p = 0.001) faster, respectively, than the control group (−0.277 μm/year). Age, duration of diabetes, and baseline average GC-IPL thickness were associated with longitudinal changes in average GC-IPL thickness. The GC-IPL reduction rate was significantly faster in diabetic patients, with and without DR. Physicians should therefore be aware that GC-IPL damage continues even if there is no DR.
Collapse
Affiliation(s)
- Hyung Bin Lim
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Yong Il Shin
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Min Woo Lee
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Ophthalmology, Konyang University Hospital, Daejeon, Republic of Korea
| | - Hyungmoon Koo
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Woo Hyuk Lee
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jung Yeul Kim
- Department of Ophthalmology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Huang H, Kolibabka M, Eshwaran R, Chatterjee A, Schlotterer A, Willer H, Bieback K, Hammes HP, Feng Y. Intravitreal injection of mesenchymal stem cells evokes retinal vascular damage in rats. FASEB J 2019; 33:14668-14679. [DOI: 10.1096/fj.201901500r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hongpeng Huang
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Kolibabka
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rachana Eshwaran
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anupriya Chatterjee
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andrea Schlotterer
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hélène Willer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
15
|
Ola MS, Alhomida AS, LaNoue KF. Gabapentin Attenuates Oxidative Stress and Apoptosis in the Diabetic Rat Retina. Neurotox Res 2019; 36:81-90. [PMID: 30830678 DOI: 10.1007/s12640-019-00018-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/23/2022]
Abstract
Neurodegeneration in diabetic retina has been widely considered as initiating factor that may lead to vascular damage, the classical hallmark of diabetic retinopathy. Diabetes induced altered glutamate metabolism in the retina, especially through glutamate excitotoxicity might play a major role in the neurodegeneration. Increased level of branched chain amino acids (BCAAs) measured in diabetic retina might cause an increase in the neurotoxic level of glutamate by transamination of citric acid cycle intermediates. In order to analyze the transamination of BCAAs and their influence on neurodegenerative factors, we treated streptozotocin-induced diabetic rats with gabapentin, a leucine analogue and an inhibitor of branched chain amino transferase (BCATc). Interestingly, gabapentin lowered the retinal level of BCAAs in diabetic rats. Furthermore, gabapentin treatments ameliorated the reduced antioxidant glutathione level and increased malondialdehyde (MDA), the marker of lipid peroxidation in diabetic rat retinas. In addition, gabapentin also reduced the expression of proapoptotic caspase-3, a marker of apoptosis and increased anti-apoptotic marker Bcl-2 in diabetic retinas. Thus, these results suggest that gabapentin stimulates glutamate disposal, and ameliorates apoptosis and oxidative stress in diabetic rat retina. The influence of gabapentin may be due to its capacity to increase the ratio of BCKA to BCAA which in turn would reduce glutamate excitotoxicity in diabetic retina.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Abdullah S Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kathryn F LaNoue
- Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
16
|
Azzam SK, Osman WM, Lee S, Khalaf K, Khandoker AH, Almahmeed W, Jelinek HF, Al Safar HS. Genetic Associations With Diabetic Retinopathy and Coronary Artery Disease in Emirati Patients With Type-2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2019; 10:283. [PMID: 31130920 PMCID: PMC6509200 DOI: 10.3389/fendo.2019.00283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
Aim: Type 2 Diabetes Mellitus (T2DM) is associated with both microvascular complications such as diabetic retinopathy (DR), and macrovascular complications like coronary artery disease (CAD). Genetic risk factors have a role in the development of these complications. In the present case-control study, we investigated genetic variations associated with DR and CAD in T2DM patients from the United Arab Emirates. Methods: A total of 407 Emirati patients with T2DM were recruited. Categorization of the study population was performed based on the presence or absence of DR and CAD. Seventeen Single Nucleotide Polymorphisms (SNPs), were selected for association analyses through search of publicly available databases, namely GWAS catalog, infinome genome interpretation platform and GWAS Central database. A multivariate logistic regression test was performed to evaluate the association between the 17 SNPs and DR, CAD, or both. To account for multiple testing, significance was set at p < 0.00294 using the Bonferroni correction. Results: The SNPs rs9362054 near the CEP162 gene and rs4462262 near the UBE2D1 gene were associated with DR (OR = 1.66, p = 0.001; OR = 1.37, p = 0.031; respectively), and rs12219125 near the PLXDC2 gene was associated (suggestive) with CAD (OR = 2.26, p = 0.034). Furthermore, rs9362054 near the CEP162 gene was significantly associated with both complications (OR = 2.27, p = 0.0021). The susceptibility genes for CAD (PLXDC2) and DR (UBE2D1) have a role in angiogenesis and neovascularization. Moreover, association between the ciliary gene CEP162 and DR was established in terms of retinal neural processing, confirming previous reports. Conclusions: The present study reports associations of different genetic loci with DR and CAD. We report new associations between CAD and PLXDC2, and DR with UBE2D1 using data from T2DM Emirati patients.
Collapse
Affiliation(s)
- Sarah K. Azzam
- Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Wael M. Osman
- Khalifa University Center of Biotechnology, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kinda Khalaf
- Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahsan H. Khandoker
- Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Wael Almahmeed
- Institute of Cardiac Science, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | - Herbert F. Jelinek
- Australian School of Advanced Medicine, Sydney and School of Community Health, Charles Sturt University, Macquarie University, Albury, NSW, Australia
| | - Habiba S. Al Safar
- Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Khalifa University Center of Biotechnology, Abu Dhabi, United Arab Emirates
- *Correspondence: Habiba S. Al Safar
| |
Collapse
|
17
|
Romano MR, Allegrini D, Della Guardia C, Schiemer S, Baronissi I, Ferrara M, Cennamo G. Vitreous and intraretinal macular changes in diabetic macular edema with and without tractional components. Graefes Arch Clin Exp Ophthalmol 2018; 257:1-8. [PMID: 30377798 DOI: 10.1007/s00417-018-4173-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022] Open
Abstract
Diabetic macular edema (DME) is still one of the main causes of visual impairment. Repeated intravitreal injections of ranibizumab are considered the gold standard treatment, but the efficacy in patients with prominent cystic characteristics remains uncertain. In diabetic retinas, the identification of both antero-posterior and, particularly, tangential tractions is crucial to prevent misdiagnosis of tractional and refractory DME, and therefore to prevent poor treatment outcomes. The treatment of tractional DME with anti-VEGF injections could be poorly effective due to the influence of a tractional force. Pars plana vitrectomy (PPV) is a surgical procedure that has been widely used in the treatment of diffuse and refractory DME. Anatomical improvement, although stable and immediate, did not result in visual improvement. PPV with internal limiting membrane (ILM) peeling for the treatment of non-tractional DME in patients with prominent cysts (> 390 μm) causes subfoveal atrophy, defined as "floor effect". Epiretinal tangential forces and intraretinal change evaluation by SD-OCT of non-tractional DME are essential for determining appropriate management.
