1
|
Guo Y, Cheng D, Yu ZY, Schiatti T, Chan AY, Hill AP, Peyronnet R, Feneley MP, Cox CD, Martinac B. Functional coupling between Piezo1 and TRPM4 influences the electrical activity of HL-1 atrial myocytes. J Physiol 2024; 602:4363-4386. [PMID: 38098265 DOI: 10.1113/jp284474] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/30/2023] [Indexed: 09/25/2024] Open
Abstract
The transient receptor potential melastatin 4 (TRPM4) channel contributes extensively to cardiac electrical activity, especially cardiomyocyte action potential formation. Mechanical stretch can induce changes in heart rate and rhythm, and the mechanosensitive channel Piezo1 is expressed in many cell types within the myocardium. Our previous study showed that TRPM4 and Piezo1 are closely co-localized in the t-tubules of ventricular cardiomyocytes and contribute to the Ca2+-dependent signalling cascade that underlies hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. In the present study, we employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate whether Piezo1-TRPM4 coupling can affect action potential properties. We used the small molecule Piezo1 agonist, Yoda1, as a surrogate for mechanical stretch to activate Piezo1 and detected the action potential changes in HL-1 cells using FluoVolt, a fluorescent voltage sensitive dye. Our results demonstrate that Yoda1-induced activation of Piezo1 changes the action potential frequency in HL-1 cells. This change in action potential frequency is reduced by Piezo1 knockdown using small intefering RNA. Importantly knockdown or pharmacological inhibition of TRPM4 significantly affected the degree to which Yoda1-evoked Piezo1 activation influenced action potential frequency. Thus, the present study provides in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+-activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction. KEY POINTS: The transient receptor potential melastatin 4 (TRPM4) and Piezo1 channels have been confirmed to contribute to the Ca2+-dependent signalling cascade that underlies cardiac hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. We employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate the effect of Piezo1-TRPM4 coupling on cardiac electrical properties. The results show that both pharmacological and genetic inhibition of TRPM4 significantly affected the degree to which Piezo1 activation influenced action potential frequency in HL-1 cells. Our findings provide in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+-activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction in various (patho)physiological processes.
Collapse
Affiliation(s)
- Yang Guo
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Delfine Cheng
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ze-Yan Yu
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Teresa Schiatti
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Y Chan
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael P Feneley
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Chang J, Liu A, Zhang J, Chu L, Hou X, Huang X, Xing Q, Bao Z. Transcriptomic analysis reveals PC4's participation in thermotolerance of scallop Argopecten irradians irradians by regulating myocardial bioelectric activity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101295. [PMID: 39053238 DOI: 10.1016/j.cbd.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Rising ocean temperatures due to global warming pose a significant threat to the bay scallop aquaculture industry. Understanding the mechanisms of thermotolerance in bay scallops is crucial for developing thermotolerant breeds. Our prior research identified Arg0230340.1, part of the positive cofactor 4 (PC4) family, as a key gene associated with the thermotolerance index Arrhenius break temperature (ABT) in bay scallops. Further validation through RNA interference (RNAi) reinforced PC4's role in thermotolerance, offering a solid basis for investigating thermal response mechanisms in these scallops. In this study, we performed a comparative transcriptomic analysis on the temperature-sensitive hearts of bay scallops after siRNA-mediated RNAi targeting Arg0230340.1, to delve into the detailed molecular mechanism of PC4's participation in thermotolerance regulation. The analysis revealed that silencing Arg0230340.1 significantly reduced the expression of mitochondrial tRNA and rRNA, potentially affecting mitochondrial function and the heart's blood supply capacity. Conversely, the up-regulation of genes involved in energy metabolism, RNA polymerase II (RNAPII)-mediated basal transcription, and aminoacyl-tRNA synthesis pathways points to an intrinsic protective response, providing energy and substrates for damage repair and maintenance of essential functions under stress. GO and KEGG enrichment analyses indicated that the up-regulated genes were primarily associated with energy metabolism and spliceosome pathways, likely contributing to myocardial remodeling post-Arg0230340.1 knockdown. Down-regulated genes were enriched in ion channel pathways, particularly those for Na+, K+, and Ca2+ channels, whose dysfunction could disrupt normal myocardial bioelectric activity. The impaired cardiac performance resulting from RNAi targeting Arg0230340.1 reduced the cardiac workload in scallop hearts, thus affecting myocardial oxygen consumption and thermotolerance. We propose a hypothetical mechanism where PC4 down-regulation impairs cardiac bioelectric activity, leading to decreased thermotolerance in bay scallops, providing theoretical guidance for breeding thermotolerant scallop varieties and developing strategies for sustainable aquaculture in the face of long-term environmental changes.
Collapse
Affiliation(s)
- Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Gururaja Rao S, Lam A, Seeley S, Park J, Aruva S, Singh H. The BK Ca (slo) channel regulates the cardiac function of Drosophila. Physiol Rep 2024; 12:e15996. [PMID: 38561252 PMCID: PMC10984821 DOI: 10.14814/phy2.15996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
The large conductance, calcium, and voltage-active potassium channels (BKCa) were originally discovered in Drosophila melanogaster as slowpoke (slo). They are extensively characterized in fly models as ion channels for their roles in neurological and muscular function, as well as aging. BKCa is known to modulate cardiac rhythm and is localized to the mitochondria. Activation of mitochondrial BKCa causes cardioprotection from ischemia-reperfusion injury, possibly via modulating mitochondrial function in adult animal models. However, the role of BKCa in cardiac function is not well-characterized, partially due to its localization to the plasma membrane as well as intracellular membranes and the wide array of cells present in mammalian hearts. Here we demonstrate for the first time a direct role for BKCa in cardiac function and cardioprotection from IR injury using the Drosophila model system. We have also discovered that the BKCa channel plays a role in the functioning of aging hearts. Our study establishes the presence of BKCa in the fly heart and ascertains its role in aging heart function.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Pharmaceutical and Biomedical SciencesThe Raabe College of Pharmacy, Ohio Northern UniversityAdaOhioUSA
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Alexander Lam
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Sarah Seeley
- Department of Pharmaceutical and Biomedical SciencesThe Raabe College of Pharmacy, Ohio Northern UniversityAdaOhioUSA
| | - Jeniffer Park
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Shriya Aruva
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Harpreet Singh
- Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
4
|
Van NTH, Kim WK, Nam JH. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications. Int J Mol Sci 2024; 25:2965. [PMID: 38474212 PMCID: PMC10932353 DOI: 10.3390/ijms25052965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Calcium-activated potassium (KCa) channels are ubiquitously expressed throughout the body and are able to regulate membrane potential and intracellular calcium concentrations, thereby playing key roles in cellular physiology and signal transmission. Consequently, it is unsurprising that KCa channels have been implicated in various diseases, making them potential targets for pharmaceutical interventions. Over the past two decades, numerous studies have been conducted to develop KCa channel-targeting drugs, including those for disorders of the central and peripheral nervous, cardiovascular, and urinary systems and for cancer. In this review, we synthesize recent findings regarding the structure and activating mechanisms of KCa channels. We also discuss the role of KCa channel modulators in therapeutic medicine. Finally, we identify the major reasons behind the delay in bringing these modulators to the pharmaceutical market and propose new strategies to promote their application.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
5
|
Chen YC, Shih CL, Wu CL, Fang YH, So EC, Wu SN. Exploring the Impact of BK Ca Channel Function in Cellular Membranes on Cardiac Electrical Activity. Int J Mol Sci 2024; 25:1537. [PMID: 38338830 PMCID: PMC10855144 DOI: 10.3390/ijms25031537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
This review paper delves into the current body of evidence, offering a thorough analysis of the impact of large-conductance Ca2+-activated K+ (BKCa or BK) channels on the electrical dynamics of the heart. Alterations in the activity of BKCa channels, responsible for the generation of the overall magnitude of Ca2+-activated K+ current at the whole-cell level, occur through allosteric mechanisms. The collaborative interplay between membrane depolarization and heightened intracellular Ca2+ ion concentrations collectively contribute to the activation of BKCa channels. Although fully developed mammalian cardiac cells do not exhibit functional expression of these ion channels, evidence suggests their presence in cardiac fibroblasts that surround and potentially establish close connections with neighboring cardiac cells. When cardiac cells form close associations with fibroblasts, the high single-ion conductance of these channels, approximately ranging from 150 to 250 pS, can result in the random depolarization of the adjacent cardiac cell membranes. While cardiac fibroblasts are typically electrically non-excitable, their prevalence within heart tissue increases, particularly in the context of aging myocardial infarction or atrial fibrillation. This augmented presence of BKCa channels' conductance holds the potential to amplify the excitability of cardiac cell membranes through effective electrical coupling between fibroblasts and cardiomyocytes. In this scenario, this heightened excitability may contribute to the onset of cardiac arrhythmias. Moreover, it is worth noting that the substances influencing the activity of these BKCa channels might influence cardiac electrical activity as well. Taken together, the BKCa channel activity residing in cardiac fibroblasts may contribute to cardiac electrical function occurring in vivo.