Collapse
Affiliation(s)
- Mario R Romano
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, 20089, Milan, Italy
| | - Davide Allegrini
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, 20089, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Systemic inflammation induced by lipopolysaccharide aggravates inherited retinal dystrophy. Cell Death Dis 2018; 9:350. [PMID: 29500424 PMCID: PMC5834451 DOI: 10.1038/s41419-018-0355-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
Retinal neurodegenerative diseases involve a scenario of inflammation and cell death that leads to morphological alterations and visual impairment. Non-ocular inflammatory processes could affect neurodegenerative retinal disorders and their progression, at least in part by activating microglial cells and releasing pro-inflammatory cytokines. Our purpose was to study the consequences of a systemic inflammatory process in the progression of retinal degeneration in P23H rats, a retinitis pigmentosa (RP) model. In order to induce a mild chronic systemic inflammation, we administered low doses of lipopolysaccharide (LPS) from age P20 to P60 to dystrophic P23H rats and healthy SD rats. Visual responsiveness was assessed by electroretinography (ERG). The morphological state of the retinas was analyzed by fluorescent immunohistochemistry (IHC), evaluating the number, morphology, and connectivity of different neuronal populations by means of cell type-specific markers. Microglia density, distribution, and degree of activation were evaluated by IHC and flow cytometry. The expression levels of inflammation- and apoptosis-related genes were analyzed by qRT-PCR arrays. Low-dose LPS administration did not induce significant functional or morphological changes in the retina of SD rats, although at the molecular level, we detected expression changes in genes related to apoptosis. Otherwise, systemic injection of LPS into P23H rats induced a further deterioration in the ERG response, with greater loss of photoreceptors and worsening of synaptic connectivity, accompanied by increasing numbers of microglial cells, which also showed a more intense activation state. Several inflammation- and apoptosis-related genes were upregulated. Our results indicate that chronic exacerbation of the inflammatory response in response to LPS accelerates neurodegeneration in dystrophic P23H rats, suggesting that in patients with ocular neurodegenerative diseases, peripheral damage, as a systemic infection or chronic inflammatory process, could accelerate disease progression, and should be taken into account in order to select an appropriate therapy to revert, block or slow-down the degenerative process.
Collapse
|
19
|
Ola MS, Alhomida AS, Ferrario CM, Ahmad S. Role of Tissue Renin-angiotensin System and the Chymase/angiotensin-( 1-12) Axis in the Pathogenesis of Diabetic Retinopathy. Curr Med Chem 2017; 24:3104-3114. [PMID: 28403787 DOI: 10.2174/0929867324666170407141955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/15/2017] [Accepted: 03/29/2017] [Indexed: 01/17/2023]
Abstract
Diabetic retinopathy (DR) is a major diabetes complication and the leading cause for vision loss and blindness in the adult human population. Diabetes, being an endocrinological disorder dysregulates a number of hormonal systems including the renin angiotensin system (RAS), which thereby may damage both vascular and neuronal cells in the retina. Angiotensin II (Ang II), an active component of the RAS is increased in diabetic retina, and may play a significant role in neurovascular damage leading to the progression of DR. In this review article, we highlight the role of Ang II in the pathogenesis of retinal damage in diabetes and discuss a newly identified mechanism involving tissue chymase and angiotensin-(1-12) [Ang-(1-12)] pathways. We also discuss the therapeutic effects of potential RAS inhibitors targeting blockade of cellular Ang II formation to prevent/ protect the retinal damage. Thus, a better understanding of Ang II formation pathways in the diabetic retina will elucidate early molecular mechanism of vision loss. These concepts may provide a novel strategy for preventing and/or treating diabetic retinopathy, a leading cause of blindness worldwide.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud, University, Riyadh 11451. Saudi Arabia
| | - Abdullah S Alhomida
- Department of Biochemistry, College of Science, King Saud, University, Riyadh 11451. Saudi Arabia
| | - Carlos M Ferrario
- Department of General Surgery, Wake Forest University Health Science, Winston-Salem, NC 27157. United States
| | - Sarfaraz Ahmad
- Department of General Surgery, Wake Forest University Health Science, Winston-Salem, NC 27157. United States
| |
Collapse
|
20
|
Cervantes-Yépez S, López-Zepeda LS, Fortoul TI. Vanadium inhalation induces retinal Müller glial cell (MGC) alterations in a murine model. Cutan Ocul Toxicol 2017; 37:200-206. [PMID: 29157004 DOI: 10.1080/15569527.2017.1392560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vanadium (V) is a transition metal adhered to suspended particles. Previous studies demonstrated that V inhalation causes oxidative stress in the ependymal epithelium, the choroid plexus on brain lateral ventricles and in the retina. Inhaled-V reaches the eye´s retina through the systemic circulation; however, its effect on the retina has not been widely studied. The Müller glial cell provides support and structure to the retina, facilitates synapses and regulates the microenvironment and neuronal metabolism. Hence, it is of great interest to study the effect of V exposure on the expression and localization of specific biomarkers on this cell. METHODS Male CD-1 mice were exposed to V inhalation 1 h/twice/week for 4 and 8-Wk. Expression changes in the retina of Glial fibrillary acidic protein, highly expressed in Müller glial cell when retina is damaged, and Glutamine synthetase, important in preventing excitotoxicity in the retina, were analysed by immunohistochemistry. RESULTS Glial fibrillary acidic protein expression increased at 4-Wk of V inhalation compared to the control and decreased at 8-Wk of exposure. A time-dependent gradual reduction in glutamine synthetase expression was observed. CONCLUSION Changes in glial fibrillary acidic protein expression induced by V suggest retinal damage, whereas glutamine synthetase gradual reduction might indicate that photoreceptors, which produce most of the glutamine synthetase substrate in the retina, are degenerating, probably as a consequence of the oxidative stress induced by V.
Collapse
Affiliation(s)
- Silvana Cervantes-Yépez
- a Departamento de Biología Celular y Tisular, Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México City , CP , México
| | - Lorena Sofía López-Zepeda
- a Departamento de Biología Celular y Tisular, Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México City , CP , México
| | - Teresa I Fortoul
- a Departamento de Biología Celular y Tisular, Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) , México City , CP , México
| |
Collapse
|
21
|
Flavonoid Naringenin Attenuates Oxidative Stress, Apoptosis and Improves Neurotrophic Effects in the Diabetic Rat Retina. Nutrients 2017; 9:nu9101161. [PMID: 29064407 PMCID: PMC5691777 DOI: 10.3390/nu9101161] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of decreased vision and blindness worldwide. Diabetes-induced oxidative stress is believed to be the key factor that initiates neuronal damage in the diabetic retina leading to DR. Experimental approaches to utilize dietary flavonoids, which possess both antidiabetic and antioxidant activities, might protect the retinal damage in diabetes. The aim of this study was to investigate the potential protective effects of naringenin in the retina of streptozotocin-induced diabetic rats. Diabetic rats were orally treated and untreated with naringenin (50 mg/kg/day) for five weeks and retinas were analyzed for markers of oxidative stress, apoptosis and neurotrophic factors. Systemic effects of naringenin treatments were also analyzed and compared with untreated groups. The results showed that elevated levels of thiobarbituric acid reactive substances (TBARs) and decreased level of glutathione (GSH) in diabetic rats were ameliorated with naringenin treatments. Moreover, decreased levels of neuroprotective factors (Brain derived neurotrophic factor (BDNF)), tropomyosin related kinase B (TrkB) and synaptophysin in diabetic retina were augmented with naringenin treatments. In addition, naringenin treatment ameliorated the levels of apoptosis regulatory proteins; B cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3 in the diabetic retina. Thus, the study demonstrates the beneficial effects of naringenin that possesses anti-diabetic, antioxidant and antiapoptotic properties, which may limit neurodegeneration by providing neurotrophic support to prevent retinal damage in diabetic retinopathy.