Collapse
Affiliation(s)
- Yin-Chia Chen
- Division of Cardiovascular Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60056, Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Yi-Hsien Fang
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan
| | - Sheng-Nan Wu
- Department of Research and Education, An Nan Hospital, China Medical University, Tainan 70965, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80421, Taiwan
| |
Collapse
|
6
|
Brock KE, Elliott ER, Abul-Khoudoud MO, Cooper RL. The effects of Gram-positive and Gram-negative bacterial toxins (LTA & LPS) on cardiac function in Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104518. [PMID: 37119936 DOI: 10.1016/j.jinsphys.2023.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The effects of Gram negative and positive bacterial sepsis depend on the type of toxins released, such as lipopolysaccharides (LPS) or lipoteichoic acid (LTA). Previous studies show LPS to rapidly hyperpolarize larval Drosophila skeletal muscle, followed by desensitization and return to baseline. In larvae, heart rate increased then decreased with exposure to LPS. However, responses to LTA, as well as the combination of LTA and LPS, on the larval Drosophila heart have not been previously examined. This study examined the effects of LTA and a cocktail of LTA and LPS on heart rate. The combined effects were examined by first treating with either LTA or LPS only, and then with the cocktail. The results showed a rapid increase in heart rate upon LTA application, followed by a gradual decline over time. When applying LTA followed by the cocktail, an increase in the rate occurred. However, if LPS was applied before the cocktail, the rate continued declining. These responses indicate the receptors or cellular cascades responsible for controlling heart rate within seconds and the rapid desensitization are affected by LTA or LPS and a combination of the two. The mechanisms for rapid changes which are not regulated by gene expression by exposure to LTA or LPS or associated bacterial peptidoglycans have yet to be identified in cardiac tissues of any organism.
Collapse
Affiliation(s)
- Kaitlyn E Brock
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Elizabeth R Elliott
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
7
|
Sanghvi S, Szteyn K, Ponnalagu D, Sridharan D, Lam A, Hansra I, Chaudhury A, Majumdar U, Kohut AR, Gururaja Rao S, Khan M, Garg V, Singh H. Inhibition of BK Ca channels protects neonatal hearts against myocardial ischemia and reperfusion injury. Cell Death Dis 2022; 8:175. [PMID: 35393410 PMCID: PMC8989942 DOI: 10.1038/s41420-022-00980-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
BKCa channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BKCa channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BKCa channel’s activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes. In this study, we report the presence of the BKCa channel in the plasma membrane and mitochondria of neonatal murine and rodent cardiomyocytes, which protects the heart on inhibition but not activation. Furthermore, K+ currents measured in neonatal cardiomyocyte (NCM) was sensitive to iberiotoxin (IbTx), suggesting the presence of BKCa channels in the plasma membrane. Neonatal hearts subjected to IR when post-conditioned with NS1619 during reoxygenation increased the myocardial infarction whereas IbTx reduced the infarct size. In agreement, isolated NCM also presented increased apoptosis on treatment with NS1619 during hypoxia and reoxygenation, whereas IbTx reduced TUNEL-positive cells. In NCMs, activation of BKCa channels increased the intracellular reactive oxygen species post HR injury. Electrophysiological characterization of NCMs indicated that NS1619 increased the beat period, field, and action potential duration, and decreased the conduction velocity and spike amplitude. In contrast, IbTx had no impact on the electrophysiological properties of NCMs. Taken together, our data established that inhibition of plasma membrane BKCa channels in the NCM protects neonatal heart/cardiomyocytes from IR injury. Furthermore, the functional disparity observed towards the cardioprotective activity of BKCa channels in adults compared to neonatal heart could be attributed to their differential localization.
Collapse
Affiliation(s)
- Shridhar Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Kalina Szteyn
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Divya Sridharan
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alexander Lam
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Inderjot Hansra
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ankur Chaudhury
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrew R Kohut
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA.,Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shubha Gururaja Rao
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Mahmood Khan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Sanghvi S, Szteyn K, Ponnalagu D, Sridharan D, Lam A, Hansra I, Chaudhury A, Majumdar U, Kohut AR, Rao SG, Khan M, Garg V, Singh H. Inhibition of BK Ca channels protects neonatal hearts against myocardial ischemia and reperfusion injury.. [DOI: 10.1101/2021.11.02.466585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractBKCa channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BKCa channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BKCa channel’s activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes. In this study, we report the presence of the BKCa channel in the plasma membrane and mitochondria of neonatal murine and rodent cardiomyocytes which protects the heart on inhibition but not activation. Furthermore, K+ currents measured in neonatal cardiomyocyte (NCM) was sensitive to iberiotoxin (IbTx), suggesting the presence of BKCa channels in the plasma membrane. Neonatal hearts subjected to IR when post-conditioned with NS1619 during reoxygenation increased the myocardial infarction whereas IbTx reduced the infarct size. In agreement, isolated NCM also presented increased apoptosis on treatment with NS1619 during hypoxia and reoxygenation, whereas IbTx reduced TUNEL positive cells. In NCMs, activation of BKCa channels increased the intracellular reactive oxygen species post HR injury. Electrophysiological characterization of NCMs indicated that NS1619 increased the beat period, field, and action potential duration, and decreased the conduction velocity and spike amplitude. In contrast, IbTx had no impact on the electrophysiological properties of NCMs. Taken together, our data established that inhibition of plasma membrane BKCa channels in the NCM protects neonatal heart/cardiomyocytes from IR injury. Furthermore, the functional disparity observed towards the cardioprotective activity of BKCa channels in adults compared to neonatal heart could be attributed to their differential localization.
Collapse
|
9
|
Abstract
Mitochondria have been recognized as key organelles in cardiac physiology and are potential targets for clinical interventions to improve cardiac function. Mitochondrial dysfunction has been accepted as a major contributor to the development of heart failure. The main function of mitochondria is to meet the high energy demands of the heart by oxidative metabolism. Ionic homeostasis in mitochondria directly regulates oxidative metabolism, and any disruption in ionic homeostasis causes mitochondrial dysfunction and eventually contractile failure. The mitochondrial ionic homeostasis is closely coupled with inner mitochondrial membrane potential. To regulate and maintain ionic homeostasis, mitochondrial membranes are equipped with ion transporting proteins. Ion transport mechanisms involving several different ion channels and transporters are highly efficient and dynamic, thus helping to maintain the ionic homeostasis of ions as well as their salts present in the mitochondrial matrix. In recent years, several novel proteins have been identified on the mitochondrial membranes and these proteins are actively being pursued in research for roles in the organ as well as organelle physiology. In this article, the role of mitochondrial ion channels in cardiac function is reviewed. In recent times, the major focus of the mitochondrial ion channel field is to establish molecular identities as well as assigning specific functions to them. Given the diversity of mitochondrial ion channels and their unique roles in cardiac function, they present novel and viable therapeutic targets for cardiac diseases.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
10
|
Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Front Cardiovasc Med 2021; 8:662410. [PMID: 34434970 PMCID: PMC8382116 DOI: 10.3389/fcvm.2021.662410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
The understanding of the electrophysiological mechanisms that underlie mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the heart, has been evolving over the past century. The heart is constantly exposed to a dynamic mechanical environment; as such, the SAN has numerous canonical and emerging mechanosensitive ion channels and signaling pathways that govern its ability to respond to both fast (within second or on beat-to-beat manner) and slow (minutes) timescales. This review summarizes the effects of mechanical loading on the SAN activity and reviews putative candidates, including fast mechanoactivated channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including volume-regulated chloride channels and transient receptor potential (TRP)], as well as the components of mechanochemical signal transduction, which may contribute to SAN mechanosensitivity. Furthermore, we examine the structural foundation for both mechano-electrical and mechanochemical signal transduction and discuss the role of specialized membrane nanodomains, namely, caveolae, in mechanical regulation of both membrane and calcium clock components of the so-called coupled-clock pacemaker system responsible for SAN automaticity. Finally, we emphasize how these mechanically activated changes contribute to the pathophysiology of SAN dysfunction and discuss controversial areas necessitating future investigations. Though the exact mechanisms of SAN mechanosensitivity are currently unknown, identification of such components, their impact into SAN pacemaking, and pathological remodeling may provide new therapeutic targets for the treatment of SAN dysfunction and associated rhythm abnormalities.