Collapse
|
22
|
Cao B, Meng X, Fu Y, Liu P, Lun Y, Wang Y. Neuron-derived netrin-1 and netrin-4 proteins are additional effective targets in diabetic retinopathy beyond VEGF. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8174-8186. [PMID: 31966669 PMCID: PMC6965419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 06/22/2017] [Indexed: 06/10/2023]
Abstract
Vascular endothelial growth factor (VEGF) is the typical representative factor of diabetic retinopathy (DR) and is considered to be a key inducer of retinal vascular permeability in DR. Anti-VEGF has been widely used in clinical treatment but every patient is effective, therefore, it is necessary to find other effective factors that participate in the pathology of DR. We provide evidence from both human and animal experiments for the considerable roles of classical neuronal guidance factors, netrin-1 and netrin-4, in indicating and amending the pathology of DR. We reveal that levels of both netrin-1 and netrin-4 are reduced while VEGF increases in DR patients and animal models. We demonstrate through different experimental methods that augmenting netrin-1 and netrin-4 can alleviate vasculopathy and neuropathy which appear in DR. Our findings offer additional effect targets besides VEGF for DR and suggest we should increase the focus on neurovascular crosstalk as DR is a neurovascular disease.
Collapse
Affiliation(s)
- Bowen Cao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao UniversityQingdao 266555, Shandong Province, China
| | - Xuxia Meng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao UniversityQingdao 266555, Shandong Province, China
| | - Yudong Fu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao UniversityQingdao 266555, Shandong Province, China
| | - Penghui Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao UniversityQingdao 266555, Shandong Province, China
| | - Yu Lun
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao UniversityQingdao 266555, Shandong Province, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao UniversityQingdao 266555, Shandong Province, China
| |
Collapse
|
23
|
Alterations in biomechanical properties of the cornea among patients with polycystic kidney disease. Int Ophthalmol 2017; 38:1559-1564. [PMID: 28664236 DOI: 10.1007/s10792-017-0619-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/20/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study was to evaluate the corneal biomechanical features in polycystic kidney disease (PKD) patients and compare them with the healthy individuals. METHODS Totally 81 patients with a mean age of 48.46 ± 14.51 years and 60 control cases with a mean age of 44.68 ± 12.69 years were included in the study. All of the subjects underwent a complete ophthalmological examination, including visual acuity testing, biomicroscopic anterior and posterior segment examinations. Corneal hysteresis (CH), corneal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg) and corneal-compensated intraocular pressure (IOPcc) were evaluated with the ocular response analyzer, and the central corneal thickness was evaluated with Sirius® corneal topography. RESULTS PKD patients had significantly increased CH values, without any alterations in IOP or CCT values, compared with the control cases (p:0.001). Among PKD patients, 23 were having liver cysts accompanying renal cysts. There was not any statistically significant difference between PKD patients with or without liver cysts regarding biomechanical properties of the cornea. However, both patient groups had statistically significantly increased CH values compared with the control cases. CONCLUSION Patients with PKD present with higher CH values than age-matched controls. Larger studies are warranted to elucidate the alterations in corneal biomechanical properties and their clinical relevance in PKD patients.
Collapse
|
24
|
Liu H, Tang J, Du Y, Saadane A, Tonade D, Samuels I, Veenstra A, Palczewski K, Kern TS. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes. Invest Ophthalmol Vis Sci 2017; 57:4272-81. [PMID: 27548901 PMCID: PMC5015983 DOI: 10.1167/iovs.16-19415] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States
| | - Jie Tang
- Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States
| | - Yunpeng Du
- Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States
| | - Aicha Saadane
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, Ohio, United States
| | - Deoye Tonade
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ivy Samuels
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
| | - Alex Veenstra
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Timothy S Kern
- Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States 2Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, Ohio, United States 3Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States 4Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
| |
Collapse
|
25
|
Do photoreceptor cells cause the development of retinal vascular disease? Vision Res 2017; 139:65-71. [PMID: 28438678 DOI: 10.1016/j.visres.2017.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
The retinal vasculature is affected in a number of clinically important retinopathies, including diabetic retinopathy. There has been a considerable amount of research into the pathogenesis of retinal microvascular diseases, but the potential contribution of the most abundant cell population in the retina, photoreceptor cells, has been largely overlooked. This review summarizes ongoing research suggesting that photoreceptor cells play a critical role in the development of retinal vascular disease in diabetic retinopathy and other retinopathies.
Collapse
|
26
|
Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res 2017; 139:101-107. [PMID: 28408138 DOI: 10.1016/j.visres.2017.03.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 01/20/2023]
Abstract
Since 1875, controversy has ensued over whether ocular diabetic complications are primarily vasculopathic or neuropathic in nature. Here, we discuss the historical context by which diabetic retinopathy (DR) came to be considered a primary vasculopathy, in contrast to more recent data suggesting the importance of diabetic retinal neurodegeneration (DRN) as the primary manifestation of ocular diabetic damage. Unsurprisingly, DRN parallels other diabetic complications related to neuropathy. In general, there are three possible relationships between microvascular DR and DRN: i) microvasculopathy causes neurodegeneration; ii) neurodegeneration causes microvasculopathy or iii) they are mutually independent. The authors' group has recently produced experimental data showing that DRN precedes even the earliest manifestations of DR microvasculopathy. In combination with earlier studies showing that focal implicit time delays predicted future development of DR microvasculopathy in the same location, relationships i) and iii) are unlikely. As such, ii) is the most likely relationship: DRN is a cause of DR. Granted, additional studies are needed to confirm this hypothesis and elucidate the mechanism of diabetes-induced neurodegeneration. We conclude this review by proposing experimental approaches to test the hypothesis that DRN causes DR. If confirmed, this new paradigm may lead to earlier detection of ocular diabetic damage and earlier treatment of early DR, thereby preventing visual loss in people with diabetes.
Collapse
Affiliation(s)
- Stephanie K Lynch
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Michael D Abràmoff
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Iowa Institute for Biomedical Imaging, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA; Department of Veterans Affairs, 601 US-6, Iowa City, IA 52246, USA.
| |
Collapse
|
27
|
Mrugacz M, Bryl A, Bossowski A. Neuroretinal Apoptosis as a Vascular Dysfunction in Diabetic Patients. Curr Neuropharmacol 2017; 14:826-830. [PMID: 27212050 PMCID: PMC5333582 DOI: 10.2174/1570159x14666160523144245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022] Open
Abstract
Background Diabetic retinopathy (DR) is an important complication of diabetes and is considered one of the main causes of blindness in moderate-income and highly-developed countries. As it is a major socioeconomic problem, defining all mechanisms that may lead to DR development is of great importance. In the 21st century diabetic lesions occurring in the retina are well known. However what kind of retinal neuronal damage occurs in the course of diabetes remains unclear. Results In this manuscript we present the most recent knowledge about suggested mechanisms of diabetic retinopathy, including neuroretinal apoptosis. Getting a deep insight into the role of apoptosis and degeneration of retinal neurons leading to DR will have vital consequences. Conclusion The findings of this review confirm that it is very likely that in the nearest future diabetic retinopathy treatment will be based on administration of neuroprotective agents. The implementation of neuroprotective drugs may slow down retinopathy progression, making it possible to avoid the currently used therapeutic procedures, such as laser photocoagulation, intravitreous injections or posterior vitrectomy, which are not only risky for the healthy part of the retina but also relatively expensive.
Collapse
Affiliation(s)
- Małgorzata Mrugacz
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Bialystok, Poland
| | | | | |
Collapse
|
28
|
Srivastav K, Saxena S, Mahdi AA, Shukla RK, Meyer CH, Akduman L, Khanna VK. Increased serum level of homocysteine correlates with retinal nerve fiber layer thinning in diabetic retinopathy. Mol Vis 2016; 22:1352-1360. [PMID: 27994434 PMCID: PMC5135738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/30/2016] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To study the correlation between serum levels of vitamin B12, folic acid, and homocysteine and the severity of diabetic retinopathy and the correlation with retinal nerve fiber layer (RNFL) thinning on spectral domain optical coherence tomography (SD-OCT). METHODS In a tertiary care center-based prospective cross-sectional study, 60 consecutive cases and 20 healthy controls in the age group of 40-65 years were included. The eyes of the cases were divided into three groups according to Early Treatment Diabetic Retinopathy Study (ETDRS) classification: diabetes mellitus without retinopathy (n = 20), non-proliferative diabetic retinopathy with macular edema (n = 20), and proliferative diabetic retinopathy with macular edema (n = 20). The serum levels of vitamin B12 and folic acid were measured using a standard protocol. The serum homocysteine assay was performed using an enzyme-linked immunosorbent assay (ELISA) kit. Average RNFL thickness was measured using SD-OCT. Statistical analysis was used to assess the correlations between the study variables. RESULTS Increased severity of diabetic retinopathy was found to correlate with an increase in the serum levels of homocysteine (F = 53.79; p<0.001). The mean serum levels of vitamin B12 and folic acid were found to be within the normal reference range. A positive correlation was found between retinal nerve fiber layer thinning and serum levels of homocysteine (p<0.001). CONCLUSIONS This study, for the first time, demonstrated a correlation between increased homocysteine with a decrease in RNFL thickness and increased severity of diabetic retinopathy.
Collapse
Affiliation(s)
- Khushboo Srivastav
- Retina Service, Department of Ophthalmology, King George’s Medical University, Lucknow, India
| | - Sandeep Saxena
- Retina Service, Department of Ophthalmology, King George’s Medical University, Lucknow, India
| | - Abbas A. Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, India
| | | | | | - Levent Akduman
- Vitreoretinal and uveitis service, Department of Ophthalmology, Saint Louis University School of Medicine,St. Louis, MO
| | - Vinay K. Khanna
- CSIR - Indian Institute of Toxicology and Research, Lucknow, India
| |
Collapse
|
29
|
Gupta A, Bhatnagar S. Vasoregression: A Shared Vascular Pathology Underlying Macrovascular And Microvascular Pathologies? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:733-53. [PMID: 26669709 DOI: 10.1089/omi.2015.0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vasoregression is a common phenomenon underlying physiological vessel development as well as pathological microvascular diseases leading to peripheral neuropathy, nephropathy, and vascular oculopathies. In this review, we describe the hallmarks and pathways of vasoregression. We argue here that there is a parallel between characteristic features of vasoregression in the ocular microvessels and atherosclerosis in the larger vessels. Shared molecular pathways and molecular effectors in the two conditions are outlined, thus highlighting the possible systemic causes of local vascular diseases. Our review gives us a system-wide insight into factors leading to multiple synchronous vascular diseases. Because shared molecular pathways might usefully address the diagnostic and therapeutic needs of multiple common complex diseases, the literature analysis presented here is of broad interest to readership in integrative biology, rational drug development and systems medicine.
Collapse
Affiliation(s)
- Akanksha Gupta
- 1 Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , Dwarka, New Delhi, India .,2 Department of Biotechnology, IMS Engineering College , Ghaziabad, India
| | - Sonika Bhatnagar
- 1 Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , Dwarka, New Delhi, India
| |
Collapse
|
30
|
Vogler S, Pannicke T, Hollborn M, Kolibabka M, Wiedemann P, Reichenbach A, Hammes HP, Bringmann A. Impaired Purinergic Regulation of the Glial (Müller) Cell Volume in the Retina of Transgenic Rats Expressing Defective Polycystin-2. Neurochem Res 2016; 41:1784-96. [PMID: 27038933 DOI: 10.1007/s11064-016-1894-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/19/2022]
Abstract
Retinal glial (Müller) cells possess an endogenous purinergic signal transduction cascade which normally prevents cellular swelling in osmotic stress. The cascade can be activated by osmotic or glutamate receptor-dependent ATP release. We determined whether activation of this cascade is altered in Müller cells of transgenic rats that suffer from a slow photoreceptor degeneration due to the expression of a truncated human cilia gene polycystin-2 (CMV-PKD21/703 HA). Age-matched Sprague-Dawley rats served as control. Retinal slices were superfused with a hypoosmotic solution (60 % osmolarity). Müller cells in retinas of PKD21/703 rats swelled immediately in hypoosmotic stress; this was not observed in control retinas. Pharmacological blockade of P2Y1 or adenosine A1 receptors induced osmotic swelling of Müller cells from control rats. The swelling induced by the P2Y1 receptor antagonist was mediated by induction of oxidative-nitrosative stress, mitochondrial dysfunction, production of inflammatory lipid mediators, and a sodium influx from the extracellular space. Exogenous VEGF or glutamate prevented the hypoosmotic swelling of Müller cells from PKD21/703 rats; this effect was mediated by activation of the purinergic signaling cascade. In neuroretinas of PKD21/703 rats, the gene expression levels of P2Y1 and A1 receptors, pannexin-1, connexin 45, NTPDases 1 and 2, and various subtypes of nucleoside transporters are elevated compared to control. The data may suggest that the osmotic swelling of Müller cells from PKD21/703 rats is caused by an abrogation of the osmotic ATP release while the glutamate-induced ATP release is functional. In the normal retina, ATP release and autocrine P2Y1 receptor activation serve to inhibit the induction of oxidative-nitrosative stress, mitochondrial dysfunction, and production of inflammatory lipid mediators, which otherwise will induce a sodium influx and cytotoxic Müller cell swelling under anisoosmotic conditions. Purinergic receptors may represent a target for the protection of retinal glial cells from mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Stefanie Vogler
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Liebigstrasse 10-14, 04103, Leipzig, Germany
| | - Matthias Kolibabka
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Liebigstrasse 10-14, 04103, Leipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Liebigstrasse 10-14, 04103, Leipzig, Germany.