Collapse
Affiliation(s)
- Daniel Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Chen Kang
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Juan Hong
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Rajan Sah
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
11
|
He C, Li X, Wang M, Zhang S, Liu H. Deletion of BK channels decreased skeletal and cardiac muscle function but increased smooth muscle contraction in rats. Biochem Biophys Res Commun 2021; 570:8-14. [PMID: 34271438 DOI: 10.1016/j.bbrc.2021.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
Large conductance calcium-activated potassium channel (BK channel) is widely expressed in skeletal muscle, myocardium, smooth muscle and other muscle tissues. Mutation, abnormal expression and altered activity of BK channel are linked to muscle-related diseases such as dyskinesia, epilepsy and erectile dysfunction. In order to compare the effects of BK channel on different muscle tissues, we constructed BK channel gene knockout rats (BK-/- rats). HE staining, open field and grip strength tests, ultrasound, blood pressure measurement and vascular tension test were utilized to explore the effects of BK channel deletion on the structure and function changes in skeletal muscle, myocardium, and vascular smooth muscle (VSM). It was found that compared with wild-type rats, the BK-/- rats showed decreased skeletal muscle fiber area, grip, movement distance and speed at 2 and 12 months of ages. At heart, the muscle fiber area, cardiac systolic/diastolic function and heart rate decreased in BK-/- rats. The wall of the left ventricle became thin. However, the vascular wall of BK-/- rats thickened, the pulse wave velocity was increased, and the VSM contraction was enhanced. Unexpectedly, both systolic and diastolic blood pressure were reduced in BK-/- rats, while pulse pressure difference was increased. These results suggest that BK channel may have different effects on different types of muscle tissue, and it should be noted that different parts of muscle tissue may have different effects when BK channel-related drugs are used.
Collapse
Affiliation(s)
- Chunyu He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Beijing, 100069, China
| | - Xiaoyue Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Beijing, 100069, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Beijing, 100069, China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Beijing, 100069, China.
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Beijing, 100069, China.
| |
Collapse
|
12
|
Tsutsui K, Florio MC, Yang A, Wirth AN, Yang D, Kim MS, Ziman BD, Bychkov R, Monfredi OJ, Maltsev VA, Lakatta EG. cAMP-Dependent Signaling Restores AP Firing in Dormant SA Node Cells via Enhancement of Surface Membrane Currents and Calcium Coupling. Front Physiol 2021; 12:596832. [PMID: 33897445 PMCID: PMC8063038 DOI: 10.3389/fphys.2021.596832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Action potential (AP) firing rate and rhythm of sinoatrial nodal cells (SANC) are controlled by synergy between intracellular rhythmic local Ca2+ releases (LCRs) ("Ca2+ clock") and sarcolemmal electrogenic mechanisms ("membrane clock"). However, some SANC do not fire APs (dormant SANC). Prior studies have shown that β-adrenoceptor stimulation can restore AP firing in these cells. Here we tested whether this relates to improvement of synchronization of clock coupling. We characterized membrane potential, ion currents, Ca2+ dynamics, and phospholamban (PLB) phosphorylation, regulating Ca2+ pump in enzymatically isolated single guinea pig SANC prior to, during, and following β-adrenoceptor stimulation (isoproterenol) or application of cell-permeant cAMP (CPT-cAMP). Phosphorylation of PLB (Serine 16) was quantified in the same cells following Ca2+ measurement. In dormant SANC LCRs were small and disorganized at baseline, membrane potential was depolarized (-38 ± 1 mV, n = 46), and ICaL, If, and IK densities were smaller vs SANC firing APs. β-adrenoceptor stimulation or application of CPT-cAMP led to de novo spontaneous AP generation in 44 and 46% of dormant SANC, respectively. The initial response was an increase in size, rhythmicity and synchronization of LCRs, paralleled with membrane hyperpolarization and small amplitude APs (rate ∼1 Hz). During the transition to steady-state AP firing, LCR size further increased, while LCR period shortened. LCRs became more synchronized resulting in the growth of an ensemble LCR signal peaked in late diastole, culminating in AP ignition; the rate of diastolic depolarization, AP amplitude, and AP firing rate increased. ICaL, IK, and If amplitudes in dormant SANC increased in response to β-adrenoceptor stimulation. During washout, all changes reversed in order. Total PLB was higher, but the ratio of phosphorylated PLB (Serine 16) to total PLB was lower in dormant SANC. β-adrenoceptor stimulation increased this ratio in AP-firing cells. Thus, transition of dormant SANC to AP firing is linked to the increased functional coupling of membrane and Ca2+ clock proteins. The transition occurs via (i) an increase in cAMP-mediated phosphorylation of PLB accelerating Ca2+ pumping, (ii) increased spatiotemporal LCR synchronization, yielding a larger diastolic LCR ensemble signal resulting in an earlier increase in diastolic INCX; and (iii) increased current densities of If, ICaL, and IK.
Collapse
Affiliation(s)
- Kenta Tsutsui
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
- Department of Cardiovascular Medicine, Faculty of Medicine, Saitama Medical University International Medical Center, Saitama, Japan
| | - Maria Cristina Florio
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Annie Yang
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Ashley N. Wirth
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Mary S. Kim
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Bruce D. Ziman
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Oliver J. Monfredi
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
- Heart and Vascular Center, University of Virginia, Charlottesville, VA, United States
| | - Victor A. Maltsev
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States
| |
Collapse
|
13
|
Pineda S, Nikolova-Krstevski V, Leimena C, Atkinson AJ, Altekoester AK, Cox CD, Jacoby A, Huttner IG, Ju YK, Soka M, Ohanian M, Trivedi G, Kalvakuri S, Birker K, Johnson R, Molenaar P, Kuchar D, Allen DG, van Helden DF, Harvey RP, Hill AP, Bodmer R, Vogler G, Dobrzynski H, Ocorr K, Fatkin D. Conserved Role of the Large Conductance Calcium-Activated Potassium Channel, K Ca1.1, in Sinus Node Function and Arrhythmia Risk. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003144. [PMID: 33629867 DOI: 10.1161/circgen.120.003144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND KCNMA1 encodes the α-subunit of the large-conductance Ca2+-activated K+ channel, KCa1.1, and lies within a linkage interval for atrial fibrillation (AF). Insights into the cardiac functions of KCa1.1 are limited, and KCNMA1 has not been investigated as an AF candidate gene. METHODS The KCNMA1 gene was sequenced in 118 patients with familial AF. The role of KCa1.1 in normal cardiac structure and function was evaluated in humans, mice, zebrafish, and fly. A novel KCNMA1 variant was functionally characterized. RESULTS A complex KCNMA1 variant was identified in 1 kindred with AF. To evaluate potential disease mechanisms, we first evaluated the distribution of KCa1.1 in normal hearts using immunostaining and immunogold electron microscopy. KCa1.1 was seen throughout the atria and ventricles in humans and mice, with strong expression in the sinus node. In an ex vivo murine sinoatrial node preparation, addition of the KCa1.1 antagonist, paxilline, blunted the increase in beating rate induced by adrenergic receptor stimulation. Knockdown of the KCa1.1 ortholog, kcnma1b, in zebrafish embryos resulted in sinus bradycardia with dilatation and reduced contraction of the atrium and ventricle. Genetic inactivation of the Drosophila KCa1.1 ortholog, slo, systemically or in adult stages, also slowed the heartbeat and produced fibrillatory cardiac contractions. Electrophysiological characterization of slo-deficient flies revealed bursts of action potentials, reflecting increased events of fibrillatory arrhythmias. Flies with cardiac-specific overexpression of the human KCNMA1 mutant also showed increased heart period and bursts of action potentials, similar to the KCa1.1 loss-of-function models. CONCLUSIONS Our data point to a highly conserved role of KCa1.1 in sinus node function in humans, mice, zebrafish, and fly and suggest that KCa1.1 loss of function may predispose to AF.
Collapse
Affiliation(s)
- Santiago Pineda
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Vesna Nikolova-Krstevski
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Christiana Leimena
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Andrew J Atkinson
- Institute of Cardiovascular Sciences, University of Manchester, United Kingdom (A.J.A., H.D.)
| | - Ann-Kristin Altekoester
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Arie Jacoby
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Inken G Huttner
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Yue-Kun Ju
- Bosch Institute, University of Sydney, Camperdown (Y.-K.J., D.G.A.)
| | - Magdalena Soka
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Monique Ohanian
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Gunjan Trivedi
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Sreehari Kalvakuri
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Katja Birker
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Renee Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Peter Molenaar
- Faculty of Health, Queensland University of Technology (P.M.).,School of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, Australia (P.M.)
| | - Dennis Kuchar
- Cardiology Department, St Vincent's Hospital, Darlinghurst (D.K., D.F.)
| | - David G Allen
- Bosch Institute, University of Sydney, Camperdown (Y.-K.J., D.G.A.)
| | - Dirk F van Helden
- University of Newcastle and Hunter Medical Research Institute, NSW, Australia (D.F.v.H.)