| |
Collapse
|
31
|
Srivastav K, Saxena S, Mahdi AA, Kruzliak P, Khanna VK. Increased serum urea and creatinine levels correlate with decreased retinal nerve fibre layer thickness in diabetic retinopathy. Biomarkers 2015; 20:470-3. [PMID: 26474118 DOI: 10.3109/1354750x.2015.1094142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Correlation of increased levels of serum urea and creatinine with retinal nerve fibre layer (RNFL) thinning on spectral domain optical coherence tomography (SD-OCT) was studied in diabetic retinopathy (DR). Sixty consecutive cases and 20 healthy controls were included. Cases were divided into three groups: without DR, non-proliferative DR with macular oedema and proliferative DR with oedema. Serum urea and creatinine were measured using a standard protocol. Average (RNFL) was measured using SD-OCT. Increased severity of DR was associated with decrease in levels of serum urea and serum creatinine levels. RNFL thinning correlated positively with increase in serum urea and creatinine levels.
Collapse
Affiliation(s)
| | | | - Abbas A Mahdi
- b Department of Biochemistry , King George's Medical University , Lucknow , India
| | - Peter Kruzliak
- c International Clinical Research Center, St. Anne's University Hospital and Masaryk University , Brno , Czech Republic , and
| | - Vinay K Khanna
- d Indian Institute of Toxicology and Research , Lucknow , India
| |
Collapse
|
32
|
The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 2015; 51:156-86. [PMID: 26297071 DOI: 10.1016/j.preteyeres.2015.08.001] [Citation(s) in RCA: 668] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy is the most frequently occurring complication of diabetes mellitus and remains a leading cause of vision loss globally. Its aetiology and pathology have been extensively studied for half a century, yet there are disappointingly few therapeutic options. Although some new treatments have been introduced for diabetic macular oedema (DMO) (e.g. intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') and new steroids), up to 50% of patients fail to respond. Furthermore, for people with proliferative diabetic retinopathy (PDR), laser photocoagulation remains a mainstay therapy, even though it is an inherently destructive procedure. This review summarises the clinical features of diabetic retinopathy and its risk factors. It describes details of retinal pathology and how advances in our understanding of pathogenesis have led to identification of new therapeutic targets. We emphasise that although there have been significant advances, there is still a pressing need for a better understanding basic mechanisms enable development of reliable and robust means to identify patients at highest risk, and to intervene effectively before vision loss occurs.
Collapse
|
33
|
|
34
|
Awata T, Yamashita H, Kurihara S, Morita-Ohkubo T, Miyashita Y, Katayama S, Mori K, Yoneya S, Kohda M, Okazaki Y, Maruyama T, Shimada A, Yasuda K, Nishida N, Tokunaga K, Koike A. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA. PLoS One 2014; 9:e111715. [PMID: 25364816 PMCID: PMC4218806 DOI: 10.1371/journal.pone.0111715] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/30/2014] [Indexed: 12/31/2022] Open
Abstract
Elucidation of the genetic susceptibility factors for diabetic retinopathy (DR) is important to gain insight into the pathogenesis of DR, and may help to define genetic risk factors for this condition. In the present study, we conducted a three-stage genome-wide association study (GWAS) to identify DR susceptibility loci in Japanese patients, which comprised a total of 837 type 2 diabetes patients with DR (cases) and 1,149 without DR (controls). From the stage 1 genome-wide scan of 446 subjects (205 cases and 241 controls) on 614,216 SNPs, 249 SNPs were selected for the stage 2 replication in 623 subjects (335 cases and 288 controls). Eight SNPs were further followed up in a stage 3 study of 297 cases and 620 controls. The top signal from the present association analysis was rs9362054 in an intron of RP1-90L14.1 showing borderline genome-wide significance (Pmet = 1.4×10−7, meta-analysis of stage 1 and stage 2, allele model). RP1-90L14.1 is a long intergenic non-coding RNA (lincRNA) adjacent to KIAA1009/QN1/CEP162 gene; CEP162 plays a critical role in ciliary transition zone formation before ciliogenesis. The present study raises the possibility that the dysregulation of ciliary-associated genes plays a role in susceptibility to DR.
Collapse
Affiliation(s)
- Takuya Awata
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- * E-mail:
| | - Hisakuni Yamashita
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Susumu Kurihara
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tomoko Morita-Ohkubo
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yumi Miyashita
- Division of RI Laboratory, Biomedical Research Center, Saitama Medical University, Saitama, Japan
| | - Shigehiro Katayama
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Keisuke Mori
- Department of Ophthalmology, Faculty of Medicine, Saitama Medical University, Faculty of Medicine, Saitama, Japan
| | - Shin Yoneya
- Department of Ophthalmology, Faculty of Medicine, Saitama Medical University, Faculty of Medicine, Saitama, Japan
| | - Masakazu Kohda
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Taro Maruyama
- Department of Internal Medicine, Saitama Social Insurance Hospital, Saitama, Japan
| | - Akira Shimada
- Department of Internal Medicine, Saiseikai Central Hospital, Tokyo, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nao Nishida
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asako Koike
- Central Research Laboratory, Hitachi Ltd, Tokyo, Japan
| |
Collapse
|
35
|
Role of microRNAs in the modulation of diabetic retinopathy. Prog Retin Eye Res 2014; 43:92-107. [DOI: 10.1016/j.preteyeres.2014.07.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 02/02/2023]
|
36
|
Wang J, Lin J, Schlotterer A, Wu L, Fleming T, Busch S, Dietrich N, Hammes HP. CD74 indicates microglial activation in experimental diabetic retinopathy and exogenous methylglyoxal mimics the response in normoglycemic retina. Acta Diabetol 2014; 51:813-21. [PMID: 24974304 DOI: 10.1007/s00592-014-0616-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
Diabetes induces vasoregression, neurodegeneration and glial activation in the retina. Formation of advanced glycation endoproducts (AGEs) is increased in diabetes and contributes to the pathogenesis of diabetic retinopathy. CD74 is increased in activated microglia in a rat model developing both neurodegeneration and vasoregression. In this study, we aimed at investigating whether glucose and major AGE precursor methylglyoxal induce increased CD74 expression in the retina. Expression of CD74 in retinal microglia was analyzed in streptozotocin-diabetic rats by wholemount immunofluorescence. Nondiabetic mice were intravitreally injected with methylglyoxal. Expression of CD74 was studied by retinal wholemount immunofluorescence and quantitative real-time PCR, 48 h after the injection. CD74-positive cells were increased in diabetic 4-month retinas. These cells represented a subpopulation of CD11b-labeled activated microglia and were mainly located in the superficial vascular layer (13.7-fold increase compared to nondiabetic group). Methylglyoxal induced an 9.4-fold increase of CD74-positive cells in the superficial vascular layer and elevated gene expression of CD74 in the mouse retina 2.8-fold. In summary, we identified CD74 as a microglial activation marker in the diabetic retina. Exogenous methylglyoxal mimics the response in normoglycemic retina. This suggests that methylglyoxal is important in mediating microglial activation in the diabetic retina.
Collapse
Affiliation(s)
- Jing Wang
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Systemic treatment with erythropoietin protects the neurovascular unit in a rat model of retinal neurodegeneration. PLoS One 2014; 9:e102013. [PMID: 25013951 PMCID: PMC4094460 DOI: 10.1371/journal.pone.0102013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/12/2014] [Indexed: 12/14/2022] Open
Abstract
Rats expressing a transgenic polycystic kidney disease (PKD) gene develop photoreceptor degeneration and subsequent vasoregression, as well as activation of retinal microglia and macroglia. To target the whole neuroglialvascular unit, neuro- and vasoprotective Erythropoietin (EPO) was intraperitoneally injected into four –week old male heterozygous PKD rats three times a week at a dose of 256 IU/kg body weight. For comparison EPO-like peptide, lacking unwanted side effects of EPO treatment, was given five times a week at a dose of 10 µg/kg body weight. Matched EPO treated Sprague Dawley and water-injected PKD rats were held as controls. After four weeks of treatment the animals were sacrificed and analysis of the neurovascular morphology, glial cell activity and pAkt localization was performed. The number of endothelial cells and pericytes did not change after treatment with EPO or EPO-like peptide. There was a nonsignificant reduction of migrating pericytes by 23% and 49%, respectively. Formation of acellular capillaries was significantly reduced by 49% (p<0.001) or 40% (p<0.05). EPO-treatment protected against thinning of the central retina by 10% (p<0.05), a composite of an increase of the outer nuclear layer by 12% (p<0.01) and in the outer segments of photoreceptors by 26% (p<0.001). Quantification of cell nuclei revealed no difference. Microglial activity, shown by gene expression of CD74, decreased by 67% (p<0.01) after EPO and 36% (n.s.) after EPO-like peptide treatment. In conclusion, EPO safeguards the neuroglialvascular unit in a model of retinal neurodegeneration and secondary vasoregression. This finding strengthens EPO in its protective capability for the whole neuroglialvascular unit.
Collapse
|
38
|
The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration. PLoS One 2014; 9:e97302. [PMID: 24837086 PMCID: PMC4023966 DOI: 10.1371/journal.pone.0097302] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/17/2014] [Indexed: 01/20/2023] Open
Abstract
Background To characterize the sequential events that are taking place in retinal neurodegeneration in a murine model of spontaneous type 2 diabetes (db/db mouse). Methods C57BLKsJ-db/db mice were used as spontaneous type 2 diabetic animal model, and C57BLKsJ-db/+ mice served as the control group. To assess the chronological sequence of the abnormalities the analysis was performed at different ages (8, 16 and 24 weeks). The retinas were evaluated in terms of morphological and functional abnormalities [electroretinography (ERG)]. Histological markers of neurodegeneration (glial activation and apoptosis) were evaluated by immunohistochemistry. In addition glutamate levels and glutamate/aspartate transporter (GLAST) expression were assessed. Furthermore, to define gene expression changes associated with early diabetic retinopathy a transcriptome analyses was performed at 8 week. Furthermore, an additional interventional study to lower blood glucose levels was performed. Results Glial activation was higher in diabetic than in non diabetic mice in all the stages (p<0.01). In addition, a progressive loss of ganglion cells and a significant reduction of neuroretinal thickness were also observed in diabetic mice. All these histological hallmarks of neurodegeneration were less pronounced at week 8 than at week 16 and 24. Significant ERG abnormalities were present in diabetic mice at weeks 16 and 24 but not at week 8. Moreover, we observed a progressive accumulation of glutamate in diabetic mice associated with an early downregulation of GLAST. Morphological and ERG abnormalities were abrogated by lowering blood glucose levels. Finally, a dysregulation of several genes related to neurotransmission and oxidative stress such as UCP2 were found at week 8. Conclusions Our results suggest that db/db mouse reproduce the features of the neurodegenerative process that occurs in the human diabetic eye. Therefore, it seems an appropriate model for investigating the underlying mechanisms of diabetes-induced retinal neurodegeneration and for testing neuroprotective drugs.
Collapse
|
39
|
Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy. Mol Neurobiol 2014; 51:878-84. [PMID: 24826918 DOI: 10.1007/s12035-014-8732-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) was earlier recognized as a vascular disease, but nowadays, it is considered as a neurovascular disorder. Neuronal death is the primary change which leads to various vascular changes which are visible to an ophthalmologist. But these changes are feature of an advanced disease and can affect vision at any moment of time. There are various evidences which suggests that glutamate excitotoxicity, hyperhomocysteinemia, kynurenic acid, and erythro-poietin plays important role in causation of retinal ganglionic cell apoptosis in diabetic patients. Adaptive optics, a new imaging technique, also showed that loss of photoreceptors (specialized neurons) is the early change in diabetic retinopathy. These changes suggest DR as a neurovascular disorder. Neuroprotective agents also showed good results in delaying progression of DR especially memantine, insulin receptor activation, and neurotrophic factors. More research in this field will help us to find novel therapeutic measures for DR, which can delay or even stop progression of DR at a very early stage.