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Rolf Bodmer
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Georg Vogler
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Halina Dobrzynski
- Institute of Cardiovascular Sciences, University of Manchester, United Kingdom (A.J.A., H.D.).,Jagiellonian University Medical College, Cracow, Poland (H.D.)
| | - Karen Ocorr
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst (D.K., D.F.)
| |
Collapse
|
14
|
Decreased cardiac pacemaking and attenuated β-adrenergic response in TRIC-A knockout mice. PLoS One 2020; 15:e0244254. [PMID: 33347504 PMCID: PMC7751866 DOI: 10.1371/journal.pone.0244254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/06/2020] [Indexed: 11/25/2022] Open
Abstract
Changes in intracellular calcium levels in the sinus node modulate cardiac pacemaking (the calcium clock). Trimeric intracellular cation (TRIC) channels are counterion channels on the surface of the sarcoplasmic reticulum and compensate for calcium release from ryanodine receptors, which play a major role in calcium-induced calcium release (CICR) and the calcium clock. TRIC channels are expected to affect the calcium clock in the sinus node. However, their physiological importance in cardiac rhythm formation remains unclear. We evaluated the importance of TRIC channels on cardiac pacemaking using TRIC-A-null (TRIC-A–/–) as well as TRIC-B+/–mice. Although systolic blood pressure (SBP) was not significantly different between wild-type (WT), TRIC-B+/–, and TRIC-A–/–mice, heart rate (HR) was significantly lower in TRIC-A–/–mice than other lines. Interestingly, HR and SBP showed a positive correlation in WT and TRIC-B+/–mice, while no such correlation was observed in TRIC-A–/–mice, suggesting modification of the blood pressure regulatory system in these mice. Isoproterenol (0.3 mg/kg) increased the HR in WT mice (98.8 ± 15.1 bpm), whereas a decreased response in HR was observed in TRIC-A–/–mice (23.8 ± 5.8 bpm), suggesting decreased sympathetic responses in TRIC-A–/–mice. Electrocardiography revealed unstable R-R intervals in TRIC-A–/–mice. Furthermore, TRIC-A–/–mice sometimes showed sinus pauses, suggesting a significant role of TRIC-A channels in cardiac pacemaking. In isolated atrium contraction or action potential recording, TRIC-A–/–mice showed decreased response to a β-adrenergic sympathetic nerve agonist (isoproterenol, 100 nM), indicating decreased sympathetic responses. In summary, TRIC-A–/–mice showed decreased cardiac pacemaking in the sinus node and attenuated responses to β-adrenergic stimulation, indicating the involvement of TRIC-A channels in cardiac rhythm formation and decreased sympathetic responses.
Collapse
|
15
|
Szteyn K, Singh H. BK Ca Channels as Targets for Cardioprotection. Antioxidants (Basel) 2020; 9:antiox9080760. [PMID: 32824463 PMCID: PMC7463653 DOI: 10.3390/antiox9080760] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
The large-conductance calcium- and voltage-activated K+ channel (BKCa) are encoded by the Kcnma1 gene. They are ubiquitously expressed in neuronal, smooth muscle, astrocytes, and neuroendocrine cells where they are known to play an important role in physiological and pathological processes. They are usually localized to the plasma membrane of the majority of the cells with an exception of adult cardiomyocytes, where BKCa is known to localize to mitochondria. BKCa channels couple calcium and voltage responses in the cell, which places them as unique targets for a rapid physiological response. The expression and activity of BKCa have been linked to several cardiovascular, muscular, and neurological defects, making them a key therapeutic target. Specifically in the heart muscle, pharmacological and genetic activation of BKCa channels protect the heart from ischemia-reperfusion injury and also facilitate cardioprotection rendered by ischemic preconditioning. The mechanism involved in cardioprotection is assigned to the modulation of mitochondrial functions, such as regulation of mitochondrial calcium, reactive oxygen species, and membrane potential. Here, we review the progress made on BKCa channels and cardioprotection and explore their potential roles as therapeutic targets for preventing acute myocardial infarction.
Collapse
|
16
|
Ergot alkaloid mycotoxins: physiological effects, metabolism and distribution of the residual toxin in mice. Sci Rep 2020; 10:9714. [PMID: 32546814 PMCID: PMC7298049 DOI: 10.1038/s41598-020-66358-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/15/2020] [Indexed: 11/08/2022] Open
Abstract
The complex ergot alkaloids, ergovaline and ergotamine, cause dysregulation of physiological functions, characterised by vasoconstriction as well as thermoregulatory and cardiovascular effects in grazing livestock. To assess the effect of the mycotoxins, blood pressure and heart rate of male mice were measured, and metabolite profiling undertaken to determine relative abundances of both ergotamine and its metabolic products in body and brain tissue. Ergotamine showed similar cardiovascular effects to ergovaline, causing elevations in blood pressure and reduced heart rate. Bradycardia was preserved at low-levels of ergovaline despite no changes in blood pressure. Ergotamine was identified in kidney, liver and brainstem but not in other regions of the brain, which indicates region-specific effects of the toxin. The structural configuration of two biotransformation products of ergotamine were determined and identified in the liver and kidney, but not the brain. Thus, the dysregulation in respiratory, thermoregulatory, cardiac and vasomotor function, evoked by ergot alkaloids in animals observed in various studies, could be partially explained by dysfunction in the autonomic nervous system, located in the brainstem.
Collapse
|
17
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Bailey CS, Moldenhauer HJ, Park SM, Keros S, Meredith AL. KCNMA1-linked channelopathy. J Gen Physiol 2019; 151:1173-1189. [PMID: 31427379 PMCID: PMC6785733 DOI: 10.1085/jgp.201912457] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Bailey et al. review a new neurological channelopathy associated with KCNMA1, encoding the BK voltage- and Ca2+-activated K+ channel. KCNMA1 encodes the pore-forming α subunit of the “Big K+” (BK) large conductance calcium and voltage-activated K+ channel. BK channels are widely distributed across tissues, including both excitable and nonexcitable cells. Expression levels are highest in brain and muscle, where BK channels are critical regulators of neuronal excitability and muscle contractility. A global deletion in mouse (KCNMA1−/−) is viable but exhibits pathophysiology in many organ systems. Yet despite the important roles in animal models, the consequences of dysfunctional BK channels in humans are not well characterized. Here, we summarize 16 rare KCNMA1 mutations identified in 37 patients dating back to 2005, with an array of clinically defined pathological phenotypes collectively referred to as “KCNMA1-linked channelopathy.” These mutations encompass gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity, as well as several variants of unknown significance (VUS). Human KCNMA1 mutations are primarily associated with neurological conditions, including seizures, movement disorders, developmental delay, and intellectual disability. Due to the recent identification of additional patients, the spectrum of symptoms associated with KCNMA1 mutations has expanded but remains primarily defined by brain and muscle dysfunction. Emerging evidence suggests the functional BK channel alterations produced by different KCNMA1 alleles may associate with semi-distinct patient symptoms, such as paroxysmal nonkinesigenic dyskinesia (PNKD) with GOF and ataxia with LOF. However, due to the de novo origins for the majority of KCNMA1 mutations identified to date and the phenotypic variability exhibited by patients, additional evidence is required to establish causality in most cases. The symptomatic picture developing from patients with KCNMA1-linked channelopathy highlights the importance of better understanding the roles BK channels play in regulating cell excitability. Establishing causality between KCNMA1-linked BK channel dysfunction and specific patient symptoms may reveal new treatment approaches with the potential to increase therapeutic efficacy over current standard regimens.
Collapse
Affiliation(s)
- Cole S Bailey
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Hans J Moldenhauer
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Su Mi Park
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Sotirios Keros
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD
| | - Andrea L Meredith
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Combs MD, Hamlin A, Quinn JC. A single exposure to the tremorgenic mycotoxin lolitrem B inhibits voluntary motor activity and spatial orientation but not spatial learning or memory in mice. Toxicon 2019; 168:58-66. [PMID: 31254599 DOI: 10.1016/j.toxicon.2019.06.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
The indole diterpenoid toxin lolitrem B is a tremorgenic agent found in the common grass species, perennial ryegrass (Lolium perenne). The toxin is produced by a symbiotic fungus Epichloë festucae (var. lolii) and ingestion of infested grass with sufficient toxin levels causes a movement disorder in grazing herbivores known as 'ryegrass staggers'. Beside ataxia, lolitrem B intoxicated animals frequently show indicators of cognitive dysfunction or exhibition of erratic and unpredictable behaviours during handling. Evidence from field cases in livestock and controlled feeding studies in horses have indicated that intoxication with lolitrem B may affect higher cortical or subcortical functioning. In order to define the role of lolitrem B in voluntary motor control, spatial learning and memory under controlled conditions, mice were exposed to a known dose of purified lolitrem B toxin and tremor, coordination, voluntary motor activity and spatial learning and memory assessed. Motor activity, coordination and spatial memory were compared to tremor intensity using a novel quantitative piezo-electronic tremor analysis. Peak tremor was observed as frequencies between 15 and 25Hz compared to normal movement at approximately 1.4-10Hz. A single exposure to a known tremorgenic dose of lolitrem B (2 mg/kg IP) induced measureable tremor for up to 72 h in some animals. Initially, intoxication with lolitrem B significantly decreased voluntary movement. By 25 h post exposure a return to normal voluntary movement was observed in this group, despite continuing evidence of tremor. This effect was not observed in animals exposed to the short-acting tremorgenic toxin paxilline. Lolitrem B intoxicated mice demonstrated a random search pattern and delayed latency to escape a 3 h post intoxication, however by 27 h post exposure latency to escape matched controls and mice had returned to normal searching behavior indicating normal spatial learning and memory. Together these data indicate that the tremor exhibited by lolitrem B intoxicated mice does not directly impair spatial learning and memory but that exposure does reduce voluntary motor activity in intoxicated animals. Management of acutely affected livestock suffering toxicosis should be considered in the context of their ability to spatially orientate with severe toxicity.
Collapse
Affiliation(s)
- M D Combs
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2560, Australia; Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, 2560, Australia
| | - A Hamlin
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - J C Quinn
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2560, Australia; Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, 2560, Australia.
| |
Collapse
|
20
|
Tremorgenic Mycotoxins: Structure Diversity and Biological Activity. Toxins (Basel) 2019; 11:toxins11050302. [PMID: 31137882 PMCID: PMC6563255 DOI: 10.3390/toxins11050302] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/23/2022] Open
Abstract
Indole-diterpenes are an important class of chemical compounds which can be unique to different fungal species. The highly complex lolitrem compounds are confined to Epichloë species, whilst penitrem production is confined to Penicillium spp. and Aspergillus spp. These fungal species are often present in association with pasture grasses, and the indole-diterpenes produced may cause toxicity in grazing animals. In this review, we highlight the unique structural variations of indole-diterpenes that are characterised into subgroups, including paspaline, paxilline, shearinines, paspalitrems, terpendoles, penitrems, lolitrems, janthitrems, and sulpinines. A detailed description of the unique biological activities has been documented where even structurally related compounds have displayed unique biological activities. Indole-diterpene production has been reported in two classes of ascomycete fungi, namely Eurotiomycetes (e.g., Aspergillus and Penicillium) and Sordariomycetes (e.g., Claviceps and Epichloë). These compounds all have a common structural core comprised of a cyclic diterpene skeleton derived from geranylgeranyl diphosphate (GGPP) and an indole moiety derived from tryptophan. Structure diversity is generated from the enzymatic conversion of different sites on the basic indole-diterpene structure. This review highlights the wide-ranging biological versatility presented by the indole-diterpene group of compounds and their role in an agricultural and pharmaceutical setting.
Collapse
|
21
|
Babu JV, Popay AJ, Miles CO, Wilkins AL, di Menna ME, Finch SC. Identification and Structure Elucidation of Janthitrems A and D from Penicillium janthinellum and Determination of the Tremorgenic and Anti-Insect Activity of Janthitrems A and B. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13116-13125. [PMID: 30482018 DOI: 10.1021/acs.jafc.8b04964] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
New compounds, 11,12-epoxyjanthitrem B (1) and 11,12-epoxyjanthitrem C (4), were isolated from Penicillium janthinellum and given the trivial names janthitrem A and janthitrem D, respectively. The known compounds janthitrem B (2) and janthitrem C (3) were also isolated, and NMR assignments were made for all four compounds. This showed that the previously published NMR assignments for 3 needed considerable revision. 1 and 2 were used as model compounds for the more complex, and highly unstable, epoxyjanthitrems that have been isolated from perennial ryegrass infected with the AR37 endophyte and which contain an epoxide group analogous to that of 1. Both 1 and 2 induced tremors in mice and reduced weight gain and food consumption of porina ( Wiseana cervinata) larvae, although 1 showed greater potency. This shows the importance of the epoxy group and suggests that epoxyjanthitrems are likely to be involved in the observed effects of the AR37 endophyte on livestock and insects.
Collapse
Affiliation(s)
- Jacob V Babu
- AgResearch Ltd., Ruakura Research Centre , Private Bag 3123 , Hamilton 3240 , New Zealand
| | - Alison J Popay
- AgResearch Ltd., Ruakura Research Centre , Private Bag 3123 , Hamilton 3240 , New Zealand
| | - Christopher O Miles
- AgResearch Ltd., Ruakura Research Centre , Private Bag 3123 , Hamilton 3240 , New Zealand
- National Research Council Canada , 1411 Oxford Street , Halifax , NS B3H 3ZI , Canada
| | - Alistair L Wilkins
- Chemistry Department , University of Waikato , Private Bag 3105 , Hamilton 3240 , New Zealand
| | - Margaret E di Menna
- AgResearch Ltd., Ruakura Research Centre , Private Bag 3123 , Hamilton 3240 , New Zealand
| | - Sarah C Finch
- AgResearch Ltd., Ruakura Research Centre , Private Bag 3123 , Hamilton 3240 , New Zealand
| |
Collapse
|
22
|
Patel NH, Johannesen J, Shah K, Goswami SK, Patel NJ, Ponnalagu D, Kohut AR, Singh H. Inhibition of BK Ca negatively alters cardiovascular function. Physiol Rep 2018; 6:e13748. [PMID: 29932499 PMCID: PMC6014461 DOI: 10.14814/phy2.13748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
Large conductance calcium and voltage-activated potassium channels (BKCa ) are transmembrane proteins, ubiquitously expressed in the majority of organs, and play an active role in regulating cellular physiology. In the heart, BKCa channels are known to play a role in regulating the heart rate and protect it from ischemia-reperfusion injury. In vascular smooth muscle cells, the opening of BKCa channels results in membrane hyperpolarization which eventually results in vasodilation mediated by a reduction in Ca2+ influx due to the closure of voltage-dependent Ca2+ channels. Ex vivo studies have shown that BKCa channels play an active role in the regulation of the function of the majority of blood vessels. However, in vivo role of BKCa channels in cardiovascular function is not completely deciphered. Here, we have evaluated the rapid in vivo role of BKCa channels in regulating the cardiovascular function by using two well-established, rapid-acting, potent blockers, paxilline and iberiotoxin. Our results show that BKCa channels are actively involved in regulating the heart rate, the function of the left and right heart as well as major vessels. We also found that the effect on BKCa channels by blockers is completely reversible, and hence, BKCa channels can be exploited as potential targets for clinical applications for modulating heart rate and cardiac contractility.
Collapse
Affiliation(s)
- Nishi H. Patel
- Department of Internal MedicineDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Justin Johannesen
- Department of Internal MedicineDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Kajol Shah
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Sumanta K. Goswami
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Neel J. Patel
- Department of Internal MedicineDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Andrew R. Kohut
- Penn Heart and Vascular CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Harpreet Singh
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvania
- Division of CardiologyDrexel University College of MedicinePhiladelphiaPennsylvania
| |
Collapse
|
23
|
Abstract
Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret, and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, is exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intracardially and are, thus, maintained even in heart transplant recipients. Although mechanosensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechanotransduction have started to emerge. Mechano-gated ion channels are cardiac mechanoreceptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them.
Collapse
Affiliation(s)
- Rémi Peyronnet
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Jeanne M Nerbonne
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Peter Kohl
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.).
| |
Collapse
|
24
|
Weisbrod D, Khun SH, Bueno H, Peretz A, Attali B. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels. Acta Pharmacol Sin 2016; 37:82-97. [PMID: 26725737 PMCID: PMC4722971 DOI: 10.1038/aps.2015.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022] Open
Abstract
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.
Collapse
Affiliation(s)
- David Weisbrod
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiraz Haron Khun
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hanna Bueno
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
25
|
Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:233-261. [PMID: 27038376 DOI: 10.1016/bs.apcsb.2015.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases.
Collapse
|
26
|
Stimers JR, Song L, Rusch NJ, Rhee SW. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes. PLoS One 2015; 10:e0130588. [PMID: 26091273 PMCID: PMC4474436 DOI: 10.1371/journal.pone.0130588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/22/2015] [Indexed: 12/29/2022] Open
Abstract
Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.
Collapse
Affiliation(s)
- Joseph R. Stimers
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| | - Li Song
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Nancy J. Rusch
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Sung W. Rhee
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
27
|
Capel RA, Terrar DA. The importance of Ca(2+)-dependent mechanisms for the initiation of the heartbeat. Front Physiol 2015; 6:80. [PMID: 25859219 PMCID: PMC4373508 DOI: 10.3389/fphys.2015.00080] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/02/2015] [Indexed: 01/01/2023] Open
Abstract
Mechanisms underlying pacemaker activity in the sinus node remain controversial, with some ascribing a dominant role to timing events in the surface membrane (“membrane clock”) and others to uptake and release of calcium from the sarcoplasmic reticulum (SR) (“calcium clock”). Here we discuss recent evidence on mechanisms underlying pacemaker activity with a particular emphasis on the many roles of calcium. There are particular areas of controversy concerning the contribution of calcium spark-like events and the importance of I(f) to spontaneous diastolic depolarisation, though it will be suggested that neither of these is essential for pacemaking. Sodium-calcium exchange (NCX) is most often considered in the context of mediating membrane depolarisation after spark-like events. We present evidence for a broader role of this electrogenic exchanger which need not always depend upon these spark-like events. Short (milliseconds or seconds) and long (minutes) term influences of calcium are discussed including direct regulation of ion channels and NCX, and control of the activity of calcium-dependent enzymes (including CaMKII, AC1, and AC8). The balance between the many contributory factors to pacemaker activity may well alter with experimental and clinical conditions, and potentially redundant mechanisms are desirable to ensure the regular spontaneous heart rate that is essential for life. This review presents evidence that calcium is central to the normal control of pacemaking across a range of temporal scales and seeks to broaden the accepted description of the “calcium clock” to cover these important influences.