Collapse
Affiliation(s)
- Vishal Jindal
- , H. No. 102 GHS 51 sector 20, Panchkula, Haryana, India,
| |
Collapse
|
40
|
Feng Y, Wang Y, Yang Z, Wu L, Hoffmann S, Wieland T, Gretz N, Hammes HP. Chronic hyperglycemia inhibits vasoregression in a transgenic model of retinal degeneration. Acta Diabetol 2014; 51:211-8. [PMID: 23771613 DOI: 10.1007/s00592-013-0488-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
Vasoregression characterizes diabetic retinopathy in animal models and in humans. We have recently demonstrated that vasoregression is earlier initiated in a rat model of ciliopathy-induced retinal neurodegeneration (TGR rat). The aim was to assess the balance between vasoregressive effects of chronic hyperglycemia and photoreceptor degeneration on adult vascular remodelling. The retinas were analyzed at 4 and 9 months after streptozotocin-induced diabetes. Neurodegeneration was determined by quantitation of cell numbers and retinal layer thickness. Vasoregression was assessed by quantitative retinal morphometry in retinal digest preparations. Retinal VEGF levels were measured by ELISA. Glial activation, expression and location of HSP27 and phosphorylated HSP27 were evaluated by immunofluorescence staining. Unexpectedly, the numbers of acellular capillaries were reduced at both time points and led to fewer intraretinal microvascular abnormalities in late stage diabetic TGR. Concomitantly, inner nuclear layers (INLs) in diabetic TGR rats were protected from cell loss at both time points. Consequently, glial activation was reduced, but VEGF level was increased in diabetic TGR retinas. Expressions of HSP27 were upregulated in glia cells in the preserved INL of diabetic TGR. Chronic hyperglycemia preserves the microvasculature in the retinal model of neurodegeneration. Cell preservation in the retinal INL was associated with protective gene regulation. Together, these data indicate that diabetes can induce vasoprotection, in which retinal glia can play a particular role.
Collapse
Affiliation(s)
- Y Feng
- 5th Medical Clinic, Faculty of Clinical Medicine, University of Heidelberg, Mannheim, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Phenotypes and biomarkers of diabetic retinopathy. Prog Retin Eye Res 2014; 41:90-111. [PMID: 24680929 DOI: 10.1016/j.preteyeres.2014.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR) remains a major cause of blindness as the prevalence of diabetes is expected to approximately double globally between 2000 and 2030. DR progresses over time at different rates in different individuals with only a limited number developing significant vision loss due to the two major vision-threatening complications, clinically significant macular edema and proliferative retinopathy. Good metabolic control is important to prevent and delay progression, but whereas some patients escape vision loss even with poor control, others develop vision loss despite good metabolic control. Our research group has been able to identify three different DR phenotypes characterized by different dominant retinal alterations and different risks of progression to vision-threatening complications. Microaneurysm turnover has been validated as a prognostic biomarker of development of clinically significant macular edema, whereas subclinical macular edema identified by OCT and mfERG appear to be also good candidates as organ-specific biomarkers of DR. Hemoglobin A1c remains the only confirmed systemic prognostic biomarker of DR progression. The availability of biomarkers of DR progression and the identification of different phenotypes of DR with different risks for development of vision-threatening complications offers new perspectives for understanding DR and for its personalized management.
Collapse
|
42
|
Simó R, Hernández C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 2014; 25:23-33. [PMID: 24183659 DOI: 10.1016/j.tem.2013.09.005] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/02/2013] [Accepted: 09/27/2013] [Indexed: 11/29/2022]
Abstract
Diabetic retinopathy (DR), one of the leading causes of preventable blindness, has been considered a microcirculatory disease of the retina. However, there is emerging evidence to suggest that retinal neurodegeneration is an early event in the pathogenesis of DR, which participates in the development of microvascular abnormalities. Therefore, the study of the underlying mechanisms leading to neurodegeneration and the identification of the mediators in the crosstalk between neurodegeneration and microangiopathy will be essential for the development of new therapeutic strategies. In this review, an updated discussion of the mechanisms involved in neurodegeneration, as well as the link between neurodegeneration and microangiopathy, is presented. Finally, the therapeutic implications and new perspectives based on identifying those patients with retinal neurodegeneration are given.
Collapse
Affiliation(s)
- Rafael Simó
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain.
| | - Cristina Hernández
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain
| | | |
Collapse
|
43
|
Vogler S, Pannicke T, Hollborn M, Grosche A, Busch S, Hoffmann S, Wiedemann P, Reichenbach A, Hammes HP, Bringmann A. Müller cell reactivity in response to photoreceptor degeneration in rats with defective polycystin-2. PLoS One 2013; 8:e61631. [PMID: 23755094 PMCID: PMC3670868 DOI: 10.1371/journal.pone.0061631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/12/2013] [Indexed: 12/18/2022] Open
Abstract
Background Retinal degeneration in transgenic rats that express a mutant cilia gene polycystin-2 (CMV-PKD2(1/703)HA) is characterized by initial photoreceptor degeneration and glial activation, followed by vasoregression and neuronal degeneration (Feng et al., 2009, PLoS One 4: e7328). It is unknown whether glial activation contributes to neurovascular degeneration after photoreceptor degeneration. We characterized the reactivity of Müller glial cells in retinas of rats that express defective polycystin-2. Methods Age-matched Sprague-Dawley rats served as control. Retinal slices were immunostained for intermediate filaments, the potassium channel Kir4.1, and aquaporins 1 and 4. The potassium conductance of isolated Müller cells was recorded by whole-cell patch clamping. The osmotic swelling characteristics of Müller cells were determined by superfusion of retinal slices with a hypoosmotic solution. Findings Müller cells in retinas of transgenic rats displayed upregulation of GFAP and nestin which was not observed in control cells. Whereas aquaporin-1 labeling of photoreceptor cells disappeared along with the degeneration of the cells, aquaporin-1 emerged in glial cells in the inner retina of transgenic rats. Aquaporin-4 was upregulated around degenerating photoreceptor cells. There was an age-dependent redistribution of Kir4.1 in retinas of transgenic rats, with a more even distribution along glial membranes and a downregulation of perivascular Kir4.1. Müller cells of transgenic rats displayed a slight decrease in their Kir conductance as compared to control. Müller cells in retinal tissues from transgenic rats swelled immediately under hypoosmotic stress; this was not observed in control cells. Osmotic swelling was induced by oxidative-nitrosative stress, mitochondrial dysfunction, and inflammatory lipid mediators. Interpretation Cellular swelling suggests that the rapid water transport through Müller cells in response to osmotic stress is altered as compared to control. The dislocation of Kir4.1 will disturb the retinal potassium and water homeostasis, and osmotic generation of free radicals and inflammatory lipids may contribute to neurovascular injury.