Collapse
Affiliation(s)
- Rebecca A Capel
- British Heart Foundation Centre of Research Excellence, Department of Pharmacology, University of Oxford Oxford, UK
| | - Derek A Terrar
- British Heart Foundation Centre of Research Excellence, Department of Pharmacology, University of Oxford Oxford, UK
| |
Collapse
|
28
|
Lai MH, Wu Y, Gao Z, Anderson ME, Dalziel JE, Meredith AL. BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo. Am J Physiol Heart Circ Physiol 2014; 307:H1327-38. [PMID: 25172903 DOI: 10.1152/ajpheart.00354.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels play prominent roles in shaping muscle and neuronal excitability. In the cardiovascular system, BK channels promote vascular relaxation and protect against ischemic injury. Recently, inhibition of BK channels has been shown to lower heart rate in intact rodents and isolated hearts, suggesting a novel role in heart function. However, the underlying mechanism is unclear. In the present study, we recorded ECGs from mice injected with paxilline (PAX), a membrane-permeable BK channel antagonist, and examined changes in cardiac conduction. ECGs revealed a 19 ± 4% PAX-induced reduction in heart rate in wild-type but not BK channel knockout (Kcnma1(-/-)) mice. The heart rate decrease was associated with slowed cardiac pacing due to elongation of the sinus interval. Action potential firing recorded from isolated sinoatrial node cells (SANCs) was reduced by 55 ± 15% and 28 ± 9% by application of PAX (3 μM) and iberiotoxin (230 nM), respectively. Furthermore, baseline firing rates from Kcnma1(-/-) SANCs were 33% lower than wild-type SANCs. The slowed firing upon BK current inhibition or genetic deletion was due to lengthening of the diastolic depolarization phase of the SANC action potential. Finally, BK channel immunoreactivity and PAX-sensitive currents were identified in SANCs with HCN4 expression and pacemaker current, respectively, and BK channels cloned from SANCs recapitulated similar activation as the PAX-sensitive current. Together, these data localize BK channels to SANCs and demonstrate that loss of BK current decreases SANC automaticity, consistent with slowed sinus pacing after PAX injection in vivo. Furthermore, these findings suggest BK channels are potential therapeutic targets for disorders of heart rate.
Collapse
Affiliation(s)
- Michael H Lai
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Yuejin Wu
- Department of Internal Medicine and the François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
| | - Zhan Gao
- Department of Internal Medicine and the François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
| | - Mark E Anderson
- Department of Internal Medicine and the François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa; Department of Physiology and Molecular Biophysics, University of Iowa, Iowa City, Iowa; and
| | - Julie E Dalziel
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; Fischell Department of Bioengineering, University of Maryland, College Park, Maryland;
| |
Collapse
|
29
|
Shelley C, Whitt JP, Montgomery JR, Meredith AL. Phosphorylation of a constitutive serine inhibits BK channel variants containing the alternate exon "SRKR". ACTA ACUST UNITED AC 2014; 142:585-98. [PMID: 24277602 PMCID: PMC3840924 DOI: 10.1085/jgp.201311072] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BK Ca2+-activated K+ currents exhibit diverse properties across tissues. The functional variation in voltage- and Ca2+-dependent gating underlying this diversity arises from multiple mechanisms, including alternate splicing of Kcnma1, the gene encoding the pore-forming (α) subunit of the BK channel, phosphorylation of α subunits, and inclusion of β subunits in channel complexes. To address the interplay of these mechanisms in the regulation of BK currents, two native splice variants, BK0 and BKSRKR, were cloned from a tissue that exhibits dynamic daily expression of BK channel, the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of mouse hypothalamus. The BK0 and BKSRKR variants differed by the inclusion of a four–amino acid alternate exon at splice site 1 (SRKR), which showed increased expression during the day. The functional properties of the variants were investigated in HEK293 cells using standard voltage-clamp protocols. Compared with BK0, BKSRKR currents had a significantly right-shifted conductance–voltage (G-V) relationship across a range of Ca2+ concentrations, slower activation, and faster deactivation. These effects were dependent on the phosphorylation state of S642, a serine residue within the constitutive exon immediately preceding the SRKR insert. Coexpression of the neuronal β4 subunit slowed gating kinetics and shifted the G-V relationship in a Ca2+-dependent manner, enhancing the functional differences between the variants. Next, using native action potential (AP) command waveforms recorded from SCN to elicit BK currents, we found that these splice variant differences persist under dynamic activation conditions in physiological ionic concentrations. AP-induced currents from BKSRKR channels were significantly reduced compared with BK0, an effect that was maintained with coexpression of the β4 subunit but abolished by the mutation of S642. These results demonstrate a novel mechanism for reducing BK current activation under reconstituted physiological conditions, and further suggest that S642 is selectively phosphorylated in the presence of SRKR.
Collapse
Affiliation(s)
- Chris Shelley
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201
| | | | | | | |
Collapse
|
30
|
Takahashi K, Naruse K. Stretch-activated BK channel and heart function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 110:239-44. [PMID: 23281538 DOI: 10.1016/j.pbiomolbio.2012.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The heart is an organ that is exposed to extreme dynamic mechanical stimuli. From birth till death, the heart indefinitely repeats periodic contraction and dilation, i.e., shortening and elongation of cardiomyocytes. Mechanical stretch elicits a change in heart rate and may cause arrhythmia if it is excessive. Thus, mechanosensitivity is crucial to heart function. The molecule that is substantially involved in mechanosensitivity is a stretch-activated ion channel. Among several ion channels believed to be activated by stretch in the heart, the stretch-activated KCa (SAKCA) channel, a member of the group of large conductance (Big Potassium, BK) channels, shows a mechanosensitive (MS) response to membrane stretch. As BK channels respond to voltage and intracellular calcium concentration with large conductance, they are considered to be involved in repolarization after depolarization. Some BK channels are known to be activated by stretch and are expressed in a number of cells, including human osteoblasts and guinea pig intestinal neurons. The SAKCA channel was found to be sensitive to stretch in the chick heart. Given that the cardiomyocyte is unremittingly exposed to contraction and dilation and that it generates action potential and its contractility is modulated by intracellular calcium concentration, the SAKCA channel, which is dependent voltage and calcium, may be involved in action potential generation. It was recently reported that a BK channel is involved in the modulation of heart rate in the mouse. Further studies regarding the role of MS BK channels, including SAKCA, in the modulation of heart rate and contractility are expected.
Collapse
Affiliation(s)
- Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | | |
Collapse
|
31
|
Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc Natl Acad Sci U S A 2013; 110:18011-6. [PMID: 24128759 DOI: 10.1073/pnas.1308477110] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An inexorable decline in maximum heart rate (mHR) progressively limits human aerobic capacity with advancing age. This decrease in mHR results from an age-dependent reduction in "intrinsic heart rate" (iHR), which is measured during autonomic blockade. The reduced iHR indicates, by definition, that pacemaker function of the sinoatrial node is compromised during aging. However, little is known about the properties of pacemaker myocytes in the aged sinoatrial node. Here, we show that depressed excitability of individual sinoatrial node myocytes (SAMs) contributes to reductions in heart rate with advancing age. We found that age-dependent declines in mHR and iHR in ECG recordings from mice were paralleled by declines in spontaneous action potential (AP) firing rates (FRs) in patch-clamp recordings from acutely isolated SAMs. The slower FR of aged SAMs resulted from changes in the AP waveform that were limited to hyperpolarization of the maximum diastolic potential and slowing of the early part of the diastolic depolarization. These AP waveform changes were associated with cellular hypertrophy, reduced current densities for L- and T-type Ca(2+) currents and the "funny current" (If), and a hyperpolarizing shift in the voltage dependence of If. The age-dependent reduction in sinoatrial node function was not associated with changes in β-adrenergic responsiveness, which was preserved during aging for heart rate, SAM FR, L- and T-type Ca(2+) currents, and If. Our results indicate that depressed excitability of individual SAMs due to altered ion channel activity contributes to the decline in mHR, and thus aerobic capacity, during normal aging.
Collapse
|
32
|
Linta L, Stockmann M, Lin Q, Lechel A, Proepper C, Boeckers TM, Kleger A, Liebau S. Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny. Stem Cells Int 2013; 2013:784629. [PMID: 23690787 PMCID: PMC3649712 DOI: 10.1155/2013/784629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/06/2013] [Indexed: 11/17/2022] Open
Abstract
Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated. Additionally, iPSCs express a much higher number of ion channels compared to keratinocytes. Further, to narrow down specificity of ion channel expression in iPS cells we compared their expression patterns with differentiated progeny, namely, neurons and cardiomyocytes derived from iPS cells. To conclude, hiPSCs exhibit a very considerable and diverse ion channel expression pattern. Their detailed analysis could give an insight into their contribution to many cellular processes and even disease mechanisms.
Collapse
Affiliation(s)
- Leonhard Linta
- Institute for Anatomy Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Marianne Stockmann
- Institute for Anatomy Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Qiong Lin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelstrasse 30, 52074 Aachen, Germany
| | - André Lechel
- Department of Internal Medicine I, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Christian Proepper
- Institute for Anatomy Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Stefan Liebau
- Institute for Anatomy Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| |
Collapse
|
33
|
SK4 Ca2+ activated K+ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2013; 110:E1685-94. [PMID: 23589888 DOI: 10.1073/pnas.1221022110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. Two main mechanisms have been proposed: (i) the "voltage-clock," where the hyperpolarization-activated funny current If causes diastolic depolarization that triggers action potential cycling; and (ii) the "Ca(2+) clock," where cyclical release of Ca(2+) from Ca(2+) stores depolarizes the membrane during diastole via activation of the Na(+)-Ca(2+) exchanger. Nonetheless, these mechanisms remain controversial. Here, we used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) to study their autonomous beating mechanisms. Combined current- and voltage-clamp recordings from the same cell showed the so-called "voltage and Ca(2+) clock" pacemaker mechanisms to operate in a mutually exclusive fashion in different cell populations, but also to coexist in other cells. Blocking the "voltage or Ca(2+) clock" produced a similar depolarization of the maximal diastolic potential (MDP) that culminated by cessation of action potentials, suggesting that they converge to a common pacemaker component. Using patch-clamp recording, real-time PCR, Western blotting, and immunocytochemistry, we identified a previously unrecognized Ca(2+)-activated intermediate K(+) conductance (IK(Ca), KCa3.1, or SK4) in young and old stage-derived hESC-CMs. IK(Ca) inhibition produced MDP depolarization and pacemaker suppression. By shaping the MDP driving force and exquisitely balancing inward currents during diastolic depolarization, IK(Ca) appears to play a crucial role in human embryonic cardiac automaticity.
Collapse
|
34
|
Shemarova IV, Nesterov VP. Evolution of mechanisms of Ca2+-signalization. Role of Ca2+ in regulation of specialized cell functions. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Testai L, Martelli A, Marino A, D'Antongiovanni V, Ciregia F, Giusti L, Lucacchini A, Chericoni S, Breschi MC, Calderone V. The activation of mitochondrial BK potassium channels contributes to the protective effects of naringenin against myocardial ischemia/reperfusion injury. Biochem Pharmacol 2013; 85:1634-43. [PMID: 23567997 DOI: 10.1016/j.bcp.2013.03.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 01/10/2023]
Abstract
Naringenin (NAR), flavonoid abundant in the genus Citrus, has been reported to interact with the large-conductance calcium-activated potassium channels (BK). Since activators of BK channels expressed in cardiac mitochondria trigger protective effects in several models of myocardial ischemia/reperfusion (I/R), this work aimed to evaluate the potential cardioprotective effects of NAR and the involvement of mitochondrial BK channels. In an in vivo model of acute infarct in rats, NAR (100mg/kg i.p.) significantly reduced the heart injury induced by I/R. This effect was antagonized by the selective BK-blocker paxilline (PAX). The cardioprotective dose of NAR did not cause significant effects on the blood pressure. In Largendorff-perfused rat hearts submitted to ischemia/reperfusion, NAR improved the post-ischemic functional parameters (left ventricle developed pressure and dP/dt) with lower extension of myocardial injury. On isolated rat cardiac mitochondria, NAR caused a concentration-dependent depolarization of mitochondrial membrane and caused a trans-membrane flow of thallium (potassium-mimetic cation). Both these effects were antagonized by selective blockers of BK channels. Furthermore, NAR half-reduced the calcium accumulation into the matrix of cardiac mitochondria exposed to high calcium concentrations. In conclusion, NAR exerts anti-ischemic effects through a "pharmacological preconditioning" that it is likely to be mediated, at least in part, by the activation of mitochondrial BK channels.
Collapse
Affiliation(s)
- L Testai
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno, 6 I-56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Joseph BK, Thakali KM, Moore CL, Rhee SW. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches. Pharmacol Res 2013; 70:126-38. [PMID: 23376354 PMCID: PMC3607210 DOI: 10.1016/j.phrs.2013.01.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 02/07/2023]
Abstract
Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca(2+) and K(+) channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca(2+) and K(+) channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca(2+) (CaV1.2) channels, the voltage-gated K(+) (KV) channels, and the large-conductance Ca(2+)-activated K(+) (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels.
Collapse
Affiliation(s)
- Biny K Joseph
- Venenum Biodesign, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | | | | | | |
Collapse
|
37
|
Wojtovich AP, Nadtochiy SM, Urciuoli WR, Smith CO, Grunnet M, Nehrke K, Brookes PS. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel. PeerJ 2013; 1:e48. [PMID: 23638385 PMCID: PMC3628382 DOI: 10.7717/peerj.48] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 12/30/2022] Open
Abstract
Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR) injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine) revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.
Collapse
Affiliation(s)
- Andrew P Wojtovich
- Department of Medicine, University of Rochester Medical Center , Rochester, NY , USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Pérez GJ, Desai M, Anderson S, Scornik FS. Large-conductance calcium-activated potassium current modulates excitability in isolated canine intracardiac neurons. Am J Physiol Cell Physiol 2012. [PMID: 23195072 DOI: 10.1152/ajpcell.00148.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied principal neurons from canine intracardiac (IC) ganglia to determine whether large-conductance calcium-activated potassium (BK) channels play a role in their excitability. We performed whole cell recordings in voltage- and current-clamp modes to measure ion currents and changes in membrane potential from isolated canine IC neurons. Whole cell currents from these neurons showed fast- and slow-activated outward components. Both current components decreased in the absence of calcium and following 1-2 mM tetraethylammonium (TEA) or paxilline. These results suggest that BK channels underlie these current components. Single-channel analysis showed that BK channels from IC neurons do not inactivate in a time-dependent manner, suggesting that the dynamic of the decay of the fast current component is akin to that of intracellular calcium. Immunohistochemical studies showed that BK channels and type 2 ryanodine receptors are coexpressed in IC principal neurons. We tested whether BK current activation in these neurons occurred via a calcium-induced calcium release mechanism. We found that the outward currents of these neurons were not affected by the calcium depletion of intracellular stores with 10 mM caffeine and 10 μM cyclopiazonic acid. Thus, in canine intracardiac neurons, BK currents are directly activated by calcium influx. Membrane potential changes elicited by long (400 ms) current injections showed a tonic firing response that was decreased by TEA or paxilline. These data strongly suggest that the BK current present in canine intracardiac neurons regulates action potential activity and could increase these neurons excitability.
Collapse
|
39
|
Genetic activation of BK currents in vivo generates bidirectional effects on neuronal excitability. Proc Natl Acad Sci U S A 2012; 109:18997-9002. [PMID: 23112153 DOI: 10.1073/pnas.1205573109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large-conductance calcium-activated potassium channels (BK) are potent negative regulators of excitability in neurons and muscle, and increasing BK current is a novel therapeutic strategy for neuro- and cardioprotection, disorders of smooth muscle hyperactivity, and several psychiatric diseases. However, in some neurons, enhanced BK current is linked with seizures and paradoxical increases in excitability, potentially complicating the clinical use of agonists. The mechanisms that switch BK influence from inhibitory to excitatory are not well defined. Here we investigate this dichotomy using a gain-of-function subunit (BK(R207Q)) to enhance BK currents. Heterologous expression of BK(R207Q) generated currents that activated at physiologically relevant voltages in lower intracellular Ca(2+), activated faster, and deactivated slower than wild-type currents. We then used BK(R207Q) expression to broadly augment endogenous BK currents in vivo, generating a transgenic mouse from a circadian clock-controlled Period1 gene fragment (Tg-BK(R207Q)). The specific impact on excitability was assessed in neurons of the suprachiasmatic nucleus (SCN) in the hypothalamus, a cell type where BK currents regulate spontaneous firing under distinct day and night conditions that are defined by different complements of ionic currents. In the SCN, Tg-BK(R207Q) expression converted the endogenous BK current to fast-activating, while maintaining similar current-voltage properties between day and night. Alteration of BK currents in Tg-BK(R207Q) SCN neurons increased firing at night but decreased firing during the day, demonstrating that BK currents generate bidirectional effects on neuronal firing under distinct conditions.