Collapse
Affiliation(s)
- Stefanie Vogler
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Antje Grosche
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Stephanie Busch
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sigrid Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
44
|
Ola MS, Nawaz MI, Khan HA, Alhomida AS. Neurodegeneration and neuroprotection in diabetic retinopathy. Int J Mol Sci 2013; 14:2559-72. [PMID: 23358247 PMCID: PMC3588002 DOI: 10.3390/ijms14022559] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal ganglion cells and glial cells, both of which have been found to be compromised. A number of retinal function tests also indicated a functional deficit in diabetic retina, which further supports dysfunction of neuronal cells. As an endocrinological disorder, diabetes alters metabolism both systemically and locally in several body organs, including the retina. A growing body of evidences indicates increased levels of excitotoxic metabolites, including glutamate, branched chain amino acids and homocysteine in cases of diabetic retinopathy. Also present, early in the disease, are decreased levels of folic acid and vitamin-B12, which are potential metabolites capable of damaging neurons. These altered levels of metabolites are found to activate several metabolic pathways, leading to increases in oxidative stress and decreases in the level of neurotrophic factors. As a consequence, they may damage retinal neurons in diabetic patients. In this review, we have discussed those potential excitotoxic metabolites and their implications in neuronal damage. Possible therapeutic targets to protect neurons are also discussed. However, further research is needed to understand the exact molecular mechanism of neurodegeneration so that effective neuroprotection strategies can be developed. By protecting retinal neurons early in diabetic retinopathy cases, damage of retinal vessels can be protected, thereby helping to ameliorate the progression of diabetic retinopathy, a leading cause of blindness worldwide.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, Faculty of Science, King Saud University, Riyadh 11415, Saudi Arabia.
| | | | | | | |
Collapse
|
45
|
Abstract
Diabetic retinopathy (DR) has been considered to be a microcirculatory disease of the retina. However, there is emerging evidence to suggest that retinal neurodegeneration is an early event in the pathogenesis of DR, which may antedate, and also participates in, the microcirculatory abnormalities that occur in DR. Therefore, the study of the underlying mechanisms that lead to neurodegeneration will be essential for identifying new therapeutic targets in the early stages of DR. Elevated levels of glutamate, oxidative stress, the overexpression of the renin-angiotensin system and the upregulation of RAGE play an essential role in the retinal neurodegeneration induced by diabetes. Finally, the balance between the neurotoxic and neuroprotective factors is crucial in determining the survival of retinal neurons. In this review we will focus on neurotrophic factors already synthesized by the retina in physiological conditions as a new therapy strategy for neuroprotection.
Collapse
Affiliation(s)
- Cristina Hernández
- CIBERDEM and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Spain
| | | |
Collapse
|
46
|
Kaja S, Mafe OA, Parikh RA, Kandula P, Reddy CA, Gregg EV, Xin H, Mitchell P, Grillo MA, Koulen P. Distribution and function of polycystin-2 in mouse retinal ganglion cells. Neuroscience 2011; 202:99-107. [PMID: 22155264 DOI: 10.1016/j.neuroscience.2011.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
The polycystin family of transient receptor potential (TRP) channels form Ca(2+) regulated cation channels with distinct subcellullar localizations and functions. As part of heteromultimeric channels and multi-protein complexes, polycystins control intracellular Ca(2+) signals and more generally the translation of extracellular signals and stimuli to intracellular responses. Polycystin-2 channels have been cloned from retina, but their distribution and function in retinal ganglion cells (RGCs) have not yet been established. In the present study, we determined cellular and subcellular localization as well as functional properties of polycystin-2 channels in RGCs. Polycystin-2 expression and distribution in RGCs was assessed by immunohistochemistry on vertical cryostat section of mouse retina as well as primary cultured mouse RGCs, using fluorescence microscopy. Biophysical and pharmacological properties of polycystin-2 channels isolated from primary cultured RGCs were determined using planar lipid bilayer electrophysiology. We detected polycystin-2 immunoreactivity both in the ganglion cell layer as well as in primary cultured RGCs. Subcellular analysis revealed strong cytosolic localization pattern of polycystin-2. Polycystin-2 channel current was Ca(2+) activated, had a maximum slope conductance of 114 pS, and could be blocked in a dose-dependent manner by increasing concentrations of Mg(2+). The cytosolic localization of polycystin-2 in RGCs is in accordance with its function as intracellular Ca(2+) release channel. We conclude that polycystin-2 forms functional channels in RGCs, of which biophysical and pharmacological properties are similar to polycystin-2 channels reported for other tissues and organisms. Our data suggest a potential role for polycystin-2 in RGC Ca(2+) signaling.
Collapse
Affiliation(s)
- S Kaja
- Vision Research Center and Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gilliam JC, Wensel TG. TRP channel gene expression in the mouse retina. Vision Res 2011; 51:2440-52. [PMID: 22037305 DOI: 10.1016/j.visres.2011.10.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
In order to identify candidate cation channels important for retinal physiology, 28 TRP channel genes were surveyed for expression in the mouse retina. Transcripts for all TRP channels were detected by RT-PCR and sequencing. Northern blotting revealed that mRNAs for 12 TRP channel genes are enriched in the retina. The strongest signals were observed for TRPC1, TRPC3, TRPM1, TRPM3, and TRPML1, and clear signals were obtained for TRPC4, TRPM7, TRPP2, TRPV2, and TRPV4. In situ hybridization and immunofluorescence revealed widespread expression throughout multiple retinal layers for TRPC1, TRPC3, TRPC4, TRPML1, PKD1, and TRPP2. Striking localization of enhanced mRNA expression was observed for TRPC1 in the photoreceptor inner segment layer, for TRPM1 in the inner nuclear layer (INL), for TRPM3 in the INL, and for TRPML1 in the outer plexiform and nuclear layers. Strong immunofluorescence signal in cone outer segments was observed for TRPM7 and TRPP2. TRPC5 immunostaining was largely confined to INL cells immediately adjacent to the inner plexiform layer. TRPV2 antibodies stained photoreceptor axons in the outer plexiform layer. Expression of TRPM1 splice variants was strong in the ciliary body, whereas TRPM3 was strongly expressed in the retinal pigmented epithelium.
Collapse
Affiliation(s)
- Jared C Gilliam
- Verna and Marrs McLean, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | | |
Collapse
|
48
|
Feng Y, Wang Y, Li L, Wu L, Hoffmann S, Gretz N, Hammes HP. Gene expression profiling of vasoregression in the retina--involvement of microglial cells. PLoS One 2011; 6:e16865. [PMID: 21379381 PMCID: PMC3040753 DOI: 10.1371/journal.pone.0016865] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 01/17/2011] [Indexed: 11/18/2022] Open
Abstract
Vasoregression is a hallmark of vascular eye diseases but the mechanisms involved are still largely unknown. We have recently characterized a rat ciliopathy model which develops primary photoreceptor degeneration and secondary vasoregression. To improve the understanding of secondary vasoregression in retinal neurodegeneration, we used microarray techniques to compare gene expression profiles in this new model before and after retinal vasoregression. Differential gene expression was validated by quantitative RT-PCR, Western blot and immunofluorescence. Of the 157 genes regulated more than twofold, the MHC class II invariant chain CD74 yielded the strongest upregulation, and was allocated to activated microglial cells close to the vessels undergoing vasoregression. Pathway clustering identified genes of the immune system including inflammatory signaling, and components of the complement cascade upregulated during vasoregression. Together, our data suggest that microglial cells involved in retinal immune response participate in the initiation of vasoregression in the retina.
Collapse
Affiliation(s)
- Yuxi Feng
- 5 Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yumei Wang
- 5 Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Li Li
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Liang Wu
- 5 Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sigrid Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5 Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|