Collapse
|
40
|
Asano S, Bratz IN, Berwick ZC, Fancher IS, Tune JD, Dick GM. Penitrem A as a tool for understanding the role of large conductance Ca(2+)/voltage-sensitive K(+) channels in vascular function. J Pharmacol Exp Ther 2012; 342:453-60. [PMID: 22580348 DOI: 10.1124/jpet.111.191072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Large conductance, Ca(2+)/voltage-sensitive K(+) channels (BK channels) are well characterized, but their physiological roles, often determined through pharmacological manipulation, are less clear. Iberiotoxin is considered the "gold standard" antagonist, but cost and membrane-impermeability limit its usefulness. Economical and membrane-permeable alternatives could facilitate the study of BK channels. Thus, we characterized the effect of penitrem A, a tremorigenic mycotoxin, on BK channels and demonstrate its utility for studying vascular function in vitro and in vivo. Whole-cell currents from human embryonic kidney 293 cells transfected with hSlo α or α + β1 were blocked >95% by penitrem A (IC(50) 6.4 versus 64.4 nM; p < 0.05). Furthermore, penitrem A inhibited BK channels in inside-out and cell-attached patches, whereas iberiotoxin could not. Inhibitory effects of penitrem A on whole-cell K(+) currents were equivalent to iberiotoxin in canine coronary smooth muscle cells. As for specificity, penitrem A had no effect on native delayed rectifier K(+) currents, cloned voltage-dependent Kv1.5 channels, or native ATP-dependent K(ATP) current. Penitrem A enhanced the sensitivity to K(+)-induced contraction in canine coronary arteries by 23 ± 5% (p < 0.05) and increased the blood pressure response to phenylephrine in anesthetized mice by 36 ± 11% (p < 0.05). Our data indicate that penitrem A is a useful tool for studying the role of BK channels in vascular function and is practical for cell and tissue (in vitro) studies as well as anesthetized animal (in vivo) experiments.
Collapse
Affiliation(s)
- Shinichi Asano
- Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | |
Collapse
|
41
|
Kyrychenko S, Tishkin S, Dosenko V, Ivanova I, Novokhatska T, Soloviev A. The BKCa channels deficiency as a possible reason for radiation-induced vascular hypercontractility. Vascul Pharmacol 2012; 56:142-9. [DOI: 10.1016/j.vph.2011.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/07/2011] [Accepted: 12/19/2011] [Indexed: 11/30/2022]
|
42
|
Nausch LWM, Bonev AD, Heppner TJ, Tallini Y, Kotlikoff MI, Nelson MT. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries. Am J Physiol Heart Circ Physiol 2012; 302:H594-602. [PMID: 22140050 PMCID: PMC3353782 DOI: 10.1152/ajpheart.00773.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/28/2011] [Indexed: 12/18/2022]
Abstract
It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) signals ("pulsars") in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca(2+) pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca(2+) pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca(2+) signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca(2+) channels, suggesting a role for IP(3), rather than Ca(2+), in VSM-to-endothelium communication. Block of intermediate-conductance Ca(2+)-sensitive K(+) channels, which have been shown to colocalize with IP(3) receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca(2+) signals to oppose vasoconstriction.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Signaling/physiology
- Connexins/genetics
- Endothelium, Vascular/metabolism
- Feedback, Physiological/physiology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism
- Mesenteric Arteries/innervation
- Mesenteric Arteries/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Receptors, Adrenergic, alpha/metabolism
- Sympathetic Nervous System/physiology
- Vasoconstriction/physiology
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Lydia W M Nausch
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT05405, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Wojtovich AP, Sherman TA, Nadtochiy SM, Urciuoli WR, Brookes PS, Nehrke K. SLO-2 is cytoprotective and contributes to mitochondrial potassium transport. PLoS One 2011; 6:e28287. [PMID: 22145034 PMCID: PMC3228735 DOI: 10.1371/journal.pone.0028287] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial potassium channels are important mediators of cell protection against stress. The mitochondrial large-conductance "big" K(+) channel (mBK) mediates the evolutionarily-conserved process of anesthetic preconditioning (APC), wherein exposure to volatile anesthetics initiates protection against ischemic injury. Despite the role of the mBK in cardioprotection, the molecular identity of the channel remains unknown. We investigated the attributes of the mBK using C. elegans and mouse genetic models coupled with measurements of mitochondrial K(+) transport and APC. The canonical Ca(2+)-activated BK (or "maxi-K") channel SLO1 was dispensable for both mitochondrial K(+) transport and APC in both organisms. Instead, we found that the related but physiologically-distinct K(+) channel SLO2 was required, and that SLO2-dependent mitochondrial K(+) transport was triggered directly by volatile anesthetics. In addition, a SLO2 channel activator mimicked the protective effects of volatile anesthetics. These findings suggest that SLO2 contributes to protection from hypoxic injury by increasing the permeability of the mitochondrial inner membrane to K(+).
Collapse
Affiliation(s)
- Andrew P. Wojtovich
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Teresa A. Sherman
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sergiy M. Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - William R. Urciuoli
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Paul S. Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Keith Nehrke
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Imlach WL, Finch SC, Zhang Y, Dunlop J, Dalziel JE. Mechanism of action of lolitrem B, a fungal endophyte derived toxin that inhibits BK large conductance Ca²+-activated K+ channels. Toxicon 2011; 57:686-94. [PMID: 21300077 DOI: 10.1016/j.toxicon.2011.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/22/2011] [Accepted: 01/24/2011] [Indexed: 12/18/2022]
Abstract
The aim of this study was to compare the mode of action of the commonly used BK inhibitor paxilline with that of the more recently discovered lolitrem B. Similarities and differences in characteristics of inhibition between the two compounds were investigated. We have previously shown that lolitrem B does not affect the BK channel G-V, in contrast to the rightward shift produced by paxilline. These different effects on the voltage-dependence of activation suggest different modes of action for these two compounds. In this study we show that inhibition by both paxilline and lolitrem B is characterized by an open state preference for BK (hSlo) channels. Both compounds had a 3-fold higher apparent affinity under conditions likely to favour the open state, suggesting they have a similar BK conformational preference for binding. Furthermore, both compounds had a calcium concentration-dependence to their inhibitory effects. The G-V shift induced by paxilline was calcium concentration-dependent.
Collapse
Affiliation(s)
- Wendy L Imlach
- AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | | | | | | | | |
Collapse
|
45
|
Grossmann V, Kohlmann A, Klein HU, Schindela S, Schnittger S, Dicker F, Dugas M, Kern W, Haferlach T, Haferlach C. Targeted next-generation sequencing detects point mutations, insertions, deletions and balanced chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single procedure. Leukemia 2011; 25:671-80. [PMID: 21252984 DOI: 10.1038/leu.2010.309] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA sequence enrichment from complex genomic samples using microarrays enables targeted next-generation sequencing (NGS). In this study, we combined 454 shotgun pyrosequencing with long oligonucleotide sequence capture arrays. We demonstrate the detection of mutations including point mutations, deletions and insertions in a cohort of 22 patients presenting with acute leukemias and myeloid neoplasms. Importantly, this one-step methodological procedure also allowed the detection of balanced chromosomal aberrations, including translocations and inversions. Moreover, the genomic representation of only one of the partner genes of a chimeric fusion on the capture platform also permitted identification of the novel fusion partner genes. Using acute myeloid leukemias harboring RUNX1 abnormalities as a model system, three novel chromosomal fusion sequences and KCNMA1 as a novel RUNX1 fusion partner gene were detected. This assay has the strong potential to become an important method for the comprehensive genetic characterization of particular leukemias and other malignancies harboring complex genomes.
Collapse
Affiliation(s)
- V Grossmann
- MLL Munich Leukemia Laboratory, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Houamed KM, Sweet IR, Satin LS. BK channels mediate a novel ionic mechanism that regulates glucose-dependent electrical activity and insulin secretion in mouse pancreatic β-cells. J Physiol 2010; 588:3511-23. [PMID: 20643769 DOI: 10.1113/jphysiol.2009.184341] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BK channels are large unitary conductance K(+) channels cooperatively activated by intracellular calcium and membrane depolarisation. We show that BK channels regulate electrical activity in β-cells of mouse pancreatic islets exposed to elevated glucose. In 11.1 mM glucose, the non-peptidyl BK channel blocker paxilline increased the height of β-cell action potentials (APs) by 21 mV without affecting burst- or silent-period durations. In isolated β-cells, paxilline increased AP height by 16 mV without affecting resting membrane potential. In voltage clamp, paxilline blocked a transient component of outward current activated by a short depolarisation, which accounted for at least 90% of the initial outward K(+) current. This BK current (I(BK)) was blocked by the Ca(2+) channel blockers Cd(2+) (200 μM) or nimodipine (1 μM), and potentiated by FPL-64176 (1 μM). I(BK) was also 56% blocked by the BK channel blocker iberiotoxin (100 nM). I(BK) activated more than 10-fold faster than the delayed rectifier I(Kv) over the physiological voltage range, and partially inactivated. An AP-like command revealed that I(BK) activated and deactivated faster than I(Kv) and accounted for 86% of peak I(K), explaining why I(BK) block increased AP height. A higher amplitude AP-like command, patterned on an AP recorded in 11.1 mM glucose plus paxilline, activated 4-fold more I(Kv) and significantly increased Ca(2+) entry. Paxilline increased insulin secretion in islets exposed to 11.1 mM glucose by 67%, but did not affect basal secretion in 2.8 mM glucose. These data suggest a modified model of β-cell AP generation where I(BK) and I(Kv) coordinate the AP repolarisation.
Collapse
Affiliation(s)
- Khaled M Houamed
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | | | | |
Collapse
|